
ENTERPRISE COMPONENT ARCHITECTURE FOR MOBILE

COMMERCE SERVICES

HLENGIWE PINKY KUNENE

December 2004

ENTERPRISE COMPONENT ARCHITECTURE FOR MOBILE

COMMERCE SERVICES

Hlengiwe Pinky Kunene

A dissertation submitted to the Faculty of Science and Agriculture in

fulfillment of the requirements for the degree

of

MASTERS OF SCIENCE

m

COMPUTER SCIENCE

Department of Computer Science

University ofZululand

December 2004

Declaration

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which has been accepted for the award of any other degree or

diploma at any university or other institute of higher learning, except where due

acknowledgment has been made in the text.

Hlengiwe Pinky Kunene

I

Dedication

To my mother Thandi "Mam-B " , my two sisters Sithembile " Gel'teng ", Buhle

" Kelly " and my one and only brother Lindokuhle " Boyzin " and to my late father

Guduza.

u

Acknowledgment

.
Firstly, I would like to thank God for giving me this opportunity to have reached this far.

Secondly, my special thanks go to my supervisor Prof. M.O Adigun, who encouraged me

to take furtherpostgraduate studies under his supervision. I am grateful for his ideas in

making this research a success. Thirdly, my special thanks go to student assistants, who

participated in implementing the prototype. These were L.N. Mkhwanazi, P.T. Tamba-

tamba, s.e. Chonco, M.B. Linda and M.D. Jojisa. I would also like to give my sincere

thanks to my colleagues D.P. Biyela, T.e. KhumaIo and M.W. Nkambule for their

support. I am furthermore grateful to my friends e.N. Nxele, N.N. Nxele, S.P. Masondo,

N. Nkosi for their words of encouragement and support. Lastly, my appreciation goes to

all staffmembers who were always there in giving encouragement, advice and guidance.

III

Table of Contents

CHAPTER ONE 1

1.0 INTRODUTION ~ 1

1.1 Overview 1

1.2 Statement ofthe Problem 4

1.3 Motivation for the Research 4

1.4 Research goals and objectives 5

1.5 Research Methodology 6

1.6 Arrangements of the Dissertation 6

CHAPTER TWO 8

2.0 BACKGROUND CONCEPT AND LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Existing Enterprise Component Based Architectures 9

2.3 Service-Oriented Mobile Commerce Reference Architecture 13

2.4 Proposed ModeL . 15

2.5 A Framework for Comparing Architectures 16

CHAPTER THREE 19

3.0 REPOSITORY ARCHITECTURE ANALYSIS AND DESIGN 19

3.1 Introduction 19

3.2 The Repository Framework: eTOCOR .19

32.1 The Repository Layer 20

3.2.2 The Application Layer .21

3.2.3 The Presentation Layer 22

IV

3.3 Component Architecture Design 24

3.3.1 Tourism Domain Analysis 24

3.3.2 Domain Decomposition .28

3.3.3 Goal-Service Model Creation 31

3.3.4 Subsystem Analysis .33

3.3.5 Service Allocation 37

3.3.6 Component Specification using Use Case Grammar

Specification .37

CHAPTER FOUR .41

4.0 MODEL IMPLEMENTATION .41

4.1 Introduction .41

4.2 The Mobile Travel Reservation Application 42

4.3 Demonstration of the Component Repository '" .49

4.4 Prototype Limitations 56

4.5 Comparison with existing IRE : 56

CHAPTER FIVE 57

5.0 CONCLUSION 57

5.1 Conclusion .57

5.2 Future Work 58

REFERENCES 59

APPENDIX A : Snippets for a Hotel Reservation Component 63

APPENDIX B; Snippets for a Flight Reservation Component 71

APPENDIX C : Snippets for a Car Reservation Component.. 75

v

List ofFigures

Number Pages

2.2 M-Commerce Service-Oriented Reference Architecture 15

2.2 The logic operation ofan IRE Component.. 17

3.1 Architectural Context ofthe Repository Framework .20

3.2 Tourism Conceptual Model.. 27

3.3 Use Case Model for Tourism Domain 29

3.4 A Sequence Diagram for Register use case .35

3.5 A Sequence Diagram for Make Reservation use case•.........36

3.6 Business Grammar for Mobile Travel Reservation Enterprise Component .38

3.7 Class Diagram for Mobile Travel Reservation Application 39

4.1 Implementation Model for Mobile Travel Reservation Application .42

4.2 Customer Relationship Management (CRM) Interface , .43

4.3 Log-In Interface 44

4.4 Mobile Travel Reservation Application Interface 44

4.5 Hotel Accommodation Request .46

4.6 Hotel Reservation Confirmation .46

4.7 Hotel Choice Prompt .46

4.8 Hotel Reservation Confirmation 46

4.9 Flight Reservation Request .47

4.10 Flight Reservation Confirmation .47

VI

4.11 Car Reservation request ,..48

4.12 Car Reservation Confirmation ..48

4.13 UDDI Environment.. .50

4.14 Published Components 51

4.15 Components and services .52

4.16 Service Properties 53

4.17 Hotel Reservation Technical Model.. .53

4.18 The search interface ofthe repository 54

4.19 A Typical Search Result.. '" 55

VII

Number

List of Tables

Pages

2.1 Comparison of the proposed architecture (eTOCOR) and

existing architectures I8

3.1 Tourism services and common features .26

3.2 Business Use Cases and their associated pattern .31

3.3 Goal-Service model for domain decomposition business functions 32

4.1 Mapping eTOCOR architecture to Web Service Technologies .49

viii

ABSTRACT

This research focuses on creating a component based repository architecture for mobile

commerce services called (e-TOCOR) with the emphasis on component storage and

retrieval. To realize this framework three tasks were carried out namely (i) a model for

engineering component based m-commerce service was defined using existing models

(ii) the Universal Description Discovery and Integration (UDDI) was used to model a

component repository (iii) the mobile travel reservation application prototype was

developed to demonstrate the proposed model. The results obtained were threefold (i) by

evaluating the existing component based architectures, the study showed that m­

commerce services are not the same as e-commerce services, the Information

Requirement Elicitation (IRE) was adopted as a mechanism for eliciting a request and a

service delivery protocol for end-user mobile commerce services and (ii) the prototype

was developed to show how enterprise components can be delivered in mobile devices

using the IRE protocol. It was also shown that the way existing m-commerce services

elicit requests takes much time, the shortest way was to use a text message (iii) the

repository framework was created emanating from the home-based reference architecture.

In conclusion, the proposed repository could not be compared with the existing repository

architecture because it was not implemented, instead the UDDI was used.

IX

CHAPTER ONE

1.0 INTRODUCTION

1.1 Overview

Each and every system that is developed has an architecture. The software architecture

represents a high level of abstraction from which a system evolves as a collection of

interacting components [1]. Different architectural approaches have been defined and

implemented.

Traditionally[2], the application architecture consisted of a monolithic system, where the

data access, business rules and user interface were combined into a single program. This

type of approach worked well for many years, as long as the systems were carefully

controlled and all developers used the same programming language and techniques. With

advent of the personal computer, the same types of monolithic applications were being

built in an environment which was less controlled. The end result of the traditional

architecture was minimal reuse of existing code.

The platforms had no support of components and reuse was achieved by source code

sharing. Additionally, there was no separation of logical layers in the application which

(data, business logic and user interface) could not be separated as distinct elements in the

system. Each layer was compiled into a single deployable unit. Some problems with this

type ofarchitecture include:

1

1. the application functionality which could not be reused in another

application; and

ll. as the application grew, it became increasingly difficult to debug and

maintain.

A different type of application architecture was required for software developers to

achieve increased productivity and for systems to achieve reusability, maintainability and

scalability [2].

The next evolution in the application architecture is the Component Based Architecture

(CBA) which involves building systems in a layered approach. The layers include a

data access layer, business layer and presentation layer. The data access layer included all

code and logic, which access the data. The business layer consisted of a domain model or

services, which encapsulated the business rules of the application. The presentation layer

consisted of all user interface related functionality [2]. Components are reusable in other

systems. Developing applications from existing components reduce development time

and the cost of maintaining components, because a component is developed only once,

and it is reused over and over in new and existing applications. Components can be

extended to meet new business demands and users. One of the major problem with CBA

is the lack of a standard repository infrastructure which allows components to be

searched and retrieved for reuse purposes.

The advent of service-oriented architecture, or SOA, resolved the problem of repository

in CBA. The architecture provides for services to be stored in a universal service

2

repository similar to the Universal Description Discovery and Integration (UDDI)

described in [3]. SOA consists of two layers, namely data access layer and business

layer. The presentation layer exists, but is not part of the service-oriented definition. In

addition, a service-oriented architecture includes a well-defined service interface which

serves as the access point for all external calling applications. The service interface style

serves two purposes. Firstly, its method supports a request/response metaphor. Secondly,

it is responsible for controlling access to the business layer. Any applications or other

services calling the service interface do not have access to the business layer. This

provides a loosely coupled structure such that architecture of the service's

implementation can be changed without requiring any changes to the calling application

[2].

The architectures mentioned above this far do not particularly excel with respect to the

peculiarities of mobile commerce. Hence the following assumptions have been made as

the basis of this research work:

(1) Firstly, services common to e-commerce applications have been identified in [4] as

trading services, workflow services, access control services, event-notification services,

user profiling services, data integration services, etc. It is unlikely that these are adaptable

to meet rn-commerce specific requirements, because some of the services cannot be

provided as m-commerce services since they demand more concentration to mobile users.

(2) Secondly, not all the three traditional service categories namely: end-user services,

business process services and data services; fit m-commerce which has been found to be

3

more end-user oriented. Given the limitations ofmobile commerce devices, a protocol for

providing m-commerce services to end-users is required.

(3) Finally, the Information Requirements Elicitation Technology proposed by Sun et al

in [6, 7] is particularly attractive for end-user and service oriented needs of mobile

commerce applications.

1.2 Statement of the Problem

Existing distributed and client-serve architectures have a lot to offer to e-commerce. With

respect to m-commerce the earlier assumption in the literature that m-commerce is

wireless e-commerce have been found to be unacceptable, because m-commerce

challenges are different from those ofe-commerce.

E-commerce requires that researchers address certain challenges.

In this work, it is required to find a comparison mechanism that brings out the

peculiarities ofmobile commerce as different from existing e-commerce architecture.

Furthermore a model is to be formulated from a derivative of some existing reference

architecture. The model is required to demonstrate the relevance of SOA to the repository

infrastructure challenge in CBA.

Finally, it is required that a mobile commerce application is implemented that

demonstrates the applicability of the service-oriented repository architecture or model.

4

1.3 Motivation for the Research

The ongoing "wireless software and service architecture research" in the Department

yielded a service-oriented mobile commerce reference architecture. Among the building

blocks of the architecture is the technology archetype that serves as the operating

environment for other services supported in the architecture. The technology archetype is

envisioned as a middleware that provides various utility services such as component

repository service, context-awareness and so on. The contribution of this work is to

define model repository architecture to be used as the core technology for implementing

the middleware in future.

This motivation will not be complete without mentioning the role to be played by the IRE

mechanism. IRE has been adopted in this work as the primary protocol for the mobile

commerce prototype application built to demonstrate how technology archetype is

supposed to work.

1.4 Research goals and objectives

The major goal of this research is to create a component based mobile commerce

architecture with emphasis on component storage and retrieval.

The major goal is formulated as an equivalent ofsome related objectives which are to:

1. find an appropriate model for engineering component based mobile commerce

services ;

ll. design a component repository framework that matches the model and

5

ill. demonstrate how the model IS used ill mobile commerce usmg a typical

application.

1.5 Research Methodology

The methodology includes:

1. establishing a comparative scheme for relevant architectures Via a literature

. .
review exercise;

u. creating a component-based m-commerce architecture from existing models and

deriving from it a repository framework and

ill. testing the repository framework via a Mobile Travel Reservation application

specifically designed for this purpose.

1.6 Organization of Dissertation

This section describes how the rest of the dissertation is organized. In chapter two a

number of fore-runner architectures which were reviewed are explained. A mechanism

was created to compare them with the newly formulated architecture in this research.

The focus of chapter three is firstly, the analysis of the repository architecture and

secondly the design of the component based mobile travel reservation application that has

been used as a proofof concept for the repository framework.

System implementation is the subject matter addressed in chapter four. While a typical

application was implemented to provide typical enterprise components, the repository

6

architecture was demonstrated using the public Universal Description, Discovery and

Integration (UDDI) infrastructure for web services.

The conclusions and further work are presented in chapter five.

7

CHAPTER TWO

2.0 BACKGROUND CONCEPT AND UTERATURE REVIEW

2.1 Introduction

Component-Based Process in software engineering, (termed CBSE) is a process of design

and construction of systems using reusable software components. It combines concepts

from different areas of software engineering and computer science, such as Object­

Oriented programming, reuse, software architecture, modeling languages and formal

specifications [8].The basic idea of component based development is to qualify, adapt

and integrate existing components in that order[9]. Components or a specific business

functions in CBSE should be developed in such a way that they can be reused by other

systems in the future. Enterprise Components have been defmed as software-based

specific business functions which can be combined with other components to create a

larger system [10]. Components can be provided in mobile devices as mobile commerce

services.

Mobile commerce has been defined in [11] as buying and selling of goods and services

through wireless handheld devices such as the cellular telephone and personal digital

assistants (PDA). Mobile commerce services can be divided into two: information

services and transaction services. Mobile users, the users of mobile devices; may use a

mobile application to check news, lotto numbers, weather, soccer scores etc. Others may

use it to carry out a transaction like, purchasing a book or a concert ticket. Mobile

8

commerce application architectures need to take into consideration the mobile devices

limitations such as small screen, slow CPU and limited processing power [12].

The following section presents enterprise component based architectures

2.2 Existing Enterprise Component Based Architectures

2.2.1 Enterprise Business Components (EBC)

Diamelle Technologies' Enterprise Business Components (EBC) [13] comprise a

component framework for eBusiness. EBCs were designed and built using the Enterprise

JavaBeans 1.1 and they help to provide new business services to customers very quickly,

while simultaneously providing a scalable architecture that accommodates future

requirements. This architecture is layered, consisting of, Foundation Layer, Component

Layer, and Persistence Layer. The Foundation layer provides common base classes for all

Enterprise Java Beans and it also provides fine grained building blocks that can be used

to build new components quickly for applications. The component layer selectively

extends the foundation layer. The layer provides components like user authentication,

navigation, view, customer, catalog management, shopping cart, order processing, billing,

and shipping. The Persistence Layer is for reuse and flexibility. The purpose of the

architecture is twofold: (i) To provide components that are reusable, extendable, and

customizable to fit new needs, (ii) To support composition of e-commerce applications. A

cursory investigation of EBC architecture shows that it is not service oriented (it lacks

service delivery mechanism) and it specifies no rules on how to compose components

using this architecture. The framework was implemented using the Java programming

language.

9

2.2.2 ffiM San fransisco Framework

ffiM's San Fransisco Framework [14] defines three layers of reusable software

components. The highest Layer called the core business processes provides business

objects and default business logic for vertical domain. The second layer, called the

common business objects provides basic facts and rules that are common to most

business environments and are used by more than one business process. The lowest layer

Foundation Layer provides the object infrastructure that is used to build the Common

Business Objects Layer and Core Business Process Layer or to build domain-specific

business process. All components within the various layers are highly extensible to

support customization and application differentiation. Instead of building the entire

application from scratch, application developers can choose to exploit San Francisco

Framework at any of the three layers. This architecture supports composition of e­

commerce applications.

2.2.3 Service Oriented Architecture

Service oriented architectures [15, 16, 17, 18, and 19] use a component based

development approach to develop and compose services. Most of the service-oriented

architectures seem to use the same architecture and involve three different kinds of

actors: service providers, service requesters and discovery agencies. Usually they provide

the same functionality but the difference is in the terms used. The service provider

exposes some software functionality as a service to its clients. In order to allow clients to

access the services, the provider also has to publish a description of the service. Since the

10

service provider and service requester usually do not know each other in advance, the

service descriptions are published via specialized discovery agencies. They can

categorize the service descriptions and provide them in response to a query issued by one.
of the service requesters. As soon as the service requester finds a suitable service

description for its requirements at the agency, it can start interacting with the service

provider and using the services. Such service oriented architectures are typically highly

dynamic and flexible because services are only loosely coupled and clients often replace

services at run-time. Service oriented architectures provide services using service

discovery protocols. Most of the service oriented architecture such as Jini, use the service

location protocol as a way of delivering e-commerce services.

Service oriented architectures use web services technologies. Web service technologies

have been defined in [15] as follows: from a technical perspective, web services are a

standardized way of integrating web-based applications using open standards including

XML, the simple object access protocol (SOAP), the Web Services Description

Language (WSDL), and the universal description, discovery, and integration (UDD!)

specification. UDD! is a web service that lets businesses discover one another and

describe how they interact It provides a simple object access protocol interface for

publishing entries and querying the UDD! registry. Multiple providers can register their

services in a central directory and precisely characterize their offering.

11

2.2.3.1 Common Picture eXchange (CPXe)

CPXe [19] is a highly interoperable service delivery framework that leverages the web

services paradigm to give providers access to an expanded market and offer cqnsumers a

broad range of digital imaging services. The CPXe architecture consists of three tiers, the

service themselves, a directory service, and the applications that discover and interact

with these two types of services. It only defines access services for online fulfillment. It

relies on the UDDI specification for directory functionality. A service locator mechanism

lets consumers easily select vendors offering the products and features they desire. A

service locator is implemented to function as a travel agent or sales broker. A service

locator consnlts the UDDI directory to determine available services and queries those

services for catalog information. Catalogs in this framework give a provider a

standardized way to communicate detailed information about its products and services to

a service requester.

2.2.3.2 Jini

Jini [20] is described as a distributed service-oriented architecture developed by Sun

Microsystems. Jini services can be realized to represent hardware devices, software

programs or a combination of the two. A collection of Jini services forms a Jini

federation. Jini services coordinate with each other within the federation. The overall goal

ofJini is to turn the network into a flexible, easily administered tool on which human and

computational clients can find services in a flexible and robust fashion. Jini is designed to

make the network a more dynamic entity that better reflects the dynamic nature of the

workgroup by enabling the ability to add and delete services flexibly. One of the key

components is the Jini Lookup Service (JLS), which maintains dynamic information

12

about the available services in a Jini federation. A user searching for a service in the

network first multicasts a query to find out the Jini Lookup Service in the network. If a

Jini Lookup Service exists, the corresponding remote object is downloaded into the user's..
machine. The user then uses this object to find out its required service. In Jini, service

discovery is done by interface matching or java attributes matching. If the Jini Lookup

Service contains a valid service implementing the interface specified by the user, then a

proxy for that service is downloaded in the user's machine. The proxy is used henceforth

to call different functions offered by the service.

2.3 Service-Oriented Mobile Commerce Reference Architecture

The reference architecture shown in figure 2.1 is conceptualized with the tourism sector

in mind. A product-line is an architectural concept defined as a collection of systems

sharing a managed set of features constructed from a common set of core software

assets[2lJ. The product line architecture consists of five archetypes or architectural

elements, namely client, technology, service, information and transaction. Each of these

elements are architectural abstractions that have to be instantiated when a product is

being derived from the architecture. Each archetype is briefly overviewed as follows:

Client stands for any mobile device that can serve as user interface to the product being

instantiated. Examples are PDA, the cellular phone, the handheld PC, etc.

Technology- refers to the operating environment in which services are to run. To ensure

services are standardized the environment was conceptualized as a set of utility services

13

through which data, metadata and context information are served to other architectural

elements according to the IRE protocol (depicted in figure 2.2). This archetype is the

basis of the proposed repository architecture in this work envisioned as a middleware, it.
consists of four system services which other services (must adopt information,

transaction, even third party services).

A service is an abstract element that will not be instantiated but serves as the generic

archetype for technology, information and transaction.

Information refers to all content-based services to be requested by the client.

Transaction models all commercial activities services in which there is an exchange of

money and product.

It is to be noted that the architecture further identifies both information and transaction

archetypes as product-line services in contrast to third-party services which are loaded

from external sources. An example of Third party services may be a game downloaded

from the internet or similar network service.

In order to realize the technology archetype as a set of utility services, a protocol or

operating environment style was needed. There is no existing standard for mobile

commerce in this respect, so the Information Requirement Elicitation (IRE) Technology,

first advanced by Sun et al [6,7] is our choice for driving the reference architecture.

14

Sevces
Technology + Utility Sewces

Sup,,'" &
Service Dera

.~ .. ~--.........---
Iraeface .. .

• :

I~~ul ~h".....
Interface

: ~ :: Cootext : Predict Lee (PL) Thid Party (TP)----_...... . Sevces Services~e •• ~ ... -.-~-

8 Informatim Transacron

> Figure 2.1: M-Co=erce Service-Qriented Reference Architecture

2.4 Proposed Model

This research proposes to create a layered reusable component based repository

framework for mobile commerce services called eTOCOR (e-Tourism Component

Repository) emanating from the product line reference architecture of the previous

section. The proposed architectural framework will be used to compose applications.

Applications are composed ofcomponents.

In CBSE , a component is specified in terms of its functional and extra-functional

properties[22]. In this research the focus is on the functionality of a component. The

functionality ofa component is accessed via an interface [23}. The main aim is to create a

reusable architecture that can be used to compose mobile commerce service.

15

Mobile devices have limitations such as small screen, limited processing power, the

device size and the input device such as small buttons An IRE protocol was adopted as a

request/response mechanism to invoke service or to elicit a request from the mobile user..
Tourism have been chosen as the domain of sample enterprise components to be used in

mobile commerce. The reference architecture is designed in such a way that product

instances developed using the architecture are IRE-enabled. An IRE-enabled component

is a component that uses IRE protocol (see Figure 2.2) to elicit a request and provide

services according to a user's request. Therefore, IRE enablement consists of conformity

to the IRE driven utility service specification of the technology archetype (Fig 2.1)

2.5 A Framework for Comparing Architectures

In Table 2.1, an attempt has been made to compare existing component-based

frameworks and the component repository (eTOCOR). The comparison is based on five

characteristics namely: Layering flavour, core technology, architectural style, service

orientation, and service discovery protocol (if relevant). It is to be noted that most of the

popular architectures are component based and electronic service oriented but are not

suited for mobile commerce model.The main deficiency in the existing architectures is

the absence of the likes of IRE which is a service discovery protocol specifically

designed for m-commerce.

16

Figure 2.2 Overview ofthe IRE protocol as in Sun et al [7]

17

Table 2.1 : Comparison of the proposed architecture (eTOCOR) and existing

architectures

Item being compared Core Architectu Service Service

Layering Flavour Teehnology ral style Orientatio'D discovery

protocol

Enterprise Consist of Enterprise Popular e- e-commerce -
Business component layers JavaBeaos 1.1 commerce services

Components(13] -Foundation layer patterns

-Cornponent layer

-Foundation layer

IBM San Fransiseo Consist of Java Design e-commerce -
Framework(141 component Layers Technology Pattems(services

-Core business Gamma el

process layer a1)

- Common business

layer

-Foundation layer

Common Picture Consist of three tiers, eXtensible Service e-commerce Service

eXchange (CPXe) -servicesthemselves, Markup Oriented services Location

(19] -directory services, Language Architectur Protocol (SLP)

- applications . (XML) al style

Service Oriented Consist of layers Java Language Service e-commerce Service

Architectnre(SOA) -business layer Oriented services Location

such as Jini - data layer Architectur Protocol

Architecture -presentation layer al style (SLP)

[15,16,17,18]

e-Tourism threelayers, Java Product m-commerce lnfonnation

Component - repository layer Technology line style service Requirement

Repository - application layer, and Web Elicitation

(eTOCOR) - presentation Services (IRE) Protocol

layer Technologies

18

CHAPTER THREE

3.0 REPOSITORY ARCIllTECTURE ANALYSIS AND DESIGN

3.1 Introduction

Deri [24] defines and differentiates between an architecture and a framework:. An

architecture is defined by means of a framework, and it specifies and restricts the way

components interact. He further describes architecture as a conceptual description of a

system presented at a level of abstraction in which the system's high-level design can be

understood. A repository architecture specifies:

1. the structure of the repository, the services it provides, and its responsibilities with

respect to other archetypes in the reference architecture;

11. the repository interface, consists of component characteristics that have to be

visible from the outside and

111. the way constituent components collaborate.

3.2 The Repository Framework: eTOCOR

The architectural framework shown in figure 3.1 provides the context in which the

repository architecture is designed. It consists of three layers the repository layer,

application layer and the presentation layer.

19

-- IRE -­
Request!
Respond

l\pplicalions

e-Tourism 0mJp0ned: Repository(eTOCOR)

ICarme H Hotel HFi~1

- ,..

Web Semce Fhmewtrk

applicalion layer

repostoty lay..-

Figure 3.1 Architectural Context of the Repository Framework

3.2.1 The Repository layer

The repository relies on the web service technologies, Universal Description, Discovery,

and Integration specification (UDDl) for directory functionality. It provides interfaces

and operations for storing, retrieving and updating components. A component can be

identified by a name. A component structure contains information about the component.

It includes the name of the component, the description of a component and the service it

20

provides. Components are categorized according to services they provide. Each

component has its own interface and describes its services.

Components in this work are designed to be reusable to other applications within the

tourism domain. eTOCOR components used the Java Servlet Technology to describe the

client interface. The eTOCOR components are published and written in WSDL in a

registry (UDDI) or made available for discovery. When another enterprise component

needs a component that satisfies some functionality, then a query is issued to the

repository to find if WSDL of an available component exists. A component is a shared

resource, which means the component can support many applications. This type of

flexibility is needed because many different applications can share a single component. A

component is to be located using the component repository.

3.2.2 The Application layer

eTOCOR-based application makes services available on mobile devices. Internally the

application is composed of components. An application specifies a mechanism for

invoking a service. In an eTOCOR component are tourism services. Examples are car

hire service, hotel reservation service, flight booking services. Each and every application

incorporates standard elements such as end-users, services, execution environment, and

communication models. End-users refer to mobile users e.g. Tourist or Service Requester

using a mobile device to request a service. Services are provided by applications that are

available on the network e.g, hotel reservation service, etc. Execution environment: an

environment where an application runs. The communication style, which refers to

21

communication between a user and applications, is called "request and respond". Thus a

user of an application issues a request and the application responds to the request.

eTOCOR applications use on the client-server communication model.

3.2.3 The Presentation Layer

The presentation layer refers to the user interface where users, service requesters or

tourists can interact with a service. It provides an access point to services offered by an

application. An eTOCOR application provides a message box interface for requesting a

service using a structured text message. Service requesters are able to issue a request

using a message, for instance, to request a reservation service such as flight, hotel or car.

Each service has a message format depending on the service to be invoked.

To instantiate reference architecture, the tourism domain was selected. A mobile travel

reservation application was developed to demonstrate IRE enabled components crafted in

the mobile commerce repository framework called eTOCOR IRE is an elicitation

mechanism; hence a text message was selected as a means of eliciting and responding to

a service request. The way e-commerce services are delivered on desktop machine

contrasts with m-commerce service delivery on hand-held devices. The latter adapts to

the smaller screen of the hand-held device.

Each component is IRE-enabled to be used in a mobile device as follows, illustrating the

Travel Reservation components

22

1. Tourists were required to register to personalize their wireless devices on a

web application;

n. Once the tourist was registered he/she was able to request services

according to his/her preferences;

Ill. The tourist used a message to request a service or to make reservation;

IV. Once the tourist had sent his/her request, his/her preferences were used to

deliver services and

V. The confirmation number was issued.

Services are thus requested using a text message on a mobile phone. The message

conforms to a format depending on the service to be requested Most messages are

formatted using abbreviation. In this case reservation messages were formulated based on

the format represented below:

Hotel <htl> <destination city> <check in date> <check out date>- - - - -

Flight <fit> <departure_city> <arrivalcity> <reservation_date>

For example to request a hotel reservation service, a message such as this; <htl> <dbn>

<03/12104><04/12104> where <htl> stands for hotel, <dbn> stands for Durban,

<03/12104> stands for check-in-date and <04/12104> stands for check-out-date.

23

3.3 Component Architecture Design

A structured approach or analysis and design method suggested by Zimmermann et al[26]

was used to develop components of the repository architecture (eTOCOR).

The design and implementation consists of the following activities: Tourism Domain

Analysis, Domain Decomposition, Goal Service Model Creation , Subsystem analysis,

Service allocation and Component Specification

The top down aspect of this approach came from taking business perspectives and models

into consideration: Business functions, processes, sub-processes, and use cases were

elaborated to form the outlines of component boundaries. Components provide

boundaries and containers for services often discovered through use case analysis and

goal-service model creation [27]. The following sections outline the tasks taken to

develop the component based repository architecture. Each of the tasks is applied to the

tourism domain.

3.3.1 Tourism Domain Analysis

Domain Engineering is defined as a process of defining the scope (i.e., domain

definition), analyzing the domain (i.e., domain analysis), specifying the structure (i.e.

domain architecture development), and identifying components that will support

reuse[28]. It can also be defined as the activity of understanding, abstracting and

24

modeling a bounded problem domain, the people (roles) involved and its enterprise

context [29]. The requirements of the component system are analyzed by refining and

structuring them. The purpose of doing this was to achieve a more precise un~erstanding

of the requirements and to achieve a description of the requirements that is easy to

maintain and that helps us give structnre to the whole component application including its

architectnre. The major effort in requirements is to develop a model of the application

that is to be built, and the employment of use cases is an appropriate way to create such a

model. Use cases [30] offer a systematic and intuitive way to captnre the functional

requirements with particular focus on the value added to each individual user or to each

external application. Their key role in driving the rest of the development work has been

an important reason for their acceptance in most approaches to modem software

engineering.

This framework supports the Tourism specific domain. Mekonnen in [3I] defmes tourism

as "travel and stay ofa non-resident." In order to travel to a particular area, there must be

a reason. For example, a person or a tourist may travel for leisure, business, visiting

friends and relatives, health, education, etc. The tourist chooses a destination for one or

the other reason. Transport is necessary to travel and accommodation to stay at the

destination. Tourism is a service-based industry comprising a number of related

activities, some ofwhich are:

1. Attractions{arts & craft, naturaI attraction, conference};

u, Accommodation{ hotels, motel, guest houses, caravans};

ill. Transport{air, water, surface};

25

IV. Scenic{parks, beach};

v. Entertainment{cinema, theatres, video games, festivals/concerts};

VI. Culturalffradition{museums, religion, historical places} and

• Others {news, weather}

Figure 3.2 shows the various interacting elements in the tourism enterprise. Role players

in the tourism domain are referred to as Tourist or service requesters, service suppliers

examples are hotel suppliers, car suppliers, flight supplier's, etc. Service suppliers

provide services which were classified into attraction, accommodation, scenic, transport,

and entertainment. To make use of tourism services, Tourists are required to make

reservation before arrival, To take a few services such as flight, car, hotel, etc. These

services are classified under the accommodation and transport activities. These services

share common features such as make reservations, change reservations and cancel

reservations which makes them reusable. (see table 3.1).

Servi:es Conunon Feanres

Hotel Make reservaticn

Cancel reservation

Change reservation

Car Make reservation

Cancel reservation

Cmn~ reservation

FfigJ1t Make reservaticn

Cancel reservation

Change reservation

Table 3.1 Tourism services and common features

26

Toltrism
Industry

I

bave
•

Service
-11 provide

SUpplien J
Service Requester

(Touri5t)

I

request

I •. , •
Car Flight

Suppliers Supplien
Services

At t t
I I I

Attractioas Acrommodarioa r Scenic Transport EntemiDmeot

i
Hotels 1 Air Surface I

GRich!

Figure 3.2 Tourism Conceptual Model

27

3.3.2 Domain Decomposition

In this task:, the domain was decomposed into business processes, sub-processes and use

cases. From a business perspective, the domain consists of a set of functional areas [27].

As a result of the decomposition, the following functional areas were obtained:

1. Travel Reservation Business Process;

11. Customer Relationship Management Business Process;

111. Payment Business Process and

iv. Marketing Business Process

After decomposing domain into functional areas, each one was decomposed into sub­

processes and business use cases.

Use Case Model

Use cases were used to show the functionality of components from the actor's point of

view. Figure 3.3 shows a use case model, using a Unified Modeling Language

(UML)[32]. The decomposition of the functional areas described above led to the

following set ofbusiness use-cases:

1. Advertise;

11. Place order;

111. Make reservations;

IV. Register and

28

v. Make payments.

The business use case definitions are business driven and offer common, reusable

business functionality [27]. The use case model is explained as follows:

Advertise- this process is activated by tourism service supplier to advertise their product

or services to tourist or service requesters.

Place order - this process is activated by tourist or service requesters, to purchase any

product or to order any tourism product.

makes
reservation

register

placeorder

TOUTGtI
Service requester

X advertise

Service

Billing Supplier

System make
payrrents

Figure 3.3 Use Case Model for Tourism Domain

Make reservations - this process is activated by a tourist to make a car reservation, make

a hotel reservation or to make a flight reservation. These subsystems were given the

generic name, make reservation subsystem.

29

Register- this process is activated by a tourist to register hislher personal details and to set

his/her preference.

Make payments - this is done after the requester's request is successful and a payment is..
made to a supplier who supplied the service.

As a result of tourism domain decomposition, some functional areas have emerged. These

are then matched with business patterns as documented in the table 3.2 The business

patterns shown in table 3.2 are mostly used in enterprise architectures and they are

defined in [27] as follows: The end-user services business pattern allows a tourist to

interact with business services. The extended enterprise business pattern allows one

business to interact with another business service. In this work the focus is on end-user

services.

Not all use cases are covered. Only the make reservation, register use case and make

payment use cases are demonstrated. These business use cases were further analyzed to

decompose the domain. The business use cases constitute the component in the tourism

domain that can be used to compose mobile applications and serve as mobile commerce

services.

As we moved to the design, each functional area was mapped to one or more subsystems.

Subsystems are pictured as technology services of a business.

30

Table 3.2 Business Use Cases and their associated patterns

Requester/
&msor

USe Case Nnne Descri(ri<n Implementedby IntergratonInvoker
Patern

Plare order Trurist puclase Toorist' Service Supplier Frd-user service
goods by placing Service Reqaester
an crder

Mlke Reservakn Trurist make; Toorist' Service ~pIiers
reservation e.g Service Reqresrer End-user servee
car, fight, betel

Alvertise Servee Suwfier Service Suppler Service Supplier &msPattem
advertse services

Register Trurist register Toorist Service s'Wlier End-user service
mcbilerevel'

Process Payrnens service s'Wlier Service Suppler Third Parties ptJplicairn
int"'gratbn ani
extended
en;"'\ri;e

Sends Servce s~pIier Service SUWlier Service Sepplier PPW lication
CbnfirtnairnI system sends system Irtergrairn ani

confirmatirn extended
en;"'\ri;e

3.3.3 Goal-service model creation

For each enterprise components or the functional area identified in domain

decomposition, their services were identified using the goal service model [33]. The goal-

service model was created as shown in table 3.3 to identify components and services that

the repository supports for mobile commerce services. Various notations are possible for

a goal-service model. The table was used to docwnent the goal service model which

consists of two colwnns. The first colwnn provides a goal and the second colwnn are

services for each goal. This example covers the customer relationship management,

travel reservations, and marketing business functions.

31

Cbal Services

To automaically allow Tourist to rnal<e Regi;tertoorist oolite
resevators to 1heir f,."rurile service &lWli:r

Provide end-user reservatirn service MIke reservation using a mcbile dovice
.

To allow Tcurist to swmit ther requestto
the system

To automaically return allreservatirns hick Send reservation confirmatirn mmber
to the tourist mce processng is ccmplete

MIke Specia offers Regi;tercustemers in a byalty pograrnme

Create Ioyaty offering

Cbmmmicate offering to registered
custemers

Prcmote S=onaVlbiday Special packeges Create HJIihy Package

Idontifir marketing OIIJctS

lie OIIIet to dstrihite

Table 3.3 Goal-Service Model for domain decomposition business functions

The IlTSt goal listed in table 3.3, is "To automatically allow Tourist to make reservations

to their favourite suppliers" and the associated service is "Register tourist online". To

achieve this goal, it is important that end user services should be customized in such a

way that services are easily used. Tourists are required to register online, set their

preference, so that when delivering services in mobile device, services are delivered

according to their preferences. The second goal "To provide end-user reservation

service", this goal is achieved by allowing tourists to access services using their mobile

devices. Tourist interacts with the service through mobile device interface. Tourists are

required to submit their request to the mobile application using their mobile device. The

mobile application components are IRE-enabled. IRE-enabled systems should utilize US~

preference information to narrow down options by their personal relevancy [7].

32

3.3.4 Subsystem Analysis

Each of the business processes mentioned in section 3.3.2 were further broken down, to

identify the component boundary of each business components. The main tourism

business processes or functional areas are marketing, travel reservation, customer

relationship management and payments. This partitioning was based on business process

boundaries; end-to-end services that form a business processes [33]. The entire business

domain is seen to consist of a set of functional areas, each responsible for making a

certain set of cohesively related design decisions. For example, marketing is responsible

for defining service packages, their offerings, target customer and pricing for each

package offered. Marketing is further concerned with "Specials" catalog or set of

packaged services that are offered. Customer Relationship Management (CRM) is

responsible for managing tourist, Tourist profile (personal details), preferences

(favourite's products, services) are services that the tourist enjoys the most when visiting

a tourism supplier's site. Travel Reservation Business Process is responsible for

reserving hotel rooms or reserving flight or hiring a car. A typical use case grammar

learned from [33, 34] was used to specify the business component boundaries of the four

business components given below.

1. Marketing = {Service Packages, "Specials" Catalogs, Pricing}

2. Payment = {bill [services], Payment {transactionprocess}}

3. Travel Reservation = {[identification],Reservation Request, Reservation Process,

Payments, Confirmation}

33

4. Customer Relationship Management= {Contact Management (Address), Customer

profile and Preferences}

We further identified the reqnired functionality for each business component; the system

level use cases for each component. For each use case, a sequential diagram was

associated with business component use case. Customer Relationship Management

(CRM), this component allows Service Requesters to register their mobile device by

registering their personal details, set travel preferences such as hotel preferences, car

preferences, and flight preferences. The CRM component is associated with each

reservation component such as flight, car, and hotel.

When the tourist requests a service, it becomes easy because all the user's preferences are

known from the Customer Relationship Management component. During the registration

process shown in figure 3.4, the tourist sets his preferences by selecting three preferred

hotels. These preferences are used when a tourist requests a service. When a tourist

requests a service shown in figure 3.5, he/she writes and sends a message. The hotel

reservation component is activated, it then communicates with the customer relationship

management component to get the tourist preference. The reservation components check

the first preference if there are any services available during the date specified by a

tourist. If there is a room available, the room is reserved and the confirmation number is

issued together with the hotel name. If all preferences are checked and find that there are

no services available during the date specified by the tourist, a list of hotels is presented

that have accommodation service available during the date specified by the tourist.

34

erviee Requester

Service
Reqeste's
Unterfece EJ

ht Connection

jvyokes (EM "rl ...

~~
o

enter prototype uri ~

resister
~ ,

i
I ,

validate : ,
: i

I,
:

:
I

submit
i

!
~

i
I

I add anew Sew ce Reauester

I , .
I I

I

OIl sends reeis tration confrmaicn

. ~
, _plav rel!lstrahoD confirtmtlOn I

~ ;

Figure 3.4 A Sequence Diagram for a Register Use Case

35

*ServiceRequester-
I

) writes:llIdsend a messasre

I

~

,
~ .

,

Figure 3.5 A Sequence Diagram for Make Reservation Use Case

36

The tourist selects one hotel. Then after the reservation is made, payments can be made to

the service supplier. The same procedure is used to request a car reservation and flight

reservation service.

3.3.5 Service Allocation

Services were identified through a combination of domain decomposition and goal­

service modeling shown in table 3.3. Each and every service has its own component

where it is contained. The business processes or functional areas are components which

contains services.

3.3.6 Component Specification using Use Case Grammar Specification

Enterprise Components were defined around business processes boundaries and often

encapsulate a set of related use cases. The progression was seen to be "business process

-> subsystem -> enterprise component [34]". This brought us to the design of the internal

structure of enterprise components as in the one which consists of the application of

subsystem analysis, along with domain specific languages to define enterprise-scale,

loosely coupled business service component and their interfaces. Figure 3.6 shows how

business grammar learned in [34] was used to create a domain-specific vocabulary for the

Mobile Travel Reservation Enterprise Component.

37

MobileTravel Reservation = {[ideotilication], Reservation Request, Reservation Process,

Payments, Confimation}

ldentilication= {Cballenge Userwita Login. VerifY MobileN.unberand Password}

ReservaJion Request~ {Writemessage, Validate, Sendmessage}

WriteMessage= (hotel(htl), destinaJion city,reservationdate Ifiigtt(lit) departure

city, arrivalcity,reservationdate Itar pick-upcity,drop-offcity, reservation date

!vacationpackage,crigincity, destinaJion city,reservation date}

Validate= {validateif1he message is in the validformat ornot}

SendMessage= { press submit}

Reservation Process~ {Checkcustomerpreference, check serviceavailability,Payments,

generate conlimation cumber. sendconfinmtionnumber}

Payments = {Trnnsactionprocess}

Ccnfirmation={ Sendsa confirmationnumberto a servicerequester.Display

confirmation onmobiledevice}

Figure 3.6 Business Grammar for Mobile Travel Reservation Component

38

erocoa

-cOJqlODcnt_1lllIDI:
-COqronenCde:=riptiou
-COqlOnmt_,,=gOIZs
-sav"_~

-sen'"_dltsaiptioD
-SCf'i"_".IllegOIZs

+ u.,",,_businessO
+find_bw;inessQ

I'"

L

,
~"ittR.tqoester

«Pro1y» Sen-itt SupPier
l'tklbile Tl'llvel Resen_rio_ (MIR)

-lIXIbiIeNunix:r- -ko:yword
-pass....on:!. - origin_city '" 'S"l'Plitr_Daln:-rcqw:sterNan>o: -destilu.tioD~e.y

• wniinaationNo-.... request senice -anwal date
mobik"umba-.... -dcp.uWu:_date

-",,=, -pro:mna:
-eev - mobile 1Iun:bcr + Il&I.ko:Rcservation(kywoni,
-~takode anivaCdate, deputuro:_date.
-ro:ques!e£Al;l;.ountNo + eheckSo:rvio:o:A \ailabilil:y(pro:~no:c:. eonfirnlittionNo)

"lTi-;al_date. dtpllturo: _date) + gClIUllteConlim:llll:ionNo()
+~ndConfil2mtiJn(1lJt:Wn,. nuuiu:r}

I
1

receives•

•I

Cll5tomer Relatio&ubip
~lIIeat(CRM)

-Q;IbileNumba
- ro:qu"sterNamo:
-ro:qucsterLasLNiIlllo:
-....
-....
-........
-csv
'lJO~taJ:o<k
- ro:ques!CrAo:Q,)IIDL"'o
-botdPn:'~ces
-l::arf'M:f=U!l
-llightPn:fi:ttuc::es

+aeate:ProfikO
+ go:tPn:felt:lU'~(IDIbilo:NunX>o:r)

gel requester preferences PaYllleab

-Kq!lcsterAccount."Io
- p::qucster
_b......

-p~

-servsee
-..~
.ddate
-city
-~ilC=INo

-c~.CudType

-Clopifyo.c

+bin(scr..ce, rl:quo:sttr,
supplic:r, adate, delate)

make payments

Figure 3.7 Class Diagram for Mobile Travel Reservation Application

39

A Proxy pattern was used to structure the enterprise components shown in figure 3.7.

Gamma et al in [35] defines a proxy as a surrogate or placeholder for another object to

control access to it. One reason for controlling access to an object is to defer the full cost

of its creation and initialization. The mobile travel reservation application is a proxy,

which acts as directory of tourism service components which are contained in the

component repository eTOCOR. The mobile travel reservation proxy maintains a

reference that lets the proxy access to real components that provide the services. It

controls access to the components that provide services and may be responsible for

publishing them.

The next chapter implements the prototype mobile travel reservation enterprise

component.

40

CHAPTER FOUR

4.0 IMPLEMENTATION OF TIIE MODEL

4.1 Introduction

Implementation is the transformation of design into a working program. This chapter

presents the model implementation prototype called a mobile travel reservation

application and the demonstration of the component repository called eTOCOR, where

the mobile travel reservation interfaces were published. The tool, Jlsuilder 5 environment

was used to implement the prototype. It has a built-in Tomcat 3.2.1 web server. The

communication protocol between server and the database was done using the JDBC (Java

Database Connectivity)[36]. This protocol allows connections to a database, create SQL

statements, and run queries. The screenshots shown below were prototyped using Java

Servlet. Servlet[37] provides a component based platform independent method for

building web-based applications. They have access to the entire family of Java APIs,

including the JDBC API to access enterprise databases. They can also access a library of

HTIP - specific calls and receive all the benefits of the mature Java language including

reusability. They run on a web server which could benefit a mobile device since it has a

limited processing power. The prototype shows how enterprise components can be used

or can be provided in mobile devices. A rectangle shown in the prototype screenshots

emulates the screen ofa mobile device e.g a cel1phone.

41

The next section gives an overview of the prototype, and then discusses the partitioning

of the application into components. The snapshots of the application prototype are

presented and the snippets of implemented functionality are found in the appendix.

4.2 The Mobile Travel Reservation Application

The mobile travel reservation application allows a tourist to make reservation for one or

more of flight, car and hotel using a text message. Most end-user applications are user

friendly. The IRE was adopted to deliver services to mobile users according to their

preferences. The application was composed from the following components: the service

supplier, the hotel reservation, the flight reservation, car reservation, customer

relationship management, payments and service requester. Figure 4.1 shows application

components.

~~.. .
~ .>:/ :'

_ »: $~

Figure 4.1 Implementation model for mobile travel reservation application

42

To realize this application these components collaborate with each other such that a

component uses the services provided by another component ifnecessary.

Each ofthe components could be explained as follows:

The Cnstomer Relationship Management (CRM) - This component was used to create a

new user and to capture user profile information. This includes capturing attributes such

as the address, email, mobile number and user preference such as hotel preferences, car

preferences, and flight preferences. The CRM web application was used to create a user

profile. Information that was collected during user registration was associated with the

~~~ ~- -~ ~.~. ~ ~~.~~~~~--- -~~~""-" "-i-- '"~'~~~.~~--.~-~=--~-"-~

~~~~J~~~'\"","~~~v'""'~,,.,v·',Y~;:;"%,,,";:,J$_~"'i:;Jr.:~i:;t~':',,:;:,,i;.~~-:r:-;,~~~~

Customer Relationship Management

o FAVORITES·· »

,i··_·
!•••-

Please fillin all ofthe required fields markedwith...

CustomerReg:stration.

Last Name:

&mail:

First Name:

1. General "'ormation
Please enteryour personal Information

r--~
Title: IMiss .. v,~

~::::::"--,----,

Usemame

Password

VerilY Password

To register, ptease nn in theformaetcw tc access services overyour mobiledevice.
Touse cu- uniquetm« senice. pleasefil in)dlr MabilePhone irs important.

e Bad< • 0 . ~ ~ 02~ jJ _ch i':l Favodes @'- e
Address I~ """'/""';~,BOB2fCu"omeo'.""'"

Figure 4.2 CRM Interface

43

user profile. This information was used to provide services according to users

preferences. Figure 4.2 shows information collected from the user, title, first name,

second name etc. This information is captured in a database connected to this interface.

LogIn component - was used to identify users requesting a service, so as to be able to

track user's preferences, and to provide services according to their request. Figure 4.3

shows the Log In interface.

A Service supplier component, which could be a hotel, car, and flight represent tourism

service suppliers. Each of these suppliers was responsible for checking service

availability, make reservation according to user's preferences and to issue a reservation

confirmation once the reservation process is complete.

0-· Ii) ~ ~ e~;_= '~http'lIlo,.'_·_~-"

Login

Mobile
Numbe.!0622152476 I

.

Passwocd!······

Submit t I Cancel I

Figure 4.3 Log-in interface

fie E!I; "'- F<l'oOUs Tock li!lp

Ow .?J, i!) @~ fJ:-m 'kF•

.:.Hr= i.t)tttp.//klCihS"1ll!lJ,I'Mm~

~..- • 1rt • <t·1 31-'
f'Vrit< y,,_

.

~ 1 6"" I

Figure 4.4 Mobile travel

reservation application interface

Payments component- This component was used to handle a user's payments. Most

payments are done using a credit card. The Payments were used to store credit card

information.

44

Service Requester component - this component represents the client who is interacting

with the application. This class was designed to hold the client attributes.

Mobile Travel Reservation (MTR) component provides access to all services provided

by the application. The mobile travel reservation interface is shown in figure 4.4. It

consists of message text box, the 'back' button and the 'submit' button. The message

textbox was used to write a message request. The 'back' button was used to exit the

application and the 'submit' button to send the message request. The next section

discusses how an enterprise component such as hotel, flight and car services can be used

in mobile devices.

4.2.1 Hotel Reservation Service

The message shown in figure 4.5 requests a hotel reservation accommodation service in

Durban (dbn) and specifies the check-in-date and the check-out-date. Once the requester

has sent a message to the application, the reservation process takes place. If the requester

has set the preferences as follows: the Holiday Inn as his first preference, Protea as the

second preference and, Royal Hotel as his third preference, the application checks the

first preference e.g. Holiday Inn to find if there are any rooms available. If there are, the

reservation is made and the confirmation is displayed as shown in figure 4.6.

45

Fie· E!i:···Yiew.·..·f~ .TIXis HeP

e- . e .~ ~ ,~ pS-m i!'F.-. -r"'"
A6:irez!~ tKtp-lflocahostOOEll,/MTR.sH:llt

r<1IIIobo.~ • <t.j ·jl"""".... H~·l ,,"

Write Message

.<1 dbnOl/ 12/04 .;
DZ/U!D4

"

[Back ISubm'l

Fie·· Edt View· FaYartes .T£XlI!>. IieCl

e-· ~"0 ~:ZJ
-=r~titp'I_'_
r••_.~ • .t.1

aeserveeacn made"

at: hollil;iay_i.nn
Con:fir=.t:1on
n~er ~: 10022

Figure 4.5 Hotel accommodation request Figure 4.6 Hotel reservation confmnation

If there are no rooms available, the second preference is checked to find if there are

available rooms. Ifthere are rooms available the reservation is made and the confirmation

is issued. Ifthere are no rooms available, the third preference is also checked. If there are

no rooms available the choice prompt (shown in figure 4.7) is displayed to show other

hotels that have available accommodation service. The requester selects one hotel and the

reservation takes place and the confmnation is displayed as shown in figure 4.8.

" "

lMJR"_""",,,!,~ """ . ", ._ __

.lle:oeotvato1DD JIlIoSde

OS!;: beOC'A

ComiDlla't1.oQ.

D\lIlEIII:.r i:o: 10025

Fie Edt: VieW F~ T0:d5 HsIp

o Badr. 9 t) . ~ ~ '~~ p s-m "t? FCMlrU

AC-~-'S '>t] http'f/loc.~'8OI:iO{lntJ"r.,_.~ . .t.J

0 ... · e· 0 ~ ~p- 'tI,..- '3'- e
~~!t1Ittp;!~ri:r

,JAdoie.~ ·.t·1
I
1l:"1l-_="::Op7;",---'
I

I @beaoh

1
0

-

Figure 4.7 hotels choice prompt Figure 4.8 hotel reservation confirmation

46

If the service requester has selected the Beach Hotel, a reservation is made at the Beach

Hotel and the confirmation is displayed as shown in figure 4.8.

4.2.2 Flight Reservation Service

The message showed in figure 4.9 requests a flight reservation service. The requester has

specified the departure city Durban (dbn), the arrival city Richards Bay (nrb), and the

reservation date (02/12/04). If the requester bas set the preferences as follows: KhuluIa

Airways as his first preference, the South African Airways (SAA) as his second

preference and the nationwide as his last preference. The first preference e.g. Khulula

Airways is checked to find if there is any flight seat that is available. If there is an

available seat, the reservation is made and the confrrrnation number is displayed as shown

in figure 4.10.

r._. ~.e·1 -u.-... I·)i:·' ...-

seeeevee ion \I:l8de ~
~t: lhu..tulll
Depa::l:ure 1"1Jlle:
07:30:00
ContiDletiCD
n=i::er ~: 1012 v

@K]

Fie Er%. View Fa'I'<rtes focis HetJ

03a:k .. if) < ~ @:2~ ;.)5eIIltl {:rF~ '!HoW ,
..,'" '~""',/""""",-""-'r._. ~. e.! ~.- l-l

Write~

tlt dbn :ld:l
az/lZ/Oi

,

~ I 8'" I

A ""'-, ''"'' n ,\ilBid" 'U "'.~ ~ tJJ jJ~ ~?faYCttEs

.ili~< '~""""""""'_

Figure 4.9 Flight reservation request Figure 4.10 Flight reservation

confirmation

47

4.2.3 Car Reservation Service

The message shown in figure 4.11 shows the car reservation request. The requester

specifies the pick-up-city Empangeni (emp) and the drop-off-city Durban (dbn) and the

reservation date 01112104. If the requester has specified the preference by car groups as

follows group A as his first preference and group C as his second preference and group B

as his third preference. The application checks the first preference if there are any group

A cars available. If there are available the reservation is made and the confirmation is

displayed as shown in figure 4.12

()8ai. O .. ~· @.~.,ps-th :"?F~ ~~

~~(ilhti:;l:I.hafmt~

r_. ~. ~·I 3--8~·1._.

IWn2~~ I
I~~u~..,·

Figure 4.11 Car reservation request

Ai= Edt F-m Tools. HI!!/Jl

Gau.. 0 [!I ~ -z~~ jJ s-u. "t.?F-W 'fMedil e;
kri~~~llOElQ/ml:r

r._ .~ . ~·I ,.n'"""'-I-I~·I .._

F~

Car ~oup: groupJ.
Con.:':i.aaat1.oQ.

:rli1d:!er is: Hi01.0
3uppl1.er : J.vi$

Figure 4.12 Car reservation confirmation

If there are no group B cars available, the second preference group C cars are also

checked if there are available. The reservation is then made and the confirmation is

issued.

The next section discusses the components cataloged in a UDDI registry.

48

4.3 Demonstration of the component repository

The UDDI registry was used to demonstrate eTOCOR components. The advantage of

using UDD! was eliminating the complexity of components navigation, maintaining and

implementing connections. In UDDI, WSDL is used to provide a description of stored

entity. The UDD! provides three features, publish, find and edit which can be used to

manipulate an entry in a repository. These three features were used to store, retrieve and

update components respectively. Table 4.1 shows the mapping between eTOCOR

features and web service technologies. The next sections demonstrate how the UDDl

features were used to demonstrate eTOCOR features.

Repository Feature UDD! counterpart feature

Store Publish

Retrieve Find

Update Edit

Component name Business name

Table 4.1 Mappmg eTOCOR architecture to Web Service Technologies

4.3.1 The Store Feature

The environment of UDD! is made up of two frames: the left and the right frames as

shown in figure 4.13 and all features are on the left frame. A click on the given feature

(example publish) opens a link to the right frame, which contains steps to store a

component The hotel reservation component was used as an example to show how to

store a component in a repository. The first step on storing a component was to activate

the "Add a new Business" label which led to specification of the component name and

49

description shown in figure 4.14. In the business table, the plus sign (+) preceding the

hotel reservation component name, allowed to add services provided by the component.

@'- e e- ~ ~ .fDltQl
'-'

vi~ Go ; .flIJavaRMlTub •
====;

UDDI Business Registry Version 2
uncersar Description, Disc~ and Integration

Figure 4.13 UDDI environment

A service is specified by a name, description, and.the access point. The access point of a

service is specified by a URL, which points to the service itself. The next step is optional

and has the aim of adding a component relationship if there is any. The last step was to

add a technical model of the component. The technical model is characterized by name,

the description, and overview URL. The technical model in UDDI is used to categorize

all entities stored in a repository. It does this automatically according to the technical

description of a component and service provided. In this case the "hotel reservation

component" name was given as a technical model; this name was used as search

keywords for retrieving a component, the URL was then given to show the interface of

50

the component. After storing the new component into the component repository, it could

then be retrieved anytime.

m:mruJ:b~di;!!lmmIlm.;;iI!I'4L,;,!~!!••J."":Ii~
: E& .~~ ~ ~

~~1.t~sl~https:/(IJdd.bn.canJl:e;tregstrhilish

~Goo8k·1 :::J fjII-- .. ~ /;!Izz...... 'fijA",CA ~0liD>s.~•..._.._-_ ".- "---. --_... . , ------'---, .-

Welcome Hlengiwe Kunene
- /." -•....'

~
A~ componertthrll caneeuseetceeee ~~

Ird resen'8 It h(tet

A fi.it~ CQllllCflEri. ttlS canbeusedto ~~

eeee1IlJ'treserwtioIl appicSkn exto rnt*e ftr,;j't......-
ACllJ~~thl:(CSItleusea:1O ~~

eeeeece- reserwtion~orto IMke car......-
A Corrp:lnert thretcan be-used to creSe en nervSed ~~
~. It hctel. car.end fI!j't.

Figure 4.14 Published Components

Underneath the Business Name shown ill figure 4.14 is an indication of the stored

components, and the plus SIgn shown ill the left, provides services provided by a

component.

51

Fie Edit: VieW FaYOI'tes. Tools Heb- 1l

o § .~ .p- '[}F...-s @'- €l 8:- 9 ~ . ;:)ii .'3
A-»esS·I.mtttps:JIOO:i.bn.~h:dish?~I5B89'KO-'K90-11D9-&HC~ vi~ Go ; U"1Io.s »

~~ I 3llt>-d<W,", «3 &>22""""" 1ill L,.,..; .~"""'" ~

A~~tmt.C«Ibeusedb:l aette ~~

and reee-ee III hotd

me/o:eres~

Add It new Service F/e1el'enoe a Senr.ce

Flic.tt Rese!"v8Iion<:srnpor-m A fligttleserwticn~thatcan be used to ~~o ceee fi!j1 res:ervttim~ 01'10makefIl.J'1
,,,,,,,,,",,,,,

we rese!'l!!i9n InIlke res:eMlticrI ~~

AcId'J new~ Retererce 8 SMyce

CarR~Carrpor!e!j "'ctlr~~~tMtC«lbeusectto fll!~
• aeeuacar~~ortomakeC8l',....-

Figure 4.15 Components and services

..

Figure 4.15 shows components and associated services. A new service can be added by

activating the ~Add a new Service" label. Figure 4.16 shows the required service

properties, when storing a component. Underneath the service table, the name ofa service

was given, and its description. The access point was also given which points to the

service. Each service is also associated with a technical model. The technical model has a

name, description, and the URL.

52

----'~iJ~ ~,.

.: 5eordI_ • 5-~ [DMoi - 0..".- fil_- e~ -~_ - 'OlJIUICI • ~101 -

Q- . v- ~,~ ,~ps.-D *~ ftt-- e.;;3- ~ ~

~=~JIUloU-~

"'--"?T-e-

Figure 4.16 Service properties

Figure 4.16 shows the required properties of the service and the hotel reservation

component was used to demonstrate the service properties.

E<Jl~T__ It'

0-- '" ~ @t~;}-";i:- 4I!'- e ~> ~ ~ ~J
~~'-'I~ "~-~-._-,---- -------.--------:--"--,.-'---'--.~----.-~--"--~.-'_------------.;: DQoo -
,,"';- "!a' ... (2.-- - -~.-- ... __ • 5;. ~- j aMoi • 0",,_ G_ . e~ . Sl"'-~"i"~ . Sq."

UDOI "'win B&5 Registry Version 2
UrwerloaI De:'K:lipIlc)n. ()Iseo,erl' an! inlegraOOn

Add a Technical Model
.J'CI'.1~_Ill_,..T__..__....e--_Ill_Ill_.....-....".,._...........-..._---_..~-

is. J I.

Figure 4.17 Hotel reservation technical model.

53

4.3.2 The Retrieve Feature

To retrieve a stored component in a repository, the UDDI find feature on the left frame of

the UDDI environment was used.

~FIB . Edit ..-.- Faow:res. Too/$ tiI!l!b
------ - _._---_._~

iA~I.m~;/fUdd.bn.~

LGoc-"gle-1 3 flo'"""'''"'' - \l)} ..,"'....... ,®AuODFiI . [!;l- ,

UODI Business Test Registry
t~;:~:.--e~~~~.~j Unive<saI Description, Discovery, and Integration

Simpk $e.vdl a6ow$ 'fW to selrd'I tor-.~. Ser¥tce. or Tectloic;at iob:tef by NAME~ I ex CATEGORY.
You rIJI!*fuseh"'L' syri:IoI_. w*lcardttlllt-~ .,.,~.

Sean;h F"cr. !Business\

tiC"

Figure 4.18 The search interface of the repository

The UDDl's find link that appeared on the right frame has four dialog boxes. The first

"search For a" combo box was used to specify either the search is on a component or a

service or a technical model. The "Starting with" textbox was used to enter the keyword

to specify the search. The other two search boxes are optional, for example to retrieve a

hotel reservation component stored previously (section 4.3.1) on the search for combo

box, the business option was selected and a hotel reservation component was written on

the "starting with" textbox. Any hotel, reservation or component keyword leads to the

same result. After all the information is completed the find button which is triggered, and

the results are displayed on a table as shown in figure 4.19.

54

!'l'<MIi<I'lo.1=-a~.-dS'f'=lBS"

ne~SluI:e~~~lP:i,...
~--,..- ..~ ~~-- ~~

~",.. seee eeeeea
H!!!l!Ga.<i!hcIIo"1"9"!"!'~ T1'ia."tWa--~.uyICr"h:UllOdhDt~~

~ ~~~

omDnOl':!lIDO[][I][J1.!iDJ .~~

_ s..--",,=~

A~,""",.-l»~l11~.",*," ~~

~~

"'1o:af~~lcilr¥aWtlD__ ~~

~~n.~CWll»""lII
~1twd~tJIl**n lQrlbeu=dla
"'ilui'Ii:lIIlllllile_u:*oII.~

Figure 4.19 A Typical Search result

On the table of the result of each component is a name that has a service link that can be

viewed and used.

4.3.3 The Update Feature

To update a component is to make changes to the component specification e.g.

component name, description, service name, etc. This action IS made possible by

choosing once again the publish feature, in the lJDDI environment. The update could be

made on both businesses and technical table, the edit actions restart the process of

storing information, The delete action completely removes the component or service in

the repository.

55

4.4 Prototype limitations

1. Service Requesters are required to know the abbreviation used to request a

service;

ll. Service Requesters are required to know the format of a message and

ill. If the system is extended, it will require the Service Requester to update

their preference on the website and to know the new message format of a

newly-added service.

4.5 Comparison with existing IRE

The existing IRE prototype uses choice prompt to elicit specific requirements or to elicit

a request from the Service Requester. This approach is interactive, where services are

provided in a hierarchy. The request has to be made specific by the IRE component. It

generates choice prompt for service requester, allowing himfher to specify his/her service

requirements. When the requirements are specific enough, the relevant service is finally

returned to the requester. The disadvantages of the existing prototype are that, the process

ofrequest/response between the requester and the system takes a considerable amount of

time before the service is delivered. The IRE-enabled mobile travel reservation

application uses a text message to elicit a request. The message includes the hierarchy in

one screen; it summarizes the levels of screen used in the existing IRE system. The

service requester does not need to wait for a response to be returned; instead a message is

received in response to the request and this can be viewed later.

56

CHAPTER FIVE

5.0 CONCLUSION

5.1 Conclusion

An architectural mechanism that raises awareness about the uniqueness of mobile

commerce when compared to electronic commerce has been presented in this

dissertation. Arising from Information Requirement Elicitation approach and the home­

based Mobile Commerce Reference Architecture, this research demonstrated that a

repository of services is required to make service delivery to mobile commerce end-users

as friendly as possible. In order to achieve the foregoing, the first result that the research

produced is a comparison apparatus for showing that m-commerce is different from e-

commerce.

The uniqueness ofm-commerce is the raison-detre for a reference architecture which was

earlier crafted in the Department. The repository architecture proposed in this work

contributes to the usability of the existing reference architecture. The repository

architecture is expected to become the core component underlying the technology

archetype in the reference architecture. In order to demonstrate the repository architecture

the UDDI Infrastructure has been used. However, components are needed to demonstrate

how the repository works. The implementation of the mobile travel reservation

application yielded the required test components.

57

There are some limitations of this repository architecture as a mechanism for

demonstrating the role of enterprise components in future rendering of mobile commerce

services.

These include:

1. Components used in this work which are not standard enterprise components;

u. The repository architecture was not built but rather an existing counterpart, UDDI

was used;

Ill. The performance characteristic of the repository has not been studied and

IV. IRE could not be demonstrated as an operating environment but only as a protocol

for service delivery in the application.

5.2 Future Work

It is envisaged that most of the limitations tested in the previous section will be addressed

in future research work. It is of outmost importance, that the repository architecture is

prototyped. Then a performance characteristic study can be conducted. It is only then that

the repository architecture can be compared empirically with similar initiatives. Further

more, proper enterprise components, perhaps from COTS (Commercial-off-the -shelf)

software, mil be used in future to test the usability of the repository.

58

References

(I] http://www.idt.mdh.se/cbse-booklpresentations/03-ehapterWc.ppt. Building'

Reliable Component based Systems.

[2] Witt, B. Spider Architecture Series, http://www.spiderlogic.coml

news_fureadsiarticlesiSpiderArchitectureSeries_SOA.html.

[3] Schmitz et al, "Publishing your services:UDDI",

http://www.ibm.comldeveloperWarks.

[4] Fingar, P. "Component-Based Frameworks for E-Commerce",CACM,

p61-66,2000.

(5] Adigun, M.O. "Software Infrastructure for E-eommerce and E-Business

Working paper." Res-CSD-Ol, Centre for Mobile e-Services, University

ofZululand, 2004, 22p.

[6] Sun, J. Peter In, H. and Aji Sukasdadi, K. "A Prototype of Information

Requirement Elicitation in m-Comrnerce",Proceedings of the IEEE International

Conference on E-Comrnerce(CEO'03).

[7] Sun, J. "Information Requirement Elicitation in Mobile Commerce",

CACM46(12), p 45-47.

(8] Cmkovic, I. and Larsson, M. "Component-Based Software Engineering - New

Paradigm ofSoftware Development" W\\w.mrtc.mdh.se!publicationsl0293.pdf.

[9] Cmkovic, I. Hnich, B. Jonsson, T. and Kizltan, Z. "Specification, Implementation

and Deployment of Components", CACM 45(10), pp 35-40, 2002.

[10] http://www.objecttool.com.

59

[IIJ http://www.whatis.com.

[12J Young, E.L. and Benbasat, I. "Interface Design for M-Commerce", CACM

46(12), pp 49-52, 2003.

[13J Diamel1e Technologies, "Enterprise Business Components",

www.diamelletechnologies.com,

[14J Johnson, V. and Rubin, B. "The San Francisco Project: Business Process

Components and Infrastructure", ACM, p25-29, 2000.

[15J Perrey, R. and Lycett, M. "Service-Oriented Architecture", Proceedings of

the 2003 Symposium on Applications and the Internet Workshops

SAINT'03.

[16] Baresi, L. Heckel, R. Thone, S. and Varro, D. "Modeling and Validation of

Service-Oriented Architectures.Application vs. Style ", Software Engineering

Notes 28(5) pp 68-76, 2003.

[17] Papazoglou, M.P. and Georgakopoulos, D. "Service Oriented Computing",

CACM 46(10), pp 25-28,2003.

[18J Yang, J. "Web Service Componentization", CACM 46(10), pp 35-40,

2003.

[19J Thompson, T. Weil, R. and Wood, M.D. "CPXe: Web Services for Internet

Imaging", IEEE Computer Society, 2003.

[20J Chakraborty, D. and Chen H, "Service Discovery in the Future

for Mobile Commerce",http://www.acm.orgfcrossroadslxrds7-21

service.html.

[21J Bass, L. Clement, P. and Kazman, R. Software Architecture in Practice, Addison

60

Wisley, 1998.

[22] Cmkovic, I. Hnich, B. Jonsson, T. and Kiziltan, Z. "Specification,

Implementation, and Deployment of Components",
, .

CACM, p35-40.

[23] Grishikashvili, E. Reilly, D. Badr, N. and Taleb-Bendiab, A. "From Component­

Based to Service-Based Distributed Applications Assembly and Management",

Proceedings of the 29th EUROMICRO Conference "New Waves in System

Architecture(EUROMICRO)", IEEE Computer Society, 2003.

[24] Deri, L. "A Component-Based Architecture for Open, Independently

Extensible Distributed Systems", hnpsv/rarnwww.unibe.ch r-deri, 1997.

[25] Arsanjani, A. "Developing and Integrating Enterprise Components and

Services", CACM, 45(10),p 31- 34, 2002.

[26] Zimmermann, O. Krogdahl, and P. Gee, C. "Elements of Service-Oriented

Analysis and Design", http://www-l06.ibm.comldeveloperworks!

library/ws-soadl/,2004.

[27] Endrei, M. Ang, J. Arsanjani, A. Chua, S. Cornte, P. Krogdahl, P. Luo, M. and

Newling, T. "Patterns: Service-Oriented Architecture and Web

Services", http:www.ibm.comlredbooks.

[28] Katz, S. Glossary of Software Reuse Terms. Gaithersburg, MD:

National Institute ofStandards and Technology, 1994.

[29] Scacchi, W. "Enterprise System Analysis:Specification and Modeling",

http://www.ics.uci.edu/-wscacchiiSAIAnalysisiConceptsINotes.html,

Spring 2003.

61

[30} Bruegge, B. and Dutoit, A. Object-Oriented Software Engineering, Conquering

Complex and Changing Systems, Prentice Hall, 2000.

[31} Mekonnen, G. "Information technology: It's Uses in Tourism Industry"

www.ethiopiaknowledge.org/Final%20PapersJlT%20in%20Tourism,

%20Mekonnen.pdf.

[32} http://www.urnl.org.

[33} Levi, K. and Arsanjani, A. "A Goal-driven Approach to Enterprise Component

Identification and Specification,"CACM, pp 45-52, 2002.

[34} Arsanjani, A. "A Domain-Language Approach to Designing Dynamic

Enterprise Component-based Architectures to Support Business

Services", IEEE Computer Society, 2001.

[35} Gamma, E. Helm, R. Johnson R, and Vlissides S." Design Patterns, Elements of

reusable object-oriented Software", Addison Wesley Professional Computing

Series, 1994.

[36} Moertiyoso, N. Choong Yow, K. Designing Wireless Enterprise applications on

Mobile Devices, ICTA2002 ISBN: 1-86467-114-9.

[371 http://www.java.sun.com.

62

Appendix A : Snippets for a Hotel Reservation Component

Listing 1 : Snippets for connecting to a database

public void connectToDB(String DRIVER, String uri, Connection con)
{

try {

Class.forName(DRIVER);
con = DriverManager.getConnection(urI);
System.outprintln("Database Connected!");

catch(Exception e)
{

Systern.outprintln("Error occured while trying to connect to database!");
Systern.outprintln("Details" + e);

}
}

Listing 2 : Verify user id and password

if(requestgetParameter\ "login") !- null)
{

String user =request.getParameter\ "mobileno" };
String password = request.getParameter\ "password");

try {
connection = DriverManager.getConnection(urI);
stmt =connection.crearextatemenn);
String query = "SELECf • FROM CRM WHERE mobile_number = '" + user + "' AND password =
1ft + password + ""';

ResultSet rs = stmtexecuteQuery(query);

if(rs.nextt))
{

requester.mobileNurnber =user;

if(isCardValid{ requester, today, out))
response.sendRedirect("bttp:/llocalhost:8080/ReservationManagernentsbtml");

else Alert("Your credit card bas expired", "Alert", out);

else if(!rs.nextQ)
Alert("Mobile Number or Password wrong!", "Alert", out);

}
catch(Exception e)
{ out.println("An error occured while trying to process login" };}

63

Listing 3 : The received and tokenized message

requestMsg - request.getParometer{ "message");

StringTokenizer tokens ~ new StringTokenizer{ requestlvlsg);

while(tokens.hasMoreElementsO)
{
keyword = tokens.nextTokenO;//pkg
destination ~ tokens.nextTokenO;//dcitty
adate = tokens.nextf'okenfk//acity
ddate ~ tokens.nexffokemu/Iddate

}

Listing 4 : Snippet for Get Service Requester's Preference

Protected String getPreferences(ServiceRequester requester, PrintWriter out)
{
String preferences = "";
try {

Statement stmt2;

connection =DriverManager.getConnection(uri);
stmt2 = connection.creatzStaternentt);
String seIectPrefs ~ "SELECT' FROM CRM WHERE mobile_number = '" +

requester.mobileNumber + "";

ResultSet rs2 =stmt2.executeQuery(selectPrefs);

if(rs2.nextQ)
{

preferences += rs2.getString("Hotell");
preferences +~ " " + rs2.getString("HoteI2");
preferences += " " + rs2.getString("Hote13");

}
}

catch(Exception e)
{

out.println("<p>An Error occured while trying to get prefences<lp>");
out.println("<p>Details: <!p>" + e);
e.printStackTrace{);

}

return preferences;
}

Listing 5 : Snippet for checking service availability using service requester's preference

64

protected boolean checkServiceAvailahility(String adate, String pref, PrintWriter out)
{
boolean isAvailable ~ false;

try {

Statement strnt3;
int rooms = 0;

connection = DriverMaoager.getConnection(uri);
strnt3 = connection.createStatementt);
String check~ "SELECf • FROM Suppliers WHERE date ~ '" + adate + ""';

ResultSet rs3 ~ strnt3.executeQuety(check);

it1: rs3.nextO)
{

rooms = Integer.parselnt(rs3.getString(pref));

if{ rooms> 0)
{
leftRooms = rooms - I;
isAvailable =true;

}
else it1: rooms <~ 0)
isAvailable ~ false;

}

catch(Exception e)
(

out.println("<p>An Error occured while trying to check service availability<lp>");
out.println("<p>Details: </p>" + e);
e.prinrStack'Iracef);

}

return isAvailable;
}

Listing 6 : Snippets for reserving a hotel using service requester's preference

65

protected void makeReservation(ServiceRequester requester, String supplier, String adate, String ddate, int
confirmationNo, PrintWriter out)

{
try {

Statement stmt4, stmtS;
Stringmsg = "Reservation madeat "+ supplier + II Confirmation number 1S: .. + confinnationNo;
connection = DriverManager.getConnection(urI);
stmt4 = connection.createStatement();
stmtS ~ connection.createStatementO;

String reserve ~ "UPDATE Suppliers SET" + supplier + " ="+ leftRooms + " where date ~ ." +
adate + trill;

String recordToDB ~ "INSERT INTO Reservations (supplier_name, adate, ddate, confirmation_no,
mobile_no) VALUESC" + supplier + ...~'" + adate + "',m + ddate+ "'," + confirmationNo + ",''' +
requester.mobileNumber + '")";

int result! =stmt4.executeUpdate(reserve);

if{ result! = 1)
{

int result2 = stmtS.executeUpdate(recordToDB);

if{ result2 = 1)
{

Alert(msg, "Confirmation:", out);
}

}
}

catch(Exception e)
{

out.printlnf "<p>An Error occured while trying to make a reservation-c/p>" };
out.println("<p>Oetails: </p>" + e };
e.printStaekTrace();

}
}

Listing 7 : Snippet for billing a service requester

66

protected void botelBill(ServiceRequester requester, String supplier, String city, PrintWriter out)
{

try {

Statement stmtl, stmt2;
double price;
connection ~ DriverManager.getConnection(url);
ResultSet rs;
int result;

stmtl = connection.creareStarementt);
stmt2 = connection.createStatementQ;

String queryI = "SELECf· FROM Supplierwbere supplier_name ~ '" + supplier + '" AND city = '"
+ city+""';

Stringquery2 = ..It;

rs = stmtl.executeQuery(queryl);

if{ rs.nexq))
{
price =rs.getDouble("price");
requester.balance~ price;
query2 ~ "UPDATE Payments SET credit_card_balance ~ " + requester.balance + " wbere

customerjd = III + requester.mobileNumber+ "";

result ~ stmt2.executeUpdate(query2);

if(result = I)
System.out.println("*············Bill hasbeen charged!···············");

}
}

catcb(Exception e)
{
outprintln("<p>An Error occured while trying to process billing<lp>");
out.println("<p>Details: <lp>"+ e);
e.printStaekTrace();

}
}

Listing 8 : Snippet for validating a credit card

67

protected boolean isCardValid(ServiceRequester requester, String today, PrintWriter out)
{

boolean isValid~ false;
try {

Statement stmt3;
connection ~DriverManager.getConnection(uri);
stmt3 = connection.createStatement();
int day = 0, month ~ 0, year = O;lltodays date
int day2 ~ 0, month2 = 0, year2 ~ O;llexpiry date

String checkCardNum ~ "SELECf· FROM Payments WHEREcustomer_id ="' +
requester.mobileNumbcr + "":

II Extracting day, month and year from today's date--II
day ~ Integer.parselnt{ today.charAt(0) + "" + today.charAt{ I »;
month = Integer.parselnt{ today.charAt{ 3) + "" + today.charAt{ 4));
year ~ Integer.parselnt{ today.charAt{ 6) + ,~ + today.charAt(7) + '''' + today.charAt{ 8) + .~ +

today.charAt{ 9));

ResultSet TS~ stmt3.executeQuery(checkCardNum);

if(rs.next())
{

requester.expiryfrate =rs.getString("expirydate");
requester.balance ~ rs.getDouble("credit_card_balance");

II Extracting day, month and year from expiry date--II
day2 ~ Integer.parselnt{ requester.expiryDate.charAt(0) +"" + requester.expiryDate.charAt(I»;
month2 = Integer.parselnt{ requester.expiryDate.charAt(3) +"" + requester.expiryDate.charAt(4

));
year2 = Integer.parselnt(requester.expiryDate.charAt(6) +"" + requester.expiryDate.charAt(7)

+ + requester.expiryDate.charAt(8) + "" + requester.expiryDate.charAt(9));

if(yearZ > year)
isValid = true;

else if(year = yearZ && month2 > month)
isValid = true;

else if(month = month2 && dayZ > day)
isValid = true;

else isVaiid ~ false;
}

}
catch(Exception e)
{
out.println("<p>An Error occuredwhile trying to check if card is valid<lp>");
out.println("<p>Details: <lp>" + e);
e.printStackTrace();

}
return isValid;

68

Listing 9 : Snippet for generating a confirmation number

protected int getMaxConfNum(PrintWriter out)
{
int conf= 0;
try {

Statement strnt6;
connection = DriverManager.getConnection(uri);
strnt6 = connection.createStatement();

String getConfNum ~ "SELECT' From Reservations where confinnation_uo = (" + "SELECT MAX(
confirmation_no) FROM Reservations" + ")";

ResultSet rs6 = stmt6.executeQuery(getConfNum);

if(rs6.next())
{

conf~ rs6.getInt("confirmation_no");
conf+= 1;

}

else if(!rs6.next())
conf~ 10000;

}

catch(Exception e)
{

out.printIn("<p>An Error occured while trying to generate confirmation number</p>");
out.printIn("<p>Details: </p>" + e);
e.printStaekTrace();

}

return couf;
}

69

Listing 10: snippet for confirming service requester's reservation

protected int getMaxConfNurn(PrintWriter out)
(
intconf=O;
try {

Statement stmt6;
connection = DriverManager.getConnection(url);
stmt6 ~ ccnnecticn.create'Statementt);

String getConfNurn ~ "SELECT' From Reservations where confirmation_no ~ (" + "SELECT MAX(
confirmation_no) FROM Reservations" + ")";

ResultSet rs6 = stmt6.executeQuery(getConfNum);

itt rsG.nextO)
(

conf~ rs6.getInt("confirmation_no");
conf+= 1;

)

else if(!rs6.next())
conf~ ;ooסס1

)

catch(Exception e)
{

out.println("<p>An Error occured while trying to generate confirmation number</p>");
out.println("<p>Details: <11""" + e);
e.printStackTraceQ;

)

retumconf;
}

Listing 11 : Alert snapshot

protected void Alert(String msg, String msgType, PrintWriter out)
{
out.printIn("<div align-V'centerv'>");
out.println("<center>");
out.println("<table border=\"3\" cellpadding-\"O\" cellspacing-v'O'," style=\''OOrder-collapse: collapse\"

bordercolor=\"#IIIIII\" width=\"14%\" id=\" AutoNumberl\" align=\"left\">");
outprintln("<IT>");
out.printIn("<td width=\" I00"/0\">");
outprintIn("<p align=\"left\">" + msgType + "<11""");
out.printIn("<textarea rows=\"6\" name=\"message\"

cols=\"20\">" + msg+ "<ltextarea><lfont>");
out.println("<p><a href~ http://localhost:8080IReservationManagernentshtml><input type = \"button\"

name ~ \"OK\" value = \"OK\"><Ia><Ip>");
out.printIn("<ltd><ltr>");
cut.printlni "<ltable><lcenter><ldiv>"); I

70

Appendix B : Snippets for a Flight Reservation Component

Listing 12 : Snippet for getting user requester's flight preference

protected String getPreferences2(ServiceRequester requester, funtWriter out)
{
Stringpreferences = "It;
try {

Statement st;

connection ~ Driverlvlanager.getf'onnectionf uri);
st = connection.crearaStatemenn);
String selectPrefs = "SELECT· FROM CRM WHERE mobile_number = '" +

requester.mobileNwnber +;

ResultSet rs = st.executeQuery(selectPrefs);

if{ rs.next())
{

preferences += rs.getString("AirSnpplierl");
preferences +~ " " + rs.getString("AirSupplier2");
preferences +=" "+ rs.getString("AirSupplier3");

}
}

catch(Exception e)
{

out.println("<p>An Error occured while trying to get prefences<Jp>");
out.println("<p>Details: </p>" + e);
e.printStackTrace();

}

return preferences;
}

71

Listing 13 : Snippet for checking flights availability using service requester's preference

protected boolean cbeckServiceAvailability3(Flight flight, String adate, String deity, String acity, String
pref, PrintWriter out)

{
boolean isAvailable = false;

try {

Statement st2;

connection = DriverManager.getConnection(uri);
st2 = connection.createStateroentQ;
String cbeck= "SELECf • FROM Flights WHERE d_date='" + adate + '" AND d_city= ,,, + dcity+

...AND a_city='" + acity+ '" AND supplier_id= 'n+pref+ .nn;

ResultSet rs1 ~ stZ.executeQuery(check);
boolean found~ rs2.nextQ;

if{ found)
{

flight.flightCapacity = rs2.getlnt("flight_capacity");
flight.fligbtCapacity~ I;
flight.fligbtPrice = rs2.getDouble("price");
flight.depatureTime = rs1.getString("d_time");
isAvailable ~ true;

}

cateh(Exception e)
{

out.println("<pe-An Error occured while trying to check service availability</p>");
out.println("<p>Details: </p>" + e);
e.printStaekTrace();

}

return isAvailable;
}

72

Listing 14: Snippet for reserving a flight

protected void makeReservation2(Flight flight, ServiceRequester requester, String supplier, String deity,
String acity, String ddate, int confirmationNo, PrintWriter out)

(
try {

Statement st3, st4;
String msg = "Reservation made at: " + supplier + " Departure Time: " + flight.depatureTime + "

Confirmation number is: ..+ confirmationNo;
connection ~ DriverManager.getConnection(uri);
st3 ~ connection.create'Statementf);
st4 = connection.createSlatementQ;

String reserve ~ "UPDATE Flights SET flight_capacity ~ " + flight.flightf.apacity + " where d_date
= on + ddate+'" AND d_city= ot. + dcity+"' AND a_city = Ilt + acity+ "";

String recordToDB ~ "INSERT INTO AirReservations (customer, reservation_date, confirmationNo
) VALUES en + requester.mobiIeNumber + tt,:" + ddate + "'," + confirmationNo + ")":

int resnlt! = st3.executeUpdate(reserve);

if(result! = I)
(

int resnlt2 ~ st4.executeUpdate(recordToDB);

if(resnlt2 = I)
(

AIert2(msg, "Confirmation:", out);
)

}
}

catch(Exception e)
(

out.println("<p>An Error occured while trying to make a reservation</p>");
out.println("<p>Details: </p>" + e);
e.printStaekTrace();

} }

73

Listing 15 : Billing service requester

protected void flightBi1J(ServiceRequester requester, Flight flight, String supplier, String ddate, String
deity, String acity, PrintWriter out)

{
try {

Statement st I, st2;
double balance;
connection = DriverManager.getConnection(urI);
ResultSet r1;
int r2;

String queryI ="SELECf • FROM Payments where customer_id ~ ...+ requester.mobileNumber +
.. m.,

//String query2 = "UPDATE Payments SET credit_card_balance = " + requester.balance + " where
eustomer_id = ,..+requester.mobileNumber + "'";

stl ~ connection.create'Statementt);
st2 ~ cormection.create'Statementt);

rl = stJ.executeQuery(queryl);

if(rLnexn))
{

balance = rl.getDouble("credit_card_balance");
balance~ tlighttlightPrice;
String query2 = "UPDATE Payments SET credit_card_balance = " + balance + " where

customerjd='" + requester.mobileNumber + "":

r2 ~ st2.executeUpdate(query2);

if{ r2~ I)
{
System.out.print1n(..•••••..·······Bill hasbeen·charged!········.·.····..);
Systern.out.println(''Total bill: "+ balance);

}
}

}

cateh(Exception e)
{
out.println("<p>An Error occured while trying to process billing<lp>");
out.println("<p>Details: <Ip>" + e);
e.printStackTraceQ;

}

74

Appendix C : Snippet for a Car Reservation Component

Listing 16 : Snippet for car reservation using service requester's preference

protected void makeReservation(ServiceRequester requester, Cars c, String pref, String deity, String acity,
String ddate, int confirmationNo, PrintWriter out)

(
try {

Statement st3, 514;
Stringmsg = "Car gruop: 11 + pref+ .. Confirmation number is: "+ confinnationNo;
connection =DriverManager.getConnection(uri);
513 ~ connection.createStatementt);
st4 ~ connection.createStatementf);

String reserve> "UPDATE Schedule SET" +pref+" ~"+ c.carsl.eft +" where d_date ~ m + ddate
+"''';

String recordToDB = "INSERT n-.'TO CarReservation VALUES (m+ requester.mobileNumber +
"'/"+ ddate + "'/"+ pref+ '"," + confirrnationNo + ",'It + deity + "':" + achy+ In)";

int result! = st3.executeUpdate(reserve);

if{ resultl = I)
{

int result2 ~ st4.executeUpdate(recordToDB);

if(result2~ I)
(

Alert(msg, "Confirmation:", out);
}

}
}

catch(Exception e r
(

out.print1n("<p>An Error occured while trying to make a reservation</p>");
out.println("<p>Details: </P>" + e);
e.printStackTrace();

}

75

	Table of contents
	Chapter 1: Introduction
	Chapter 2: Background concept & literature review
	Chapter 3: Repository architecture analysis & design
	Chapter 4: Implementation of the model
	Chapter 5: Conclusion
	References
	Appendices

