ENTERPRISE COMPONENT ARCHITECTURE FOR MOBILE
COMMERCE SERVICES

HLENGIWE PINKY KUNENE

December 2004

ENTERPRISE COMPONENT ARCHITECTURE FOR MOBILE
COMMERCE SERVICES

Hlengiwe Pinky Kunene

A dissertation submitted to the Faculty of Science and Agriculture in
fulfillment of the requirements for the degree

of
MASTERS OF SCIENCE

in

COMPUTER SCIENCE

Department of Computer Science
University of Zululand

December 2004

Declaration

I hercby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which has been accepted for the award of any other degree or
diploma at any university or other institute of higher leaming, except where due

acknowledgment has been made in the text.

Hlengiwe Pinky Kunene

Dedication

To my mother Thandi “ Mam-B *, my two sisters Sithembile “ Gel’teng , Buhle
“ Kelly ” and my one and only brother Lindokuhle “ Boyzin ” and to my late father

Guduza.

Acknowledgment

Firstly, I would like to thank God for giving me this opporfunity to have reached this far.
Secondly, my special thanks go to my supervisor Prof. M.O Adigun, who encouraged me
to take further postgraduate studies under his supervision. I am grateful for his ideas in
making this research a success. Thirdly, my special thanks go to student assistants, who
participated in implementing the prototype. These were L.N. Mkhwanazi, P.T. Tamba-
tamba, S.C. Chonco, M.B. Linda and M.D. Jojisa. I would also like to give my sincere
thanks to my colleagues D.P. Biyela, T.C. Khumalo and M.W. Nkambule for their
support. | am furthermore grateful to my friends C.N. Nxele, N.N. Nxele, S.P. Masondo,
N. Nkosi for their words of encouragement and support. Lastly, my appreciation goes to

all staff members who were always there in giving encouragement, advice and guidance.

Table of Contents

CHAPTER QONE....occoreeeeerectrieeremcsecesscssressse e sitessssesssscsnsstensesserenssssssasasnerssssssseenssasss 1
L.OINTRODUTION. ..ottt st ensste e s s ste e s s st se st sane st s eat e sesnss s Mt soaesrenasnssnes 1
1.1 Overview...... ettt eeteaar e e e st s aesaeereeanaan 1

1.2 Statement of the Problem..........o.ooiiiii e 4
1.3 Moﬁvation forthe Research..........oo oo 4

1.4 Research goals and objectives. ..o i 5

1.5 ReSearch MethOQOLOZY. ... -.eovemeeereeeeereeeeereseeeeeeeeeeeeeesesseneseenes oo, 6

1.6 Arrangements of the Dissertation............c.ooiiiiiiiii e 6
CHAPTER TWO .ottt ettt et te e st ee e ve s et e e et s eennnns]
2.0 BACKGROUND CONCEPT AND LITERATUREREVIEW.........coooiviininnnn.n. 8
| 2.1 INTOAUCHON. . ..ot ite et it et e naas 8

2.2 Existing Enterprise Component Based Architectures.........ocovvvevvenvnnnnn... 9

2.3 Service-Oriented Mobile Commerce Reference Architecture................... 13

2.4 Proposed Model...................... e e an e 15

2.5 A Framework for Comparing Architectures..............oocevviiiiiiivennnnnn.n. 16
CHAPTER THREE ettt ettt e e et e e e 19
3.0 REPOSITORY ARCHITECTURE ANALYSIS ANDDESIGN...........ccconen...... 19
3.1 IntroduCtion.c.evveneerneeenne e e e .19

3.2 The Repository Framework : €TOCOR.........ccoovviiiiiiiiiniiiienen, i9

32.1 The Repository Layer......cooiimin i, 20

322 The Application Layer......coooiiiniiiiiiiiii e, 21

323 ThePresentation Layer.......ooooiiiiiiiiiiiii e 22

iv

3.3 Component Architecture Design.....ccovveieeiiiiirriin e 24

33.1 Tourism Domain Analysis.......ocoeeiieiniiiiiiiiiiiineeeieanns 24
3.3.2 Domain Decomposition.c..cc.ccvveenneeeeeeerrnreareieeereeeenens 28
3.3.3 Goal-Service Model Creation............................‘ 31
3.3.4 Subsystem Analysis........cooveiiiiiiriii i, 33
33.5 Service Allocation.......coeeveiiiiiiii i e 37

3.3.6 Component Specification using Use Case Grammar

SPECHACAION. ..cvvveere ettt s em e 37

CHAPTER FOUR. ..ottt et sttt st e e e e e e e s e eb e s e e 41
4.0 MODEL IMPLEMENTATION. ...t et e ee e 41
4.1 InrodUCHON. ...ouvieie e e aa 41

4.2 The Mobile Travel Reservation Application.............ooveevieiiiieivennnnen. 42

4.3 Demonstration of the Component Repository..........covovvvevveiiiicinnnan.. 49

4.4 Prototype Limitations........cooieii it e 56

4.5 Comparison with existing IRE................. 56
CHAPTER FIVE. .. o it ettt e e e re e e 57
5.0 CONCLUSTION. .ottt et e e et e et e e e e aa e et enenensn s enanens 57
5.1 ConCIUSION. «..eeeeeene e et e 57

S 2 FUture WOTK. ..oeeneiiieiiiii ittt 58
REFERENCES. .. .ottt ettt et e s e e et et e e e e e e eem e 59
APPENDIX A : Snippets for a Hotel Reservation Component............................... 63
APPENDIX B : Snippets for a Flight Reservation Component.............................. 71
~ APPENDIX C : Snippets for a Car Reservation Component................................ 75

List of Figures

Number Pages
2.2 M-Commerce Service-Oriented Reference Architecture.............ccocoeviviiininnn.., 15
2.2 The logic operation of an IRE Component.............oooiiiiiiiiiiniiiinnnne 17
3.1 Architectural Context of the Repository Framework.........c....cooiiiiiiiiie 20
3.2 Tourism Conceptual Model.......ooovuiiii 27
3.3 Use Case Model for Tourism Domain...........covvimiiiiiiiiiciincecii e, 29
3.4 A Sequence Diagram for Register use case...........cooiiiiiiiiniinniniiniiicninnn 35
3.5 A Sequence Diagram for Make Reservation use case.......c....ccovrvrinenneiaiennnn.ns 36
3.6 Business Grammar for Mobilé Travel Reservation Enterprise Component............ 38
3.7 Class Diagram for Mobile Travel Reservation AppHcation............coooveveeeeren... 39
4.1 Implementation Model fo.r Mobile Travel Reservation Application................oee. 42
4.2 Customer Relationship Management (CRM) Interface.............ccooeeriimnrrrnreninn 43
4.3 Log-In Inerface. . vnnieii e 44
4.4 Mobile Travel Reservation Application Interface..............oioiiiiiiiiiiii 44
4.5 Hotel Accommodation Request. T EETTRTS PR ettt 46
4.6 Hotel Reservation Confirmation.....coovvee i e en e 46
4.7 Hotel Cholce PIrOMIPL.....cn ettt e e e e eneanans 46
4.8 Hotel Reservation Confirmation......coveiieeiuiiiiiiiiiiiiici e e, 46
4.9 Flight Reservation ReqUESL........cuceuives it ce vt e van s enenr e e e e ena s 47
~ 4.10 Flight Reservation Confirmation........ocouvevriurriiinii i eeeen o 47

4.11 Car Reservation TEQUEST. ...oueeuncuies it irieraie e s esianaenn e antieansinannrseans 48

4.12 Car Reservation Confirmation........c.oovoeieriiiinnmoriiiii i 48
4.13 UDDI Environment.............. et eeeaneaeeeeeaeeaeretiaaara et 50
4.14 Published COMPODENLS.vuiniie it catrr e rese e n et s v e e sraaanns 51

-~ 4.15 Components and SEIVICES. .. .eueuieienrerettenereirrrnrrriaaae e retesraeanseenrarens 52
4.16 Service ProPertiES ... ettt e e e e eane 53
4.17 Hotel Reservation Technical Model..........cooiuiiiiiiiiiiiiiii e, 53
4.18 The search interface of the repoOSItOrY....ccmineiiii i 54
4.19 A Typical Search Result..........c.cooioiiiiiiii i, R 55

vii

List of Tables

Number - Pages

2.1 Comparison of the proposed architecture (¢TOCOR) and

existing ATCHIECTUTES... oo evevreeeeeeeeereeseeeaeaes PSR OT 18
3.1 Tourism services and common features.ooevinmmmrrv i 26
3.2 Business Use Cases and their associated pattern.............oveviieieiiiieieinenenen. 31
3.3 Goal-Service model for domain decomposition business functions..................... 32
4.1 Mapping eTOCOR architecture to Web Service Technologies........c.cceeuiniinan.nn 49

Viii

ABSTRACT

This research focuses on creating a component based repository architecture for mobile
commerce services called (e-TOCOR) with the emphasis on component storage and
retrieval. To realize this framework three tasks were carried out namely (i) a model for
engineering component based m-commerce service was defined using existing models
(ii) the Universal Description Discovery and Integration (UDDI) was used to model a
component repository (iii) the mobile travel reservation application prototype was
developed to demonstrate the proposed model. The results obtained were threefold (i) by
~evaluating the existing component based architectures, the study showed that m-
commerce services are not the same as e-commerce services, the Information
Requirement Elicitation (IRE) was adopted as a mechanism for eliciting a request and a
service delivel;y protocol for end-user mobile commerce services and (ii) the prototype
was developed to show how enterprise components can be delivered in mobile devices
using the IRE protocol. It was also shown that the way existing m-commerce services
elicit requests takes much time, fhé shortest way was to use a text message (iii) the
repository ﬁamework was created emanating from the home-based reference architecture.
In conclusion, the proposed repository could not be compared with the existing repository

architecture because it was not implemented, instead the UDDI was used.

CHAPTER ONE

1.0 INTRODUCTION .

1.1 Overview

Each and every system that is developed has an architecture. The software architecture
represents a high level of abstraction from which a system evolves as a collection of
Interacting components [1]. Different architectural approaches have been defined and

implemented.

Traditionally[2], the application architecture consisted of a monolithic system, where the
data access, business rules and user interface were combined into a single program. This
type of approach worked well for many years, as long as the systems were carefully
controlled and all developers used the same programming language and techniques. With
advent of the personal computer, the same types of monolithic applications were being
built in an environment which was less controlled. The end result of the traditional

architecture was minimal reuse of existing code.

The platforms had no support of components and reuse was achieved by source code
sharing. Additionally, there was no separation of logical layers in the application which
(data, business logic and user interface) could not be separated as distinct elements in the
system. Each layer was compiled into a single deployable unit. Some problems with this

type of architecture include:

i. the application functionality which could not be reused in another
application; and
ii. as the application grew, it became increasingly difficult to fiebug and
maintain.
A different type of application architecture was required for sofiware developers to
achieve increased productivity and for systems to achieve reusability, maintainability and

scalability {2].

The next evolution in the application architecture is the Component Based Architecture

{ CBA) which involves building systems in a layered approach. The layers include a
data access layer, business layer and presentation layer. The data access layer included all
code and logic, which access the data. The business layer consisted of a domain model or
services, which encapsulated the business rules of the application. The presentation layer
consisted of all user interface related functionality [2]. Components are reusable in other
systems. Developing applications from existing components reduce development time
and the cost of maintaining components, because a component is developed only once,
and it is reused over and over in new and existing applications. Components can be
extended to meet new business demands and users. One of the major problem with CBA
1s the lack of a standard repository infrastructure which allows components to be

searched and retrieved for reuse purposes.

The advent of service-oriented architecture, or SOA, resolved the problem of repository

in CBA. The architecture provides for services to be stored in a universal service

repository similar to fhe Universal Description Discovery and Integration (UDDI)
described in [3]. SOA consists of two layers, namely data access layer and business
layer. The presentation layer exists, but is not part of the service-oriented definition. In
addition, a service-oriented architecture includes a well-defined service interface which
serves as the access point for all external calling applications. The service interface style
serves two purposes. Firstly, its method supports a request/response metaphor. Secondly,
it is responsible for controlling access to the business layer. Any applications or other
services calling the service interface do not have access to the business layer. This

provides a loosely coupled structure such that architecture of the service’s

implementation can be changed without requiring any changes to the calling application

[2].

The architectures mentioned above this far do not particularly excel with respect to the
peculiarities of mobile commerce. Hence the following assumptions have been made as
the basis of this research work:

(1) Firstly, services common to e-commerce applications have been identified in [4] as
trading services, workflow services, access control services, event-notification services,
user profiling services, data integration se_rvices, etc. It is unlikely that these are adaptable
to meet m-commerce specific requirements, because some of the services cannot be
provided as m-~commerce services since they demand more concentration to mobile users.
(2) Secondly, not all the three traditional service categories namely: end-user services,

business process services and data services, fit m-commerce which has been found to be

more end-user oriented. Given the limitations of mobile commerce devices, a protocol for
providing m-commerce services to end-users is required.

(3) Finally, the Information Requirements Elicitation Technology proposed by Sun et al
in [6, 7] is particularly attractive for end-user and service oriented needs of mobile

commerce applications.

1.2 Statement of the Problem

Existing distributed and client-serve architectures have a lot to offer to e-commerce. With
respect to m-commerce the earlier assumption in the literature that m-commerce is
wireless e-commerce have been found to be unacceptable, because m-commerce

challenges are different from those of e-commerce.
E-commerce requires that researchers address certain challenges.

In this work, 1t is required to find a comparison mechanism that brings out the

peculiarities of mobile commerce as different from existing e-commerce architecture.

Furthermore a model is to be formulated from a derivative of some existing reference
architecture. The model is required to demonstrate the relevance of SOA to the repository

infrastructure challenge in CBA.

Finally, it is required that a mobile commerce application is implemented that

demonstrates the applicability of the service-oriented repository architecture or model.

1.3 Motivation for the Research

The ongoing “wireless software and service architecture research™ in the Department
yielded a service-oriented mobile commerce reference architecture. Among the building
blocks of the architecture is the technology archetype that serves as the operating
environment for other services supported in the architecture. The technology archetype is
envisioned as a middleware that provides various utility services such as component
repository service, context-awareness and so on. The contribution of this work is to
define model repository architecture to be used as the core technology for implementing

the middleware in future.

This motivation will not be complete without mentioning the role to be played by the IRE
mechanism. IRE has been adopted in this work as the primary protocol for the mobile
commerce prototype application built to demonstrate how technology archetype is

supposed to work.

1.4 Research goals and objectives

The major goal of this research is to create a component based mobile commerce
architecture with emphasis on component storage and retrieval.
The major goal is formulated as an equivalent of some related objectives which are to:
.i. find an appropriate model for engineermg component based mobile commerce
services ;

ii. design a component repository framework that matches the model and

iti. demonstrate how the model is used in mobile commerce using a typical

application.

1.5 Research Methodology

The methodology includes:

i. establishing a comparative scheme for relevant architectures via a literature
review exercise;
ii. creating a component-based m-commerce architecture from existing models and
deriving from it a repository framework and
iii. testing the repository framework via a Mobile Travel Reservation application

specifically designed for this purpose.

1.6 Organization of Dissertation

This section describes how the rest of the dissertation is organized. In chapter two a
number of fore-runner architectures which were reviewed are explained. A mechanism

was created to compare them with the newly formulated architecture in this research.

The focus of chapter three is firstly, the analysis of the repository architecture and
secondly the design of the component based mobile travel reservation application that has

been used as a proof of concept for the repository framework.

System implementation is the subject matter addressed in chapter four. While a typical

application was implemented to provide typical enterprise components, the repository

architecture was demonstrated using the public Universal Description, Discovery and

Integration (UDDI) infrastructure for web services.

The conclusions and further work are presented in chapter five.

CHAPTER TWO

2.0 BACKGROUND CONCEPT AND LITERATURE REVIEW

2.1 Introduction

Component-Based Process in software engineering, (termed CBSE) is a process of design
and construction of systems using reusable software components. It combines concepts
from different areas of software engineering and computer science, such as Object-
Oriented programming, reuse, softwaré architecture, modeling languages and formal
specifications [8].The basic idea of component based development is to qualify, adapt
and integrate existing components in that order[9]. Components or a specific business
functions in CBSE should be developed in such a way that they can be reused by other
systems in the future. Enterprise Components have been defined as software-based
specific business functions which can be combined with other components to create a
larger system {10]. Components can be provided in mobile devices as mobile commerce

services.

Mobile commerce has been defined in [11] as buying and selling of goods and services
through wireless handheld devices such as the cellular telephone and personal digital
assistants (PDA). Mobile commerce services can be divided into two: information
services and transaction services. Mobile users, the users of mobile devices; may use a
mobile application to check news, lotto numbers, weather, soccer scores etc. Others may

use it to carry out a transaction like, purchasing a book or a concert ticket. Mobile

commerce application architectures need to take into consideration the mobile devices

limitations such as small screen, slow CPU and limited processing power [12].

The following section presents enterprise component based architectures
2.2 Existing Enterprise Component Based Architectures

2.2.1 Enterprise Business Components (EBC)

Diamelle Technologies’ Enterprise Business Components (EBC) [13] comprise a
component framework for eBusiness. EBCs were designed and built using the Enterprise
JavaBeans 1.1 and they help to provide new business services to customers very quickly,
while simultaneously providing a scalable architecture that accommodates future
reqﬁirements. This architecture is layered, consisting of, Foundation Layer, Component
Layer, aﬁd Persistence Layer. The Foundation layer provides common base classes for all
Enterprise Java Beans and it also provides fine grained building blocks that can be used
to build new components quickly for applications. The component layer selectively
extends the foundation layer. The layer provides components like user authentication,
navigation, view, customer, catalog management, shopping cart, order processing, billing,
and shipping. The Persistence Layer is for reuse and flexibility. The purpose of the
architécture is twofold: (i) To provide components that are reusable, extendable, and
custornizable to fit new needs, (ii) To support composition of e-commerce applications. A
cursory investigation of EBC architecture shows that it is not service oriented (it lacks
service delivery mechanism) and it specifies no rules on how to compose components

using this architecture. The framework was implemented using the Java programming

language.

2.2.2 1IBM San fransisco Framework

IBM’s San Fransisco Framework [14] defines three layers of reusable software
components. The highest Layer called the core business processes provides business
objects and default business logic for vertical domain. The second layer, called the
common business objects provides basic facts and rules that are common to most
business environments and are used by more than one business process. The lowest layer
Foundation Layer provides the object infrastructure that is used to build the Common
Business Objects Layer and Core Business Process Layer or to build domain-specific
business process. All components within the various layers are highly extensible to
support customization and application differentiation. Instead of building the entire
application from scratch, application developers can choose to exploit San Francisco
Framework at any of the three layers. This architecture supports composition of e-

commerce applications.

2.2.3 Service Oriented Architecture

Service orienfed architectures [15, 16, 17, 18, and 19] use a component based
development approach to develop and compose services. Most of the service-oriented
architectures seem to use the same architecture and involve three different kinds of
actors: service providers, service requesters and discovery agencies. Usually they provide
the same functionality but the difference is in the terms used. The service provider
exposes some software functionality as a service to its clients. In order to allow clients to

access the services, the provider also has to publish a description of the service. Since the

10

service provider and service requester usually do not know each other in advance, the
service descriptions are published via specialized discovery agencies. They can
categorize the service descriptions and provide them in response to a query issued by one
of the service requesters. As soon as the service requester finds a suitable service
description for its requirements at the agency, it can start interacting with the service
provider and using the services. Such service oriented architectures are typically highly
dynamic and flexible because services are only loosely coupled and clients often replace
services at run-time. Service oriented architectures provide services using service
discovery protocols. Most of the service oriented architecture such as Jint, use the service

location protocol as a way of delivering e-commerce services.

Service onented architectures use web services technologies. Web service technologies
have been defined in [15] as follows: from a technical perspective, web services are a
standardized way of integrating web-based applications using open standards including
XML, the simple object access protocol (SOAP), the Web Services Description
Language {WSDL), and the universal description, discovery, and integration (UDDI)
specification. UDDI is a web service that lets businesses discover one another and
describe how they interact. It provides_ a simple object access protocol interface for
publishing entries and querying the UDDI registry. Multiple providers can register their

services in a central directory and precisely characterize their offering,

11

2.2.3.1 Common Picture eXchange (CPXe)

CPXe [19] is a highly interoperable service delivery framework that leverages the web
services paradigm to give providers access to an expanded market and offer consumers a
broad range of digital imaging services. The CPXe architecture consists of three tiers, the
service themselves, a directory service, and the applications that discover and interact
with these two types of services. It only defines access services for online fulfillment. It
relies on the UDDI specification for directory functionality. A service locator mechanism
lets consumers casily select vendors offering the products and features they desire. A
service locator is implemented to function as a travel agent or sales broker. A service
locator consults the UDDI directory to determine available services and queries those
services for catalog information. Catalogs in this framework give a provider a
standardized way to communicate detailed information about its products and services to

a service requester.

2.2.3.2 Jini

Jimi [20] is descnibed as a distributed serﬁce—oﬁented architecture developed by Sun
Microsystems. Jini services can be realized to represent hardware devices, software
programs or a combination of the two. A collection of Jini services forms a Jini
federation. Jini services coordinate with each other within the federation. The overall goal
of Jini is to turn the network into a flexible, easily administered tool on which human and
computational clients can find services in a flexible and robust fashion. Jini is designed to
make the network a more dynamic entity that better reflects the dynamic nature of the
workgroup by enabling the ability to add and delete services flexibly. One of the key

components is the Jini Lookup Service (JLS), which maintains dynamic information

12

about the available services in a Jini federation. A user searching for a service in the
network first multicasts a query to find out the Jini Lookup Service in the network. If a
Jini Lookup Service exists, the corresponding remote object is downloaded intp the user's
machine. The user then uses this object to find out its required service. In Jini, service
discovery is done by interface matching or java attributes matching. If the Jini Lookup
Service contains a valid service implementing the interface specified by the user, then a
proxy for that service is downloaded in the user's machine. The proxy is used henceforth

to call different functions offered by the service.

2.3 Service-Oriented Mobile Commerce Reference Architecture

The reference architecture shown in figure 2.1 is conceptualized with the tourism sector
in mind. A product-line is an architectural concept defined as a collection of systems
sharing a managed set of features constructed from a common set of core software
assets[21]. The product line érchitecture consists of five archetypes or architectural
elements, namely client, technology, service, inférmation and transaction. Each of these
elements are architectural abstractions that have to be instantiated when a product is

being derived from the architecture. Each archetype is briefly overviewed as follows:

Client stands for any mobile device that can serve as user interface to the product being

instantiated. Examples are PDA, the cellular phone, the handheld PC, etc.

Technology- refers to the operating environment in which services are to run. To ensure

services are standardized the environment was conceptualized as a set of utility services

13

through which data, metadata and context information are served to other architectural
elements according to the IRE protocol { depicted in figure 2.2). This archetype is the
basis of the proposed repository architecture in this work envisioned as a middleware, it

consists of four systern services which other services (must adopt information,

transaction, even third party services).

A service is an abstract element that will not be instantiated but serves as the generic

archetype for technology, information and transaction.
Information refers to all content-based services to be requested by the client.

Transaction models all commercial activities services in which there is an exchange of
money and product.

It is to be noted that the architecture further identifies both information and transaction
aréhetypes as product-line services in contrast to third-party services which are loaded
from external sources. An example of Third party services may be a game downloaded
from the internet or similar network service.

In order to realize the technology archetype as a set of utility services, a protocol or
operating environment style was needed. There is no existing standard for mobile
commerce in this respect, so the Information Requirement Elicitation (IRE) Technology,

first advanced by Sun et al [6,7] is our choice for driving the reference architecture.

14

— Services
Technology +Utlity Services
Suppler &
o ServiceDaa}
pessenan - srmsensms .
' H
User Profile & Deta Mining
1m’ Interface
H .
L] -
s Context : Product Line (PL} Third Pasty (TP)
Semsor | +eemsmsca== Services Savices
Interface T
Chert Information Transaction

Figure 2.1: M-Commerce Service-Oriented Reference Architecture

2.4 Proposed Model

This research proposes to create a layered reusable component based repository
framework for mobile commerce services called eTOCOR (e-Tourism Component
Repository) emanating from the product line reference architecture of the previous
section. The proposed architectural framework will be used to compose applications.

Applications are composed of components.

In CBSE , a component is specified in terms of its functional and extra-functional
properties[22]. In this research the focus is on the functionality of a component. The
functionality of a component is accessed via an interface [23]. The main aim is to create a

reusable architecture that can be used to compose mobile commerce service.

15

Mobile devices have limitations such as small screen, limited processing power, the
device size and the input device such as small buttons An IRE protocol was adopted as a
request/response mechanism to invoke service or to elicit a request from the m‘obile user.
Tourism have been chosen as the domain of sample enterprise components to be used in
mobile commerce. The reference architecture is designed in such a way that product
instances developed using the architecture are IRE-enabled. An IRE-enabled component
is a component that uses IRE protocol (see Figure 2.2) to elicit a request and provide

services according to a user’s request. Therefore, IRE enablement consists of conformity

to the IRE driven utility service specification of the technology archetype (Fig 2.1)

2.5 A Framework for Comparing Architectures

In Table 2.1, an attempt has been made to compare existing component-based
frameworks and the component repository (¢eTOCOR). The comparison is based on five
characteristics namely: Layering flavour, core technology, architectural style, service
orientation, and service discovéry protocol (if relevant). It is to be noted that most of the
popular architectures are component based and ;Iecuomc service oriented but are not
suited for mobile éommerce model. The main deficiency in the existing architectures is
the absence of the likes of IRE which is a service discovery protocol specifically

designed for m-commerce.

16

e

Lot HE D
AR

Sunetal [7]

ew of the IRE protocol as in

Figure 2.2 Overvi

17

Table 2.1 : Comparison of the proposed architecture (¢TOCOR) and existing

architectures
Item being compared Core Architectu Service Service
Layering Flavour Technology ral style Orientation discovery
protocol
Enterprise Consist of Enterprise Popular e- | e-commerce -
Business component layers JavaBeans 1.1 | commerce | services
Components[13] -Foundation layer patterns
-Component layer
-Foundation layer
IBM San Fransisco | Consist of Java Design e-commerce -
Framework[14] component Layers Technology Patterns(services
-Core business Gamma el
process layer al)
- Cormmmon business
layer
-Foundation layer
Common Picture Consist of three tiers, | eXtensible Service e-comrmerce Service
eXchange { CPXe) -services themselves, | Markup Oriented services Location
[19] -directory services, Language Architectur Protocol (SLP)
- applications . {(XML) al style
Service Oriented Consist of layers Java Language Service e-commerce Service
Architecture(SQA) | -business layer Oriented services Location
such as Jini - data layer Architectur Protocol
Architecture -presentation layer al style (SLP)
{15,16,17,18] .
e-Tourism three layers, _ Java Product m-commerce | Information
Component - repository layer Technology line style service Requirement
Repository - application layer, and Web Elicitation
(eTOCOR) - presentation Services (IRE} Protocol
layer Technologies

18

CHAPTER THREE
3.0 REPOSITORY ARCHITECTURE ANALYSIS AND DESIGN

3.1 Introduction

Deri [24] defines and differentiates between an architecture and a framework. An
architecture is defined by means of a framework, and it specifies and restricts the way
components interact. He further describes architecture as a conceptual description of a
system presented at a level of abstraction in which the system’s high-level design can be
understood. A repository architecture specifies:
i tﬁe structure of the repository, the services it provides, and its responsibilities with
respect to other archetypes in the reference architecture;
ii. the repository interface, consists of component characteristics that have to be
visible from the outside and

iii. the way constituent components collaborate.

3.2 The Repository Framework : eTOCOR

The architectural framework shown in figure 3.1 provides the context in which the
repository architecture is designed. It consists of three layers the repository layer,

applicationllayer and the presentation layer.

19

Tourst/User

— A A e e e mm amm Sy s s e amm mee aee e oem emm e

Web Semvice Framework

Figure 3.1 Architectural Context of the Repository Framework

3.2.1 The Repository layer

The reposifory relies on the web service technologies, Universal Description, Discovery,
and Integration specification (UDDI) for directory functionality. It provides interfaces
and operations for storing, retrieving and updating components. A component can be
identified by a name. A component structure contains information about the component.

It includes the name of the component, the description of a component and the service it

20

provides. Components are categorized according to services they provide. Each
component has its own interface and describes its services.

Components in this work are designed to be reusable to other applications within the
tourism domain. eTOCOR components used the Java Servlet Technology to describe the
client interface. The eTOCOR components are published and written in WSDL in a
registry (UDDI) or made available for discovery. When another enterprise component
needs a component that satisﬁes some functionality, then a query is issued to the
repository to find if WSDL of an available component exists. A component is a shared
resource, which means the component can support many applications. This type of
ﬂexif::ility is needed because many different applications can share a single component. A

component is to be located using the component repository.

3.2.2 The Application layer

€TOCOR-based application makes services avaiiable on mobile devices. Intemnally the
application is composed of components. An application specifies a mechanism for
invoking a service. In an ¢eTQCOR component are tourism services. Examples are car
hire service, hotel reservation service, flight booking services. Each and every application
incorporates standard elements such as end-users, services, execution environment, and
communication models. End-users refer to mobile users e.g. Tourist or Service Requester
using a mobile device to request a service. Services are provided by applications that are
ayailable on the network e.g hotel reservation service, etc. Execution environment: an

environment where an application runs. The communication style, which refers to

21

communication between a user and applications, is called “request and respond”. Thus a
user of an application issues a request and the application responds to the request.

eTOCOR applications use on the client-server communication model.

3.2.3 The Presentation Layer

The presentation layer refers to the user interface where users, service requesters or
tourists can interact with a service. It provides an access point to services offered by an
application. An eTOCOR application provides a message box interface for requesting a
service using a structured text message. Service requesters are able to issue a request
using a message, for instance, to request a reservation service such as flight, hotel or car.

Each service has a message format depending on the service to be invoked.

To instantiate reference architecture, the tourism domain was selected. A mobile travel
reservation application was devélopcd to demonstrate IRE enabled components crafted in
the mobile commerce fcpository framework called eTOCOR. IRE is an elicitation
mechanism; hence a text message was selected as a means of eliciting and responding to
a service request. The way e-commerce services are delivered on desktop machine
contrasts with m-commerce service delivery on hand-held devices. The latter adapts to

the smaller screen of the hand-held device.

Each component is IRE-enabled to be used in a mobile device as follows, illustrating the

Travel Reservation components

i. Tourists were required to register to personalize their wireless devices on a
web application;
it. Once the tourist was registered he/she was able to request services
according to his/her preferences;
ni. The tourist used a message to request a service or to make reservation;
iv. Once the tourist had sent his/her request, his’her preferences were used to

deliver services and

v. The confirmation number was issued.

Services are thus requested using a text message on a mobile phone. The message
conforms to a format depending on the service to be requested. Most messages are
formatted using abbreviation. In this case reservation messages were formulated based on

the format represented below:

Hotel <htl> <destination_city> <check_in date> <check out date>
Flight <flt> <departure_city> <arrival_city> <reservation_date>

Car <car><pick_up_city> <drop_off city> <reservation_date>

For example to request a hotel reservation service , a message such as this; <htl> <dbn>
<03/12/04> <04/12/04> where <htl> stands for hotel, <dbn> stands for Durban,

<03/12/04> stands for check-in-date and <04/12/04> stands for check-out-date.

3.3 Component Architecture Design .

A structured approach or analysis and design method suggested by Zimmermann et al[26]

was used to develop components of the repository architecture (eTOCOR).

The design and implementation consists of the following activities: Tourism Domain
Analysis, Domain Decomposition, Goal Service Model Creation , Subsystem analysis,
Service allocation and Component Specification

The top down aspect of this approach came from taking business perspectives and models
into consideration: Business functions, processes, sub-processes, and use cases were
elaborated to form the outlines of component boundaries. Components provide
boundaries and containers for services often discovered through use case analysis and
goal-service model creation [27]. The following sections outline the tasks taken to
develop the componént based repository architecn-n.'e. Each of the tasks is applied to the

tourism domain.

3.3.1 Tourism Domain Analysis

Domain 'Enginee'ring is defined as ﬁ process of defining the scope (i.e., domain
deﬁnitipn), analyzing the domain (i.e., domain analysis), specifying the structure (i.e.
domain architectwre development), and identifying components that will support

reuse[28]. It can also be defined as the activity of understanding, abstracting and

24

modeling a bounded problem domain, the people (roles) involved and its enterprise
context {29]. The requirements of the component system are analyzed by refining and
structuring them. The purpose of doing this was to achieve a more precise ungemtandjng
of the requirements and to achieve a description of the requirements that is easy to
maintain and that helps us give structure to the whole component application including its
architecture. The major effort in requirements is to develop a model of the application
that is to be built, and the employment of use cases 1s an appropriate way to create such a
model. Use cases [30] offer a systematic and intuitive way to capture the functional
requirements with particular focus on the value added to each individual user or to each
external application. Their key role in driving the rest of the development work has been
an important reason for their acceptance in most approaches to modem software

engineering.

This framework supports the Tourism specific domain. Mekornnen in [31] defines tourism
as “travel and stay of a non-resident.” In order to travel to a particular area, there must be
a reason. For example, a person or a tourist may travel for leisure, business, visiting
friends and relatives, health, education, etc. The tourist chooses a destination for one or
the other reason. Transport is nec.essary to travel and accommodation to stay at the
destination. Tourism is a service-based industry comprsing a number of related
activities, some of which are:

i. Attractions{arts & craft, natural attraction, conference};

il. Accommodation{ hotels, motel, guest houses, caravans};

iii. Transport{air, water, surface};

25

1v. Scenic{parks, beach};
v. Entertainment {cinema, theatres, video games, festivals/concerts};
vi. Cultural/Tradition {museums, religion, historical places} and

o Others{news, weather}

Figure 3.2 shows the various interacting elements in the tourism enterprise. Role players
in the tourism domain are referred to as Tourist or service requesters, service suppliers
examples are hotel suppliers, car suppliers, flight supplier’s, etc. Service suppliers
provide services which were classified into attraction, accommodation, scenic, transport,
and entertainment. To make use of tourism services, Tourists are required to make
reservation before arrival. To take a few services such as flight, car, hotel, etc. These
services are classified under the accommodation and transport activities. These services
share common features such as make reservations, change reservations and cancel

reservations which makes them reusable. (see table 3.1).

Services - Common Features

Hotel Make reservation

Cancel reservation

Change reservation

fCar Make reservation

Cancel reservation

Change reservation

Flight Make reservation

Cancel reservation

Change reservaton

Table 3.1 Tourism services and common features

26

Hotel
Suppliers

Tourism
Industry

have

Service 1

provide

Suppliers

Service Requester

{Tourist)

1
request

1‘ .

Entertainment

Car Flight .
Suppliers Suppliers Services
A ¢
Attractions Accommaodation Scenic Transport
A T)]\
Hotels Air Surface
/
Flight Car

Figure 3.2 Tourism Conceptual Model

27

3.3.2 Domain Decomposition

In this task, the domain was decomposed into business processes, sub-processes and use
cases. From a business perspective, the domain consists of a set of functional areas {27].
As a result of the decomposition, the following functional areas were obtained:
i. Travel Reservation Business Process;
ii. Customer Relationship Management Business Process;
ili. Payment Business Process and

iv. Marketing Business Process

After decomposing domain into functional areas, each one was decomposed into sub-

processes and business use cases.

Use Case Model
Use cases were used to show the functionality of components from the actor’s point of
view. Figure 3.3 shows a use case model, using a Unified Modeling Language
(UML)[32]. The decomposition of the functional areas described above led to the
following set of business use-cases:

1. Advertise;

ii. Place order;

Hi. Make reservations;

iv. Register and

28

v. Make payments.
The business use case definitions are business driven and offer common, reusable
business functionality [27]. The use case model is explained as follows: “
Advertise- this prdcess is activated by tourism service supplier to advertise their product
or services to tourist or service requesters.

Place order — this process is activated by tourist or service requesters, to purchase any

product or to order any tourism product.

System

makes
reservation
7“0‘“51’!
Service requester
Com X
\ Service
Bilting Suppler

pay ments

Figure 3.3 Use Case Model for Tourism Domain

Make reservations — this process is activated by a tourist to make a car reservation, make
a hotel reservation or to make a flight reservation. These subsystems were given the

generic name, make reservation subsystem.

Register- this process is activated by a tourist to register his/her personal details and to set
his’her preference.
Make payments - this is done after the requester’s request is successful and a payment is

made to a supplier who supplied the service.

As a result of tourism domain decomposition, some functional areas have emerged. These
are then matched with business patterns as documented in the table 3.2 The business
patterns shown in table 3.2 are mostly used in enterprise architectures and they are
defined in [27] as follows: The end-user services business pattern allows a tourist to
interact with business services. The extended enterprise business pattern allows one
business to interact with another business service. In this work the focus is on end-user

services.

Not all use cases are covered. Only the make reservation, register use case and make
payment use cases are demonstrated. These business use cases were further analyzed to
decompose the domain. The business use cases constitute the component in the tourism
domain that can be used to compose mobile applications and serve as mobile commerce

services.

As we moved to the design, each functional area was mapped to one or more subsystems.

Subsystems are pictured as technology services of a business.

30

Table 3.2 Business Use Cases and their associated patterns

Requester/ Bisiness or
Use Case Name Description Implemented by Intergration
Invoker
Patem
Place order Tarist purchase | Tourist/ Service Supplier |End-user service
mods by placing | Service Requester
an arder
- | MBke Reservaion Taris makes Tourist/ Service Suppliers
resavationeg | Service Requester End-user service
car, fight, hotel
Adwertise Service Supplier |Service Supplier | Service Supplier |Business Pattern
advertise services
Regigter Tarid register { Tourist Service supplie | End-user service
mobile devie
Process Payrments|service supplier | Service Supplir | Third Parties Applicaion
mter gratbn and
extended
enterprise
Sends Service supplier | Service Supplier | Service Supplier | Appplication
Confirmaiom systetn sends system Intereration and
corfirmation extended
erierprise

3.3.3 Goal-service model! creation

For each enterprise components or the functional area identified in domain
decomposition, their services were identified using the goal service model [33). The goal-
service model was created as shown in table 3.3 to identify components and services that
the repository supports for mobile commerce services. Various notations are possible for
a goal-service model. The table was used to document the goal service model which
consists of two colummns. The first column provides a goal and the second column are
services for each goal. This example covers the customer relationship management,

travel reservations, and marketing business functions.

31

God Services
To automatically allow Torist to make Regiter tourist onlne
resavations to their favourite service suppler

Provide endruser reservation service Muke reservation using a mobile device ©

To allow Tourist > submit ther request to
the systan

To antomaically return all reservations back | Send reservation confinmation mimber
to the wurist ance processing is camplete

Mike Specid offers Regiter customers in a byalty prograrmme

Create loyaly offering

Communicate offering to registered
Custamers

Promote SessomalHolday Specisl packages | Create Holiday Package
Idertifyy marketing outkts
LBe outlet to distribute

Table 3.3 Goal-Service Model for domain decomposition business functions

The first goal listed in table 3.3, is “To automatically allow Tourist to make reservations
to their favourite suppliers” and the associated service is “Register tourist online”. To
achieve this goal, it is important that end user sérvices should be customized in such a
way that services are easily used. Tounsts are required to register online, set their
preference, so that when delivering services in mobile device, services are delivered
according to their preferences. The second goal “To provide end-user reservation
sgrvite”, tﬁis goal is achieved by allowing tourists to access services using their mobile
devices. Tourist interacts with the service through mobile device interface. Tourists are
required to submit their request to the mobile application using their mobile device. The
mobile application components are IRE-enabled. IRE-enabled systems should utilize user

preference information to narrow down options by their personal relevancy [7].

32

3.3.4 Subsystem Analysis

Each of the business processes mentioned in section 3.3.2 were further broken down, to
identify the component boundary of each business components. The main tourism
business processes or functional areas are marketing, travel reservation, customer
relationship management and payments. This partitioning was based on business process
boundaries; end-to-end services that form a business processes [33]. The entire business
domain is seen to consist of a set of functional areas, each responsible for making a
certain set of cohesively related design decisions. For example, marketing is responsible
for defining service packages, their offerings, target customer and pricing for each
package offered. Marketing is further concerned with “Specials” catalog or set of
packaged services that are offered. Customer Relationship Management (CRM) is
responsfble for managing tourist, Tourist profile (personal details), preferences
(favourite’s products, services) are services that the tourist enjoys the most when visiting
a tourism supplier’s site. Travel Reservation Business Process is responsible for
reserving hotel rooms or reserving flight or hiring a car. A typical use case grammar
learned from [33, 34] was used to specify the business component boundaries of the four

business components given below.

1. Marketing = {Service Packages, “Specials” Catalogs, Pricing}
2. Payment = {bill [services], Payment {transaction process} }
3. Travel Reservation = {[identification], Reservation Request, Reservation Process,

Payments, Confirmation}

33

4. Customer Relationship Management= {Contact Management {Address), Customer
profile and Preferences}

We further identified the required functionality for each business component; the system
level use cases for each component. For each use case, a sequential diagram was
associated with business component use case. Customer Relationship Management
(CRM), this component allows Service Requesters to register their mobile device by
registering their personal details, set travel preferences such as hotel preferences, car
preferences, and flight preferences. The CRM component is associated with each

reservation component such as flight, car, and hotel.

When the tourist requests a service, it becomes easy because all the user’s preferences are
known from the Customer Relationship Management component. During the registration
process shown in ﬁguré 3.4, the tourist sets his preferences by selecting three preferred
hotels. These preferences are used when a tourist requests a service. When a tourist
requests a service shown in figure 3.5, he/she writes and sends a message. The hotel
Teservation component is activated, it then communicates with the customer relationship
management component to get the tourist preference. The reservation components check
the first preference if there are any services available during the date specified by a
tourist, If there is a room available, the room is reserved and the confirmation number is
issued together with the hotel name. If all preferences are checked and find that there are
no services available during the date specified by the tourist, a list of hotels is presented

that have accommodation service available during the date specified by the tourist.

34

"

Cistamer
Relaionship
mw Detabase
(CRM
i
[|
i
I
; }
i
L
i
' !
!
i
i
htipConnection !
|
1
f
!

submit

H

sends registmtion confimation

:
i
add apew Sevice Request

)
Service
/ Rexpester's
rvice Requester Unterface
= i
i
i
. |
: enter promiv pe url »
| !
| |
! |
, I
; |
1 |
I
| ;
register > :
validate
i
1
{
|
I
| :
, i
i
. }
! i
;
|
: i
i -4
|

wv reEistration con firmation |

Figare 3.4 A Sequence Diagram for a Register Use Case

35

Savee Rqiesa’s Travel Cmamer Relationship Servies v
Ulneerfar Reservation Manzgement Spplier Aments
Service Requester | ! | b :
; : t i : |
1 . | ; 1 |
wntes and send @ message ; | | .
' 1 | 1 !
- valdae | |] |
| ; | H { {
H ! i i I
; i ! ! :
| - i | !)
.55 R B AT
i) B 1 H
! b ' t !
| gets Equeder's gmfsiﬁce ¢ i
}
| ; ! i |
i .
] | H i t
! t : i !
| ‘ o t i
| r i :
| i E
I : mekes reservation i
t ; H t .
i : i { ;
t | ! i gersPavments o !
’ | : 1
| |) ! :
i : ! 1 !
; | i ; i
i ; i i O (.
i ; ,
{ ; i
! ! sends confirration
{ . 3
F P H
i H
i { H !
; < displav con firmation ! !
i 1 ;
) i
I : ! i H
: 1 i

Figure 3.5 A Sequence Diagram for Make Reservation Use Case

36

The tourist selects one hotel. Then after the reservation is made, payments can be made to
the service supplier. The same procedure is used to request a car reservation and flight

reservation service.

3.3.5 Service Allocation

Services were identified through a combination of domain decomposition and goal-
service modeling shown in table 3.3. Each and every service has its own component
where it is contained. The business processes or functional areas are components which

contains services.

3.3.6 Component Specification using Use Case Grammar Specification

Entérpn'se Components were defmed around business processes boundaries and often
encapsulate a set of related use cases. The progression was seen to be “business process
— subsystem — enierprise component [34]”. This Vbrought us to the design of the internal
structure of enterprise components as in the one which consists of the application of
subsystem analysis, along with domain specific languages to define enterprise-scale,
loosely coupled business service component and their interfaces. Figure 3.6 shows how
business grammar learned in [34] was used to creatc a domain-specific vocabulary for the

‘Mobile Travel Reservation Enterprise Component.

37

Mobile Travel Reservation = { identi ficati on, Reservation Request, Reservation Process,
Payments, Confirmation}

Identi Acation = { Challenge User with Login, Verify Mobile NMumber and Password}
Reservafion Request = { Write message, Validate, Send message }

White Message ={ hotel(hil), destinalion city, resetvation date | flight {fity departure
city , aival city, reservation date | car picik-up city, drop-offcity, reservation date

| vacation package, erigin city, destination city, reservation cate)
Validate = { walidate ifthe ressage isin the valid format or oot}

Send Message = { press submit}
Reservation Process = {Check customer preference, check service availability, Payments,
generate confirtration mmmber, send confirmation nurher)
Payments = { Transaction process}

Confirmation ={ Sends a confirmation number to a service requester, Display
confirmation on maobile device)

Figure 3.6 Business Grammar for Mobile Travel Reservation Component

38

¢TOCOR

~COmpONGnt_mame
-component_descoption
-~ LOMPORENY_Categaries
- SCrViCe_Rame
-service_description
-service_catrgores

+save_business()

+ find_busmess()
has
¥
i <<Proxy>> Service Supplier
ServiceHequester Mobile Trave Reservation { MIR }
- pobileNumber -kevward
-passwond - ogin_ciy -suppltr name
- tequesterName - destination_c¢iy ~ FFE —
- title request service - amival_date - mobik:; nmnNu
- email = |- dcparee_date
- address - preference
-cy - mobile_oumber + makeReservation(keyword,
- postakcads . antval date, depanure_date,
- requesterAceguntMNo + checkSerriceA vailabiliy preference, confitmationNo)
=rival date, departure_date) + genensicConfirmationNa(}
+ sendCon Szt bile_number)
L
recaves
A
has W
Bt lequester preferences Payments
Customer Relationship
Mansgement(CRM) - requesierA ccountNo
- requester
bileNumber - balance
-mo T
- EquesterName —’s’::te
- requesterLasiNeme —adate
- itk [-~ ddate
« o] -ty
praies T,
- City -credCard Ty
- postaiCodz . e Due
-requestcrAccountNo =
- hotelPrefrrences § .
- carPreferences +billl service, requester,
- fightPreferences suppher, adate, ddats)
{+oeaic Profile(y A
+ getPreftrences(mobicNumber) E
H
| make payments [

| Figure 3.7 Class Diagram for Mobile Travel Reservation Application

39

A Proxy pattern was used to structure the enterprise components shown in figure 3.7.
Gamma et al in [35] defines a proxy as a surrogate or placeholder for another object to
control access to it. One reason for controlling access to an object is to defer the full cost
of its creation and initialization. The mobile travel reservation application is a proxy,
which acts as directory of tourism service components which are contained in the
component repository eTOCOR. The mobile travel reservation proxy maintains a
reference that lets the proxy access to real components that provide the services. It
controls access to the components that provide services and may be responsible for

publishing them.

The next chapter implements the prototype mobile travel reservation enterprise

component.

40

CHAPTER FOUR
4.0 IMPLEMENTATION OF THE MODEL .

4.1 Introduction

Implementation is the transformation of design into a working program. This chapter
presents the model implementation prototype called a mobile travel reservation
application and the demonstration of the component repository called eTOCOR, where
the mobile travel reservation interfaces were published. The tool, JBuilder 5 environment
was used to implement the prototype. It has a built-in Tomcat 3.2.1 web server. The
communication protocol between server and the database was done using the JDBC (Java
Database Connectivity){36]. This protocol allows connections to a database, create SQL
statements, and run queries. The screenshots shown below were prototyped using Java
Servlet. Servlet[37] provides a component based platform independent method for
building web-based applications. They have access to the entire family of Java APIs,
including the JDBC API to access enterprise databases. They can also access a library of
HTTP - specific calls and receive all the benefits of the mature Java language including
reusability. They run on a web server which could benefit a mobile device since it has a
limited processiﬁg power. The prototype shows how enterprise components can be used
or can be provided in mobile devices. A rectangle shown in the prototype screenshots

emulates the screen of a mobile device e.g a cellphone.

41

The next section gives an overview of the prototype, and then discusses the partitioning
of the application into components. The snapshots of the application prototype are

presented and the snippets of implemented finctionality are found in the appendix.

4.2 The Mobile Travel Reservation Application

The mobile travel reservation application allows a tourist to make reservation for one or
more of flight, car and hotel usmg a text message. Most end-user applications are user
friendly. The IRE was adopted to deliver services to mobile users according to their
preferences. The applicatipn was composed from the following components: the service
supplier, the hotel reservation, the flight reservation, car reservation, customer

relationship management, payments and service requester. Figure 4.1 shows application

components.
Mobilc ¥ mvel Reservation
[£22]
Service MIR
Requester

; _." ‘.: Payment

Legln P v

Eg; g CRM Pemseenl *

l Service
Supplier

Figure 4.1 Implementation model for mobile travel reservation application

42

To realize this application these components collaborate with each other such that a

component uses the services provided by another component if necessary.

Each of the components could be explained as follows:

The Customer Relationship Management (CRM) — This component was used to create a
new user and to capture user profile information. This includes capturing attributes such
as the address, email, mobile number and user preference such as hotel preferences, car

preferences, and flight preferences. The CRM web application was used to create a user

profile. Information that was collected during user registration was associated with the

Fie. Edic View Favotes Tools Help

Q- O B G Pomo oo @t @ £

address 1] hitp:flacathost:B082{Cstamer. shimd

Customer Relationship Management

To reqgister, please fill in the form below to access services over your mabile device.
To use our unigue text service, please 3 In your Mobile Phane s important.

Piezse fill in atl of the required fields marked with ™

-~ Custamer Registrationy -~~~ - -

; 1. General infosTnation

: Please enter your persaenat information

: Tife: : IMiss v
i . PR

| FirstName:
: LastName:
E-mait

Usemame
Password
Verify Pagsword
E,.P stal Address,

L loiiiilili o {W-mﬁtmmwﬂkr

Figure 4.2 CRM Interface

43

user profile. This information was used to provide services according to users
preferences. Figure 4.2 shows information collected from the user, title, first name,
second name etc. This information is captured in a database connected to this inferface.
LogIn component - was used to identify users requesting a service, so as to be able to
track user’s preferences, and to provide services according to their request. Figure 4.3
shows the Log In interface.

A Service supplier component, which could be a hotel, car, and flight represent tourism
service suppliers. Each of these suppliers was responsible for checking service
availability, make reservation according to user’s preferences and to issue a reservation

confirmation once the reservation process is complete.

3 Logln - Microsat Internet Explorer -
Fie Eti: \few Fmts Took Help -

ﬁeEtiMFmts'!odsHap

' ¥ Bk - 2N T o
@m g ua\{::/_ & ij_]l_;‘d»f" B
i e

Addrass @Wim 809C/Logln.shtml Kindube - Yt - 2 :_i%_ﬁaanhv
E:gin rite Message
MMobile .
Mumbed 0822152478 |
Password wesess
e) (555)
‘Figure 4.3 Log-in interface : Fignre 4.4 Mobile travel]

reservation application interface
'Payments component- This component was used to handle a user’s payments. Most
payments are done using a credit card. The Payments were used to store credit card

information.

Service Requester component - this component represents the client who is interacting
with the application. This class was designed to hold the client attributes.

Mobile Travel Reservation (MTR) component provides access to all services provided
by the application. The mobile travel reservation interface is shown in figure 4.4. It
consists of message text box, the ‘back’ button and the ‘submit’ button. The message
texthbox was used to write a message request. The ‘back’ button was used to exit the
application and the ‘submit’ button to send the message request. The next section
discusses how an enterprise component such as hotel, flight and car services can be used

in mobile devices.

4.2.1 Hotel Reservation Service

The message shown in figure 4.5 requests a hotel reservation accommodation service in
Durban (dbn) and specifies the check-in-date and the check-out-date. Once the requester
has sent a message to the application, the reservation process takes place. If the requester
has set the preferences as follows: the Holiday Inn as his first preference, Protea as the
second preference and, Royal Hotel as his third preference, the application checks the
first preference e.g. Holiday Inn to find if there are any rooms available. If there are, the

reservation is made and the confirmation is displayed as shown in figure 4.6.

45

.FEE&MFmtsTakHeb

OO RED ,;ism Sereons s o= o B Jﬁm Veroms

'mm @um;mmbamnmm ,r’h‘»‘fﬁﬁlﬁﬂm facsbos: 080ty
ramabe < ¥ - 2] _ﬂjmw&:ﬂ_@-i R <R vl |

oy — - -] W@E.

. Reservation mads
:;jl:ﬁ;%ﬂuufa&_ : gt: holliday imn .
. - Confirmacion
aumber is: 10022

Submit [-Back l : _ : . ' @

Figure 4.5 Hotel accommodation request Figure 4.6 Hotel reservation confirmation

If there are no rooms available, the second preference is checked to find if there are
available rooms. If there are rooms available the reservation is made and the confirmation
is issued. If there are no rooms available, the third preference is also checked. If there are
no rooms available the choice prompt (shown in figure 4.7} is displayed to show other
hotels that have available accommodation service. The requester selects one hotel and the

reservation takes place and the confirmation is displayed as shown in figure 4.8.

Fe Edk View Favorkes Tookls Help

Ei{i%?mtsfmk@

- Y B LT A oA T a
@m- -:3 pm*«t‘ﬁm%‘m@ @m G o 1] 8] R O sewd P Favme
' ' Addss BT Nt oot 8000 s
hﬁs ﬁw! nir - Nikdobe - “¥T - 2-] 1 Sewrch web |-
raate + YT - £ Py A p— -
') _ C onfirmanion:
O;!HO&S Aeservarion mpadss =
. -1)_=een:h
@ bm rc:::::-m::?c:uuzs
© quarters
Cpaace [oK]
Sead | :
Figure 4.7 hotels choice prompt Figure 4.8 hotel reservation confirmation

If the service requester has selected the Beach Hotel, a reservation is made at the Beach

Hotel and the confirmation is displayed as shown in figure 4.8.

4.2.2 Flight Reservation Service

The message showed in figure 4.9 requests a flight reservation service. The requester has
specified the departure city Durban (dbn), the arrival city Richards Bay (nrb), and the
reservation date (02/12/04). If the requester has set the preferences as follows: Khulula
Airways as his first preference, the South African Airways (SAA) as his second
preference and the nationwide as his last preference. The first preference e.g. Khulula
Airways is checked to find if there is any flight seat that is available. If there is an
available seat, the reservation is made and the confirmation number is displayed as shown

in figure 4.10.

Fie EX Wew Frvies Tods Hep Fe EX Vew Faotes Tok

v S RN o h N T R . .
Q- Q-1 8L P Tyreem Qe - -) B o Jrrems @ §
f:#ﬁ_fﬁfmrimmﬁm B e p— : '
Hibdeke - YT - &1 lseaows |-} sk - YT -2 Py AT
e Mescage Codrmation
tlt con arb : Reservation wade -
qz/12/0¢ : ac: Fhajula B
: Departure Time:
07:30:00
Copfirmmcico
: ngber ts; 1012 v
Seomit B]
Figure 4.9 Flight reservation request Figure 4.10 Flight reservation
confirmation

47

4.2.3 Car Reservation Service

The message shown in figure 4.11 shows the car reservation request. The requester
specifies the pick-up-city Empangeni (emp) and the drop-off-city Durban (dbn) and the
reservation date 01/12/04. If the requester has specified the preference by car groups as
follows group A as his first preference and group C as his second preference and group B
as his third preference. The application checks the first preference if there are any group

A cars available. If there are available the reservation is made and the confirmation is

displayed as shown in figure 4.12

3 $1R - Microsofl itermet EXIRE.. 0 oo L

et Vor Fot T fB . P BE e Fouim To
P b PR s
sdohe - N - 2] oerwes [e | (ke - -2 i samcnwet [] i | .atmctig
F‘;I:m: Message Cotfrmation
p—— conticmation
01/12/04 mwmter is: 10010
Jupplier : Avis
oK
Semt] [Each | £l
Figure 4.11 Car reservation request Figure 4.12 Car reservation confirmation

If there are no group B cars available, the second preference group C cars are also
checked if there are available. The reservation is then made and the confirmation is

issued.

The next section discusses the components cataloged in a UDDI registry.

48

4.3 Demonstration of the component repository

The UDDI registry was used to demonstrate eTOCOR components. The advantage of
using UDDI was elinﬁnaﬁng the complexity of components navigation, maintaining and
implementing connections. In UDDI, WSDL is used to provide a description of stored
entity. The UDDI provides three features, publish, find and edit which can be used to
manipulate an entry in a repository. These three features were used to store, retrieve and
update components respectively. Table 4.1 shows the mapping between eTOCOR
features and web service technologies. The next sections demonstrate how the UDDI

features were used to demonstrate eTOCOR features.

Repository Feature UDDI counterpart feature
Store Publish
Retrieve - Find
Update Edit
Component name Business name

Table 4.1 Mapping eTOCOR architecture to Web Service Technologies

4.3.1 The Store Feature

The environment of UDDI is made up of two frames: the left and the right frames as
éhown in figure 4.13 and all features are on the left frame. A click on the given feature

{ example publish) opens a link to the right frame, which contains steps to store a
component. The hotel reservation component was used as an example to show how to
étore a component in a repository. The first step on storing a component was to activate

the “Add a new Business” label which led to specification of the component name and

49

description shown in figure 4.14. In the business table, the plus sign (+) preceding the

hotel reservation component name, allowed to add services provided by the component.

UDDI Business Registry Version 2
Universal Description, Discovery, and Infegration

Welcome Hiengiwe Kunene

Add g rew Businese Befresh fusinosses

Add g Busingss Petgfonshin Refresh Felsfionships

Add a new Technical Modal Refresh Mode's

il

Figure 4.13 UDDI environment

A service is specified by a name, description, and.the access point. The access point of a
service is specified by a URL, which points to the service itself. The next step is optional
and has the aim of adding a component relationship if there is any. The last step was to
add a technical model of the component. The technical model is characterized by name,
the description, and overview URL. The technical model in UDDI is used to categorize
- all entities stored in a repository. It does this automatically according to the technical
description of a component and serﬁce provided. In this case the “hotel reservation
component” name was given as a technical model; this name was used as search

keywords for retrieving a component, the URL was then given to show the interface of

50

the component. After storing the new component into the component repository, it could

then be retrieved anytime.

OO OO TS OO T, T ¥ T TG W OO oy

Awmﬂﬁmmwmuﬂe
andreserveshoel - © -
Aﬁgimwmmmhumedm E__ﬂ;ge«g_-{_

treeie fight reservation sppiication or 13 meke fight

. A car reservation companent thet can bes used 0+ Egt Deinte
m;wmwahma R :
resenvation

._ AWMmmmmmmmm Eg,_»_-;m
appication, & hotel, car, and fight.

Add & Cusinees Relgtiorehey Fefrath Relstonshios

Anid g new Technical Mariel Pefrash dndeds

¥

. 6. Orignal Soundtrack - echaba - winamo [epped]h

Figure 4.14 Published Components
Undemeath the Business Name shown in figure 4.14 is an indication of the stored
components, and the plus sign shown in the left, provides services provided by a

component.

51

£} IBM UDDI Business Regisiry - Microsoft faterast Explorer;
Fe Edk View Favorkes Tosls Heb

(@ O MED e free @ @ S 3 B-0H S

A-:s:kﬂss TR repsifudd. mmmvm:mw—nmﬁcmm vi G ilnc *

} Google- | =i @ Sexchwes - B S¥zzboded i Eﬂ_ﬂm f_.'
- Add g new Serviee Eefee:neasm
Flort Sesenvesion Companent A Boit ressrvation componant thet can be usedto. < Delote
-] .) creste fight resarvation sppication or 18 make fignt E
R e vt o Mmb,‘;mw...:.ﬁ
creats & car reservalion spplicaibon or 10 meke car
v

Add B new Service Feferereg g Sarnee
: ' : ' "8 B nemet

Figure 4.15 Components and services
Figure 4.15 shows components and associated services. A new service can be added by
.activating the “Add a new S;arvice” Iabel. Figure 4.16 shows the required service
properties, when storing a component. Undemeatﬁ the service table, the name of a service
was given, and its description. The access point was also given which points to the
service. Each service is also associated with a technical model. The technical model has a

name, description, and the URL.

52

3 Audet a Service - Microrsft interact £xpiever
Fo bR Vom Fmvwmms fook hep

Ou-Q BEY Py @@ B-L8)
- e

porimss Y g ok -
L sonchwab |+ [F5- - | Tt - Qavvanoe Tlcomes - & ouprg - W roseds - O LONOY vlsgmH
P T e)

»

Add a Service

Fyou mntummanduu Senice (ass the Cancal hultnn. When wx; ane salistad wih the
ot have antered press iie Coptions butinn,

Figure 4.16 Service properties
Figure 4.16 shows the required properties of the service and the hotel reservation

component was used to demonstrate the service properties.

mmm&qﬁur«um

Ga-*-(j ﬂ*“rﬁ,mggmﬁ‘u@=-;l,g i
£ -*_*_i " .__—_._- - T - ﬂﬁ iek. ™
Ykieke - T - 2-f =) Semrch vk 10 [55 e | e - Do varons T o~ © opmg » P - © e - (st 17

. UDDE Business Registry Version 2
Linaversal Descripion, Dhsoowely and ispabon
Add a Technlcal Model

Fyou Sontwisn 10 add T Tachnic sl Madel press Iry Camcal Dylon 30 el 10 I masn
IR Yeinen: you S8 Saligled Wil Tk indoeTIation YOu Nawy WEMed wess T CArme

Figure 4.17 Hotel reservation technical model.

53

4 3.2 The Retrieve Feature

To retrieve a stored component in a repository, the UDDI find feature on the left frame of

the UDDI environment was used.

3 UDDL Find - Micrusaft Interaet Explorer-..
[j 3[; ‘)../Seaﬂ:h gigsm @m @-n-'::; B3

vild oo Gieks

N G N-L s R T

Iy

- Pondacts & sevmwes. - * Sappark® dovenheads. | g accmeat
A Corparation » Services-UDDE = Fnag

- UDDI1 Business Test Registry
. Universal Deseription, Discovery, and integration

Simple Search alows you ic search for 8 Susiness, Servce, GTMWWMWIWCATEGGTY,
WOU day Liae the %" symiadl ar & wiltiCard that matChes any choyacter.

SearchFoara | Business ~ i

Trwting wih iHutal Resewvation Companent
Category [Select
Values !- _‘3 Brid | oestor

FiKl

Fiowe,

Figure 4.18 The search interface of the repository
The UDDI’s find link that appeared on the right frame has four dialog boxes. The first
“search For a” combo box was used to specify either the search is on a component or a
service or a technical model. The “Starting with” textbox was used to enter the keyword
to specify the search. The other two search boxes are optional, for example to retrieve a
hotel reservation component stored previously (section 4.3.1) on the search for combo
box, the business option was selected and a hotel reservation component was written on
the “starting with” textbox. Any hotel, reservation or component keyword leads to the
same result. After all the information is completed the find button which is triggered, and

the results are displayed on a table as shown in figure 4.19.

54

23 Find Bosiness Resuls » Microsoft latesnet Explorar, -

v’.@ m"
q-ﬁg-iam-emvm;ﬁm tm-q 5 Pesmas ﬁm-[s;-mﬂ.'

£y Corpeaim > Servicezd L0 > Fna
UDDI Business Registry Version 2
Urwvarsal Descrprion, DEcovery and hNtegrating

Find Business Resulls

Your quesy refumed 3 total of 18 matchinyg business{es). Fress the Mt edinn 10 view the
et resets pafe Fress ine Newt Seasch hyton to Sgarch again.

Conope Sofwae - . mﬂmm-ﬁm Servicgs Fzepargng

CopopereSeycE The D and Savices Regionshi
L Toow

Comprvrges Estn et peisnba da Fokebiriss . e Sanices Restiomip

Wmsemwmmbwmwm

ot flerervator Comprpert A Con ot Lo 2 shois | Servicer Brafioreny

el et anvation Corgnert amwmhmnm Sares Reaponsrsy

Gt Dir Lt 21
mmmmlmumb
o Sourisg to Mk reDTVNON LNng & Metsage

| e
Figure 4.19 A Typical Search result
On the table of the result of each component is a name that has a service link that can be

viewed and used.

4.3.3 The Update Feature

To update a component is to make changes to the component specification e.g,
component name, description, service name, etc. fhis action is made possible by
choosing once again the publish feature, in the UDDI environment. The update could be
made on both businesses and technical table, the edit actions restart the process of |
storing information. The delete action completely removes the component or service in

the repository.

55

4.4 Prototype Limitations

i. Service Requesters are required to know the abbreviation used to request a
SErvice;
ii. Service Requesters are required to know the format of a2 message and
i1i. If the system is extended, it will require the Service Requester to update
their preference on the website and to know the new message format of a

newly-added service.

4.5 Comparison with existing IRE

The existing IRE prototype uses choice prompt to elicit specific requirements or to elicit
a request from the Service Requester. This approach is interactive, where services are
provided in a hierarchy. The request has to be made specific by the IRE component. It
generates choice prompt for service requester, allowing himvher to specify his’her service
Tequirements. When the requirements are specific enough, the relevant service is finally
retumed to the requester. The disadvantages of the existing prototype are that, the process
of request/response between the requester and therﬂsystem takes a considerable amount of
time before the service is delivered. The IRE-enabled mobile travel reservation
application uses a text message to elicit a request. The message includes the hierarchy in
one screen; it summarizes the levels of screen used in the existing IRE system. The
sérvice requester does not need to wait for a response to be returned; instead a message is

received in response to the request and this can be viewed later.

56

CHAPTER FIVE

5.0 CONCLUSION

5.1 Conclusion

An architectural mechanism that raises awareness about the uniqueness of mobile
commerce when compared to electronic commerce has been presented in this
dissertation. Arising from Information Requirement Elicitation approach and the home-
based Mobile Commerce Refercnce Architecture, this research demonstrated that a
repository of services is required to make service delivery to mobile commerce end-users
as friendly as possible. In order to achieve the foregoing, the first result that the research
produced is a comparison apparatus for showing that m-commerce is different from e-

commerce.

The uniqueness of m-commerce is the raison-détre for a reference architecture which was
earlier cfafted in the Department. The repository architecture proposed in this work
contributes to the usability of the existing reference architecture. The repository
architecture is expected to become the core component underlying the technology
| archetype in the reference architecture. In order to demonstrate the repository architecture
the UDD! Infrastructure has been used. However, components are needed to demonstrate
how the repository works. The impl.ementation of the mobile travel reservation

application yielded the required test components.

57

There are some Ilimitations of this repository architecture as a mechanism for
demonstrating the role of enterprise componrents in future rendering of mobile commerce

services .

These include:
i. Components used in this work which are not standard enterprise components;
ii. The repository architecture was not built but rather an existing counterpart, UDDI
was used;
fii. The performance characteristic of the repository has not been studied and
iv. IRE could not be demonstrated as an operating environment but only as a protocol

for service delivery in the application.

5.2 Future Work

It is envisaged that most of the ﬁmitations tested in the previous section will be addressed
in future research ﬁork. It is of outmost importanée, that the repository architecture is
prototyped. Then a performance characteristic study can be conducted. It is only then that
the repository architecture can be compared empirically with similar initiatives. Further
more, proper enterprise components, perhaps from COTS (Commercial-off-the -shelf)

software, will be used in future to test the usébility of the repository.

38

(1]

[2]

[3]

[4]

(51

[6]

[7]

(8]

(9]

References

http://www.idt. mdh.se/cbse-book/presentations/03-chapterWC.ppt, Building
Reliable Component based Systems.

Witt, B. Spider Architecture Series, http://www.spiderlogic.com/

news_threads/ articles/SpiderArchitectureSeries SOA.html.

Schmitz et al, “Publishing your services:UDDI”,
http://www.ibm.com/developerWorks.

Fingar, P. “Component-Based Frameworks for E-Commerce”,CACM,

p61-66, 2000.

Adigun, M.O. “Software Infrastructure for E-commerce and E-Business

Working paper.” Res-CSD-01, Centre for Mobile e-Services, University

of Zululand, 2004, 22p.

Sun, J. Peter In, H. and Aji Sukasdadi, K. “A Prototype of Information
Requirement Elicitation in m-Commerce”, Proceedings of the IEEE International
Conference on E-Commerce(CEQ’03).

Sum, J. “Infpmation Requirement Elicitation in Mobile Commerce”,
CACM46(12), p 4547.

Cmkovic, I. and Larsson, M. “Component-Based Software Engineering — New

- Paradigm of Software Development” www.mrtc.mdh.se/publications/0293.pdf.

Cmkovic, I. Hnich, B. Jonsson, T. and Kizltan, Z. “Specification, implementation

and Deployment of Components”, CACM 45(10), pp 35-40, 2002.

(10] http://www.objecttool.com.

59

[11]
(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

211

http://www.whatis.com.

Young, E.L. and Benbasat, 1. “Interface Design for M-Commerce”, CACM
46(12), pp 49-52, 2003.

Diamelle Technologies, “Enterprise Business Components”,
www.diamelletechnologies.com.

Johnson, V. and Rubin, B. “The San Francisco Project: Business Process
Components and Infrastructure”, ACM, p25-29, 2000.

Perrey, R. and Lycett, M. “Service-Oriented Architecturé”, Proceedings of
the 2003 Symposium on Applications and the Intemet Workshops
SAINT03.

Baresi, L. Heckel, R. Thone, S. and Varro, D. “ Modeling and Validation of
Service-Oriented Architectures:Application vs. Style ”, Software Engineering
Notes 28(5) pp 68-76, 2003.

Papazoglou, M.P. and Georgakopoulos, D. “Service Oriented Computing”,
CACM 46(10), pp 25-28,2003.

Yang, J. “Web Service Componentization”, CACM 46(10), pp 3540,

2003.

Thompson, T. Weil, R. and Wood, M.D. “CPXe: Web Services for Internet
Imaging”, IEEE Computer Society, 2003.

Chakraborty, D. and Chen H, “Service Discovery in the Future |

for Mobile Commerce” http://www.acm.org/crossroads/xrds7-2/
service.html.

Bass, L. Clement, P. and Kazman, R. Software Architecture in Practice, Addison

60

Wisley, 1998.

[22] Crokovic, 1. Hnich, B. Jonsson, T. and Kiziltan, Z. “Specification,
Implementation, and Deployment of Components”,

CACM, p35-40.

[23] Grishikashvili, E. Reilly, D. Badr, N. and Taleb-Bendiab, A. “From Component-
Based to Service-Based Distributed Applications Assembly and Management”,
Proceedings of the 29™ EUROMICRO Conference “New Waves in System
Architecture(EUROMICRO)”, IEEE Computer Society, 2003.

[24] Der, L. “A Component-Based Architecture for Open, Independently
Extensible Distributed Systems”, https://ramwww.unibe.ch /~deri, 1997.

[25] Arsanjani, A. “Developing and Integrating Enterprise Components and

Services”, CACM, 45(10),p 31- 34, 2002.

[26] Zimmermann, O. Krogdahl, and P. Gee, C. “Elements of Service-Oriented
Analysis and Design”, http://www-106.ibm.com/developerworks/
library/ws-soad1/, 2004.

[27] Endrei, M. Ang, I. Arsanjani, A. Chua, S. Comte, P. Krogdahl, P. Luo, M. and
Newling, T. “Patterns: Service-Onented Architecture and Web
Services”, http:www.ibm.com/redbooks.

[28] Katz, S. Glossary of Software Reuse Terms. Gaithersburg, MD:

-National Institute of Standards and Technology, 1994.

[29] Scacchi, W. “Enterprise System Analysis:Specification and Modeling”,

http://www.ics-uci.edu/~wscacchi/SA/Analysis/ConceptSfNotes.html,

Spring 2003.

61

[30]

[31]

[32]

[33]

[34]

[35]

[36]

37

Bruegge, B. and Dutoit, A. Object-Oriented Software Engineering, Conquering
Complex and Changing Systems, Prentice Hall, 2000.

Mekonnen, G. “Information technology: It’s Uses in Tourism Industry”
www.ethiopiaknowledge.org/Final%20Papers/IT%20m%20Tourism, ‘
%20Mekonnen.pdf.

http://www.uml.org.

Levi, K. and Arsanjani, A. “A Goal-driven Approach to Enterprise Component
Identification and Specification,”CACM, pp 45-52, 2002.

Arsanjani, A. “A Domain-Language Approach to Designing Dynamic

Enterprise Component-based Architectures to Support Business

Services”, IEEE Computer Society, 2001.

Gamma, E. Helm, R. Johnson R, and Vlissides S.” Design Patterns, Elements of
reusable object-oriented Software”, Addison Wesley Professional Computing
Series, 1994.

Moertiyoso, N. Choong Yow, K. Designing Wireless Enterprise applications on
Mobile Devices, ICTA2002 ISBN: 1-86467-114-9.

http://www java.sun.com.

62

Appendix A : Snippets for a Hotel Reservation Component

Listing 1 : Snippets for connecting to a database .

public void connectToDB(String DRIVER, String url, Connection con }
{
try {
Class.forName{ DRIVER };
con = DriverManager.getConnection(url);
System.out.println("Database Connected!");
}

catch{ Exception €)

System.out.println{ "Error occured while trying to connect to database!™ };
System.out printin{ "Details” +e };
}
}

Listing 2 : Verify user id and password

iff request.getParameter("login") =null)

{
String user = request.getParameter(“mobileno”);
_ String password = request.getParameter("password");

try {
connection = DriverManager.getConnection{ url);
stmt = connection.createStatement();
String query = "SELECT * FROM CRM WHERE mobile_number =" + user + ™ AND password =

™ + password + "™;

ResultSet rs = stint.executeQuerv(query);
if{ rsnext())

£

requester.mobileNumber = user;

if{ isCardValid(requester, today, out) }
response.sendRedirect{ "http://focalhost:B080/ReservationManagement.shiml");

else Alert{ "Your credit card has expired”, "Alert", out);
}

else iff 'rsnext())
Alert{ "Mobile Number or Password wrong!™, "Alert:", out);

}
catch{ Exception e)
{ out.printin{ "An error occured while trying to process login™ };}

63

Listing 3 : The received and tokenized message

requestMsg = request.getParameter{ "message" };
StringTokenizer tokens = new StringTokenizer(requestMsg };
while(tokens.hasMoreElements() }

keyword = tokens.nextToken(});//pkg
destination = tokens.nextToken();//dcitty
adate = tokens.nextToken{};//acity

ddate = tokensmextToken();//ddate

}

Listing 4 : Snippet for Get Service Requester’s Preference

Protected String getPreferences(ServiceRequester requester, PrintWriter out)
{

String preferences = "";

try {

Statement stmt2;

connection = DriverManager.getConnection(url);

stmt2 = connection.createStatement();

String selectPrefs = "SELECT * FROM CRM WHERE mobile number=""+
requester.mobileNumber + ™;

ResultSet 152 = strnt? executeQuery(selectPrefs);

if{ 1s2.next(})
{

preferences += rs2.getString("Hotel1”);
preferences +=" " + rs2. getString("Hotel2");
preferences +=" " + rs2.getString("Hotel3" };
}
H

catch{ Exception ¢}

{
out.printin{ "<p>An Error occured while trying to get prefences</p>");
out.printin{ "<p>Details: </p>" +¢};
e.printStackTrace();

}

return preferences;
}

Listing 5 : Snippet for checking service availability using service requester’s preference

64

protected boolean checkServiceAvailability(String adate, String pref, PrintWriter out)

{
boolean isAvailable = false;

ry {

Statement stmt3;
inf rooms = (;

~ connection = DriverManager.getConnection(url);
stmi3 = connection.createStaterment();
String check ="SELECT * FROM Suppliers WHERE date =" + adate + "™;

ResultSet 153 = stmit3.executeQuery(check);

if{ rs3.next())
{
rooms = Integer.parselnt(rs3.getString(pref)});

if{ rooms > G)

{
leftRooms =rooms - 1;
isAvailable = true;

}

else if{ rooms <=0)
isAvatlable = false:

}
}

catch(Exception e }

{
out.printin("<p>An Error occured while trying to check service availability</p>");

out.println("<p>Details: </p>" +e);
e.printStackTrace();
}

retu:ﬁ isAvailable;
}

Listing 6 : Snippets for reserving a hotel using service requester’s preference

65

protected void makeReservation(ServiceRequester requester, String supplier, String adate, String ddate, int
confirmationNo, PrintWriter out)
{
try {

Statement stmt4, stmt5;

String msg = "Reservation made at: " + supplier + " Confirmation number is: " + confirmationNo;
comnection = DriverManager.getConnection{ url);

stmt4 = connection.createStatement();

stmt5 = connection.createStatement();

String reserve = "UPDATE Suppliers SET " + supplier + " =" + IeftRooms + " where date ="+
adate +"™; _

String recordToDB = "INSERT INTQ Reservations (supplier_name, adate, ddate, confirmation_no,
mobile_no) VALUES (™ + supplier + ™, -+ adate + ™, + ddate +™," + confirmationNo + “," +
requester.mobileNumber + ")";

int result! = stmt4.executeUpdate(reserve);

i resultl — 1)

{
int result2 = strnt5.executeUpdate(recordToDB);

if{resultz =1)

{
- Alert(msg, "Confirmation:”, out);

}
}

catch{ Exception ¢ }
{
out.printin{ "<p>An Error accured while trying to make a reservation</p>");
out.println(“<p>Details: </p>"+¢ J;
e.printStackTrace();
}
}

Listing 7 : Snippet for billing a service requester

66

protected void hotelBill{ ServiceRequester requester, String supplier, String city, PrintWriter out)

{
try {

Statement strtl, stmt2;

double price;

connection = DriverManager.getComnection(url); .
ResultSet rs;

int result;

strnt]l = connection. createStatement();
stmt2 = commection.createStatement();

String queryl = "SELECT * FROM Supplier where supplier name ="' + supplier + ™ AND city ="
_sr city + |l"';
String query2 ="";

1s = stmtl .executeQuery(query!);

if{ rs.next(} }
{

price =Ts getDouble("price”);

requester.balance = price;

query?2 = "UPDATE Payments SET credit_card balance =" + requester.balance + " where
customner_id =" + requester.mobileNumber + ™;

result = stmt2_executeUpdate{ query2);

if{ result==1) _
System.out.println("**¥******¥2»+Bi]| has been charged!****¥*** ¥ rsxsan),
}

}

catch{ Exception e)
{ ; -
outprintln{ "<p>An Error occured while trying to process billing</p>");
out.printin{ "<p>Details: </p>" +¢);
e.printStackTrace();

H
}

Listing 8 : Snippet for validating a credit card

67

protected boolean isCardValid(ServiceRequester requester, Siring today, PrintW'iter out)
{

boolean isValid = false;

try
Statement stmit3;
connection = DriverManager.getConnection{ url);
stmit3 = connection.createStatement();
int day = 0, month = 0, year = 0;//todays date
int day2 = 0, month2 = 0, year2 = 0;//expiry date

String checkCardNum = "SELECT * FROM Payments WHERE customer id =™ +
requester-mobileNumber + ™,

Extracting day, month and year from today’s date I

day = Integer.parselnt(today.charAt(0) + ™" + today.charAt{ {));

month = Integer parselnt(today.charAt(3) + ™" + today.charAt(4));

year = Integer.parselnt{ today.charAt(6) + "" + today.charAt{ 7)) + " + today.charAt(8 } + " +
today.charAt(9));

ResultSet rs = stmt3.executeQuery{ checkCardNum };

if{ rs.next()) |
{

requester.expiryDate = rs.getString("expiry_date”);
requester balance = rs.getDouble("credit_card balance™);

1 Extracting day, month and year from expiry date------//

day2 = Integer.parselnt(requester.expiryDate.charAt(0) + " + requester.expiryDate.charAt(1));

month2 = Integer parselnt{ requester.expiryDate.charAt(3) + "" + requester.expiryDate charAt(4
)

year2 = Integer.parselnt{ requester.expiryDate.charAt{ 6)} + "" + requester.expiryDate.charAt(7)
+ "* + requester.expiryDate.charAt(8) + " + requester.expiryDate.charAt(9));

iff year2 > year)
isValid = true;

else if{ year = year? && month2 > month)
isValid = true;

else if{ month = month2 && day2 > day)
isValid = true;

else isValid = false;
}
}
catch{ Exception e)
{
cut.printin("<p>An Error accured while trying to check if card is valid</p>");
out printn{ "<p>Details: </p>"+e); '
e.printStackTrace{);
}
retum isValid;
H

68

Listing 9 : Snippet for generating a confirmation number

protected int getMaxConfNum(PrintWriter out)
{

mt conf=0;

try { .

Statement stmt6;
connection = DriverManager.getCommection{ url);
stat6 = connection.createStaternent();

String getConfNum = "SELECT * From Reservations where confirmation_no = (* + "SELECT MAX(
confirmation_no) FROM Reservations " +")";

ResuliSet rs6 = stnt6.executeQuery(getConfNum);

if{ rs6.next(})
{

conf = rs6.getInt("confirmation_no");
conf+=1;

}

else if{ trs6.next())
conf = 10600;
}

catch{ Exception e)

“out_printin("<p>An Error occured while trying to generate confirmation number</p>");
out.printin("<p>Details: </p>" + e);
e.printStackTrace();

}

retum conf;
}

69

Listing 10 : snippet for confirming service requester’s reservation

protected int getMaxConfNum{ PantWriter out)
{
mnt conf=0;

try { : .

Statement strnt6;
connection = DrivertManager.getConnection(urd);
. stmté = connection.createStatement();

String getConfNum = "SELECT * From Reservations where confirmation_no = (" + *SELECT MAX(
confirmation_no } FROM Reservations " + ")";

ResultSet rs6 = stmt6.executeQuery{ getConfNum);

ifl rs6.next(} }
{

conf =1s6.getInt{ "confirmation_no" };
conf+=1;

}

else if{ lrs6.next())
conf = 10000;
}

catch{ Exception e)

{
out.printin{ "<p>An Error occured while trying to generate confirmation number</p>"),

out.println{ "<p>Details: </p>" +e);
e.printStackTrace();
¥

return conf;
}

Listing 11 : Alert snapshot

protected void Alert(String msg, String msgType, PrintWriter out)
{ .

out.printin{ "<div align=\"center\">"),

out.println{ "<center>");

out println("<table border=\"3\" cellpadding=\"0\" cellspacing=y\"0\" style=\"border-collapse: collapse\"
bordercolor=\"#111111\" width=\"14%\" id=\"AutoNumber1\" align=\"left\">" };

out.println("<tr>");

cut.println{ "<td width=\"100%4\">" };

out.println("<p ahgn=\"left\">" + msgType + "</p>");

out.println{ "<textarea rows=\"6\" name=\"message\"
cols=\"20\">" + msg + "</textarea>");

out.printin({ "<p><input type = \"button\"
name = \"OK\" value = \"OK\"></p>" };

out.printin{ "</td></tr>" };

out.printin{ "</table></center>/div>" }; }

70

Appendix B : Snippets for a Flight Reservation Component

Listing 12 : Snippet for getting user requester’s flight preference

protected String getPreferences2(ServiceRequester requester, PrintWriter out)
{

String preferences ="";
try {
7 Statement st;

connection = DriverManager.getConnection(url);

st = connection.createStatement();

String selectPrefs = "SELECT * FROM CRM WHERE mobile_number=""+
requester.mobileNumber + "*';

ResultSet s = st.executeQuery(selectPrefs);

iff rs.nexi(})
{

preferences 4= rs.getString("AirSupplier]”);
preferences +=" " + rs.getString("AirSupplier2”);
preferences +=" " + rs.getString("AirSupplier3”);
}
}

catch(Exception e)
{
“out.println("<p>An Error occured while trying to get prefences</p>");
out.println{ "<p>Details: </p>" +e);
e.printStackTrace();
}

return preferences; -

71

Listing 13 : Snippet for checking flights availability using service requester’s preference

protected boolean checkServiceAvailability3(Flight flight, String adate, String dcity, String acity, String
pref, PrintWriter out)

{
boolean isAvailable = false;

try {
- Statement st2;

connection = DriverManager.getComnection(utl);

st2 = connection.createStatement();

String check ="SELECT * FROM Flights WHERE d date =™ + adate + ™" AND d_city =" + dcity +
™ AND a_city =" + acity + "' AND supplier_id =" + pref +™";

ResultSet rs2 = stZ executeQuery(check };
boolean found = 1s2 next();

if{ found)

{
flight flightCapacity = rs2.getlnt("flight capacity");
flight flightCapacity = 1;
flight flightPrice = rs2 getDouble{ "price”);
flight.depatureTime = rs2.getString("d_time");
isAvailable = true;

}

}

catch(Fxceptione)

t
out printin{ "<p>An Error occured while trying to check service availability</p>");
out.printin("<p>Details: </p>"+¢);
¢.printStackTrace();

}

return isAvailable;

}

72

Listing 14: Snippet for reserving a flight

protected void makeReservation2(Flight flight, ServiceRequester requester, String supplier, String dcity,
String acity, String ddate, int confirmationNo, PrintWriter out)
{
try { -

Statement st3, st4;

String msg = "Reservation made at: " + supplier + " Departure Time: " + flight.depatureTime +
Confirmation number is: ¥ + confirmationNo;

connection = DriverManager.getConnection(url);

st3 = connection.createStatement();

st4 = comnmection.createStatement();

String reserve ="UPDATE Flights SET flight_capacity =" + flight flightCapacity + " where d_date
="+ ddate +™ AND d_city =" + deity + ™ AND a_city ="" + acity + "™

String recordToDE = "INSERT INTO AirReservations (customer, reservation_date, confirmationNo
) VALUES (™ + requester.mobileNumber + ™" + ddate + ™" + confirmationNo + ")";

int result] = st3.executeUpdate(reserve);

if{ resultl —1)

{
int result2 = st4.executeUpdate(recordToDB);

if{result2 =1)
{
Alert2(msg, "Confirmation:”, out);
}
}
}

catch{ Exception e)

¢
out.printin("<p>An Error occured while trying to make a reservation</p>");
out.printhn{ "<p>Details: </p>" +e };
e.printStackTrace();

H

73

Listing 15 : Billing service requester

protected void fAlightBill(ServiceRequester requester, Flight flight, String supplier, String ddate, Sting
dcity, String acity, PrintWriter out)

iy { .

Statement sti, st2;

double balance;

connection = DriverManager.getConnection{ url);
ResultSet rl;

ntr2;

String queryl = "SELECT * FROM Payments where customer_id =" + requester.mobileNumber +

i
H

//String query2 = "UPDATE Payments SET credit_card balance =" + requester.balance + " where
customer_id = " + requester.mobileNumber + ";

st] = connection.createStatement();
st2 = connection.createStatement();

11 = stl.executeQuery(queryl);

if{ rl.next())

{
balance = rl.getDouble("credit_card_balance”);
balance -= flight flightPrice;
String query2 = "UPDATE Payments SET credit_card_balance =" + balance + " where
customer_id =™ + requester.mobileNumber + "'";

12 = st2 executeUpdate(query2);

ifrz=1)
{ .
System.out printin("***+##+++++++Bil] has been charged!*******s+xssxsxn).
System.out.println{ "Total bill: * + balance);

¥
}
}

catch{ Exception e)
{ .
out.printin{ "<p>An Error occured while trying to process billing</p>");
out.println("<p>Details: <p>"+¢e);

e.primtStackTrace(};

74

Appendix C : Snippet for a Car Reservation Component

Listing 16 : Snippet for car reservation using service requester’s preference

protected void makeReservation{ ServiceRequester requester, Cars ¢, String pref, String dcity, String acity,
String ddate, int confirmationNo, PrintWriter out)
{
try {

Statement st3, st4;

String msg = "Car gruop: " + pref + " Confirmation number is: " + confirmationNg;
comnection = DriverManager.getConnection(url),

st3 = comnection.createStatement();

st4 = connection.createStatement();

String reserve = "UPDATE Schedule SET " + pref + " =" + c.carsLeft + " where d_date =™ + ddate
+ "Il'l;

String recordToDB = "INSERT INTO CarReservation VALUES (" + requester.mobileNumber +
I"’l" + ddate + "I,"l _!_ pref+ I"’“ + conﬁnnaﬁonNo + II,"I + d(,'ity + l'l,lll + a,C‘ity +]'!)";

int result! = st3.executeUpdate{ reserve);

Hi result] ==1)

{
it result2 = st4.executeUpdate{ recordToDB);

iffresul2 =1)
{
Alert(msg, "Confirmation:”, out);
}
} .
}

catch{ Exceptione)’
{
out.printin{ "<p>An Error occured while trying to make a reservation</p>"),
out.printin{ "<p>Details: </p>" +e);
e.printStackTrace();
}
}

75

	Table of contents
	Chapter 1: Introduction
	Chapter 2: Background concept & literature review
	Chapter 3: Repository architecture analysis & design
	Chapter 4: Implementation of the model
	Chapter 5: Conclusion
	References
	Appendices

