Browsing by Author "Magwedere, Kudakwashe"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPresence and Virulence Characteristics of Shiga Toxin Escherichia coli and Non-Shiga Toxin–Producing Escherichia coli O157 in Products from Animal Protein Supply Chain Enterprises in South Africa(Marry Ann Liebert, 2022-06-10) Madoroba, Evelyn; Malokotsa, Keneiloe Portia; Ngwane, Cynthia; Lebelo, Sogolo; Magwedere, KudakwasheConsumption of food that is contaminated with Shiga toxin–producing Escherichia coli (STEC) has been linked to serious foodborne disease outbreaks. Our aim was to provide a descriptive study on the presence and virulence factors of STEC and non-STEC O157 isolates recovered from 2017 diverse meat and meat product samples from all provinces of South Africa (n = 1758) and imported meat from South Africa’s major ports of entry (n = 259). A crosssectional study was undertaken to analyze raw intact meat, raw processed (nonintact) meat, and ready-to-eat (RTE) meat from cattle, game, sheep, pork, and poultry. Isolation was performed using International Organization for Standardization-based microbiological techniques, while detection and characterization were performed using real-time PCR (RT-PCR) and conventional PCR targeting the stx1,stx2, eae, and ehxA genes. A total of 28 of 1758 (1.59%; confidence interval [CI] 1.1–2) samples from the domestic market tested positive (n = 10 Escherichia coli O157:H7; n = 14 Escherichia coli O157: non-H7; and n = 4 non-O157 STEC), while 4/259 (1.54%; CI 0.4–4) samples from ports of entry tested positive for Escherichia coli O157:H7 based on RT-PCR. On average, diverse samples from domestic meat and meat products from cattle showed the highest number of positive samples (22/1758; 1.3%; CI 0.8–2). RTPCR detected more positive samples (n = 32) compared with culture (n = 17). Sixteen different virulence factor combinations were observed. Our findings demonstrate a relatively low presence of diverse STEC strains along the meat value chain. To our knowledge, this is the first extensive report in South Africa to analyze STEC and non-STEC O157 from local and imported samples from many animal species. This is important as it reveals virulence factors in STEC strains circulating in meat and meat products in South Africa, which contribute to the risk of infection.
- ItemVirulence Factors and Antimicrobial Resistance in Salmonella Species Isolated from Retail Beef in Selected KwaZulu-Natal Municipality Areas, South Africa(MDPI, 2022-03-10) Naidoo, Serisha; Butaye, Patrick; Maliehe, Tsolanku S; Magwedere, Kudakwashe; Basson, Albert K; Madoroba, EvelynSalmonellosis and antimicrobial resistance caused by non-typhoidal Salmonella are public health concerns. This study aimed at determining prevalence, serovars, virulence factors and antimicrobial resistance of Salmonella from beef products. Four-hundred beef samples from 25 retail outlets in KwaZulu-Natal, South Africa were analyzed for Salmonella using standard methods, confirmation with matrix-assisted laser desorption ionization–time of flight and serotyping according to the White–Kauffmann–Le Minor scheme. The Kirby Bauer disk diffusion method was used to determine antimicrobial resistance against Cefotaxime, Kanamycin, Ampicillin, Amoxicillin, Trimethoprim Sulfamethoxazole, Ciprofloxacin, Chloramphenicol, Gentamicin Cefoxitin and Tetracycline. A polymerase chain reaction was performed to detect invA, agfA, lpfA, hilA, sivH, sefA, sopE, and spvC virulence genes. Salmonella was observed in 1.25% (5/400) of the samples. Four serovars (Enteritidis, Hadar, Heidelberg, Stanley) were identified. Almost all Salmonella were susceptible to all antimicrobials except S. Enteritidis isolate that was resistant to Tetracycline, Ampicillin and Amoxicillin. All Salmonella isolates carried at least two virulence factors. The findings indicate low Salmonella prevalence in meat from selected KZN retail beef; however, routine surveillance to monitor risk associated with virulence factors is required to mitigate potential outbreaks. The resistant S. Enteritidis highlights a need to routinely monitor antimicrobial resistance in order to enhance human health.