Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Xulu, Sibusiso S."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The energy-momentum problem in general relativity
    (2002) Xulu, Sibusiso S.; Virbhadra, K.S.; Dube, T.A.
    Energy-momentum is an important conserved quantity whose definition has been a focus of many investigations in general relativity. Unfortunately, there is still no generally accepted definition of energ3r and momentum in general relativity. Attempts aimed at finding a quantity for describing distribution of energy-momentum due to matter, non-gravitational and gravitational fields only resulted in various energy-momentum complexes (these are nontensorial under general coordinate transformations) whose physical meaning have been questioned. The problems associated with energy-momentum complexes re¬sulted in some researchers even abandoning the concept of energy-momentum localization in favor of the alternative concept of quasi-localization. However, quasi-local masses have their inadequacies, while the remarkable work of Virbhadra and some others, and recent results of Cooperstock and Chang et ai have revived an interest in various energy-momentum complexes. Hence in this work we use energy-momentum complexes to obtain the energy dis¬tributions in various space-times. We elaborate on the problem of energy localization in general relativity and use energy-momentum prescriptions of Einstein, Landau and Lifshitz, Papapetrou, Weinberg, and Moller to investigate energy distributions in var¬ious space-times. It is shown that several of these energy-momentum com¬plexes give the same and acceptable results for a given space-time. This shows the importance of these energy-momentum complexes. Our results agree with Virbhadra's conclusion that the Einstein's energy-momentum complex is still the best tool for obtaining energy distribution in a given space-time. The Cooperstock hypothesis (that energy and momentum in a curved space-time are confined to the the regions of non-vanishing energy-momentum of matter and the non-gravitational field) is also supported.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback