Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Silwimba, Felix"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Active leakage management with bayesian networks
    (University of Zululand, 2021) Silwimba, Felix
    Despite the existence of different active leakage management methods and models, their implementation in most developing countries’ Water distribution systems (WDS’s) remain limited. This is attributed to some limiting challenges to leakage management faced by these WDS. Some of these include; financial constraints, poor record-keeping systems, and inadequate technicalskillsandtechnology. Thisleadsthesedistributionsystemstoadopt passive leakage management approaches that increase water losses and risk the destruction of neighboring infrastructure and water contamination. This study therefore presents a pipe leak monitoring and optimal maintenance sequencedeterminingmodellingframeworkthatisapplicableevenindistribution systems with limited data. The framework comprises of three models: a data adaptive Bayesian network(BN)modelforpredictingpipeleakprobabilitiesusedforleakagemonitoring, a water loss estimation model for estimating pipe leak water losses and a linear programming model in which water loss estimates and pipe leak predictions are used to determine the optimal pipe leak maintenance sequence. Fromtheassessmentandimplementationexampleofthemodelingframework which used simulated data, results indicate that the modeling framework is suitable for WDS with limited data.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback