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Abstract 

Network security is increasingly becoming a critical and continuous issue due to technological 

advancements. These advancements give rise to several security threats, especially when 

everything is connected to the Internet. Security in IoT still requires a lot of research and it is 

receiving a lot of attention both in industry and academic research. IoT devices are designed 

for special use cases, and most are constrained in resources and lack important security features. 

The lack of security features enables attackers to compromise IoT devices resulting in the 

retrieval of sensitive information from the devices. One of the challenges in IoT is ensuring the 

security of firmware updates on active devices on the Internet. This is a challenge because it 

becomes difficult to incorporate traditional security techniques due to the limitations in 

memory and processing capabilities of constrained IoT devices. Thus, IoT devices remain 

vulnerable and open to security threats. The device manufacturers are required to release 

firmware updates based on exposed vulnerabilities to fix bugs and improve the functionality of 

the devices.  

However, delivering a new version of the firmware securely to affected devices remains a 

challenge, especially for constrained devices and networks. This study aims to develop an 

architecture that utilizes Blockchain and the InterPlanentary File System (IPFS) to secure 

firmware transmission over a low data rate and constrained Long-Range Wide Area Network 

(LoRaWAN). The proposed architecture focuses on resource-constrained devices to ensure 

confidentiality, integrity, and authentication through symmetric algorithms by providing high 

availability and eliminating replay attacks. To demonstrate the usability and applicability of 

the architecture, a proof of concept was developed and evaluated using low-powered devices 

and symmetric algorithms.  

The experimental results show HMAC-SHA256 as one of the symmetric algorithms utilized in 

the firmware update process which consumes less memory compared to the CMAC algorithm. 

When updating the 5 kB of firmware HMAC consumes 6.9 kB of RAM whereas CMAC 

consumed 7.3 kB. The memory consumption results (RAM and flash) imply that MAC 

algorithms are adequate in providing security on low-powered devices and are suitable for 

constrained low-powered devices. This conclusion is premised on the fact that the memory 

does not exceed the memory of the low-powered device thus, making the proposed architecture 

feasible for constrained and low-powered LoRaWAN devices.    
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Chapter 1: Introduction 

1.1 Overview 

The Internet of Things (IoT) is a network of connected sensing devices with the ability to 

communicate and perform tasks without human intervention  (Makhdoom et al., 2019). 

Recently, IoT has brought immense value to our lives with the ability to connect all things, 

people, and environments to the Internet. It has created better experiences and improved 

different areas of our lives which include healthcare, agriculture, smart cities, smart transport, 

and mobility.  However, the immense benefits of IoT are not without privacy and security 

challenges.  One of the main challenges is the software or firmware update challenge. The  

Open Web Application Security Project OWASP, (2018)  listed software updates as one of the 

main challenges in IoT. The challenges with firmware updates include the lack of firmware 

validation on the device, lack of secure delivery, or unencrypted in transit among others.   

Furthermore, firmware updates become difficult to incorporate in IoT devices in constrained 

networks, especially in devices that are constrained in nature or resources. Among these 

constrained networks are Low-Powered Wide Area Networks (LPWAN) technologies such as 

Long Range Wide Area (LoRaWAN), Sigfox, NarrowBand-Internet of Things (NB-IoT) with 

data rate ranges between 0.3 kbit/s to 50 kbits/s per channel (Gambiroza et al., 2019). Besides, 

the constraints presented by the networks, the device constrains also contribute to the difficulty 

experienced in developing a secure firmware update mechanism. Several firmware update 

approaches and challenges for IoT devices in the context of security have been discussed in 

studies like Akshay et al., (2019) and   Mtetwa et al., (2019) conducted a survey study based 

on the firmware updates in LPWAN and IoT generally and found that many firmware update 

mechanisms focus mainly on the IoT devices with enough resources. The survey study revealed 

that not many mechanisms focused on constrained IoT devices in constrained networks. Using 

the findings from the survey study, this research further investigated how firmware updates can 

be performed on constrained IoT devices in a constrained IoT network, particularly 

LoRaWAN. 
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1.2 IoT Challenges 

The IoT merges the physical world with the digital world (Baranyi et al., 2021) and has opened 

new opportunities for humanity.  As it opens new opportunities, it has also brought challenges 

and security threats to companies, governments, and consumers. The security threats result 

from the lack of built-in security (Johnson et al., 2020) due to the limitation of the central 

processing unit (CPU), memory, and power resources. As a result of these resource limitations, 

Securing the IoT device becomes a challenge due to the limitations of the resources. For 

example, the lack of built-in mechanisms responsible for firmware updates has been 

highlighted by many studies like Zandberg et al., (2019); (OWASP, 2018) and is still a 

challenge in IoT. Firmware update mechanisms are required in times of emergency due to 

security breaches. Many successful attacks in the past occurred due to the vulnerabilities caused 

by these limitations.  

One of the well-known companies, Tesla, experienced a Bluetooth attack on their Tesla Model 

X vehicle (Greenberg, 2020). The attack was related to a vulnerable key fog of the vehicle. The 

vulnerability in the key fob firmware update mechanism over Bluetooth was exploited, 

enabling the attacker to patch the key fob with the malicious firmware. This attack was possible 

due to the lack of a code signing feature in the over-the-air (OTA) firmware update mechanism 

of the key fob. Apart from the lack of code signing in the firmware update mechanism, other 

vulnerabilities were found and they all made it possible for the attacker to unlock and steal the 

car. 

Another attack called ‘Jeep Hack’ (Miller and Valasek, 2015) was illustrated by a group of 

researchers who took advantage of vulnerabilities found in the vehicle. The firmware reverse 

engineering was performed which enabled the retrieval of sensitive information including, 

encryption algorithms, sensitive URLs, encryption, and API keys. The researchers successfully 

gained remote access to control a vehicle utilizing a Controller Area Network (CAN) bus that 

enables communication among vehicle components including brakes, steering wheel, locks, 

heaters, headlights, wipers, etc. The CAN messages were sent to take control of various 

components of the vehicle to make it accelerate or decelerate the vehicle and even veer off the 

road.  

IoT attacks are not limited to only the automotive industry but also other areas such as 

healthcare.  A study conducted on medical implants demonstrated the effects of firmware and 

communication protocol vulnerabilities on pacemakers. This attack was successful due to the 



3 

 

lack of provision of authentication and confidentiality on the remote management channel. As 

a result of the vulnerabilities, it was possible to control the pacemaker’s behavior, such as 

running the battery flat and controlling the patient’s heartbeat.  

These attacks have clearly shown that the security of smart devices cannot be ignored, because 

it can have detrimental effects not only on the affected systems but also on human lives. Thus, 

this shows a need for strong encryption mechanisms to ensure security during firmware 

updates. Table 1.1 lists different components and the vulnerabilities inherent in them 

(Miloslavskaya and Tolstoy, 2019). 

Table 1.1 Targeted Areas of IoT  

 

Targeted 

Components 
Vulnerabilities 

Device Data 

Data is stored on the device unencrypted 

Embedded security keys information on the developed code 

Lack of data authentication and integrity checks both in transit and at 

rest. 

Lack of transport encryption and poorly implemented TLS/SSL enabling 

network traffic or data of the device to pass data in plaintext. 

Device Hardware 

Exposed serial ports 

Insecure authentication mechanism utilized in the serial ports. 

Open access to dump the firmware either via flash  chips or JTAG 

Firmware Image 

firmware modification at the storage level. 

Insecure integrity and authentication/signature check.  

Outdated device components with known vulnerabilities. 

Hard-coded sensitive information such as passwords, and API keys, on 

the firmware image.   

IoT Mobile 

Application &  

Web Applications 

Mobile and web applications allow controlling the IoT devices,  

monitoring the devices, viewing analytics, controlling permissions for IoT 

devices, etc. Implicitly trusted by device or cloud, username enumeration, 

account lockout, known default 

credentials, weak passwords, insecure data storage, lack of transport 

encryption, insecure password recovery mechanism, 

Dumping the source code of the mobile app 

Client-side injection, Cross-site scripting. 
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Update Mechanism 

Update the mechanism utilizing the unencrypted connection. 

The unencrypted connection enables attackers to perform malicious 

updates via DNS hijacking. 

Eavesdrop on an unsecured mechanism channel to retrieve firmware 

images. 

There are many contributing factors to security vulnerabilities in IoT. One of them is the lack 

of security knowledge among developers (Votipka et al., 2020).  The developers of IoT devices 

may have limited knowledge about the security vulnerabilities of these devices. Another factor 

comes from the use of insecure third-party libraries and frameworks where developers utilize 

existing libraries and frameworks which might have potential vulnerabilities and negatively 

affect the developed product (Miloslavskaya and Tolstoy, 2019). The security check on the 

code must be done before the devices or product is deployed to the Internet to eliminate any 

possible security breach. In addition to these causes, the development of IoT devices involves 

different vendors. This means that the developed IoT device comprises elements that are 

manufactured by different vendors. This can lead to security issues if one of the elements has 

vulnerabilities (Schiller et al., 2022). 

After the above-mentioned IoT vulnerabilities are found in IoT devices, it is then required to 

distribute the firmware image to the devices securely.  This is done through firmware update 

mechanisms. Without the firmware updates mechanism, critical security vulnerabilities cannot 

be fixed, and IoT devices can become a permanent liability due to cyber-attacks (Zandberg et 

al., 2019b).  

The limitations of IoT devices are not the only factors contributing to IoT challenges. The 

protocols for handling device traffic also have challenges that restrict specific use cases. For 

instance, when it comes to firmware updates.  One of the constrained networks with challenges 

when delivering firmware updates to IoT devices is LoRaWAN. LoRaWAN is the protocol 

responsible for handling network traffic according to  Marais, Abu-Mahfouz, and Hancke, 

(2020), and is considered a constrained network with a low data rate including restrictions on 

the duty cycle and high packet loss, etc. These challenges are faced because LoRaWAN 

operates in the unlicensed spectrum (ISM band) and hence, cannot offer the same Quality of 

Service (QoS) that is offered by other networks. The restrictions mentioned above make it a 

challenge to apply firmware updates in LoRaWAN. For example, during the firmware update 

process, these limitations make it impossible for some fragments of the firmware image sent 
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over LoRaWAN to be received by the gateway. This is due to the interference of the signal 

sent/packet loss, hence LoRaWAN cannot ensure successful packet delivery. 

Why Decentralized and Blockchain Technology in LoRaWAN? 

LoRaWAN relies on symmetric cryptography to secure the devices and to provide end-to-end 

encryption between the devices and LoRaWAN servers. However, with the built-in symmetric 

cryptography, LoRaWAN is still susceptible to some attacks (Brtnik, 2018). Recent studies 

have been conducted to enhance the security of LoRaWAN. One of the popular technologies 

that are utilized to enhance the security of IoT systems is Blockchain technology which is a 

decentralized peer-to-peer network (Dika and Nowostawski, 2017) that is not managed by a 

third party. Decentralized networks are known for their high resilience against many threats 

and improved scalability compared to centralized networks. The most-used firmware update 

approaches happen in a centralized manner, in which the IoT devices depend on a single 

authority for the distribution of firmware.  

The central approaches make the manufacturer’s server vulnerable to single-point-of-failure 

Witanto et al., (2020) and latency issues. For example, when the manufacturer’s servers are 

offline, there will be a delay in critical patches from being applied to IoT devices (Atzori, 

2017). In a decentralized network that is not the case. A decentralized network does not allow 

data and processing in a single place but involves different entities that store, communicate, 

and process data, hence the single point of failure is eliminated. Moreover, a decentralized 

network like Blockchain is considered to be highly secured because it uses advanced 

cryptographic techniques such as hashing function and asymmetric cryptography (also known 

as public-key cryptography) to secure its data. The data on the Blockchain is auditable and 

impossible to alter or delete. 

1.3 Motivation 

Researchers recently conducted studies on firmware updates to come up with mechanisms that 

were meant to deliver updates to different types of IoT devices. Each of these recent studies 

either focuses on constrained networks targeting low-powered/low-end devices or on non-

constrained networks targeting IoT devices with more resources. Different strategies had been 

developed to provide security for these devices during the update process. The client-server 

and decentralized Blockchain-based strategies are the two main strategies being utilized to 

deliver and secure firmware updates to the devices. Few studies targeted low-powered devices 

in constrained networks literature, particularly LoRaWAN. The existing ones only utilize the 
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client-server approach to distribute and secure the firmware to the devices. On the other hand, 

Blockchain is an emerging technology known for being resilient to cyber-attack and highly 

secured compared to the client-server approach. However, while Blockchain is having these 

advantages it has not been adopted in some IoT networks. The existing Blockchain-based 

firmware update mechanisms focus more on medium-high-end devices in other IoT networks 

but, not on low-powered devices in LoRaWAN.  

In addition, existing Blockchain-based techniques of delivering the firmware update focusing 

on another network cannot be even adopted in constrained networks, for instance, some 

adoptions require more resources on the devices whereas constrained networks like LoRaWAN 

comprise the devices that have limitations in memory and processing power. Jongboom and 

Stokking, (2018a) came up with some requirements or challenges that need to be addressed 

when delivering firmware updates to low-powered devices in LoRaWAN. Hence, most did not 

consider these challenges which makes them unadoptable in constrained networks. Therefore, 

this study proposed and implemented the Blockchain-based architecture or mechanism to 

deliver firmware updates to low-powered LoRaWAN. 

1.4 Problem Statement 

The lack of robust security solutions in IoT is an area of concern to both academia and industry. 

Due to their ubiquity, vulnerable IoT devices are not only a danger to the networks they connect 

to, but also to the humans  that seek to derive utility from them (Zandberg et al., 2019b). There 

has been a rise in the number of cases where ransomware and malware have targeted firmware 

vulnerabilities to cause harm, steal credentials, or even disable critical infrastructure. Research 

has shown that some IoT devices are even attacked within five minutes after field deployment 

and targeted by specific exploits within 24 hours (NetScouts, 2018). It is, therefore, evident 

that after the initial deployment of IoT devices, it is inevitable for vulnerabilities to be 

discovered (George Corser et al., 2017). If not mitigated, some of the vulnerabilities will have 

detrimental effects. Thus, device manufacturers are expected to release new firmware versions 

to fix bugs and vulnerabilities to improve the device’s security. The new firmware versions 

must be transmitted via a secure firmware update mechanism to make them available securely 

to the active devices on the Internet. Establishing a secure firmware update mechanism for IoT 

devices is a challenge. It is a challenge due to many factors such as limitations posed by IoT 

devices in memory and processing capabilities as well as the communication protocol with data 
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rate limitations. Additionally, the nature of IoT comprises a massive number of geographically 

separated devices where some are active in areas that are difficult to reach.  

This massive number of IoT devices makes it impractical and infeasible to apply manual 

updates to the devices active in the field because it requires remembering all devices’ physical 

locations and then connecting each with the PC via cable to apply manual updates. Hence, there 

is a need for automated OTA methods of conveying firmware updates to the thousands of 

devices active on the Internet. The most-used OTA approaches are based on the client-server 

model which is a traditional model.  However, this traditional approach exhibits a single point 

of failure therefore, there is a need for ways to convey firmware updates that use the distributed 

approach such as the Blockchain technology that provides high security that is resistant to 

conventional attacks. 

1.5 Research Questions 

This research aimed to answer this main research question: 

How can a Blockchain-based firmware update architecture for the LoRaWAN network be 

designed and implemented? 

From this research question, four sub-research questions emanated. 

• What is the “state of the art” in LoRaWAN firmware updates? 

• Why is Blockchain suitable for firmware updates in LoRaWAN? 

• How can a Blockchain-based firmware update mechanism suitable for LoRaWAN be 

implemented?  

• How can the proposed firmware update mechanism be evaluated? 

1.6 Aim and Objectives 

1.6.1 Research Goal 

This study aimed to implement and evaluate a secure Blockchain-based firmware update 

mechanism that is suitable for LoRaWAN. 

1.6.2 Research Objectives 

The goal was broken down into the following achievable objectives: 



8 

 

• To establish the state of the practice of firmware updates in LoRaWAN contemporary 

research literature. 

• To explore the suitability of Blockchain in firmware updates for LoRaWAN.  

• To design and implement a Blockchain-based secure firmware update mechanism that 

is suitable for LoRaWAN.  

• To analyze the performance of the proposed firmware update mechanism. 

1.7 Research Contribution 

In the recent era, the IoT network is vulnerable to many different cyber-security issues, and it 

keeps on growing exponentially as more of these issues are discovered. Therefore, security 

must be considered a major concern. In that regard, this research explored how firmware update 

and Blockchain-based firmware update mechanisms can be designed, implemented, and 

evaluated for constrained IoT devices specifically in the LoRaWAN network.  To that end, we 

contributed in the following ways: 

1.7.1 Firmware Updates in IoT and LoRaWAN 

This study explored the existing approaches for delivering firmware updates to the LoRaWAN 

IoT network and what recent cybersecurity techniques can be utilized to implement a secure 

solution.  Firstly, Blockchain technology was noted as one of the few approaches that are 

utilized for securing firmware updates in LoRaWAN, to the best of our knowledge, at the time 

the study was conducted there was no Blockchain security approach targeted to deliver 

firmware updates to a constrained LoRaWAN network. This was observed through the survey 

study carried out by Mtetwa et al., (2019) and which was published in a conference proceeding. 

Thus, this study sets a foundation for further exploration into Blockchain-based solutions for 

LoRaWAN. 

1.7.2 Firmware Update with Blockchain Technology in 

LoRaWAN 

The existing firmware update mechanisms for LoRaWAN are mostly done manually and some 

rely on the client-server model to securely distribute the firmware to constrained low-powered 

devices, however the client-server model exhibit the single-point-of-failure. The current 

LoRaWAN-based research studies demonstrate the firmware update with the use of simulation 

tools and to the best of our knowledge, there is no Blockchain-based study utilizing physical 
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devices to show how constrained LoRaWAN devices can be securely updated with Blockchain 

technology. This study, therefore, focused on the testbed to demonstrate the possibility of 

firmware updates in LoRaWAN taking advantage of Blockchain technology to securely deliver 

firmware updates to low-powered devices. The study, therefore, demonstrated how Blockchain 

technology can be utilized in LoRaWAN to securely deliver firmware updates to low-powered 

devices by providing the design and implementation of a Blockchain-based firmware update 

architecture.  

Here are the following implementations the study accomplished: 

•  an automated Blockchain-based firmware update solution in Solidity (a smart contract 

programming language). 

•  Firmware Update Service (FUS) is responsible for the entire orchestration of firmware 

updates. The FUS manages the entire firmware update process of low-powered devices, 

performs the fragmentation, and maintains the end-to-end encryption. 

• The CLI script that works hand-in-hand with the FUS was implemented to help the 

device owners manage low-powered devices registered in Blockchain and to initiate or 

apply the firmware updates.  

• Finally, the study implemented a decentralized application (Dapp) for manufacturers to 

upload firmware images and metadata to the InterPlanentary File System (IPFS) and 

Blockchain network respectively. 

In addition, the study was evaluated to show the impact of the proposed solution and security 

measures taken to secure the firmware. Furthermore, it shows the overall cost involved in LoRa 

transmission. 

1.8 Organization of this Dissertation 

The remaining parts of this study are organized as follows:  

Chapter 2 aims to provide the reader with background knowledge on LoRaWAN, Blockchain 

technology, decentralized storage, security threats or challenges available during firmware 

updates with the security measures. The background study is conducted to understand the 

design, implementation, and evaluation of our proposed architecture.  

Chapter 3 this chapter reviews recent studies and approaches utilized to deliver firmware 

updates in IoT general and constrained networks. Apart from recent studies in firmware 
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updates, the chapter also presents the Blockchain and LoRaWAN integration studies that aim 

to enhance the security of LoRaWAN. It closes by listing the benefits, limitations of each study. 

Chapter 4 gives a detailed explanation of our system architecture. It starts by providing the 

research methodology utilized in this study. This is followed by the application scenario 

section, and the sections detailing the system’s requirements, Blockchain smart contract design, 

and overall design including the security algorithm utilized.  

Chapter 5 discusses how the proposed system was implemented, and what tools were utilized. 

It also discusses the implementation of the smart contracts, the implementation of the 

independently implemented FUS component responsible for the entire firmware update 

process, and represents the decentralized web application that helps manufacturers to distribute 

the firmware. The testing and validation of the smart contract operations are also provided in 

this chapter. 

Chapter 6 provides the results and analysis of the proposed architecture and the comparison 

of the proposed solution against other firmware update mechanisms. The evaluation of the 

system’s overall performance is provided by examining LoRaWAN, Blockchain, and 

cryptographic algorithm costs. 

Chapter 7 summarises the study and presents how each research question was answered. In 

addition, it provides limitations and the future direction of this research. 



 11 

Chapter 2: Theoretical Background 

This chapter is an introduction to important concepts underpinning the study. It starts by 

explaining IoT networks which include the Long-Range Wide Area Network (LoRaWAN) 

technology. It also explains the different categories of IoT devices and the different device 

classes that are provided by LoRaWAN. The explanation of the Blockchain and InterPlanetary 

File System (IPFS) technology is followed by the security threats, and the security measures in 

firmware updates. 

2.1 IoT Networks and LoRaWAN 

This subsection explains the IoT networks and one of the constrained IoT networks specifically 

LoRaWAN. 

2.1.1  IoT Networks 

IoT is a system of devices that can communicate without human intervention (Makhdoom et 

al., 2019). This system comprises four main components namely: sensors, connectivity, data 

processing, and user interface, which enable users to interact with the devices (Leverege LCC, 

2018). Sensors are responsible for collecting, receiving, and exchanging data. The data sent by 

the sensor is carried out by a particular connectivity such as Wi-Fi, Cellular, and many others. 

It is then further processed to gain more insight. AWS IoT Core, AWS IoT, Analytics, Oracle 

IoT, Cisco IoT Cloud, and Google Cloud IoT are examples of data processing services that 

help to store sensor data and gain insight from it. The analyzed or processed data insight is 

distributed to the users via the interfaces which could be in the form of mobile applications, 

web applications, etc. Likewise, a user can send a message from the user interface to the 

sensoring IoT device. IoT devices are categorized into three main categories: low-end, middle-

end, and high-end devices (Ojo et al., 2018).  

The low-end devices are too constrained in resources compared to other categories; their 

purpose is to sense, send, and sometimes receive a small amount of data without performing 

complex calculations. Traditional operating systems (OSs) like Linux and Windows cannot run 

on low-end devices, since most are low-powered or battery-powered devices and are without 

enough resources to accommodate these operating systems. The Internet Engineering Task 

Force (IETF) further subcategorizes these devices into three main subcategories: Class 0 (C0), 

Class 1 (C1), and Class 2 (C2). The IETF device classification is based on the device’s 
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capabilities: RAM and Flash memory are available on the device (Bormann, Ersue, and 

Keranen, 2014). Table 2.1 shows the subcategory of low-end devices. 

Table 2.1 Classes of Low-End IoT Devices 

Name RAM Flash 

Class 0 <<10 kB <<100 kB 

Class 1 ~10 kB ~100 kB 

Class 2 ~50 kB ~250 kB 

Class 0 devices are constrained in memory and processing capabilities. They get connected to 

the Internet via other devices like proxies, gateways, or servers. Class 0 devices are also 

constrained and communicate via lightweight protocols like Constrained Application Protocol 

(CoAP). Class 1 can communicate with other devices on the Internet with the help of gateways. 

Class 2 devices are less constrained compared to other classes. They are capable of supporting 

protocols stack used in servers such as Hypertext Transfer Protocol (HTTP). Apart from the 

low-end devices, there are device types that have more resources compared to the low-end 

devices. These types include middle-end and high-end devices. Middle-end devices are less 

constrained than low-end devices and are capable of using more than one communication 

technology (Sivagami et al., 2021).  

High-end devices have enough resources, high processing power, a lot of Random-Access 

Memory (RAM), and Flash memory and can run traditional OSs. Most of these devices are 

used as IoT gateways because of their high level of resources. The most well-known example 

of a high-end device is the raspberry pi. The data exchange of IoT devices is made possible by 

communication protocols and many protocols suitable for specific IoT devices have been 

developed in the past. These different methods of communication include Bluetooth, satellite, 

cellular, Wi-Fi, RFID, NFC, Low Power Wide-Area Networks (LPWANs), etc. Each method 

of communication has trade-offs between bandwidth, range, and power consumption. 

These communications can be categorized into four major groups in Table 2.2: 

Table 2.2 Methods of communication category.  

 

 PAN LAN MAN WAN 

   Standards 
 Bluetooth 

IEEE 802. 11a, 

802. 11b, 802.11g 

802.16 MMDS, 

LMDS 

GSM, GPRS, 

CDMA, 2.5-3G 

 

Range Short Medium Medium-Long 
 

Long 
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Examples 

NFC, IrDA, 

Bluetooth or 

Zigbee 

Ethernet, fibre 

optics and Wi-

Fi 

Wi-Fi 

Satellite, 

LPWAN 

(LoRa, Sigfox) 

This study focused on type of WAN network particularly the LPWAN network. LPWAN has 

various of networks within such as LoRa, Sigfox etc. The study then focused on constrained 

IoT devices and constrained networks, one of the communications based on low power 

consumption, high range, and low bandwidth, particularly Long-Range (LoRa) and LoRa-

Range Wide Area Network (LoRaWAN). 

2.1.2  LoRa and LoRaWAN 

Long-Range (LoRa) is a robust ISO/OSI Layer 1 wireless technique that can transmit and 

receive radio waves over long distances and is suitable for applications that transmit small 

chunks of data with low bit rates (The Things, 2021). LoRaWAN refers to the communication 

protocol and the system architecture, while LoRa refers to a physical layer. LoRaWAN system 

architecture is made up of different components responsible for processing LoRa packets. 

These components include a join-server, network server, and application server as shown in 

Figure 2.1. The gateway and the end devices communicate with one another via the LoRa 

interface.  

 

Figure 2.1 LoRaWAN Network Architecture (LoRa Alliance, 2018)  

LoRaWAN Alliance specification categorizes the end devices into three classes: Class A, Class 

B, and Class C (Alliance, 2018). Each device class is suitable for a specific use case. The 

difference between the classes is based on how the devices communicate and exchange 

messages. When the device operates in Class A mode, communication is always initiated by 

the end device. The downlink message transmission is allowed after a successful uplink 
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transmission that opens through RX windows and these windows use the channel with a low 

data rate. The common use cases for Class A device applications include Agriculture plant 

monitoring, Animal tracking, location tracking, fire detection, earthquake early detection, and 

more. Most of the Class A devices are often battery-powered and efficient in battery 

consumption since they spend a lot of time in sleep mode and are inactive in the network.  

Class B device opens a receive window after sending an uplink just like the Class A device 

furthermore, it has an additional window that receives downlink messages. The use cases for 

Class B devices include temperature reporting, and utility meters monitoring of resource 

consumption, such as energy, water, gas, etc. A Class C mode offers the lowest latency for 

communication from the server to an end device it enables the device to listen and send 

downlink messages at any time continuously. The use cases for Class C include streetlight 

applications, smart utility water meters with valves, etc. With Class C mode, it is possible to 

schedule downlinks messages to a group of devices:  this is called the multicast group. The 

multicast group is commonly used when delivering firmware updates to the group of end 

devices at the same time. 

2.2 Blockchain Technology 

A Blockchain is a cryptographically secure, shared, distributed ledger that stores data in an 

immutable manner among distributed nodes (Makhdoom et al., 2019) and is one of the 

implementations of Digital Ledger technologies (DLT). Blockchain maintains a list of 

transactions or records known as blocks. The transactions in the block are validated a verified 

by a special computer called miners. Miners are the ones maintaining and securing the network 

by working together to build trust in the network. Miners validate, verify every transaction in 

the network, and record it on the ledger then get rewarded with an amount of money for 

performing validation. To lay a good foundation and to have a good understanding of 

Blockchain, it is necessary to explain some important terms that are most known and used in 

Blockchain.:  

• Gas – Refers to the unit of measurement which is the computational effort needed to 

execute specific operations. The different operations will result in different amounts of 

gas 

• Gas limit – Before the transaction starts, the maximum number of units of gas that will 

be spent in a transaction should be available. This unit is specified by the owner of the 

transaction and is called the gas limit.  
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• Gas price – Before the transaction starts, there should be a gas price which is the amount 

the owner is willing to pay for each unit of gas. This is usually represented as a small 

fraction (gwei).  

• Gas used by transaction – This is the actual amount of gas utilized by the transaction 

for execution. Any excess amount of gas specified during the start of the transaction 

will be returned to the owner. 

• Gas or transaction fee – This is the product of the gas used by the transaction and the 

gas price which represents the actual amount of fees the transaction owner paid. It is 

usually presented in small fractions of the Ether (ETH), commonly referred to as gwei. 

 

Below is an example of the successful execution of a transaction. The transaction comprises 

the following information: 

• Gas limit (TGL) and Gas price (TGP) were explained above and need to be specified by 

the transaction owner. 

• Nonce (TN) – keep track of the transaction number for the sending account. The nonce 

value is incremented for each transaction made by the sender. 

• To (TADR) – refers to the destination address. This can be the recipient account or the 

smart contract address. 

• Data (TD) – this field contains the instructions to execute a transaction in the Ethereum 

Virtual Machine (EVM). For example, during the smart contract deployment, TD will 

have the byte code of the smart contract together with the parameters (if any) required 

to call the constructor function. TD may also contain the method signature together with 

its parameters. 

• Value (TV) –  represents the amount of Ether that is transferred between sender and 

recipient. 

• {v, r, s}  – the signature representing the transaction  is represented by three variables: 

v, r, and s 

 

Now, suppose Alice wants to transfer 2 amounts of Ether (TV) to Bob. Alice will be required 

to specify the maximum amount of gas (e.g., 25,000) she is willing to spend for the transaction 

(that is TGL) and specify the price (e.g., 200 gwei) for each unit of gas (that is TGP). After 

specifying the gas limit and gas price, Alice signs the transaction with her private key. The 

signing mechanism is based on the Elliptic Curve Digital Signatures Algorithm (ECDSA): 



  

 16 

 

(𝑟, 𝑠)  =  𝐸𝐶𝐷𝑆𝐴_𝑆𝑖𝑔𝑛𝑖𝑛𝑔_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐾𝑒𝑐𝑐𝑎𝑘256 (𝑇𝑁,  𝑇𝐺𝐿,  𝑇𝐺𝑃 ,  𝑇𝐴𝐷𝑅,  𝑇𝐷, 𝑇𝑇𝑉)) 

 

The signing algorithm takes the data produced by the sender and generates the Elliptic Curve 

Digital Signature Algorithm (ECDSA) signature represented by (r, s) values:  

𝐾𝑃𝑈 =  𝐸𝐶𝐷𝑆𝐴_𝑉𝑒𝑟𝑖𝑓𝑖𝑛𝑔_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐾𝑒𝑐𝑐𝑎𝑘256 (𝑇𝑁,  𝑇𝐺𝐿,  𝑇𝐺𝑃 ,  𝑇𝐴𝐷𝑅,  𝑇𝐷, 𝑇𝑇𝑉)), 𝑣, 𝑟, 𝑠) 

The transaction sent by Alice will be received on the network to be validated and verified by 

miners using the ECDSA_Verifing_Algorithm. ECDSA_Verifing_Algorithm takes the original 

data produced by Alice and the signature (r, s) as inputs. The original data signature is 

recomputed and matched against the signature (r, s) produced during the signing process. The 

ECDSA_Verifing_Algorithm produces the public key and if the public key produced is Alice’s 

key, the transaction continues. A successfully executed transaction must have used a certain 

amount of gas (e.g., 21,000 gas) from the initially specified gas (gas used by the transaction,) 

and, if the specified gas is sufficient, the transaction executes successfully, and the excess 

amount of gas will be sent back to Alice that is: 

25,000 – 21,000 = 4,000 gas. Therefore, the total cost (gas fee) for the transaction will be 

computed as: 

𝐺𝑎𝑠 𝑓𝑒𝑒 =  21,000 ∗  200 𝑔𝑤𝑒𝑖 =  4,200,000 𝑔𝑤𝑒𝑖 

4,200,000 gwei is equivalent to 0.0042 Ether, and this is the amount the miner will receive. 

Therefore, Alice pays  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 2 + 0.0042 = 2.0042 𝐸𝑡ℎ𝑒𝑟 

The digital signatures and hashing algorithm strengthen Blockchain security. Hashing provides 

the immutability of Blocks in the network where each block contains the previous block's hash. 

Blockchain technology is known for the following unique key characteristics when compared 

to traditional technologies (centralized technologies): 

• Decentralization: Blockchain is a peer-to-peer platform that does not rely on central 

authorities but is controlled and managed by multiple nodes in the network. 

• Openness: Blockchain is for everyone. Anyone can become a participant and join the 

network to store, validate, and verify transactions. 

• Auditability: All Blockchain transactions can be traced back to the Genesis Block i.e 

the transactions that were created at the start. 
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• Persistency: With Blockchain, it is impossible to update, delete, or modify the 

transaction once it has been created, verified, and stored in the block. 

Blockchain was initially manifested in Bitcoin digital cryptocurrency (Adam and Dzang 

Alhassan, 2020); then, in the later stages, it was applicable in many areas such as artificial 

intelligence, machine learning, data sciences, augmented reality, IoT, software-defined 

networks, and so forth (Zarrin et al., 2021). Blockchain has infrastructure that is independent 

of other networks and for those networks to interact with Blockchain they need to connect to 

interfaces. This is usually achieved through a smart contract. The smart contract is a logic that 

is stored and runs on the Ethereum Virtual Machine (EVM); hence it inherits the characteristics 

of the Blockchain. Several nodes can be utilized to access the data in the Blockchain: 

• Ganache–CLI – This tool utilized in local development acts as a local 

Blockchain node to simulate the network. It consists of fake accounts to test and 

make Blockchain transactions (Truffle, 2021) 

• Geth is a Blockchain client that can run on the local computer and sync with the 

private or public Blockchain network (Go Ethereum, 2021). 

• Infura Node – this node is controlled and managed by a third party that exposes 

an Application Programming Interface (API) for anyone who wishes to access 

the node to interact with the Blockchain network (Infura, 2021). 

2.3 InterPlanentary File System (IPFS) 

IPFS is defined as a protocol and distributed file system that connects all computing devices 

with the same systems of files (Manoj Athreya et al., 2021). Traditionally, the content was only 

accessible via the protocols like the Hypertext Transfer Protocol (HTTP), based on where is 

hosted using the address or location of the server. HTTP relies on the client-server model and 

the availability of the content managed by the central authority. If servers are down, the content 

becomes inaccessible on the one hand and the IPFS is based on the decentralized model. where 

multiple nodes hold the content in a distributed manner thus, eliminating a single point of 

failure. IPFS utilizes content addressing to identify and access content instead of utilizing the 

content’s location. IPFS is built from successful existing projects ideas or technologies which 

are integrated to form the distributed file system. These are the following technologies IPFS is 

derived from:  

• Distributed Hash Tables (DHTs): A hash table is a data structure based on the key-value 

pair and is utilized by IPFS to find the peers that host the requested file. The file can be 
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retrieved by querying one of the connected peers in the network since they all have the 

DHT which is shared and updated across all the peers in the network (IPFS, 2021a). 

• Block Exchanges (Bitswap): Bitswap is a message-based protocol and a core module 

that handles the exchange of blocks in the network. Bitswap handles the requesting and 

sending of blocks to and from peers in the network. The Bitswap protocol is responsible 

for two main tasks: it obtains the requested blocks and sends the blocks to peers in the 

network (IPFS, 2021b). 

• InterPlanetary Version Control Systems (IPVC): IPFS uses the version control system 

to provide versioning for large files and any type of content. 

• Self-Certified Filesystems (SFS): IPFS is a self-certifying filesystem which means the 

data exchanged between peers is authenticated using a unique filename (Hackernoon, 

2021). Each peer on the network comprises the node ID (uniquely identifying the peer) 

which is created from the node’s public key. Apart from the node ID, the peer comprises 

the public key. During peer communication, the public keys are exchanged so that when 

the peer connects with others it can authenticate them. The peer authenticates another 

by computing the hash of the public key and comparing it against the node’s ID, and, 

if the computed hash from the public key matches with the node ID, the node can be 

trusted.  The combination of Blockchain and IPFS is said to be a great marriage and the 

future of the distributed network. Blockchain networks and IPFS are integrated because 

Blockchain networks have restrictions on how much data can be stored on the ledger 

when it comes to storage. For instance, the Bitcoin network limits the block to store not 

more than 1 MB of data (Vujičić, Jagodić, and Randić, 2018). Usually, a large amount 

of data gets stored on the IPFS, which then returns the unique identifier for data. Instead 

of Blockchain storing the data, it will store the returned identifier from IPFS. It should 

be noted, that data stored on the IPFS is tamper-proof just like in Blockchain 

2.4 Firmware Updates and Cryptography 

Regardless of the use cases and the class mode of the end device, having support for over-the-

air (OTA) firmware updates is essential for all. Firmware updates refer to distributing binary 

image which contains data, calibration values, authentication secrets, and a set of instructions 

(firmware) that operate the hardware of the end device by telling it how to function and perform 

certain tasks. The purpose of the firmware updates is to fix bugs, add new functionality, and 

improve the security of the device. Having devices that can receive updates to their OTA is 

critical, especially for constrained IoT networks like LoRaWAN. In addition, some IoT devices 
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have limited resources which makes it impossible to incorporate traditional proven 

cryptographic approaches to secure the firmware during the update process.  

2.4.1 Security Threats and Challenges 

IoT is the system of interconnected devices that changes how we live.  Apart from the beauty 

that IoT brings. IoT devices are designed for specific use cases without paying a lot of attention 

to security. As devices and technology get more intelligent and more connected, the threats 

increase as well. Devices connected to the Internet offer a variety of security risks that affect 

privacy and also our health. For example, cases of pacemaker malfunction in the healthcare 

industry were reported (Rehman, Rehman, and Khan, 2020). A pacemaker is a body implant 

device that controls the patient’s heartbeat. The doctors communicate with the pacemaker via 

an external computer called a pacemaker programmer. The pacemakers were found to be 

vulnerable to insecure communication protocol being utilized by the pacemaker programmer 

and pacemaker. The utilized protocol had no authentication scheme, and the messages were 

sent unencrypted. It was demonstrated that the vulnerabilities found could be used by attackers 

to modify the pacemaker’s behavior by running its battery flat and controlling the patient’s 

heartbeat resulting in critical condition.  

A quarterly report on security breaches and cyber-attacks by (IT Governance UK, 2021) shows 

that firmware attacks are increasing, affecting both public sectors and businesses. The report 

discovered security incidents that accounted for 185,721,284 breaches. Figure 2.2 shows the 

affected sectors with corresponding percentages of incidents. The healthcare and health 

sciences sector is the sector with the highest number of security incidents. This illustrates that 

the breaches contribute more or bring more threats to our health.  
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Figure 2.2 Security Breaches in Different Sectors (IT Governance UK, 2021). 

These incidents do not occur only in IoT. One example is an incident that occurred to one of 

the world’s biggest video game publishers. Attackers penetrated the systems and retrieved the 

source code for FIFA 21, as well as the code for its matchmaking server (PandaSecurity, 2021). 

The attackers target big companies because they store customers’ important data.  The attack 

on South Korean and Taiwan McDonald’s resulted in the compromise of customers’ data.  

Attackers retrieved the customer’s data including phone numbers, emails, and addresses from 

the system (BBC, 2021). These attacks highlighted the need for a solid mechanism to secure 

systems and eliminate vulnerabilities that exist within them.  

 

Figure 2.3 Attacks Associated with Firmware Image (Kvarda et al., 2016). 

When security threats occur, new firmware must be created to fix the vulnerabilities. There are 

threats associated with the firmware process such as reverse engineering, firmware alteration, 
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unauthorized device access, etc (Kvarda et al., 2016). The threats can occur at different levels, 

for instance during the transmission and after the firmware has been securely delivered to the 

intended device. Figure 2.3 shows the entities involved in the update process and the possible 

threats during the firmware transmission.  The firmware manufacturer is the entity that creates 

the new firmware version and shares it with the device owner over the network. The 

communication channel between the manufacturer and the device owner can be secure or 

insecure.  

In the insecure case, the attacker can eavesdrop on the communication and get hold of the 

firmware to perform firmware engineering. Extracting sensitive information from it can alter 

the firmware and return it for distribution. The manufacturers usually share the firmware 

publicly and the device owner is the one responsible for further distribution of firmware to their 

devices. The same threats that occur between the manufacturer and the device owner can occur 

during the firmware distribution of the device owner and the device. And even more threats 

such as aborting the update procedure, loading unauthorized firmware into the devices, and 

extracting sensitive information from the device such as the keys. It should be noted that the 

attackers have an opportunity to interrupt the update procedure in an insecure channel between 

the manufacturer and the device owner. The same interruption can occur on the channel 

between the device owner and the end device; thus, it is required to secure the firmware in 

transit and also at rest. 

2.4.2 Security Measures, Symmetric and Asymmetric 

Cryptography 

Bugs and vulnerabilities are inevitably going to be discovered and attacks could occur in the 

IoT system, therefore, security measures are needed. To fix the vulnerabilities, manufacturers 

need to develop a secure mechanism to deliver patches successfully to the intended device. 

Combining multiple security attributes such as confidentiality, integrity, and authentication 

also known as CIA will make a secure firmware update mechanism. Security attributes can be 

achieved either via symmetric or asymmetric cryptography. Symmetric cryptography requires 

entities to share a common secret key which is used for both encryption and decryption 

(TexasInstruments, 2015). Each entity must keep the shared secret key private and confidential. 

Any entity possessing the shared secret key can produce encrypted messages with the key and 

decrypt any message that is encrypted with the key. Symmetric cryptography algorithms are 

faster compared to asymmetric algorithms. The symmetric algorithms require the secret key 



  

 22 

upfront before the encryption and decryption can take place, in addition, the secret key must 

be shared securely between two entities. 

Asymmetric cryptography (also known as public-key cryptography) solves the limitation of 

key distribution by using different keys to encrypt and decrypt messages. Messages are 

encrypted with a public key that is shared with everyone and decrypted with a private key that 

is kept secret. Due to memory and processing power limitations, asymmetric algorithms 

become difficult to incorporate into most IoT devices. In most cases, symmetric and 

asymmetric cryptography is used to provide confidentiality, integrity, and authentication. 

Encryption and Decryption 

Encryption and decryption ensure data privacy and enables entities with a valid key to decrypt 

the original message (University of Delaware, 2021). Encryption is when data is converted into 

an unreadable form (ciphertext) whereas decryption is the process of converting the ciphertext 

back to its original format. Advanced Encryption Standard (AES) and Data Encryption 

Standard (DES) are symmetric key algorithms examples for encryption and decryption. 

Integrity 

Data integrity ensures that the original message has not been modified (Sun et al., 2014).  In 

the firmware update process, this means that the firmware image generated by the manufacturer 

has not been modified before the device receives it. Data integrity can be achieved via different 

cryptographic functions such as hash functions, digital signatures, Message Integrity Code 

(MAC), or Message Authentication Code (MAC), etc. A hashing function takes an input 

(message) and produces the output that transforms data of arbitrary size into a fixed size 

(European Data Protection Supervisor, 2019). Given the output, it is not feasible to derive the 

original message, and it is also not feasible to find two different messages leading to the same 

hash. Apart from the hashing functions, digital signatures are also alternatives for achieving 

message integrity. With hashing function, any entity can produce a hash value given the 

message since it does not require any secret key. This means an attacker can change the 

message and generate the hash value and the entity receiving the message cannot detect the 

message alteration. Digital signatures overcome this problem by using the private key to 

digitally sign the message, which will be verified with the corresponding public key to 

determine its integrity. Digital signatures are based on asymmetric cryptography.  

Symmetric cryptography can also be used to determine message integrity just like asymmetric 

cryptography. As mentioned earlier, MAC is one of the algorithms for achieving integrity and 



  

 23 

it is similar to digital signatures, except that it is based on symmetric cryptography and uses 

shared secret keys to encrypt and decrypt the message. Providing the integrity of the firmware 

is essential in the firmware update process.  If firmware integrity is not addressed by the 

firmware update mechanism using cryptographic algorithms as part of security measures, the 

update mechanism must then implement the error correction. For instance, the CRC checksum 

is used to detect transmission errors during the firmware update process. 

Authentication 

Determining confidentiality and integrity is not sufficient because they do not prove the origin 

of the message.  Message authentication is required to ensure the validity of the message's 

origin. Message authentication ensures both message integrity and authenticity of the message 

(Dale Liu et al., 2009). It can be achieved with symmetric and asymmetric cryptography, for 

example through digital signatures and the MAC. In the update process, the digital signatures 

are used by the device manufacturer to sign the firmware image hence, the device needs to 

know whether is installing the authentic firmware from the manufacturer. Utilizing the MAC 

for authenticity will require the manufacturer and devices to have shared the same secret key 

in front. If the key is compromised, the attacker will be able to create illegitimate firmware 

with the valid MAC value which will be validated correctly by the end devices, hence it is 

important to keep the key secure from unintended parties. 

  



  

 24 

Chapter 3: Literature Review 

This chapter provides a review of relevant literature on Blockchain and LoRaWAN. It starts 

by looking at the existing Blockchain and LoRaWAN integration studies in Section 3.1 and is 

followed by Section 3.2  which explores studies that deal with firmware updates in the IoT 

domain based on the client-server approach. In Section 3.3, the studies that deal with firmware 

updates in a decentralized manner are examined. Section 3.2  and Section  3.3 describe each 

study while Section 3.4 provides the gaps, benefits, and limitations of these studies in Table 

3.1. 

3.1 LoRaWAN and Blockchain Integration 

Blockchain technology has been adopted in many areas such as the IoT, machine learning, data 

science, argument reality, finances, and more. When it comes to LoRaWAN different studies 

have integrated Blockchain technology for certain purposes. The integration of LoRaWAN into 

a Blockchain infrastructure can be accomplished in many ways. Some researchers have studied 

the integration of Blockchain and LoRaWAN to enhance the security of LoRaWAN. For 

instance, Lin, Shen, and Miao, (2017) proposed a Blockchain-based solution to build an open, 

trusted, decentralized, and tamper-proof system for LoRaWAN network servers. Private 

organizations manage LoRaWAN networks whereas other LPWAN networks like NB-IoT are 

mainly managed by mobile network providers. This means LoRaWAN has to solve the issue 

of trust between the private network operators and the lack of network coverage. Therefore, 

the authors of the aforementioned article aimed to propose a conceptual architecture design for 

LoRaWAN network servers to solve the issue of trust of the private network operators and lack 

of network coverage. The authors have stated that their work is the first work that integrates 

Blockchain with LoRaWAN.   

Durand, Gremaud, and Pasquier, (2018) proposed and built a global fully decentralized IoT 

network using Blockchain and LoRaWAN. The study aimed to analyze the feasibility of a fully 

decentralized LPWAN infrastructure and to build an architecture based on the LoRaWAN 

protocol. The Blockchain-built prototype focused on passive roaming techniques and benefits 

the crowd-sourced networks with commercial operators. The same authors (Durand, Gremaud, 

and Pasquier, 2018) also conducted another study that focused on taking advantage of 

asymmetric cryptography to provide security in LoRaWAN since it is based on symmetric 

cryptography. Other studies focused more on building LoRa and Blockchain-Based 
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applications to enhance the security of a specific use case. For instance, Subodhnarayan et al., 

(2018) proposed an Ethereum Blockchain-Based solution for the security and trust issues that 

are present in pollution monitoring systems.  Vlachos and Hatziargyriou, (2019) presented a 

decentralized Blockchain-based Automatic Meter Reading (AMR) system over a LoRaWAN. 

The Blockchain is utilized to store the meter readings of the energy meter and ensure that the 

meter owner controls the data stored on the Blockchain. Ethereum Blockchain technology 

seems like the most dominant Blockchain utilized to provide a proof of concept and it is 

integrated with LoRaWAN.  The Ethereum-Based proof of concept by (Ozyilmaz and 

Yurdakul, 2019) was also proposed to enable low-power, resource-constrained to access a 

Blockchain infrastructure. The study integrated Blockchain at the gateway which runs the 

Ethereum client to route data to the Blockchain network. A proof of concept was demonstrated 

using Raspberry Pi 2 connected to a Dragino LoRa/GPS Hat which acts as a LoRa node. The 

gateway running the Ethereum client was built using Raspberry Pi 3 combined with LoRa 

concentrator board iC880A. 

Another study by Danish et al., (2019) focused on enhancing the LoRaWAN OTTA join 

procedure by employing Blockchain specifically Ethereum Blockchain. The study proposed a 

Blockchain-based framework that adds an extra layer of security for the LoRaWAN join 

procedure since the join request message is not encrypted and susceptible to jamming and 

replay attacks. Hence, the study presents the two-factor authentication scheme for the 

LoRaWAN join procedure to improve authentication security and build trust among end 

devices and network servers. Another integration by Tan, Sun, and Li, (2021) proposed the 

secure architecture for LoRaWAN key management using permitted Blockchain. The study 

adopted the characteristics of Blockchain to come up with a scheme that avoids the single-point 

failure of the LoRaWAN join server and improves the performance of Over-the-Air Activation 

(OTAA). Additionally, the key update protocol was proposed to solve the issue of the root keys 

that remain unchanged once the device is created.  

It was observed among the integrations provided by different studies that none was based on 

integrating Blockchain with LoRaWAN to deliver firmware updates in LoRaWAN securely. 

This was observed through the survey study that was conducted to examine firmware updates 

in the IoT domain (N. S. Mtetwa et al., 2019). Therefore, this study proposed the Blockchain-

based firmware update architecture which will run on IoT devices. The authors, Anastasiou et 

al., (2020) proposed a Blockchain-based framework to securely update the firmware of IoT 

devices using the LoRa communication protocol. The authors’ study was based on the 
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simulation tool which was implemented by Abdelfadeel et al., 2020a). The study was not clear 

about how the Blockchain technology was integrated with a simulation tool and what the 

cryptographic algorithms used in a firmware update to secure the IoT devices were and the 

kind of devices the proposed framework targeted. 

3.2 Centralized Firmware Update Mechanisms 

In recent years, privacy in the IoT domain has been a serious issue and it is being deeply 

investigated to provide better ways to secure IoT devices (Aqeel-ur-Rehman et al., 2016). The 

issue of security results in various studies that try to improve different components of the IoT. 

Several approaches have been proposed to deal with different aspects of privacy and also 

numerous firmware mechanisms have been proposed to deliver firmware updates to IoT 

devices. Most of the proposed firmware update mechanisms can be differentiated into manual 

and automatic updates. Additionally, the mechanism may provide updates in a centralized or 

decentralized manner. This section provides an overview of those proposals that are related to 

the IoT domain. In particular, the focus is on the frequently used approach of client-server 

approach. The different tactics provided by the mechanisms for securing the firmware are also 

viewed.  

Alexandre, (2016) proposed a solution on how to secure the firmware updates on IoT gateway 

devices.  The proposed solution assures the firmware image's confidentiality, integrity, and 

authenticity and defeats the most relevant external security threats. It implemented 4 

components namely: the development tool, the signing server, the update server, and the device 

daemon. The manufacturers used the development tool to generate the images and upload the 

images to the signing server. The signing server receives the firmware update images and 

includes keys, certificates, and configuration files in them. The IoT devices to authenticate 

images and the identity of the update server during TLS use these keys and certificates. The 

update server calculates the SHA512 hash of the firmware and signs it with its Rivest–Shamir–

Adleman (RSA) private key then uploads the firmware package to the update server. It is also 

responsible for alerting IoT devices about new updates. The proposed solution runs a daemon 

that periodically sends a message to the update server to query new updates. Shortly, these 

entities utilize Transport Layer Security (TLS) to secure the firmware image over the channel 

and the firmware image is digitally signed using the private key. A checksum algorithm 

SHA256 is used to ensure the integrity of the firmware image. After the implementation, the 

solution is evaluated against network overhead and energy consumption. The authors utilized 



  

 27 

Raspberry pi as an IoT device which is one of the high-end devices and thus the work focuses 

not on constrained IoT devices and IoT networks but on other unconstrained networks. 

(Pycom, 2018) shows the firmware update method that targets LoRa-end devices. LoRa and 

Wi-Fi are communication protocols used in their update process. The method used Wi-Fi to 

retrieve the firmware from the servers. The reason for utilizing Wi-Fi instead of LoRa is due 

to LoRaWAN restrictions. These network restrictions make it hard to get the firmware image 

to update the devices quickly. Therefore, the mechanism switches from LoRa to Wi-Fi to 

access the firmware image without the delay.  

Doddapaneni et al., 2017) presented a Firmware Over the Air (FOTA) procedure for IoT 

devices and introduced a new secure object. The work tries to improve the issues that are faced 

with the LwM2M protocol. Currently, the protocols like LwM2M cannot handle packet loss 

caused by network leakage, since the update process could be interrupted due to network 

leakage. Therefore, the study proposed a new secure object to save power and provide longevity 

on IoT devices.  

Reißmann and Pape, (2017) presented an implementation of a durable and stable system for 

building and publishing cryptographically secure firmware updates for embedded devices 

based on ESP8266 microcontrollers. This includes mechanisms to build the updates from the 

source and automatically sign, distribute and install them on the target devices. The proposed 

mechanism is divided into four phases: checking for updates, reprogramming the device, 

calculating and verifying the cryptographic signature of the updated firmware, and 

reconfiguring the boot process to use the new firmware in case the update was updated 

successfully. The mechanism focuses on constraint devices with very low resources and uses 

the SHA256 and Curve25519 algorithms to secure the firmware. An approach for the secure 

distribution of firmware using the Message Queuing Telemetry Transport (MQTT) protocol is 

proposed by Borzemski (2019). The proposed approach utilizes the MQTT protocol as a 

communication protocol to exchange messages between the firmware broker server, the 

firmware server, and the gateway. The gateway communicates with IoT devices using Wi-Fi 

or Bluetooth. The Elliptic Curve-based Diffie-Hellman key exchange and key-hashed message 

authentication code are used to secure the exchanged messages and provide the authenticity of 

the received firmware and the integrity of the received firmware. The study conducted the 

security analysis to evaluate the security strength of the proposed framework. 



  

 28 

Sahlmann et al., (2021) proposed a secure firmware update protocol for MQTT-connected 

devices. The protocol focused on constrained devices and ensured the authenticity of the 

firmware and the freshness of the firmware image. It was shown that the protocol was easy to 

integrate with an MQTT-based IoT network using a semantic approach. The study also 

provided a detailed performance analysis of the prototype implementation on an IoT device 

with 32 kB RAM. 

Recently, there are firmware updates based on constrained LPWAN networks particularly, the 

LoRaWAN network. Applying firmware updates in constrained networks like LoRaWAN 

becomes a challenge. This is because of the network nature since they have lower data rates 

compared to traditional networks. The traditional network’s data rate is measured in megabytes 

per second (Mbit/s) while the LPWANs data rate is in bits per second (bit/s). The LoRa 

Alliance introduced some standards to minimize the costs when performing firmware updates 

in LoRaWAN (Alliance et al., 2018). The standards include firmware fragmentation, clock 

synchronization, and multicast. Semtech (Swanson, 2020) discussed how to use these 

application layer packages provided by Alliance et al., (2018). Semtech demonstrated the 

“Fragmented Data Block Transport” and “Remote Multicast Setup” application layer packages. 

The discussion is based on how to provide an efficient and reliable fragmented file delivery 

service. The authors also explained how to use the fragmented-file delivery service which can 

be used to push binary firmware updates over-the-air to large groups of devices. The delivery 

of firmware updates to a large group of devices is achieved by utilizing the LoRaWAN 

protocol’s unique over-the-air multicast capability in conjunction with an efficient fragment 

coding scheme, which significantly reduces the number of repeated transmissions required. 

The authors of (Jongboom and Stokking, 2018b) also made the requirements of what firmware 

update mechanism should consider when delivering firmware updates to low-powered devices 

in LPWAN. This includes how to provide the firmware update to the set of devices. The authors 

of Abdelfadeel et al., (2020b) used the LoRa Alliance specifications to demonstrate how 

firmware updates can be applied in LoRaWAN. The Firmware Update Over the Air Simulator 

(FUOTASim) was implemented and evaluated to demonstrate the effect of the different 

FUOTA parameters, however, the security of the IoT devices in this study was out of scope.  

Verderame, Ruggia, and Merlo,(2021) introduced a self-protection mechanism that ensures 

firmware integrity through the entire production and delivery process. The authors of the work 

proposed the self-protection mechanism because most of the existing mechanisms lack proper 

integrity verification, leaving firmware exposed to repackaging attacks. The mechanism 
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eliminates the use of signing certificates therefore, the security is provided without requiring 

external trust anchors or verification processes. Techniques, (2021) investigated adaptive data 

rate (ADR) techniques in an application that monitors cattle utilizing low-powered devices. 

The low-powered devices transmit the cattle’s location and health using LoRa. The study also 

focused on the issues related to firmware updates such as speed, and reliability concerns with 

security when updating the firmware to both mobile and low-powered devices. The study state 

that the firmware update could be interrupted when the cattle are moving out of the 

transmission range, or the device battery may not be adequate to finish the update process. The 

study addressed this issue by proposing a secure and reliable firmware update process using 

ADR techniques that is suitable for mobile or low-powered LoRa device. conducted the 

experiments via simulation that focuses on LoRaWAN to examine the impact of multiple 

gateways during the firmware update process. The impact of multiple gateways was 

investigated since the single gateway cannot optimize the firmware update over-the-air 

(FUOTA) mechanism. The authors Charilaou et al., (2021) extended the FUOTAsim 

simulation tool to support multiple gateways. The results of this study have shown that several 

gateways can eliminate the trade-offs that appeared using a single gateway. The contributions 

of the authors include the investigation of the impact of multiple gateways by analyzing the 

network's behavior during the firmware update process by varying the firmware size and 

network parameters. The authors also investigate the minimum set of gateways that can be used 

to provide full coverage with the greatest performance during the firmware update procedure. 

and the final contribution of the study provides insights between the firmware size and the 

number of gateways. The study focused only on the IoT gateway not particularly on the end 

IoT devices. 

3.3 Decentralized Firmware Update Mechanisms 

One of the popular ways of transmitting firmware to IoT devices is to transmit it in a 

decentralized and distributed manner. Distributing the firmware in this manner has more 

benefits compared to the client-server-based distribution (Makhdoom et al., 2019). In this 

section, the different approaches proposed to convey the firmware in a decentralized manner 

are examined critically with a focus on the decentralized firmware updates utilizing Blockchain 

technology. Lee and Lee, (2017) proposed a Blockchain-based scheme that focuses to secure 

embedded devices in the IoT environment. The proposed scheme relies on Blockchain 

technology to verify the firmware version and validate the firmware's correctness. The IoT 

device acts as a Blockchain node on the network, meaning it is required to store the Blockchain 
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ledger. This becomes a challenge since many IoT devices have limited resources such as 

energy, computation, and storage capacity. Hence, the mechanism might be difficult to 

incorporate in IoT-constrained devices in the IoT environment. Yohan and Lo, (2019) proposed 

framework that focuses on providing secure verification of the firmware. The proposed 

firmware update framework consists of four processes: the creation of firmware update 

contract, the creation of firmware replication contract, the direct firmware update mechanism, 

and the indirect firmware update mechanism. The framework only ensures the correctness of 

the firmware version and only provides security integrity. 

Mtetwa, Tarwireyi, and Adigun, (2019)  proposed the Blockchain-based where Ethereum 

Blockchain and IPFS were used to store the firmware metadata and firmware image 

respectively to achieve high availability. The proposed mechanism ensures the integrity of the 

firmware file and targets the devices with enough resources to carry out cryptographic 

operations that are the high-end devices. The raspberry pi was used to test the proposed 

mechanism.  

Witanto et al., (2020) proposed two techniques that deliver firmware updates. One of the 

techniques is a direct firmware update that is based on the client-server model. This technique 

enables IoT devices to download the update from the manufacturer’s server via the IoT 

gateways which then share the downloaded firmware updates from the manufacturer’s server. 

IoT gateways perform the integrity check and validity of the update to the Blockchain network. 

The second technique is a distributed peer-to-peer technique. This technique uses the 

Blockchain contract to check the firmware updates. The proposed techniques work well with 

IoT devices that have sufficient resources but not for constrained IoT devices with limited 

storage. The reason for this is that the IoT devices need to hold the firmware and share the 

available newest update through IoT gateways. 

Fukuda and Omote, (2021) proposed a firmware distribution method that reduces gas costs, 

using a contract and access control. The proposed scheme was evaluated, and the results show 

that the proposed scheme successfully lowers the gas cost required for firmware updates. Some 

studies are based on a constrained network where Blockchain is used for securing the data. In 

one of our survey research studies, Mtetwa et al., (2019), several IoT firmware schemes were 

examined. The examined studies were based in the IoT environment focusing on IoT devices 

with limited resources and the ones with adequate resources to handle firmware updates. The 

study revealed that there was a need for a Blockchain-based firmware update mechanism that 

targets IoT devices with limited resources.  
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After our survey study has been conducted,  Anastasiou et al., (2020) proposed a Blockchain-

based framework to securely update the firmware of the IoT devices using the LoRa 

communication protocol. The proposed framework was based on the simulation tool which was 

implemented by Abdelfadeel et al., (2020a). However, the work is not clear on the 

cryptographic algorithms used to secure the end device and what kind of devices the proposed 

framework targets. Another Blockchain-based study by (Tsaur, Chang and Chen, 2022) where 

a secure and efficient protection mechanism that is based on blockchain technology was 

proposed. The study prompts to improve traditional update methods security and also reduce 

the need for storage space. The proposed solution aims at integrity, device anonymity, security, 

and system security. In addition, the study compares the solution with the existing one. 

Sanchez-Gomez et al., (2021) presented a solution that provides firmware update distribution 

and trust monitoring. The presented solution leverages LoRaWAN, Low-Overhead EAP over 

CoAP (LO-CoAP-EAP), a novel lightweight bootstrapping protocol, a wide-spread long-range 

communication technology, IPv6 header compression and fragmentation mechanism, The 

Object Security for Constrained RESTful (OSCORE), end-to-end application-layer protection, 

decentralized IPFS network, and hyper ledger as a distributed ledger technology for secure 

validation of the distributed information. 

3.4 Benefits, Limitations, And Summary of Firmware 
Mechanisms 

The previous sections review the related work that focuses on firmware updates in IoT. These 

works provide certain benefits and limitations in the IoT context. Hence, this section provides 

clear limitations and benefits for each study as shown in Table 3.1. 

Table 3.1 Contributions and Limitations of Server-Based Firmware Approach 

References Benefit(s) Limitation(s) 

Centralized-based 

(Alexandre, 2016) Covers basic security threats 

include confidentiality, 

integrity, and authenticity. 

Proposed, implemented, and 

evaluated the proposed 

mechanism. 

May not be suitable for too 

constrained IoT devices, 

since it uses an RSA 

signature which may not be 

incorporable to some IoT 

devices. 

(Pycom, 2018) Accommodates constrained 

devices specifically low-

The approach requires that 

the end device must be 
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References Benefit(s) Limitation(s) 

powered LoRa devices. Uses 

both LoRa and Wi-Fi to 

transmit firmware. 

equipped with Wi-Fi which 

other devices may not have. 

Moreover, the mechanism is 

good for devices that are not 

battery-powered, otherwise 

using traditional 

technologies may consume 

the battery of the end device. 

(Doddapaneni et al., 2017) Demonstrated firmware 

update procedure that can 

handle loss packets in the 

lossy network. 

Only proposes the FOSE and 

no implementation, or 

analysis of the proposed 

work. 

(Reißmann and Pape, 2017) This paper focused more on 

the implementation of 

firmware updates based on 

ESP8266 microcontrollers. 

Implemented and evaluated 

the solution. 

No evaluation and 

performance analysis. 

Incompatible with 

constrained networks. 

(Lo and Hsu, 2019) 

Discussed the security 

analysis of ECSH key 

exchange, man-in-the-

middle, and replay attack 

The study is on the client-

server model and uses 

subscribe publish model. 

Each manufacturer manages 

its broker's bad patch server. 

This model may scale well 

with a large amount of IoT 

devices. Only proposed but 

have not implemented the 

scheme. 

(Abdelfadeel et al., 2020b) Demonstrated how the LoRa 

firmware standards or 

specifications can be used to 

provide the firmware update 

The work focuses more on 

how the firmware update can 

be done on a large scale in 
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References Benefit(s) Limitation(s) 

to a large number of devices 

using the simulation tool. 

LoRaWAN but does not 

cover the security part of it. 

(Sahlmann et al., 2021) Discussed existing updates 

for constrained devices that 

use MQTT protocol to 

transmit firmware. 

Based on the client-server 

model may scale well with a 

large amount of IoT devices. 

(Techniques, 2021) 

Presents a firmware update 

methodology for both mobile 

and low-powered devices. 

The methodology 

demonstrates the update 

mechanism using only a 

single device. In other 

words, the mechanism must 

be able to serve firmware 

updates to the set of devices 

in the IoT network. 

(Charilaou et al., 2021) 

Provides support for the 

utilization of multiple 

gateways instead of a single 

gateway during firmware 

updates. 

Some security properties can 

be improved for example 

providing the end-to-end 

encryption between the 

Firmware Update Server and 

the LoRaWAN servers and 

providing data 

confidentiality between the 

Firmware Update Server and 

the end devices. 

Blockchain-based 

(Lee and Lee, 2017) Discussed the Blockchain-

based scheme that provides 

high availability, integrity, 

and authentication in-depth. 

The proposed mechanism 

might be difficult to 

incorporate in constrained 

IoT devices because of 

limited resources. The 

scheme has not been 

implemented and evaluated. 
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References Benefit(s) Limitation(s) 

(Yohan and Lo, 2019) 

Discussed feature 

comparison between the 

proposed firmware update 

framework and existing 

frameworks 

The limited literature on 

firmware updates. 

The mechanism only ensures 

the integrity of the firmware 

image. No implementation 

and evaluation only 

proposed the mechanism. 

(Mtetwa et al., 2019) The study focuses in-depth 

on how the software update 

may take place with 

Blockchain utilized to secure 

the entire process. 

The proposed mechanism 

targets IoT devices but is not 

suitable for devices that are 

too constrained in resources. 

(Witanto et al., 2020) The work provides two ways 

of updating IoT devices, the 

client-server and the 

distributed approach. 

Discuss the implementation 

and analysis of these two 

techniques. 

The proposed techniques are 

good for IoT devices with 

sufficient resources but not 

for constrained devices with 

limited storage. 

(Anastasiou et al., 2020) 

Discussed how Low-

powered devices can be 

updated based on the 

simulation tool. 

The study performs firmware 

updates utilizing Blockchain 

but it is not clear how the 

Blockchain was 

implemented in the 

simulation tool developed by 

(Abdelfadeel et al., 2020b). 

The mechanism claims to 

provide authenticity and 

integrity but does not specify 

which algorithms are utilized 

to achieve such. Moreover, 
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References Benefit(s) Limitation(s) 

no security analysis was 

performed. 

(Fukuda and Omote, 2021) Explored previous updates 

method considering 

incentivize and provides the 

comparison of the proposed 

scheme with the previous 

ones based on the gas cost. 

Not clear which encryption 

and hashing algorithm is 

used for confidentiality and 

integrity. Not compatible 

with the constrained 

network. 

(Tsaur, Chang and Chen, 

2022) 

Focuses on security goals 

such as Malicious code 

resistance and  Distributed 

denial-of-service (DDoS) 

resistance. 

Fewer comparisons against 

available existing 

Blockchain solutions, only 

three studies were compared. 

The fundamental security 

goal achieved is firmware 

integrity only with no 

confidentiality and 

authentication. 

(Sanchez-gomez et al., 2021) 

Enables trust-worthy 

management of large 

heterogeneous IoT networks 

for firmware update 

distribution. 

The implementation and 

execution details of the 

platform are not provided as 

yet, it is part of future work. 

This includes the test 

validation results of the 

details of the operation 

together with the 

performance analysis and 

scalability testing. 

 

 

The authors proposed different mechanisms that provide certain security properties in the 

firmware update process. These properties include availability, confidentiality, integrity, 

authentication, and data freshness. Each mechanism may target a certain group of devices, 

including low-end, middle-end, and high-end. Some of these mechanisms target constrained 

networks and constrained devices while others do not. Moreover, some of the mechanisms 

were evaluated and the security analysis was provided while some were proposed without 

performing any evaluations on how the mechanism behaves. Table 3.2 gives a summary of all 

the mechanisms and shows which properties were achieved, what type of approach was taken 

to provide firmware update, which type of IoT network it targets e.g., constrained network, and 
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finally if the mechanism was evaluated. These mechanisms are categorized based on the client-

server and Blockchain-based or decentralized models. 

Table 3.2 Comparison between proposed approaches 
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Centralized-Based 

(Alexandre, 2016)   ✓    ✓  ✓  ✓   ✓ 

(Pycom, 2018)  ✓   ✓    ✓    

(Doddapaneni et al., 2017)  ✓   ✓    ✓    

(Reißmann and Pape, 2017)  ✓      ✓  ✓   

(Lo and Hsu, 2019)    ✓    ✓  ✓   

(Abdelfadeel et al., 2020b)  ✓   ✓       ✓ 

(Sahlmann et al., 2021)  ✓     ✓  ✓  ✓  ✓  ✓ 

(Verderame et al., 2021)  ✓     ✓  ✓    ✓ 

(Techniques, 2021) ✓  ✓  ✓ ✓ ✓  ✓ 

(Charilaou et al., 2021) ✓  ✓   ✓ ✓  ✓ 

Blockchain-Based 

(Lee and Lee, 2017)   ✓  ✓  ✓  ✓ ✓   

(Yohan and Lo, 2019)   ✓     ✓    

(Mtetwa et al., 2019)   ✓   ✓   ✓    

(Witanto et al., 2020)   ✓   ✓   ✓  ✓   ✓ 

(Anastasiou et al., 2020)     ✓   ✓  ✓   ✓ 

(Fukuda and Omote, 2021)   ✓   ✓  ✓  ✓  ✓   ✓ 

(Sanchez-gomez et al., 2021) ✓  ✓ ✓ ✓ ✓ ✓   

(Tsaur, Chang and Chen, 

2022) 
 

✓ ✓       
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Table 3.2 shows that a lot of the update mechanisms ensure the confidentiality, integrity, and 

authentication properties and some add extra properties such as availability, and data freshness. 

It is observed that most of the client-server-based mechanisms target low-end devices and 

middle-end devices and none of the Blockchain-based mechanisms targeted low-end devices. 

Note that the low-end and middle-end devices are also called low-powered devices because a 

low-powered device may belong either to the low-end or middle-end class.  

From Section 3.1, it was stated that there was no integration focused on delivering firmware 

updates to LoRaWAN using Blockchain technology when this study was conducted. This was 

observed through our survey study by Mtetwa et al., (2019) that was conducted and published 

as a journal article. However, after the survey study, Anastasiou et al., (2020) conducted a 

Blockchain-based study that utilizes a simulation tool developed by Abdelfadeel et al., (2020b). 

The study used the simulation tool and was not clear how Blockchain was integrated into the 

simulation tool and does not show any real-world implementation of Blockchain being 

integrated with LoRaWAN. Apart from this study, most of the tactics used in the update process 

of the mechanisms make the mechanism incompatible in constrained networks. Perhaps they 

do not aim to utilize the Blockchain to provide security in the constrained networks. This 

suggests the need to develop a real-world mechanism that utilizes Blockchain technology to 

secure low-powered devices. Therefore, this research proposed a Blockchain-based mechanism 

that promises to deliver firmware updates for low-powered devices in LoRaWAN. The 

Blockchain in LoRaWAN is used to make the distribution of the firmware decentralized and 

enhance security during the firmware updates. 
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Chapter 4: Research Design and 

Methodology 

The literature review presented in Chapter 3 showed the need to develop a firmware update 

architecture that focuses on low-powered devices in the Long-Range Wide Area Network 

(LoRaWAN). This chapter presents an architecture based on Blockchain technology to deliver 

firmware updates to low-powered IoT devices in the LoRaWAN network. Before the 

architecture is presented the methodology is presented after which the application scenario is 

provided for clarity on where the architecture can be utilized.   

4.1 Research Methods 

Research in the discipline of Computer Science (CS) and Information Systems (IS) is generally 

carried out via the utility of one or more research methods. The most-used study methods for 

CS and IS include simulation, design prototypes, design science, surveys, and experimental 

methods. 

The Simulation Method 

The simulation methods are widely used in the CS field as they offer the possibility to study 

systems outside of the experimental field or the system under development or construction. 

This can involve complex events that cannot be performed in a laboratory. Areas that often 

involve simulation include astronomy, physics, economics, and specialties such as the study of 

artificial life, virtual reality, or nonlinear systems. 

The Design Prototyping 

The prototyping method enables the layout of a working "prototype".  Prototyping is frequently 

used to predetermine a large portion of resource deployment in development and influences the 

success of design projects (Dooley, 2002). 

The Experimentation Method 

The experimentation method refers to the task of conducting real-life experiments. 

Experiments are often used to test truth and theories. The experimental research method is 

widely used in proof automation, natural languages, performance, and behavioral analysis 

(Fatjon Muca, 2014). 

The Design Science 
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Design science research is a qualitative research approach in which the object of study is the 

design process. Design science generates knowledge about the method used to design an 

artifact (Carstensen and Bernhard, 2019). The Design Science research methodology 

incorporates, practices, procedures, and principles necessary to carry out the research with three 

main objectives: it is consistent with past literature, it offers a nominal procedure model for 

undertaking research, and it provides a mental model to present and evaluate the research. 

4.2 Research Selection 

Since this study introduces an artifact, prototyping and experimentation were the most 

appropriate methods to use. This study required that experiments be conducted to determine 

how well the proposed architecture behaves in low-powered devices and LoRaWAN-

constrained networks. In this research, the aim was to design, implement and evaluate a secure 

Blockchain-based firmware update mechanism that is suitable for LoRaWAN. While 

conducting research, it is important to ensure that the selected methods align with the objective 

of the study. A survey method was first used to establish the literature on an existing firmware 

update in LoRaWAN examining different approaches to be utilized to deliver firmware 

updates.  

In addition, the method also examines the state of the art in Blockchain and LoRaWAN 

integration. The problem analysis and the literature review were conducted to fully understand 

the need to develop a secure Blockchain-based solution for LoRaWAN and to identify the gaps 

that need to be addressed in firmware updates in LoRaWAN. Subsequently, this research 

adopted two research methods that align with the research objectives and provide answers to 

the research questions described in Chapter 1. The first method is the prototyping method. This 

method was the most appropriate for the implementation of the Blockchain-based firmware 

update solution for LoRaWAN. The second method selected was the experimental method. 

This method was adopted because it provides an important paradigm for conducting applicable 

yet rigorous research. In the following Subsections, the use of the selected methods is 

described. 

4.2.1 Prototyping 

Based on the design criteria gathered from the literature, a prototype that adheres to low-

powered devices specification was designed and then implemented. The prototype was 

implemented to meet the requirements gathered in the literature survey.  
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Figure 4.1 Prototyping stages. 

LoRaWAN is one of the Low-Powered Wide Area Network (LPWAN) technology that was 

utilized as a protocol. Blockchain was integrated into LoRaWAN, to enforce the security in the 

firmware update process. For every requirement, the preliminary design was conducted. In the 

design stage, a simple design of the firmware update mechanism is created. This preliminary 

design helps in developing the prototype. The next stage represents an actual prototype which 

is based on the preliminary design from the previous stage. This stage outputs a small working 

model of the required firmware architecture. Once a small working prototype is produced the 

next stage deals with the evaluation of the prototype to help discover the strength and 

weaknesses of the working architecture. A working architecture prototype is refined until all 

the requirements gathered in the literature are met. Once the final architecture is developed 

based on the final prototype, it is thoroughly tested and deployed to both Blockchain and 

LoRaWAN networks.  

4.2.2 Experimentation 

This research method aimed to examine how well the proposed solution performs. This 

includes examining whether the architecture suits the constrained low-powered devices, by 

examining energy consumption, memory consumption, cost of proposed Blockchain smart 

contract operations, and the time the solution takes to update the devices. Hence, the 

aforementioned properties are the metrics used in the proposed architecture evaluation. The 

experiment utilized physical low-powered devices. These are LoPy devices from Pycom, LoRa 

gateway, and personal computers. Table 4.1 shows the experimental devices respectively. 

Table 4.1 Devices Specification. 

Devices RAM Storage CPU Model Devices 

Pycom Lopy 4 MB 8 MB Espressif 

ESP32 chipset 

LoPy4 2 

LoRa Gateway 
1GB 

LPDDR2 

SDRAM 

4GB SD Card Cortex-A53  

64-bit SoC @ 

1.4GHz 

Raspberry Pi 

3 Model B+ 
1 

PC 8 GB SSD 4th gen Intel® 

Core™ i5 

Lenovo 

T440p 

1 
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The LoPy devices served as LoRa end devices, the gateway was built using the RAK831 

module combined with the Raspberry Pi 3 B model. The personal computer (PC) was utilized 

to run the LoRaWAN network server which handles LoRa packets.  

 

Figure 4.2 Overview of the Research Methodology 

The overview of the research methodology is illustrated in Figure 4.2. The literature survey 

method aimed to answer the first two research questions and to achieve the first two objectives. 

The prototype method answers the third research question to achieve the third objective and 

the experimentation method answers the fourth research question and achieves the fourth 

objective. All these methods culminate in achieving the research goal as illustrated in Figure 

4.2. 

4.3 Requirements and Assumptions 

This section presents the requirements (REQs) of the proposed work with the assumptions as 

well as the reasons for the given assumptions. Some of the requirements presented are based 

on the studies covered in Chapter 3: They are also influenced by the firmware updates 

recommendations made in publications such as Cloud Security Alliance (CSA), NIST Special 

Publication (Regenscheid, 2018), and other recommendations on performing updates in 

LPWAN networks (Jongboom and Stokking, 2018b). 

4.3.1  Security Requirements of the System 

The proposed work has seven requirements as explained in Table 4.2. 

Table 4.2 System requirements 



  

 42 

Requirement 

Number 
Description 

REQ1 

Push Updates – The system should enable administrators or device owners 

to schedule firmware updates to their devices to avoid network saturation 

and limit unintended downtime. 

REQ2 
Manage Updates – One component or entity must manage updates of 

multiple IoT devices. 

REQ3 

Over-The-Air Updates – The firmware update mechanism must adopt 

the over-the-air strategy, and be adapted to the network bandwidth 

constraints. 

REQ4 

Updates mechanism should provide end-to-end security, authentication, 

and  integrity which must be protected 

• Authentication – The architecture must be able to identify the 

origin of the firmware image or any sensitive information. For 

example, the architecture must be able to authenticate if the 

firmware image comes from a legitimate manufacturer before it gets 

installed on the end device. 

• Integrity – The data must be protected from unauthorized 

changes to ensure reliability and correctness. Integrity assures the 

accuracy and completeness of any sensitive firmware information. 

The sensitive information should be protected both at rest and in 

transit between systems. Therefore, the architecture should be able 

to check if the sensitive information, has not been modified both at 

rest and in transit. 

• Confidentiality – Any sensitive data must be protected from 

unauthorized viewing and other access. The firmware update 

process consists of the firmware updating sensitive information 

transmitted between entities of the system. Hence, the information 

must be viewed by the authorized entity. 

REQ5 

Availability – The end device must not rely on the central repository to 

receive firmware updates, the device must be updated regardless of 

whether the manufacturer’s servers are offline or not. This means that  

there must be no single point of failure during the updates 

REQ6 

Replay Attack – The architecture has to consider that no old messages 

are allowed during the update process. The attacker can try to eavesdrop 

on the exchanged messages during the update and later try to replay the 

same messages to disrupt the updates. Thus, the system must be tactful 

and resilient against such actions. 

REQ7 
Low-power consumption – The architecture must accommodate 

resource-constrained and low-powered (battery-powered) devices in the 

LoRaWAN network. In addition, it must be able to accommodate devices 
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without any WiFi interface or devices that cannot connect directly to the 

Internet. 

4.3.2 Research Assumptions 

The proposed architecture has three assumptions listed as follows. 

• Encryption and decryption keys are on the secure hardware module. This means that 

the security keys reside in a place that cannot be manipulated or retrieved by bad entities 

like attackers. 

• The firmware image is stored in public storage where anyone can access it. Usually, the 

firmware is stored on the manufacturer’s website and the device owner can download 

the firmware from that public repository of the manufacturer. 

• The firmware updates are assumed to be applied on battery-powered or low-powered 

constrained devices with low processing capabilities and memory limitations. 

4.4 Proposed Architecture 

 

Figure 4.3 System Architecture  

The system architecture comprises eight main components as illustrated in Figure 4.3. These 

are the LoRa end devices (low-powered devices), LoRa gateway, LoRaWAN servers, firmware 

update service (FUS), Blockchain, IPFS, device manufacturer, and the device owner. This 

section explains each component, the role it plays in the proposed architecture, and the part of 

the requirements it fulfills.  
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4.4.1 LoRaWAN System Components 

Low-powered Device 

This is the entity equipped with LoRa and needs to be updated over time. A low-powered 

device communicates with other system entities via the LoRa gateway.  

The low-powered device chosen is a LoRa end device. The Low-powered device serves as the 

constrained IoT device that provides the LoRa interface; this enables us to send firmware 

updates to the end device without any internet connection. Utilizing this component helps to 

meet REQ7 where the low-powered device is required for demonstrating the proposed 

architecture. 

LoRa Gateway 

LoRa gateway connects Low-powered-devices to the outside world of LoRa. It receives and 

transmits data from multiple end devices and sends data to the network server for further 

manipulation. 

The main purpose of this component is to facilitate communication between the servers and 

IoT devices without the need for low-powered devices to require any internet connection to 

communicate with the servers. In addition, a gateway helps to provide long-range 

communication for low-powered devices since most are deployed in areas with no electricity 

and they are required to communicate with the internet. This component helps to meet the 

REQ3 (helps low-powered devices to receive over-the-air updates) and REQ7. 

Manufacturer 

The device manufacturer is the entity responsible for the creation of new firmware and 

publishing the newly created firmware to the IPFS and Blockchain network. The manufacturer 

is one of the main entities in firmware updates. It has no more role than uploading the newly 

created firmware to the Blockchain network. 

Device Owner 

The device owner owns the low-powered device as well as the FUS which is connected both 

to IPFS and Blockchain network. The device owner is responsible for managing the Low-

powered devices and can initiate the update process to update the owned devices. Hence, the 

owner interacts with FUS to manage and initiate the update. 
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Since the IoT network consists of a massive number of devices, and they need to be maintained 

by the device owner, the device owner entity helps to meet the REQ1 and uses the command 

line tool developed in this study to maintain the devices. 

LoRaWAN Servers 

LoRaWAN servers handle packets sent from the LoRa gateway and the FUS. They all form 

part of the LoRaWAN server for processing LoRaWAN packets. These servers are explained 

below: 

Gateway Servers 

The gateway server is responsible for maintaining connections with gateways that support the 

UDP, Message Queue Telemetry Transfer (MQTT), Google Remote Procedure Call (gRPC), 

and Basic Station protocols. It forwards uplink messages to Network Servers and schedules 

downlink messages to the end devices via a LoRa gateway 

It is also responsible for maintaining connections with gateways that support the UDP, Message 

Queue Telemetry Transfer (MQTT), Google Remote Procedure Call (gRPC), and Basic Station 

protocols. It forwards uplink messages to Network Servers and schedules downlink messages 

to the end devices via a LoRa gateway. 

Join Server 

It is connected to the network server and the application server and has the responsibility of 

storing the end device’s root keys and handling the OTAA join procedure. It generates and 

shares session keys with the network server and application server for the secure transmission 

of LoRaWAN messages. 

Network Server 

It is responsible for handling the LoRaWAN network layer. It keeps track of the end devices, 

performs an authentic and integrity check using the MIC algorithm, detects if there are any 

replayed messages by performing frame counter checks, and sends the message to the 

appropriate application server. 

Application Server 

It handles the LoRaWAN application layer which includes decoding and decryption of the 

uplink message and performs encoding and encryption of downlink messages. It also hosts an 

MQTT server that exposes the MQTT topic for streaming the application data. 
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4.4.2 Blockchain and Storage Components 

The proposed solution utilizes IPFS and Blockchain as storage. 

Blockchain  

Blockchain is a decentralized peer-to-peer network that stores firmware metadata and low-

powered device information in a smart contract.  The main purpose of this component is to 

enable trust during the firmware update process. Blockchain ensures that there is a single source 

of truth containing tamper-proof firmware metadata from the manufacturer. This component 

helps to fulfill some parts of the REQ4 by ensuring the integrity of firmware metadata. It also 

provides high availability of firmware metadata which fulfills the requirements of REQ5. 

IPFS 

IPFS is a decentralized peer-to-peer network responsible for storing the firmware image of 

low-powered devices. It acts as file storage ensuring the high availability of data in the 

proposed architecture. It particularly ensures the high availability of firmware images which 

also fulfills the REQ5. 

4.4.3 FUS 

The important component that this research implemented is the FUS. This component is 

explained in Table 4.3. The purpose of the component is to provide firmware updates to low-

powered devices through Blockchain, providing the low-powered device with a single source 

of truth, and providing security during the update process.  

Table 4.3 FUS Operations. 

Tasks Description 

Firmware Request 

▪ The FUS handles and manages firmware requests of low-

powered devices which can be also initiated by the device owner. 

▪ It communicates with the application server via the MQTT 

protocol and exchanges messages via the topics exposed by the 

MQTT server. 

Connects to 

Decentralized 

Networks 

▪ FUS is connected to both IPFS and Blockchain networks via 

HTTPS and the WebSocket. 

▪ It runs a daemon that connects with the Blockchain network 

and handles firmware updates triggered by the manufacturer 

upon the new upload of firmware metadata. 
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State Update 
It continuously updates the device’s progress on the Blockchain 

during the update process. 

Firmware 

Fragmentation 

It performs the firmware fragmentation based on the spreading 

factor (SF) or the data rate (DR) used by the low-powered device. 

Cryptographic 

Operations 

▪ It generates session keys to be utilized for a particular session 

of the firmware update. 

▪ It handles encryption and decryption of sensitive data such as 

session keys and more. 

• It performs authentication and integrity check of the sensitive 

data and firmware image. 

 

The FUS fulfils REQ1, REQ2, REQ3, REQ4, and REQ6. The detailed fulfillment of these 

requirements is explained in  Chapter 5: 

 

4.5 Application Scenario 

To understand the proposed architecture, it is important to provide an application scenario to 

have a better understanding of where it could be applicable. The scenario actors include the 

manufacturer, Firmware Update Service (FUS), constrained device, Alice as a device owner, 

and Bob as the attacker.  

4.5.1 Scenario Assumptions 

• Assume that Alice has planted a garden in a rural area, that is far from where she stays. 

• The garden is located in an area where there is no electricity. 

• It is assumed that Alice has configured the LoRa devices together with LoRaWAN 

servers and the FUS, which will be responsible for the entire firmware update process. 

4.5.2 Scenario Description 

Suppose Alice has a garden and desires to monitor her plants so that she knows their state and 

treats them according to their need. To achieve this, she buys a battery-powered IoT device 

equipped with LoRa and Wi-Fi and places it in the garden to monitor the plants. Since the 

garden is separated by kilometers from her home and planted in an area with no electricity, she 

cannot rely on Wi-Fi to connect with the device. Alice is worried about the security of the 

device because people like Bob may intrude on the device to generate misleading data. To 

overcome this, Alice plans to keep the device up to date with the latest firmware so that the 

possible vulnerabilities that Bob may use to intrude on the device may be patched. The 
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following sections demonstrate how the proposed architecture can assist Alice to secure her 

data and have a secure firmware update mechanism. 

4.5.3 Illegitimate Firmware Prevention on Blockchain 

Suppose the manufacturer has deployed the contract to the Blockchain and it is ready to 

contract to store firmware data. Let us assume that before the manufacturer releases a new 

firmware, Bob impersonates the manufacturer by uploading fake firmware. Note that Bob may 

have a manufacturer’s contract address. This contract logic was deployed by the manufacturer 

on the network and he knows the public key or wallet address of the manufacturer. He then 

tries to publish the fake firmware to the storage and fake metadata to the Blockchain network 

and expects that the FUS will feed the malicious firmware to Alice’s devices.  

 

Figure 4.4 Prevention of illegitimate firmware distribution and metadata 

Unfortunately, Bob fails to publish the firmware to the network because he does not know the 

manufacturer’s private key and the manufacturer’s contract logic allows only the manufacturer 

to publish new firmware metadata. Figure 4.4 illustrates how this illegitimate activity could be 

prevented by the proposed solution. 

4.5.4 Session Key Eavesdrop 

Suppose the manufacturer publishes a new firmware and Alice’s FUS generates the session 

keys and sends them to Alice’s devices. During the transmission, Bob eavesdrops on the 

session keys to use them later. For the next firmware update process when FUS shares session 
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keys with the devices, Bob captures the moment and sends old session keys to Alice’s devices 

that FUS shared on the previous update. However, Alice’s devices prevent this kind of attack 

because the FUS and devices use a function that keeps track of the nonces preventing replaying 

data. Therefore, it becomes impossible for Alice’s devices to accept Bob’s session keys to be 

used during that session of firmware update. Figure 4.5 illustrates how the proposed solution 

prevents Bob from replaying sensitive data like session keys. 

 

Figure 4.5 Session Key Eavesdrop Illustration 
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4.5.5 Illegitimate Firmware Prevention on the Device 

 

Figure 4.6 Prevention of Bob’s Illegitimate Firmware on the Device 

After Bob failed to send the session keys to Alice’s devices, he somehow found a way to push 

a fake firmware fragment to Alice’s devices. After Alice’s devices received all firmware 

fragments including the malicious Bob’s fragment, will then verify their authenticity and 

integrity. Since one of the fragments came from Bob the verification process will capture that 

and not install the firmware. This illegitimate activity performed by Bob and its prevention is 

illustrated in Figure 4.6.  

With the proposed solution preventing Bob from performing such activities, Alice can now 

grow her plants without worrying more about Bob and the security of the devices. In addition, 

Alice, can monitor the plants from a distance and be able to update the devices in an 

environment where there is no electricity, with no need for Wi-Fi.  

4.6 Security Algorithms 

With the requirements and different system components being presented in the previous 

section, this section focuses on security algorithms utilized by the proposed architecture. These 

security algorithms mainly focus on achieving data confidentiality, authentication, integrity, 

and elimination of replay attacks. 
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4.6.1 Data Authentication 

The data authentication proves the origin of the data and ensures that the data has not been 

modified or fabricated. Data authentication may be achieved using conventional encryption 

algorithms such as symmetric cryptography or public-key cryptography, also known as 

asymmetric cryptography. Conventional encryption algorithms can be easily incorporated into 

low-powered devices unlike asymmetric cryptography and do not require many resources since 

most of the low-powered ones are limited in resources. Therefore, the proposed architecture 

utilized symmetric cryptography to provide the data authentication of the firmware image to 

prove its integrity and authenticity on the end device. Specifically, the MAC is used to 

determine both integrity and authenticity on low-powered devices. 

The FUS component uses an asymmetric cryptography algorithm to provide the authenticity of 

firmware images at the application layer. ECDSA algorithm provides the authenticity of the 

firmware utilizing three security keys: wallet address, public key, and private key. The 

alternative to the ECDSA algorithm would be an RSA algorithm which is commonly used for 

providing authenticity. The proposed solution however does not utilize RSA, and the reason 

for this is that some studies like Vahdati et al., (2019) have shown that is more successful in 

terms of parameters like execution time, energy consumption, memory requirements, 

decryption time, key sizes, signature generation time, and key generation in constrained IoT 

devices. 

Firmware integrity is achieved through the cryptographic hashing function which is the 

SHA256 algorithm. A hash function takes an input, breaks it into pieces, mixes them up, and 

produces a new output. For example, the SHA256 algorithm will take session keys, crumple 

them, and produces an irreversibly fixed output that can be used to determine the integrity of 

session keys. Figure 4.7 shows how SHA-256 works.   

 

Figure 4.7 SHA256 hashing algorithm  
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With the SHA256 algorithm, the input value is divided into elements of equal length. These 

are called blocks. Since a multiple of the block length is required, it is usually necessary to fill 

in the data, that is, expand it. The padded value is the padding. Then, the processing is done in 

blocks. The blocks are executed and used as a key for intermediate calculations on the data to 

be encoded later. The result of the last calculation is the output value is the hash value. SHA256 

is the most-used hashing algorithm. There are alternative algorithms such as MD5, and SHA1 

however, collisions have been found with these algorithms (Stevens et al., 2017) but no 

collisions have been found yet with SHA256 algorithms. 

SHA256 is used in the MAC algorithm to help in providing not only the integrity but also the 

authenticity of data. As mentioned before, the proposed solution utilizes the MAC algorithm 

specifically, the HMAC-SHA256. Although there are other types of MAC algorithms apart 

from the HMAC-SHA256, it is the proposed architecture because it provides integrity and 

authenticity through hashing. The hashing functions are faster than block ciphers which other 

MAC algorithm like Cipher-Block Chaining Message Authentication Code (CBC-MAC) uses 

to provide integrity and authenticity (Kaliski, 2011). 

4.6.2 Secure Distribution of Data Security and Replay Attack 

Prevention 

The authentication and encryption of data are not enough in distributing the firmware securely. 

The communication between a sender and the receiver (for instance, between the FUS and the 

low-powered device) can be taped in by the attacker. The attacker could break the 

communication to uncover the plaintext from the ciphertext or try to discover the encryption 

key to attempt to decrypt the data sent between the sender and receiver in the future. The 

attacker can try to record the data being exchanged and then replay the old data to the low-

powered device. Note, that the sent old data will be interpreted correctly by the low-powered 

device since it was encrypted by the FUS using the shared secret key. Figure 4.8 illustrate how 

a replay attack can happen between the FUS and the low-powered device. 
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Figure 4.8 Replay attack in FUS component 

 

 To avoid the replay attack in the proposed system, the architecture utilizes the nonce values. 

The nonce values must be: 

• A number that is used only once 

• Different for each request 

• Difficult for an attacker to guess 

An example of the nonce values could be a timestamp, counter, random value, etc. Since most 

of the low-powered devices do not have an internal clock and are not directly connected to the 

Internet, the timestamp cannot be utilized.  

 

Figure 4.9 Replay Attack Illustration 
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The architecture uses the counter as a nonce value to prevent a replay attack. This is illustrated 

in Figure 4.9. The counter values are generated by the function f(n), where f(n) is a function 

that increments the nonce value. Both FUS and the low-powered device must know this 

function. When the FUS receives N1, it uses the function f(n) to increase the nonce and generate 

N2 which are both sent along with the encrypted data. The device will then decrypt the data 

with the nonce values using the shared secret key. The correctness of the nonce values will be 

verified by the low-powered device which will then send an increment to the N2 using f(n) and 

send it to the FUS. 

4.6.3 Data Confidentiality 

LoRa stack provides confidentiality of data through AES. This means every low-powered 

device runs an AES algorithm to encrypt and decrypt incoming and outgoing LoRa payloads. 

The proposed architecture is designed to achieve confidentiality through the AES algorithm. 

The counter mode of operation (CTR mode) is used for the encryption and decryption of data. 

4.7 Proposed Blockchain Smart-Contract Operations 

At this point, the security algorithms responsible for securing the update process have been 

presented. In the following sections, the focus is mainly on describing the interaction between 

the system components. But before the overall interaction/procedure is described, there is a 

need to introduce an important component of Blockchain which is a smart contract. Two 

contracts were designed, and each has its operations. The first contract is a manufacturer’s 

contract which stores firmware metadata to be used during the update process. The second 

contract is a FUS contract that stores the low-powered device's data such as the device's unique 

ID, the manufacturer’s contract address, device model, current firmware, and the status. The 

manufacturer’s contract is publicly stored and can be utilized by any entity to retrieve firmware 

metadata and check for the availability of the new firmware. Figure 4.10 illustrates the 

operations from both contracts. 
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Figure 4.10 Smart Contracts Operations. 

4.7.1 Manufacturer Smart Contract 

The manufacturer’s smart contract has four Blockchain operations that include deployment of 

the contract, adding new metadata, checking updates, and retrieving metadata. These 

operations are explained in this section together with their pseudocode. 

Deployment 

The manufacturer must first deploy the contract to the Blockchain network before any firmware 

update process occurs. When the contract is deployed, there is an algorithm responsible for 

assigning the manufacturer’s contract address as an address that owns a contract in the network. 

This gives the opportunity in the future to know who created and deployed the contract and to 

restrict access to sensitive data. The pseudocode of this algorithm is represented in Algorithm 

1. 

Algorithm 1: Pseudocode for assigning manufacturer’s contract address and name to Blockchain 

Input: deployer’s contract address and name 

Result: stores the deployer’s contract address to storage variable 

string manufacturer_id; 

string manufacturer_name; 

function constructor (string id, string name) do 

 Add id, name to manufacturer_id and manufacturer_name storage variable; 

end 
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Adding New Metadata 

Once the contract is deployed on the network. The manufacturer can add the new metadata. 

Adding new metadata is a crucial operation that must not be allowed to be executed by any 

other entity in the Blockchain but only the manufacturer. Therefore, Algorithm 2 has to check 

first who calls it before it accepts the metadata. The newly uploaded metadata is saved on the 

metadata list structure and is represented in the form of key-value pair.  

Algorithm 2: Pseudocode for adding new metadata 

Input: model, version, firmware metadata represented in key-value 

Result: Firmware record is updated with a new metadata 

mapping (string => Firmware Metadata) metadata_list; 

if msg.sender == firmware Provider then 

 loop through the entire model_list upload and check if the version of the model exists 

 emit new Firmware (Firmware Details); 

 else 

 error: Not authorized for such operation; 

end 

Checking Updates 

After the metadata has been uploaded, anyone who wants to check for newly uploaded 

metadata can interact with Algorithm 3. For example, The FUS will call this function on the 

manufacturer’s contract to check if there are any new firmware updates available for the 

provided current version of the device and the provided device’s model. The algorithm returns 

true or false based on the availability of the firmware, meaning true is returned if the device’s 

current version is less than the version that exists on the Blockchain. 

Algorithm 3: Pseudocode for firmware availability check 

Input: model, current_version 

Result: Returns true or false based on the firmware availability  

mapping (string => Firmware Metadata) metadata_list; 

string [] public model_list; 

uint256 i; 

for an available model in model_list do 

   if model == model_list[i] then 

    if metadata_list[model.version] is greater current_version then 

 return true; 

 end 
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  end 

increment i 

return false; 

end 

Download Metadata  

Algorithm 4: Pseudocode for retrieving the firmware metadata 

Input: model,  

Result: Return metadata 

mapping (string => Firmware Metadata) metadata_list; 

uint256 i; 

for an available model in model_list do 

   if model == model_list[i] then 

  return metadata_list[model].metadata 

  end 

increment i 

end 

If the availability state of the firmware update returned by Algorithm 3 results is true, 

Algorithm 4 will return the latest firmware metadata when is called. The FUS calls this 

operation to get the new metadata for the low-powered devices. The algorithm first checks if 

the provided model is valid before it returns the metadata. If this is not checked, this will result 

in using the invalid key on the metadata list and lead to confusion. 

4.7.2 The FUS Smart Contract 

In Section 4.7.1, the manufacturer's smart contract operations were explained, this section 

presents the FUS contract operations. which is owned and managed by the owner of the low-

powered IoT device. This contract stores, updates and retrieves low-powered device 

information. It has several operations that can be invoked, including device registration, 

updating the device, and getting the device information. This section explains and presents 

these operations.  

Deployment 

The device owner (the FUS owner) needs to deploy the contract to the Blockchain network so 

that it can store information on the low-powered devices. When the contract is deployed, this 

function stores the owner’s contract address and the name of the owner on the Blockchain 

network. The owner’s address can be used later to restrict access to some of the contract 
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operations. For example, the FUS owner is the only entity allowed to update device 

information.  Algorithm 5 is similar to Algorithm 1 whereby the manufacturer’s contract 

deploys the contract on the Blockchain network. 

Algorithm 5: Pseudocode for assigning device owner’s contract address and name to Blockchain 

Input: owner’s contract address and name 

Result: stores the owner’s contract address to storage variable 

string owner_id; 

string owner_name; 

function constructor (string id, string name) do 

 add id, name to owner_id and owner_name storage variable; 

end 

 

Device Registration 

Algorithm 6: Register a new LoRa device 

Input: device details 

Result: Updated device list record 

mapping (string => string[]) devs; 

mapping (string => Devices[]) devicesList; 

string[] public deviceIDList 

 if msg.sender == updateServiceOwner then 

 for available device in deviceIDList do 

if devID == deviceIDList[i] then 

 exist == true; 

end 

  end 

if not exist then 

 add a new device to the deviceList 

end 
 

 else 

 Error: Not authorized for such operation; 

end 

After a successful deployment, the device owner needs to register low-powered devices on the 

network since the FUS component needs to know which Low-powered devices need to be 

updated. The registration operation is crucial because it must not be called by anyone other 

than the FUS owner. The device information includes the LoRaWAN device application id, the 
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device id, the manufacturer’s smart address, wallet address, model, current version, and the 

device update status. The registration is handled by Algorithm 6.   

Update Device Information and Status 

The device information on the Blockchain can be updated together with the update status. The 

updated information includes the LoRaWAN device application id, the device id, the device 

manufacturer’s smart address, the wallet address, the device model, and the device version. 

The status update keeps track of the update process of the device, e.g., the status of the session 

keys whether were exchanged or not, and the number of firmware fragments sent. Keeping the 

state helps in case of any interruptions during the update process. Algorithm 7 and Algorithm 

8 illustrate the pseudocode for updating device information and device status respectively. 

Algorithm 7: Update Device Information 

Input: devID, device information 

Result: return true for the device's successful update and false if device information is not updated 

mapping (string => Devices[]) devicesList; 

 if msg.sender == updateServiceOwner then 

 if devicesList[devID].exist do 

update device information 

return True 

end   

 else 

 Error: Not authorized for such operation; 

end 

 

Algorithm 8: Update Device Status 

Input: devID, new device status 

Result: updated device status 

mapping (string => Devices[]) devicesList; 

 if msg.sender == updateServiceOwner then 

   update devicesList[devID].status with a new device status 

 else 

 Error: Not authorized for such operation; 

end 

 

Delete device 

Algorithm 9: Delete low-powered device 
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Input: devID 

Result: delete device from the list 

mapping (string => Devices[]) devicesList; 

 if msg.sender == updateServiceOwner then 

   if devicesList[devID].exist do 

delete a device with matching devID 

return True 

end   

 else 

 Error: Not authorized for such operation; 

end 

Apart from updating the device on the Blockchain, the device owner can also delete the device 

if it is no longer needed. This operation will only be executed by the owner of the FUS contract 

and if another entity tries to execute the function, it will fail because it requires the address of 

the owner for successful execution. The delete operation is illustrated by Algorithm 9 

pseudocode. 

Get Device(s) Information Operations 

The owner’s contract has three algorithms that get information about the device on the network. 

These algorithms include the retrieval of devices by the model’s name, getting the device 

information, and the device update status and are illustrated by Algorithm 10, Algorithm 11, 

and Algorithm 12 respectively. 

Algorithm 10: Get devices by Model 

Input: model 

Result: Returns devices with matching model 

mapping (string => Devices []) devicesList; 

function getDevicesByModel(string model) do 

 return devicesList[model]. model; 

End 

 

Algorithm 11: Get device information 

Input: devID 

Result: Returns device update status 

mapping (string => devicesInfo []) devicesInfo; 

function getDevStatus (string devID) do 
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 return devicesInfo[devID]; 

End 

 

Algorithm 12: Get device update status 

Input: device ID 

Result: Returns device update status 

mapping (string => Devices []) devicesList; 

function getDevStatus (string devID) do 

 return devicesList[deviceID].status; 

End 

 

4.8 Overall Procedure of the Proposed Architecture 

This section explains the interaction between the system components during the firmware 

update process. The interaction is classified into four main phases: firmware upload, device 

registration, firmware initiation, firmware download, and firmware verification. In each phase, 

the interaction is explained with the security measures taken. 

4.8.1 Firmware Upload Phase 

The firmware upload phase occurs after the manufacturer’s contract has been successfully 

deployed to the Blockchain network and after the manufacturer has successfully connected to 

the IPFS network.  

The firmware upload involves the interaction between three main system components the 

device manufacturer, the IPFS network, and the Blockchain network. The objective of this 

phase is to have a firmware image successfully deployed on the decentralized IPFS network 

and the metadata stored on the Blockchain network. The manufacturer connects to the IPFS 

node to publish the new firmware image to the IPFS network and also connects to the 

Blockchain node that is synced with the network to publish the metadata. After the firmware 

and metadata are deployed via the connected nodes, they are synced with the rest of the 

network. Figure 4.11 illustrates this process of uploading the firmware and metadata to the 

Blockchain and IPFS network. 
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Figure 4.11 Firmware Upload Procedure. 

The metadata that is deployed on the Blockchain is structured as follows: 

{ 

    name: 'LoPy4-firmware', 

    version: '1.2.0', 

    model: 'LoPy4', 

    SHA256: '569948b4baa...', 

    IPFS_HASH: 'QmaY7aKo...', 

    Signature: 'Ed30Ac8a...', 

    .... 

    .... 

    .... 

} 
  

Figure 4.12 Structure Example of the Metadata 

Figure 4.12 shows the metadata that is deployed by the manufacturer to the Blockchain. 

This metadata is constructed or created from the web application this is illustrated in the 

implementation chapter. 
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Security Measures: During Firmware Upload Phase 

Security measures need to be taken when the firmware is uploaded to the networks. Thus, this 

section explains the security involved in the firmware upload phase. During this phase, it is 

very important to verify when the uploaded firmware is legitimate before it gets stored. The 

illustration of how the verification process of firmware metadata is done is shown in Figure 

4.13: 

 

Figure 4.13 Verification process of firmware metadata 

• Integrity - The firmware image can be modified during transmission. Therefore, the 

manufacturer hashes the firmware image using the SHA-256 algorithm to prevent 

any alteration that could take place in the update process. The calculated SHA-256 

hash forms part of the metadata. 

• Authentication - The manufacturer needs to sign the firmware to prove the 

ownership digitally. The manufacturer uses the private key to sign the metadata. 

The Elliptic curve digital signature (ECDSA) signature is produced and appended 

to the firmware metadata. By appending the signature to the metadata, it will be 
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easy to verify the authenticity of the firmware image. Moreover, this enables 

metadata to be immutable and tamper-proof since it is on the Blockchain network. 

• Firmware Availability - The firmware image is deployed on the manufacturer’s 

IPFS node that syncs with the IPFS network. The other IPFS nodes on the network 

will sync with the uploaded firmware; this ensures the high availability of the 

firmware image even if the manufactures node is unavailable on the network. 

• Authorization - The firmware metadata describes the firmware images. It consists 

of the integrity hash, the manufacturer's digital signature, the firmware's size, the 

firmware version, the location of the firmware, etc. Firmware metadata plays a 

considerable role during the verification process; therefore, no other entity apart 

from the manufacturer is allowed to deploy the firmware metadata.  The Blockchain 

contract enforces authorization only, allowing the manufacturer to be the only entity 

of the network to upload firmware metadata. 

4.8.2 Registration Phase        

Registration is required for the low-powered device to be a part of the LoRaWAN network. 

This includes the generation of keys that the device will use during the join procedure. It is 

assumed that the end device is already configured to join the LoRaWAN network in this phase. 

This phase particularly describes the device registration to the Blockchain network. It involves 

interaction between three system components: the device owner, the FUS, and the Blockchain.  

The owner registers the LoRa device to the Blockchain network via the FUS. The FUS directly 

connects the owner with the Blockchain network to manage the devices. Device management 

includes registering the device, deleting the device, and updating the device information. Note 

that for the FUS to register the device invokes the contract operation illustrated in Algorithm 

6. This phase ensures that the device is successfully registered and is ready to receive a 

firmware update. 

Security Measures: During the Registration Phase 

The FUS exchanges device information with the Blockchain during the registration phase. 

However, the exchanged information is stored securely on the public Blockchain, even though 

the device’s information is immutable and tamper-proof on the network. It is required that the 

FUS encrypts the information before it is stored in the Blockchain. Therefore, the 

confidentiality of the data must be ensured. The FUS ensures the confidentiality of LoRa device 
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information through the Advanced Encryption Standard (AES). The encryption of this 

information is done utilizing the Counter Mode (CTR) as a mode of operation. FUS uses the 

shared secret key (KFUS)of 128-bit for both encryption and decryption of the Blockchain data 

and is responsible for generating the master key (KM) for each registered device. The KM is 

used in AES to provide confidentiality of messages between the FUS and the end device. This 

key should be kept secret between these entities. Figure 4.14 demonstrates the security 

activities for this phase. 

 

Figure 4.14 Device registration phase 

4.8.3 Initialization Phase 

At this point, the devices are registered and ready to be updated. This phase talks about how 

the firmware process starts and what entities are responsible for it. The firmware update process 

could be started by two entities or triggered in two different ways. Firstly, it could be triggered 

by the device owner since he is responsible for managing the end device. The second way is 

based on the Blockchain event which is triggered by the device manufacturer when uploading 

the new firmware metadata on the Blockchain network. This phase aims to initialize the 

firmware update process and then successfully exchange the session keys between the FUS and 

the low-powered device(s). 

The device owner triggers the firmware process by communicating with the FUS via a 

command-line (CLI) script which implements the MQTT protocol. The FUS exposes the 

MQTT topic, which listens to the device owner's firmware request.  The FUS will be then 

responsible for the entire update process afterward. The session keys will be generated by the 
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FUS and exchanged with the end device via the LoRaWAN network. The session keys will not 

only be exchanged but the security also needs to be considered since they are a crucial part of 

the firmware update process. After successfully delivering the session keys, the end device 

performs a security check on them before they are utilized. The end device also sends the uplink 

message for confirming the successful delivery of session keys.  

Security Measures: During Firmware Initiation Process 

Before the session key exchange occurs, both the end device and the FUS must have shared 

the secret key in front. The shared secret key KM is the one that was generated earlier by the 

FUS during the device registration phase. The FUS prepares the session key message shown in 

Table 4.4. The session key message is formatted as follows: 

Table 4.4 Session Key Message Exchange 

 ID IV Nonce DevNonce ServNonce Mode DR AESSKey MACSKey TAG 

Bytes 1 4 3 3 1 1 16 16 4 

• ID - The id uniquely identifies the message. 

• IV nonce - IV nonce is used during the encryption and decryption process of session 

keys. 

• DevNonce and ServNonce - DevNonce and ServNonce are used to prevent replay 

attacks between the FUS and the device. 

• Mode - This is a LoRaWAN device class mode. E.g., Class A, Class C, and multicast. 

• DR - The data rate to be used to update the device e.g., DR0, DR1, etc.  

• AESSKey and MACSKey - Security keys generated for the particular session of the 

firmware update process. 

• TAG – Refers to the signature or tag to be used by the end device to verify integrity 

and authenticity. 

The FUS generates the session keys (Ks) AESSKey and MACSKey using KM which are the 

two keys used to determine the confidentiality, integrity, and authentication of the messages 

during the particular firmware update session. One of the session keys being exchanged is the 

AES session key (AESSKey), which provides confidentiality of sensitive messages such as 

MAC tags and nonce values.  The FUS randomly generates AESSKey and MACSKey, updates 
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the nonce value of the end device using an incremental function, and finally generates its nonce 

value N2. The session key exchange message is encrypted using the KM. 

When the end device receives the session key data, it decrypts it using the same shared secret 

key KM and then checks if the data has not been replayed by checking the nonce value N1 

received. As a response to the received session keys, the end device sends an acknowledgment 

message with the updated values of N1 and N2 Encrypted with the recently shared session keys.  

The FUS receives the message and decrypts, checks for any replay attack, and updates N1 and 

N2. The firmware update process can also be initiated by the manufacturer's Blockchain event 

on adding new firmware metadata on the Blockchain. The firmware event initialization may 

work very well when updating a set of the end device because it enables FUS to look for all 

devices that match this new metadata. The process of session key exchange and detection of 

replay attacks is still the same as shown in Figure 4.15. 

 

Figure 4.15 Session Key Exchange. 

During the session key exchange, the architecture provides confidentiality, and data 

authentication and protect against replay attack. These security properties are clearly explained 

as follows: 

• Replay Attack - The nonce values are randomly generated to prevent replay attacks 

and must be only used once during the firmware update session. The FUS and the 

device have a function that keeps track of these values and checks for any possible 

replay attack on each message sent, i.e., session keys. 

• Confidentiality - The architecture utilizes AES to provide confidentiality of session 

keys. It is recommended that the encryption keys be changed over time. Therefore, 
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The FUS generates these session keys instead of using the KM for both encryption 

and decryption. 

• Data Authentication - The second key is the MAC session key used for providing 

the integrity and authentication of the message 

4.8.4 Firmware Download 

This phase of the firmware update demonstrates what happens after the session keys were 

successfully exchanged. After successfully exchanging the session keys, the FUS requests 

firmware metadata on the Blockchain network and the firmware image on the IPFS network.  

 

Figure 4.16 Firmware Downloads and Verification Phase. 

The FUS is connected via a secure channel (HTTPS) both on the IPFS node and Blockchain 

node. The firmware authenticity must be achieved at this phase to ensure that the right firmware 

will be sent and updated by the end devices. 

Security Measures: During Firmware Download Phase 

After the firmware has been successfully downloaded from the IPFS file storage, it needs to be 

verified against any malicious activities. This includes alteration and determining its 

authenticity. Figure 4.16 shows the download process, and Figure 4.17 further illustrates how 

both authenticity and integrity are achieved. 
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Figure 4.17 Firmware Downloads 

• Authentication - In the previous phase of firmware distribution, the 

manufacturer had signed the firmware metadata and uploaded the metadata to the Blockchain 

network. Now in this phase, the manufacturer's digital signature is utilized to prove the 

authenticity of the metadata. The manufacturer has three important keys on the Blockchain 

network: the private key, the public key, and the wallet address (KMW). The private key is used 

to sign the firmware and must be kept secret. The wallet address is a hashed public key and is 

allowed to be shared with other entities on the Blockchain network. The wallet address plays a 

huge role in determining the authenticity of the firmware in the update process. The proposed 

architecture uses a function that takes the ECDSA digital signature with the metadata to 

produce the wallet address that signed the firmware metadata. The produced wallet address is 

matched against the wallet address registered earlier in the registration phase by the device 

owner. If both addresses match, the metadata does come from an authentic source and can be 

used to download the firmware image.  

• Integrity - Regardless of the secure channel between the IPFS and the FUS, 

firmware integrity has to be achieved. The FUS obtains the firmware image and recomputes 
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the SHA-256 hash which is then compared with the SHA-256 hash of the metadata. If both 

hashes are the same this confirms that the firmware image has not been altered in transmission.  

4.8.5 Firmware Data Authentication 

 

Figure 4.18 Firmware Verification on the End Device. 

After a successful firmware verification, the firmware image is ready to be sent over to 

LoRaWAN. This section describes how the firmware image is secured and explains the 

verification process shown in Figure 4.18 that the end device performs.  

The FUS performs fragmentation based on the spreading factor (SF) and the end device's 

region. The MAC of the firmware is first calculated using the HMAC-256/CMAC algorithm 

and sent over to the LoRaWAN so that the end device can verify both the integrity and the 

authenticity of the firmware. Usually, the digital signatures based on the public and private 

keys are used to verify the authenticity and the integrity of the firmware image on the end 

device, however, since these devices are limited in storage, some cannot incorporate digital 

signatures because they require more processing power to do the verification. Most of the 

constrained device's symmetric cryptography is considered lightweight, even LoRaWAN is 

based on symmetric-key cryptography to determine the authenticity and integrity of the data. 

Therefore, the proposed architecture adheres to the current cryptographic technique provided 

by LoRaWAN to deliver firmware updates to the end device via cryptographic technique. Note 

that asymmetric cryptography is used at the application layer to ensure the firmware’s 

authenticity and integrity before sending it over to the LoRa. 



  

 71 

Security Measures 

Figure 4.18 shows how the verification process is done by the low-powered device when the 

firmware is received but to further clarify this process, Figure 4.19 is presented to illustrate 

how the confidentiality and authenticity of the firmware update are achieved between the FUS 

and the low-powered device. 

 

Figure 4.19 Confidentiality and Authenticity of FUS and the Device 

• Confidentiality - The MIC needs to be sent encrypted over the channel; hence the MIC 

is encrypted with the session-shared secret key KS. The end device receives the MIC 

and decrypts it with a similar AES session key. The end device uses the CTR mode 

when decrypting the MIC as the data was encrypted using the same mode of operation. 

• Authentication and Integrity - After the device has received all the firmware 

fragments including the missing ones, it needs to determine whether the firmware 

comes from the authentic source and has not been changed on the transmission. Figure 

4.18 and Figure 4.19 demonstrate this process of verification where authentication is 

achieved via the MIC algorithm. 
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Figure 4.20 Security Activity diagram. 

To summarize all the phases and to give a clear overall interaction, the activity diagram is 

utilized. The activity diagram visualizes the data flow behind the proposed architecture as 

illustrated in Figure 4.20. It also clearly describes how each component interacts with the other 

while representing the data flow. 

The data flow begins with a manufacturer providing the firmware and metadata as input to the 

system. Firmware and metadata are deployed on the IPFS network and Blockchain network 

respectively. Firmware metadata is validated to ensure it consists of the necessary information 
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required to determine its origin and integrity. The ECDSA and integrity hash are checked and 

once successfully checked, the validated metadata data is produced and it is sent to the 

Blockchain. The FUS then checks updates or gets notified via event as mentioned in the 

initialization section.  

After the successful update, necessary session keys, signature validation, integrity check, and 

replay attack checks are done between the FUS and the Low-powered device. If all firmware 

checks are successfully performed, the device can flash the firmware into memory, and once 

done, the device status about the newly installed firmware is updated in the Blockchain. 

 



  

Chapter 5: Implementation 

This chapter details the implementation process of the proposed architecture that was discussed 

in Chapter 4:. A quick overview of the development tools and programming languages utilized 

is provided. This is followed by the implementation of the Long-Range Wide Area Network 

(LoRaWAN) network and Long-Range (LoRa) nodes used in this study.  

5.1 Blockchain Framework 

The Blockchain can either be public or private. The public Ethereum Blockchain framework 

was chosen for the implementation of the Blockchain-based firmware update architecture 

proposed in this study. Table 5.1 provides a comparison of possible Blockchain that can be 

utilized to securely deliver firmware updates to the devices.  Our choice of Blockchain is also 

justified. 

Table 5.1 Blockchain Comparison 

 Public Blockchain Private Blockchain 

Anonymity 

Public Blockchain provides 

anonymity by establishing the 

user identity utilizing addresses. 

Public Blockchain is handy when 

developing solutions that do not 

require any knowledge of the user 

identity. Thus,  user identity is of 

no importance when it comes to 

the firmware update. 

The private network requires true 

user identity since it may want to 

grant access to only specific users. It 

can be noted that in the firmware 

updates process, all users have equal 

access,  thus, a private network may 

not be practical in this case.  

Transparent 

The data is fully transparent 

enabling anyone to have access 

to it. Note firmware updates are 

open and allow open downloads 

for device owners. 

The private network has low 

transparency since some of the data 

may be not fully visible to the user. 

Decentralized 

The public network is controlled 

by multiple entities that validate 

and verify the transactions in the 

network. 

Only a certain group of people or an 

organization owns the network. 

Note this can lead to the single-

point-of-failure which may not be a 
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desirable attribute for firmware 

updates. 

 

The reasons for the choice of the public Blockchain, particularly the Ethereum Blockchain are:  

• The firmware is usually shared publicly with the device owners via websites, blogs, 

etc. Therefore, Ethereum as a public network was chosen because it allows anyone 

to be a part of the network. 

• Ethereum supports contract technologies that enable external entities to interact 

with the Blockchain ledger and enforce the rules over the data stored on the ledger. 

• Moreover, Ethereum has extensive documentation, large community support, and 

development tools available.  

• In addition, Ethereum Blockchain seems to be the most used public Blockchain in 

many studies, thus, it is easier to improve, extend and identify current encountered 

challenges that are outlined by the existing studies. 

Ethereum Blockchain utilizes the Ethereum Virtual Machine (EVM) to compile and run 

contracts. Contracts are created using a solidity programming language which is the language 

made solely for developing Ethereum contracts. The Ethereum development tools and libraries 

utilized in the development and implementation of the proposed contract are illustrated in 

Figure 5.1.  

 

Figure 5.1 Development Tools and Libraries. 
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Ganache-CLI 

This is a local Blockchain simulator that features a graphical user interface to simulate the 

networks and provide contract testing without the need to set up real Ethereum networks. It 

consists of fake Ethereum addresses to be used for testing purposes. 

Truffle 

Truffle is a development environment that integrates the compilation, testing, and deployment 

of Ethereum contracts. It is used to build and deploy decentralized applications for testing 

purposes. 

Web3.js 

Web3.js is a JavaScript library that implements the JSON-RPC protocol. It is used in the web 

application to connect and interact with the Blockchain network. 

These tools were used to create, test, and deploy both FUS and manufacturer contracts. Unit 

tests were performed to validate the correct execution of contract functions and also to measure 

the costs of execution of the function in the network. 

5.2 Data Storage 

The proposed contracts have several storage and memory variables. The memory variable is a 

temporary place to store Blockchain data which gets erased between external function calls. 

Storage holds persistent data and is visible in all contract functions. Important data is stored in 

storage variables and guarantees its preservation. 

The proposed contracts utilize two data structures namely arrays and mappings. An array can 

be of a fixed or dynamic size. The only downside of the arrays is the gas consumption. The 

array can consume too much gas, when it is big and searching for a specific value, which 

requires iterating the entire array, 

 It becomes more costly and may exceed the gas limit leading the contract to terminate the 

operation. Mappings allow storing key-value and using the key to access the data. It is costly 

to loop through the entire entries to find the desired data while with the arrays.  Both mapping 

and array can be used together as the optimal solution to access the data to reduce costs. For 

example, the mapping keys can be stored in a separate array while the actual data is stored in 

the mapping. This guarantees that data accessibility is not lost but it comes at the cost of more 

storage. 
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5.2.1 Contract State Variables 

This section explains the purpose of the storage variable used in both contracts. Table 5.2 lists 

and summarizes each storage variable presented in both contracts. 

Table 5.2 Smart Contracts Variables 

Smart Contract Variables Description 

FUS 

FUS_IDs  Holds the wallet address of the 

firmware update service at the time 

of deployment. 

FUS_name Holds the FUS owner’s name 

during the time of deployment. 

devices  →  (dev_id  →  Device) Mapping of device ids to their 

respective device information 

which is represented by the struct. 

number_of_devices The number of registered LoRa 

devices. 

Manufacturer 

manufacturer_id Holds the wallet address of the 

manufacturer at the time of 

deployment. 

FUS_name Holds the manufacturer’s name 

during the time of deployment. 

Metadata_list  → (model →  metadata) Mapping of models to their 

respective metadata  

Model_list [] List of device models of LoRa 

devices. 

The FUS_ID, manufacturer_id, FUS_name, and Manufacturer state variables serve to hold the 

contract deployer’s details. This is so important since it is necessary to know who owns the 

contract. Certain data is only accessible by the deployer of the contract. The FUS_ID and 

manufacturer_id variables hold the Blockchain addresses which are later used to authorize and 

give access to the data. The devices mapping data structure store all the registered LoRa devices 

that need to be updated via Blockchain. The dev_id is used as a key to map the LoRa end 

device.  
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struct Device{ 

    string appID; 

    string devID; 

    string s_address; 

    string w_address; 

    string model; 

    string version; 

    string status; 

    bool exist; 

} 
 

 

Figure 5.2 Figure: Device Structure. 

This is the same device id that was provided in the LoRaWAN application console during the 

device registration.  The dev_id maps to the Device struct which is a solidity structure that 

enable us to create custom data type. The Device Struct is presented in Figure 5.2. The device 

structure consists of the LoRa device information which includes: the application id, the device 

id, the device manufacturer’s contract address, the manufacturer’s wallet address, the model, 

the currently installed version, the update status, and the ‘exist’ variable. The ’exist’ variable 

helps to avoid adding the new device that already exists in Blockchain. The Manufacturer’s 

contract has a metadata_list mapping which maps a model with the respective latest metadata. 

The metadata is also represented in structure as shown in Figure 5.3. The structure is made up 

of firmware version and metadata variable which represents the actual metadata. The model 

list variable is an array that keeps track of all device models that have firmware metadata. It is 

useful when checking if the device model exists before checking its new firmware update 

availability. 

1 

2 

3 

4 

5 

struct FirmwareMetadata{ 

    string f_model; 

    string f_version; 

    string f_metadata; 

} 
           

Figure 5.3 Metadata Solidity Structure 
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5.2.2 Methods and Functionalities 

This section describes important implementations of the contract algorithms proposed in 4.7.  

and also shows the important lines of implantation code of the functions. These functions use 

the storage variable discussed in 5.2.1. Appendix A shows the addNewFirmware() function 

that adds new metadata to the Blockchain. The function takes the model, the new version, and 

the metadata of the firmware. The device’s model was checked to ascertain that it exists in the 

Blockchain and if not, it gets added to the model_list array defined in Section 5.2.1.  

The purpose of adding the model to the model_list array is to check the provided model at a 

time when the isUpdateAvailable() function is called as shown in Appendix B. When 

isUpdateAvailable() is called the model is checked to be sure it exists. It can only exist after 

the addNewFirmware() function is called. The addNewFirmware() function creates the in-

memory metadata structure which gets added to the list of metadata. When the new metadata 

is added, the LoRa devices or FUS need to know they should be updated. The function emits 

the event to broadcast the new arrival of metadata. Moreover, the function ensures that is only 

executed by the manufacturer of the devices on the network. This is achieved by using the 

required statement which requires that the entity which calls the function should be the one 

who deployed the contract that is the address of the manufacturer (manufacturer_id).  

Figure 5.4 demonstrates the transaction made by the manufacturer when the new firmware 

metadata is uploaded and shows the events that get triggered when the new metadata is 

uploaded. The Blockchain event can be disabled or enabled in the configuration file. This is 

shown with the key value of ‘auto-updates’ in Figure 5.5. When the value is set to ‘True’, the 

event is enabled, and the FUS will start a Blockchain event thread shown in Figure 5.6 in line 

63 that listens for new firmware updates. This illustrates how the auto-updates take place. 

Figure 5.6 also demonstrates that if the FUS receives the new metadata, it gets published via 

the MQTT topic (as shown in line 58) that will handle the metadata received and start the 

firmware update process. 
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Figure 5.4 Blockchain Transactions and Event for Firmware Metadata Upload. 

 

Figure 5.5 Enable and Disable Auto-Updates. 
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Figure 5.6 Starting the Blockchain Event. 

 

Figure 5.7 Updates the Device via CLI. 

When the value of ‘auto-updates’ in the configuration file is set to ‘False’, it means the 

firmware update process could be only started by the FUS owner via the CLI script. Figure 5.7 

shows the snapshot of the fus_cli.py script implementation utilized by the device owner to 

initiate the firmware update process. When the owner initiates the firmware updates, the FUS 

call is UpdateAvailable() function shown in Appendix A which checks if there is any new 

firmware available by using the model and the current provided version. The current version 

of the device is compared with the latest version available on the Blockchain network. If the 
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provided version of the model is less than the latest version the function returns true or else 

false if the provided version is equal.  

The fus_cli.py script is not only limited to initiating the firmware update process, it can also be 

used to manage the end devices registered in the Blockchain. This means the owner can connect 

to the Blockchain via the script to get metadata, register, delete, update device status, update 

device state, and get device information operations. The implementation of these operations is 

illustrated in Appendixes C, D, E, F, G, and H respectively. 

The Blockchain functions such as registering, deleting, and updating that make a transaction to 

Blockchain must be called by the owner of the contract otherwise, if a different entity calls 

them, they would not be executed successfully. The registerDev() registers the LoRa device 

information into the Blockchain. The function takes the information as an argument and 

represents it in the Device structure presented in Figure 5.2. The number of devices variable 

gets updated since there is a new device being added. The created device gets added to the 

mapping of the device. Once the device is created, it may be deleted when it is no longer 

needed. The deleteDev() function can be called to delete it.  The function takes the dev_ID as 

an argument that serves as a key to the device mapping. Once the device is deleted in the 

mapping the number_of_devices storage variable is decremented.  

The updating functions, the updateDeviceInfo(), and updateDeviceStatus() use the required 

statement to authorize only the device owner to manipulate the device. The updateDeviceInfo() 

accepts the information required to update the device structure as arguments presented in 

Figure 5.2. The devices mapping is then utilized to retrieve the device using the devID then the 

existing device information is updated with the input arguments. The updateDeviceStatus takes 

the device ID and the status. The device ID is used to retrieve the device on devices mapping 

to update the status. The getDevInfo() function only takes the device ID and returns the 

corresponding device’s information. The other get operations such as getDeviceStatus also take 

the device ID and return the corresponding device’s status. The retrieveMetadata() and 

getDevicesByModel() both take the model as arguments. retrieveMetadata() returns firmware 

metadata represented as key-value pair shown in Figure 5.32  and getDevicesByModel() 

returns the list of device IDs that can be used to retrieve the set of devices. 

5.3 Testing and Validation of the Smart Contract 

In this section, we test the proposed smart contracts operations and present the log results. In 

our testing, the functions are tested for their functionality as well as the access control. Each 
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function is executed by an entity with the right access to execute it, meaning there is access 

control posed by function data on the Blockchain during the firmware update. In addition, 

events and their logs are checked to ensure the function executes as intended. Each smart 

contract has an owner. A smart contract identifies its owner with an owner’s address. This 

owner’s address was captured during a smart contract deployment. Two contracts mean that 

two entities own the contracts namely: the device manufacturer and owner. Their addresses are 

shown in the table below.  

Entity Addresses 

Manufacturer 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2 

Device Owner 0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 

Attacker 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db 

The functions are tested in Remix IDE and their results are shown in the snapshots. 

 

Figure 5.8 Manufacturer Contract Deployment Logs 

During the deployment of both smart contracts, the device manufacturer and owners are 

identified with the addresses 0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 and 

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2 respectively. 
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Figure 5.9 Device Owner Contract Deployment Logs 

Figure 5.8 and Figure 5.9 show successful deployment transactions of both smart contracts. It 

is at this point where Algorithm 1 and Algorithm 5 execute. Both contracts’ constructors assign 

the aforementioned address to the Blockchain storage. 

Adding metadata to the Blockchain network requires the 

0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 address, which was the address that 

deployed the device manufacturer’s contract. 

 

Figure 5.10 Add New Metadata Transaction Failure Logs. 

Figure 5.10 shows that if a different address tries to add the metadata to the Blockchain the 

transaction will be unsuccessful. This is illustrated with an attacker’s address 

0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db which invokes the addMetadata 

operation shown in Algorithm 2. In addition, the event that emits upon the upload of the 

metadata will not be called.   
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Figure 5.11 Add New Metadata Transaction Success Logs 

A successful transaction of adding metadata is only possible with the manufacturer’s address 

0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 as shown in Figure 5.11 and this will 

result in the successful emission of upload metadata event. The question is if the impersonation 

is possible through this address. This address corresponds to a private key, and that private key 

is owned and held secret by a single entity. This means spoofing may be possible when 

someone knows another person’s private key. There is no way an attacker could successfully 

impersonate a Blockchain address without knowing their private key and the private key is 

irreversible. Unlike, in traditional networks where one can do IP address spoofing when one 

creates data with a false source IP address to impersonate another entity. In this case, the public 

key is not changeable and is only produced through the private key. It is not easy to manufacture 

a private key from a public key. The attack is possible when an attacker changes the data itself 

or the address.  However, when that data gets to the Blockchain, it will not be added since the 

signature and the address will not correspond to the expected address. This is also demonstrated 

in Figure 5.10.  

 

Figure 5.12 Check New Firmware Update Logs 
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After the metadata is uploaded then the isUpdateAvailable operation can be called. This is 

operation is tested with an address 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2. 

Note, this operation does not require any special access meaning it does not need to be called 

by only the manufacturer but any entity that wants to check for firmware updates can invoke 

the operation.  

 

Figure 5.13 Register Device Transaction Pass Logs 

Device registration to the Blockchain network is only permitted to be done by the address 

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2. Figure 5.13 shows a successful 

registration of the low-powered device to the network where the owner’s address was used to 

execute the registerDevice() operation. 

 

Figure 5.14 Register Device Transaction Failure Logs 
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When testing this operation with the 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db 

address, the operation execution fails because only the owner’s address is permitted to execute 

this operation.  

 

Figure 5.15 Delete Device Transaction Failure Logs 

Deleting a device is one of the crucial operations. To test this operation to see whether it 

behaves as intended and only permits the device owner to delete the device, we utilized an 

address 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db. If this address calls the 

operation, the transaction will be successfully mined but results in an unsuccessful execution 

since it will fail due to a calling address. 

 

Figure 5.16 Delete Device Transaction Pass Logs 

Figure 5.16 demonstrates that only the address 

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2 can successfully execute the 

transaction. 
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Figure 5.17 Update Device Transaction Pass Logs 

 

Figure 5.18 Update Device Transaction Failure Logs 

Updating the low-powered device information on the network requires the caller of the 

updateDevInfo() to be the owner of the contract.  

Figure 5.17 and Figure 5.18 shows the successful and unsuccessful execution of the 

updateDevInfo() transaction respectively where the address 

0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db led to an unsuccessful transaction. 

The contract operations that get device information are also restricted to being executed by the 

device owner only. All these operations were tested using two addresses: the device owner’s 

address and the address 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db representing an 

illegitimate entity calling the functions. The successful and unsuccessful test results of these 

functions including getDevInfo, getDevStatus are shown in Figure 5.19, Figure 5.20, Figure 

5.21, and Figure 5.22 and respectively. 
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Figure 5.19 Get Device Information Transaction Pass Logs 

 

Figure 5.20 Get Device Information Transaction Failure Logs 
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Figure 5.21 Get Device Status Transaction Pass Logs 

 

Figure 5.22 Get Device Status Transaction Failure Logs 

5.4 Networks Setup 

5.4.1 Blockchain and IPFS Network 

This section explains how Blockchain and IPFS networks were set up. There are various ways 

of setting up the Blockchain network and these were explained in Section 2.2. One of the ways 

explained is based on the third-party services which are services consisting of the nodes that 

can be utilized to access the Blockchain network. Note, instead of setting up your Blockchain 
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nodes or network manually, one can simply set up the network via third-party services. The 

proposed solution utilizes a third-party service called Infura.  

Instead, of creating the custom node one can register to an IPFS service that offers a node that 

is already connected to the network which can be accessed via the API. The node gives access 

to different Ethereum networks such as Rinkeby, Ropsten, Kovan, and even the Ethereum main 

network. In this study, the infura node is used to connect to the Rinkeby network where our 

contracts were deployed. For accessing the IPFS network, the custom IPFS node was not used 

but instead, the infura service was used to access the network. Once both Blockchain and IPFS 

nodes were set up, the smart contract can be implemented, and made available publicly by 

deploying them to the public Ethereum Blockchain networks. The RPC calls were made to 

interact with the deployed contract to the network.  

The Blockchain and IPFS nodes fulfill the requirement of REQ5. These nodes ensure that the 

stored data is distributed in multiple places eliminating a single point of failure thus the high 

availability of data is achieved 

5.4.2 LoRaWAN Network 

This section explains the LoRaWAN network setup, which includes setting up the Low-

powered devices, LoRa gateway, and LoRaWAN servers. 

LoRa Node 

The Pycom Expansion Board is a development board that operates as a shield for the LoPy 

model. The Expansion Board provides additional hardware features for the modules attached 

to it. The features comprise powering the LoPy via a USB port, additional storage for microSD 

cards, and enabling serial communication. Figure 5.23 and Figure 5.24 show the Lopy4 and 

Pycom Expansion Board 3.0 respectively. The LoPy is equipped with several connection 

methods which include LoRa, Sigfox, Wi-Fi, and Bluetooth. It has an Espressif ESP32 chipset, 

and Semtech LoRa transceiver SX1276 for transmitting LoRa packets and supports the 433 

MHz, 510 MHz, 868 MHz, and 915 MHz frequencies. During the firmware update process, 

only the LoRa interface was utilized whereas other interfaces were not active. Throughout the 

experiments, the LoPy devices were battery-powered with the LiPo battery attached to the 

battery connectors. Table 5.3 summarizes the specifications of the LoPy device. 

Table 5.3 LoPy device specifications 

Details Specifications 

RAM 4 MB 
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Storage 8 MB 

CPU Espressif ESP32 chipset 

Model LoPy4 

Frequencies 
433 MHz, 510 MHz, 868 MHz, and 

915 MHz 

Number of Devices 2 

 

LoPy was combined with the expansion board 3.0 as shown in Figure 5.25 and set up to operate 

in the European region on 868 frequencies. The LoRa channels were randomly selected, and 

servers were set up to operate in similar channels along with the devices. The LoPy was 

powered by a battery of 3.7 V supplying 1200mAh of current. LoPy4 is programmed by using 

the constraint version of python suitable for the constrained devices which is micro-python. 

We intended to measure the power used by the end device during the firmware updates 

therefore the multi-meters were attached to measure both current and voltage as shown in 

Figure 5.26. The current is measured in series with the circuit whereas the voltage was 

measured in parallel with the series. The end devices need to be registered to LoRaWAN 

servers for them to join or form part of the LoRaWAN network. The LoRaWAN servers 

utilized are explained in the next section. 

 

Figure 5.23 LoPy LoRa Node. 

 

Figure 5.24 The Expansion Board 3.0. 
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Figure 5.25 LoPy Attached to the Expansion 

Board 3.0. 

 

Figure 5.26 Low-Powered Devices with Multi-Meters 

Attached. 

LoRaWAN Gateway and Servers 

LoRa devices need a way to receive firmware fragments.  It should be noted, it cannot connect 

directly with the network servers since they do not have LoRa interfaces therefore, the LoRa 

gateway is utilized to connect LoRa devices with the servers. The Gateway comprises the 

RAK831 concentrator module, Raspberry Pi B Model, and Antenna that supports 868.1 MHz 

frequency as shown in Figure 5.29. The created gateway is then utilized to handle LoRa packets 

sent between the devices and the servers. The gateway is only responsible for sending LoRa 

packets thus, there must a component that is responsible for filtering packets, removing 

duplicates of messages, performing encryption, and more.  

Table 5.4 Computer Specification 

Specifications Description 

Processor family 4th gen Intel® Core™ i5 

Processor model i5-4300M 

Processor frequency 2.6 GHz 

RAM 8 GB 

Storage media SSD 

The LoRaWAN servers help to perform such operations. Many available LoRaWAN servers 

are being developed for his purpose. The Things Network stack community (version 3.13.2) 

was chosen to handle LoRa packets. The TTN stack was installed in the Lenovo computer 

shown in Figure 5.30 with Intel® Core™ i5-4300M CPU @ 2.60GHz, 8GB of RAM with 

Ubuntu 20.04 as an Operating System.  
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The stack was hosted locally meaning that the private LoRaWAN network was created instead 

of utilizing the existing public Things Network. Note that after the successful setup both Low-

powered devices and the gateway need to be registered first to the servers before being able to 

exchange any LoRa packets with the servers. The TTN stack provides different integration that 

helps to process data and trigger events. One of the integrations that the proposed work used is 

an MQTT integration. The stack exposes an MQTT server to be able to create the MQTT client 

that subscribes to messages coming from the Low-powered devices and can schedule the 

downlink messages to the end devices. Many other integrations can be used, such as gRPC, 

and HTTP, but MQTT is being utilized for this study. MQTT is a lightweight protocol made 

for IoT devices. Other protocols are more suitable for the exchange of messages between 

devices that do not have resource constraints e.g., gRPC, and HTTP. When it comes to MQTT 

and HTTP. MQTT ensures high delivery guarantees of messages, has a low power 

consumption, provides an open connection between devices, and is mainly used for sending a 

small message. HTTP on the other hand has high power consumption, opens and closes the 

connection for every request made, and is mainly useful for sending large messages. In this 

study, MQTT is used because we always want to keep the connection open between the LoRa 

end devices/LoRaWAN server and the FUS to constantly send and receive firmware fragments. 

Moreover, the messages being sent are of t a small size which makes it even more suitable 

compared to HTTP integration.  

 

 

Figure 5.27 Rapberry Pi 3 B Model. 

 

Figure 5.28 RAK832 LoRa Module. 
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Figure 5.29 RAK831 LoRa Gateway. 

 

Figure 5.30 Computer Running the TTN Stack. 

Table 5.5 Utilized Devices Datasheet 

Specifications URLs 

LoPy 

https://pycom.io/wp-

content/uploads/2017/11/lopy4Specsheet17.pdf (accessed date: 21 

November 2021) 

Pycom Expansion Board 
https://docs.pycom.io/gitbook/assets/expansion3-specsheet-1.pdf 

(accessed date: 21 November 2021) 

Raspberry Pi 3 Model B 

https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-

Model-Bplus-Product-Brief.pdf (accessed date: 21 November 

2021) 

RAK831 Module 

https://docs.rakwireless.com/Product-

Categories/WisLink/RAK831/Datasheet/ (accessed date: 21 

November 2021) 

The datasheets for LoPy, the Expansion Board, Raspberry Pi, and the RAK831 module can be 

accessed via the URL provided in Table 5.5. 

5.5 Web Application Development 

The Web application (Manufacturer UI) was developed to interact with the Blockchain 

network. The device manufacturers utilize the application to upload both the firmware and the 

metadata to the IPFS and Blockchain respectively. The web application is connected to the 

Blockchain and IPFS through the third-party service node called the INFURA. The firmware 

image must be first uploaded to the IPFS network before uploading the metadata to the 

Blockchain. This is because the IPFS network will return an IPFS hash that uniquely identifies 

the firmware being uploaded. The hash also needs to be part of the metadata; therefore, it must 

be generated first before the metadata upload. The manufacturer UI was developed utilizing 

these tools: 
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Web3Js 

The web3.js enables the UI to communicate with Blockchain via the provider that does Remote 

Procedure Call (RPC) to interact with the deployed contract.  

IPFS.Js 

It is a JavaScript library that connects the user interface with the IPFS public network. This 

library helps to upload the firmware image to decentralized IPFS storage. 

MetaMask 

When the manufacturer makes a transaction via the web application to the Blockchain. 

Blockchain identity is required, therefore, Blockchain keys are needed to sign the transactions. 

MetaMask is used as a wallet to store the private and public keys that sign Blockchain 

transactions when the metadata is being uploaded. 

ReactJS 

The front end of the web application was created in ReactJS which is the JavaScript library for 

building user interfaces.  

 

Figure 5.31 Decentralized Web Application for Firmware Upload 
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{ 

    name: 'LoPy4-firmware', 

    version: '1.2.0', 

    model: 'LoPy4', 

    SHA256: '569948b4baa...', 

    IPFS_HASH: 'QmaY7aKo...', 

    Signature: 'Ed30Ac8a...', 

    .... 

    .... 

    .... 

} 
  

Figure 5.32 Structure Example of the Metadata 

The developed UI shown in Figure 5.31 takes values from the fields and represents them in a 

key-value pair. The UI enables the manufacturers to dynamically create the key-value pairs 

which form part of metadata. The example structure of the firmware metadata is shown in 

Figure 5.32. 

5.6 The FUS Implementation 

The FUS is the core component that interacts with Blockchain and is responsible for the entire 

update process. This section views how the FUS was implemented together with the libraries 

used to implement it and how it addresses some of the requirements stated in Section 4.3. Just 

like the web application presented in Section 5.5., the FUS also connects to both IPFS and 

Blockchain networks and additionally to the LoRaWAN network. Figure 5.33 shows how FUS 

interacts with these networks.  
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Figure 5.33 FUS Utilized Libraries. 

The FUS was implemented in python and utilizes the libraries shown in Figure 5.33. The 

libraries help to connect the FUS to the IPFS, LoRaWAN, and Blockchain network.  

IPFS.Py for IPFS 

The FUS utilized the ipfs python module which connects the FUS via HTTPS connection 

during the firmware update to retrieve firmware images. The FUS does not connect to the 

locally IPFS node to get access to the network, however, it uses the third-party service node to 

get access to the public network. From this python module, we only utilize the get method 

which retrieves the firmware image from the IPFS decentralized file storage. 

PAHO-MQTT 

The FUS implements the MQTT client which directly connects with the LoRaWAN 

application via the exposed MQTT broker. It uses the paho-MQTT python library to create the 

MQTT client that connects to the application server. 

Blockchain network – The FUS interacts with the Blockchain by utilizing the web3 library that 

is implemented in python. It also gets access to the Blockchain via the infura node and uses the 

service API keys to make RPC calls to the Blockchain. Web3 library enables the FUS to 

connect via the HTTPS and the WebSocket. When the FUS is connected via WebSocket, it 

becomes easy to listen to Blockchain events in real-time. 
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Chapter 6: Results and Discussion 

This chapter provides an evaluation of the developed and implemented system. It starts by 

introducing a STRIDE thread model and analyses all possible weaknesses of the proposed 

solution and associates them with the mitigations that were adopted by the solution. The overall 

setup of our experiment together with the parameters used is also explained then after the costs 

of cryptographic techniques on low-powered devices are examined. Afterward, the analysis of 

the costs involved when updating low-powered devices in the Long-Range Wide Area 

(LoRaWA) network is provided, with the Blockchain operation costs involved during the 

update process. Finally, the chapter provides comparisons between the state-of-the-art 

solutions and our proposed solution. 

6.1 Security Analysis: Threat Assessment 

In this study, we performed a security analysis of our system. We performed threat modeling 

on selected components and data flows which are illustrated in Figure 6.1. These components 

include the manufacturer’s user interface, Firmware Update Service (FUS), IPFS (INFURA 

service), Blockchain, LoRa Servers, IoT gateway, and IoT device. It is important to note that 

the threat analysis for some components including IPFS networks and Blockchain networks 

was kept out of scope but their interaction with important system components was examined. 

The reason for this is that these components belong to providers, and it is believed that the 

providers take appropriate countermeasures for possible security issues as they are accounted 

for. This research considered only threats that are associated with major components and data 

flows. 
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Figure 6.1 Data Flow Diagram of Components of Proposed Architecture. 

 

6.1.1 Threat Models 

This research utilized the Spoofing, Tampering, Repudiation, Information disclosure, Denial 

of Service, and Elevation of Privilege (STRIDE) threat Model which is an industry-standard 

for evaluating systems regarding security. STRIDE is considered a lightweight approach 

compared to the Process for Attack Simulation and Threat Analysis (PASTA), Operationally 

Critical Threat Asset and Vulnerability Evaluation (OCTAVE), and Common Vulnerability 

Scoring System (CVSS) which are other modeling methodologies. 

The choice of STRIDE is motivated by several reasons:  

• STRIDE is widely accepted in industry and academia. 

•  It analyses security properties such as authentication, integrity, confidentiality, 

authorization, availability, and non-repudiation which are security properties that the 

proposed architecture desires to achieve as well. 
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STRIDE provides analyses of cyber threats against each system component based on its 

technical knowledge and provides a clear understanding of the impact of a component 

vulnerability on the entire system. Figure 6.2 explains the STRIDE model terms. 

 

Figure 6.2 STRIDE Threat Modelling (Azam et al., 2022)   

6.1.2 Identified threats and Defense Mechanism Discussion 

A data flow diagram for all components of the proposed firmware architecture was presented 

in Figure 6.1. This section identifies the possible threats and provides the defense mechanisms 

used to eliminate the threats. 

I to IPFS and IPFS to UI 

The attacker can get the manufacturer’s UI and try to upload the firmware image to the IPFS 

network if the UI is open and perform a MITM attack to tamper with the firmware image while 

it is in transit or before it reaches the IPFS network. On the other hand, the IPFS returns the 

IPFS hash to the UI which later forms part of the metadata thus, when the hash returns the 

attacker can perform a MITM attack to view the hash (Information Disclosure) and possibly 

tamper it. 

UI to Blockchain and Blockchain to UI 

The attacker could upload badly signed firmware metadata as well as sniff and obtain legitimate 

firmware metadata. Metadata transmission could be susceptible to tampering, information 

disclosure, spoofing, and elevation of privileges.  Spoofing the manufacturer's identities could 

be possible if an attacker somehow knows a manufacturer’s identity keys and can act as a 

manufacturer. When the metadata reaches the Blockchain network specifically the smart 

contract, it can be susceptible to an elevation of privilege, enabling an attacker to store 

unauthorized firmware metadata on the smart contract. 

FUS component, IPFS to FUS, and FUS to IPFS 

One of the actions that the FUS performs during these processes is to download the firmware 

image from IPFS. The FUS controlled by an attacker could download a firmware image and 
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the attacker could perform a MITM attack and force a FUS to download the image. This 

violates integrity and confidentiality and the tampering and information disclosure get affected.   

CLI (Device Owner) to FUS 

The CLI request tool and FUS controlled by an attacker could initiate a firmware update 

procedure causing the Denial of Service of the FUS and if knows the attacker knows 

authentication keys can spoof the FUS. 

Blockchain to FUS and FUS to FUS 

There is an open web socket between Blockchain and the FUS. If an attacker eavesdrops on 

the connection when it is not secured, then tampering and information disclosure could take 

place. In addition, if the user is in control of the FUS during that particular moment of firmware 

metadata transmission, an attacker could authenticate (spoof) the metadata.  

FUS to Servers to Gateway and IoT Device 

An attacker in control of the FUS could perform a Denial of service and replay downlink 

messages to the LoRaWAN servers. The FUS can be spoofed and a MITM attack could occur 

where the session keys eavesdrop which results in tampering and information disclosure. This 

could occur during the FUS to Server, Servers to Gateway, or Gateway to IoT device 

interaction. Subsequently, the Elevation of Privilege could take place if illegitimate downlinks 

and replayed session keys are allowed by the architecture. It can be noted that from IoT devices 

to gateway, server, and FUS the Elevation of Privilege, Spoofing, tampering, and information 

disclosure is also possible. The attacker in control of the device can do several things, assuming 

he has control of the cryptographic keys. It is possible to tamper with information like session 

keys, firmware images, and signatures. Moreover, an attacker could send back the confirmation 

message to the FUS spoofing it as if the device was successfully updated.  

Thread Category Defense 

Spoofing 

Elliptic Curve Digitial Signature Algorithm (ECDSA), HMAC-

SHA256, RSA keys, Use of nonce values for the elimination of 

replay attack 

Tampering HMAC-SHA256, SHA256 

Repudiation Logging 

Information Disclosure Encryption: used Advance Encryption Standard (AES), RSA keys  

Denial of Service Data Rate restriction by the network, Multiple nodes storing data 

Elevation of Privilege 
Access Control Authorization e.g. through a smart contract, 

cryptography 
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Considering the STRIDE analysis, it is believed that the usage of encryption, authentication, 

and integrity mechanisms in our proposed architecture such as AES, HMAC algorithm, 

SHA256 algorithm, ECDSA algorithm, RSA certificates, logging of the firmware update 

process, and the use of nonce values for spoofing elimination can defeat all mentioned attacks. 

This is true if legitimate entities such as the manufacturer and the device owner retain their 

cryptographic keys and are not exposed to be obtained by an attacker. We can then conclude 

that ours is a system safe and that it is protected against all possible attacks. 

6.2 Evaluation Metrics 

The previous chapter presented the setup of each network namely the LoRaWAN and 

decentralized network setup (Blockchain and IPFS). Figure 6.3 summarizes the overall 

experiment setup of these networks. This section aims to present the parameters used in the 

evaluations and the evaluation metrics and how each was measured. 

 

Figure 6.3 Experiment Architecture. 

 

 
Table 6.1 Experiment Parameters 

Parameters Description 

Receive Window (Rx1) This receive window is used for both downlink and 

uplink messages 
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Receive Window (Rx2) The Rx2 window is used for downlink messages 

utilizing 869.525 frequency 

Region EU (8 channels with a duty cycle of 1% and one with 

10%) 

Gateway(s) 1 

LoRa devices/Low-powered 2 

Devices Modes Class A and Class C modes. Devices were also set to 

operate in multicast 

Rx1, Rx2 delay 5s, 1s delay respectively 

Bandwidth LoRa.BW_125KHZ 

SFs 7-12 

Table 6.1 shows the experimental parameters used in the evaluation: 

• Class Mode: The architecture is evaluated and tested against Class A and Class C 

modes. For Class A mode, the device needs to send the uplink message before it can 

receive the firmware fragment. In addition, the architecture is evaluated against 

multicast sessions where the end device operates in Class C mode which is always 

listening to receive firmware fragments. 

• RX1, RX2, and RX delay: The firmware fragments are received in both  RX1 and RX2 

windows. The RX2 window/channel comprises 10% duty cycle restrictions, whereas 

the other channels comprise 1% duty cycle restrictions (per sub-band). 

• Gateway and end devices: Only one gateway and two end devices are utilized. Both the 

end device and the gateway respect the duty cycle restrictions.  

• Region and Bandwidth: The low-powered devices are equipped to operate in the 

European region; this modulation operates in the radio band 863–870 MHz, with a 

bandwidth of 125 kHz.  

• SFs: LoRa SF ranges between 7 and 12. The SF impacts the communication 

performance of LoRa.  The architecture will be tested on different SF to see how the 

low-powered devices perform during the firmware update on these SFs. 

The evaluations were divided into three phases: The initial phase started by looking at the 

security aspect of low-powered devices.  This includes examining the memory consumption 

utilized by cryptographic algorithms during the update process. The second phase looks at the 

LoRaWAN evaluations which include examining the different modes of classes of low-

powered devices, SFs, airtime, update time, and the effects of firmware fragments. The third 

phase looked at the Blockchain-based costs of the operations of the proposed contract. The 

evaluation results are presented in terms of the following metrics: 
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• Memory consumption indicates the amount of RAM and Flash memory consumed 

by low-powered devices. This metric was measured by running a python script that 

calculates the memory consumption for a specific firmware image update. 

• Power consumption indicates the power consumption of the devices during the 

firmware update process. This metric was measured using the two multi-meters of 

each device. One multi-meter was used to measure the current and the other the 

voltage at the epoch during the firmware update. 

• Update time indicates the time it takes for a device to successfully receive all 

firmware fragments and includes the time to verify the firmware. This metric was 

measured by running a python script that utilizes the timer to calculate the time it 

takes for a firmware update to complete, 

• Gas used indicates the amount of gas used from the provided gas limit. The metric 

was measured or obtained in two ways. The gas used for a transaction is part of the 

transaction data and this data can be obtained on the blockchain network by 

providing the transaction hash. The second way we measured this metric is by 

running a JavaScript code that obtains the Blockchain transaction data that then 

extracts the gas used from the data. 

• Gas fee indicates the amount of Ether charged during the transaction of an 

operation. The gas fee is obtained the same way as the gas used metric where it is 

obtained by visiting Blockchain explorer or running JavaScript instructions that are 

used to obtain it. 

6.3 Cryptographic Costs on Low-Powered Devices 

To determine whether the proposed architecture suits the constrained devices, the cost of 

cryptographic algorithms used to secure the firmware during the update process needs to be 

examined. RFC has defined the categories of constrained devices (Bormann, Ersue, and 

Keranen, 2014) shown in Table 2.1 to help us determine whether the proposed architecture 

suits the constrained devices in the network or not. Thus, the device's memory consumption 

cost which is RAM and flash memory needs to be examined. Figure 6.4, Figure 6.5, and Figure 

6.6 show the CMAC, HMAC-SHA256 RAM consumption, and flash memory consumption, 

respectively. The low-powered device takes 96.7 kB of flash memory when being updated with 

5 kB of the firmware. This memory consumption comprises the firmware size and the firmware 

code during the verification process. 
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Figure 6.4 CMAC RAM Consumption. 

 

Figure 6.5 HMAC RAM Consumption. 

The RAM consumption varies due to the firmware size being updated and the algorithm being 

utilized to verify the firmware. The results show that the HMAC-SHA256 algorithm verifies 

faster and consumes less memory compared to the CMAC algorithm. This is due to the 

implementations of the HMAC-SHA256 algorithm. The HMAC-SHA256 is based on the hash 

function and hash functions are considered to be faster than block ciphers. Another reason for 

it being faster than the CMAC algorithm could be the mode of operation used. The mode of 

operation used by CMAC is MODE_ECB which is considered slower.  

The HMAC-SHA256 consumes 6.9 kB of RAM when 5 kB is updated whereas CMAC 

consumes 7.3 kB of RAM. The RAM and flash consumption imply that MAC algorithms are 

adequate in providing security on low-powered devices and are suitable for constrained low-

end devices that belong to Class 0, Class 1, and Class 2. This suitability is from the fact that 

the RAM and flash consumption does not exceed the memory of the constrained device classes. 

 

Figure 6.6 Flash Memory Consumption on 5 kB of the Firmware. 

We now look at the energy consumption of cryptographic techniques. Measuring the energy 

consumption is so important because these devices operate on a battery, and it is required to 
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know how much energy is being consumed during the firmware updates. The energy 

consumption is obtained by a formula: 

𝐸 = I ×   V ×  T (1) 

where I represent the current, V represents the voltage and T represents the time in seconds. 

The current and voltage are measured using the multi-meters demonstrated in Figure 5.26. 

Figure 6.7 and Figure 6.8 demonstrate the energy consumption results obtained for the 

cryptographic algorithms used in the update process and also show their update time 

respectively. 

 

 

Figure 6.7 Energy Consumption of Cryptographic 

Algorithms. 

 

Figure 6.8 Cryptography Verification Time. 

The results show that the HMAC consumes less energy and takes less time compared to the 

CMAC algorithm. This can be because the HMAC id is faster than the CMAC in this case due 

to the encryption differences utilized by each. As of this result, it can be noted that if the 

firmware size increases directly proportional to the verification time, memory consumption, 

and energy consumption. It is then recommended to apply a delta update in these devices 

instead of sending the larger firmware image, which may consume less memory and less 

energy. 

6.4 Evaluating LoRaWAN Costs 

Figure 6.9, Figure 6.10, and Figure 6.11 demonstrate the relationship between firmware size, 

fragment size, airtime, and SF. When the fragments are sent at a lower SF, it decreases the 

airtime of the fragment whereas when sent at a higher SF, the airtime increases. It is also 

observed that increasing the SF by one step for example, from SF11 to SF12 doubles the airtime 

as it is shown in Figure 6.11. Note: at higher the SFs, the higher the airtime even for the same 
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fragment size. For example, for the same fragment sizes at SF11 and SF12, the airtime tends 

to differ and SF12 has the higher airtime. Figure 6.9 shows that the produced number of 

fragments depends on the SF. The higher SF produces a greater number of fragments e.g., if 

sending 5 kB of firmware with SF12, the number of fragments is 108 whereas with SF7 the 

fragments produced are 24. This is due to the regional restrictions of LoRaWAN. 

 

 

Figure 6.9 SF with Chosen Fragment Size. 

 

Figure 6.10 SF with the Number of Fragments. 

Since the low-powered devices operate in the European region, the maximum number of 

payloads must not be exceeded. For instance, when the end device is operating with SF12, 

SF11, and SF10, the fragment size must be less than 51 bytes. For SF9 the fragment size must 

not exceed 115 bytes and for SF8, and SF7, the fragment size must be less than 222 bytes for 

efficient transmission. Figure 6.9 depicts the chosen number of fragment sizes for each 

spreading factor, and the chosen fragment sizes adhere to the European Region (EU). 
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Figure 6.11 Airtime and Fragment Size.  

Now looking at the time it takes to update LoRa end devices. Figure 6.12, Figure 6.13, and 

Figure 6.14 show the update time, which starts from where the firmware update is initiated 

until the firmware image is verified.  

 

Figure 6.12 Update Time for SF12 and SF11. 
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Figure 6.13 Update Time for SF10 and SF9. 

 

Figure 6.14 Update Time for SF8 and SF7.  

The two modes of LoRa end devices were examined which are Class-A and Class-C. The 

update time, firmware size, and the SF show a directly proportional relationship. For example, 

updating operating in the Class-A mode with 4 kB of firmware at SF 11 takes more time, i.e., 
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796.10 seconds (13 minutes), compared to updating the firmware at SF7 which takes only 

108.65 seconds (1.8 minutes).  

There are several reasons which could cause the increase in update time. This could be the 

firmware size and fragment size. The firmware size greatly impacts update time because it 

needs to be fragmented. Bigger firmware size means many fragments are required to be 

produced and therefore, more fragments are required to be sent to the end device. It could also 

be affected by SF and airtime, increasing the SF the update time increases. This is mainly due 

to the large number of fragments that are produced at higher SFs. And this will result in long 

airtime. One of the LoRaWAN restrictions is the duty cycle, which impacts the update time.  

LoRaWAN limits the maximum application payload that needs to be sent over the channel. 

This increases the update time because each SF LoRaWAN restricts the payload size, resulting 

in higher SFs sending more fragments to lower SFs.  When comparing the update time of the 

different modes which include Class-A, Class-C, and multicast, it was observed that when the 

devices are operating in the Class-A mode, it always takes more time to update the devices 

compared to other modes. In Class-A mode, the end device needs to send some data before it 

receives any firmware fragment. Moreover, the network servers set the recommended RX1 

delay to 5s for Class-A. This means that the next firmware fragment will be received after 5s. 

The multicast mode is similar to the Class-C; the difference is sending the single firmware to 

the set of devices.  Figure 6.12, Figure 6.13, and Figure 6.14 show that the update time for both 

Class-C and multicast is quite the same in some cases. For example, when updating the end 

device at SF8, the update time is quite the same with all firmware sizes for both Class-A and 

Class-C, but this does not hold in some cases. The update time is not predictable. 
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Figure 6.15 Delay in Update Time Due to Duty Cycle Restrictions 

This is observed in Figure 6.15 where the device was updated with 3 kB of firmware operating 

in Class-A mode. It was expected that the SF11 update time should be less compared to SF12, 

however, that was not the case. This is because there was a time when the end device was 

inactive, not receiving the fragment for some time. This is due to the LoRaWAN restriction 

which affected the update time. If the time to deliver the firmware image matters a lot, it is 

preferable to use the lowest SF, i.e., SF7. During the firmware update, it was observed that 

more firmware fragments were lost when the LoPy was operating on the SF7. The higher SF 

has the benefit of extended airtime. It gives better sensitivity or better coverage for the LoRa 

end device that are further away to receive the firmware fragments however this causes some 

delays for the end device to be updated. The total number of firmware fragments exchanged is 

not fixed; it depends on several things which are the class modes the device is operating in, the 

data rate or SF utilized by the low-powered device, and the number of retransmitted firmware 

fragments during the update process.  Table 6.2 shows the exchanged number of messages 

when the low-powered device was updated with 1 kB of the firmware at SF12. 

Table 6.2 Exchanged Number of Messages at SF12 using 1 kB Firmware. 

Description Number of Messages 

Class A uplinks 33 

Class A downlinks 25 

Class C uplinks 5 

Class C downlinks 25 
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When the device utilized Class A mode, many firmware fragments were exchanged compared 

to the number of fragments exchanged when the low-powered device utilized Class C mode. 

this was because, in Class A mode, the low-powered device was always sending an uplink 

message to receive the firmware fragment, whereas Class C mode required no uplink messages 

to be transmitted by the low-powered device to receive the firmware fragment. However, for 

Class C downlink scheduling to start, the activation uplink message needs to be sent by the 

device to the LoRaWAN network servers, specifically after the OTAA join–accept. The total 

number of uplinks comprises the activation messages, uplink messages for requesting the 

retransmission of lost packets, the acknowledge (ACK) messages for both the session keys and 

metadata, and finally the update status message. The exchanged activation messages are only 

applicable if the device is operating in Class C mode. The low-powered device sends two 

activation messages to increase the chances for it to be activated to receive downlink messages.  

The retransmission query messages are sent in case there were lost firmware fragments. From 

Table 6.2 there was no query for the retransmission of firmware fragments, the low-powered 

device successfully received all the firmware fragments. The update status message exchange 

indicates a successful update status after the verification of the firmware image by the end 

device. 

Note that, for Class A mode, the number of uplink messages produced by the device may 

increase when the FUS performs other tasks while preparing for a response for the device. For 

instance, when the FUS receives a confirmation message from the device that session keys 

were successfully received, the device will keep on sending uplinks while the FUS is busy 

downloading, verifying firmware and metadata, etc. The number of downlink messages for 1 

kB firmware transmission is made up of 22 firmware fragments, the session key exchange 

message shown in Table 4.4, the metadata exchange message, and the last downlink message 

designating that all firmware fragments have been sent. The 1 kB firmware was fragmented 

into 22 fragments because the device was operating with SF12, and Figure 6.9 shows that each 

fragment size is 46 bytes when the device operates at SF12. Therefore, to read the 1 kB of 

firmware, it has to be read 22 times. 

It is also significant to examine the energy consumption of the low-powered device and the 

gateway. This depicts energy consumed by the low-powered device when operating in Class A 

and Class C modes (multicast session uses Class C mode hence, the energy consumption of 

Class C was only examined). The effect of SFs from 7 to 12 against energy consumption was 

examined. Figure 6.16 shows that SF12 had the higher energy consumption and SF7 had the 
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lower energy consumption. Energy consumption continues to increase from SF7 for every SF 

up to SF12. Airtime is one of the factors that cause the increase in energy consumption. Figure 

6.11 demonstrated that with the increase in SF, the transmitted fragment requires more airtime 

to reach the low-powered device hence, there is more energy consumption on the low-powered 

devices because higher SFs use more chirps for longer transmission.  

 

Figure 6.16 Low-Powered Devices Energy Consumption 

The energy consumption of the gateway was also examined when the low-powered devices 

were operating in Class A and Class C modes. Figure 6.16 depicts that Class C mode has higher 

energy consumption compared to Class A mode. Figure 6.17 shows that the gateway’s energy 

consumption is higher compared to the device's energy consumption. The advantage of a high 

SF is the extended transmission which gives the receiver more opportunities to sample the 

signal power, resulting in better coverage; but it consumes high energy compared to other lower 

SFs. 
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Figure 6.17 LoRa Gateway Energy Consumption 

6.5 Blockchain Evaluation Costs 

This section examines the Blockchain operation costs involved during the update process.  

Figure 6.18 and Table 6.3 depict Blockchain operations costs in the Blockchain network which 

are represented in terms of fee and gas. Each figure depicts that the firmware metadata costs 

vary from time to time depending on its size. The increase in metadata data size increases the 

gas cost execution on the Blockchain network. This is illustrated in Table 6.3 where firmware 

size of 1 kB to 5 kB was used.  

Figure 6.18 shows that the reason for an increase in the cost is that the transaction was made 

when the new firmware metadata was added to the network. In other words, a certain amount 

of gas or fee is provided by the manufacturer to the network for the successful execution of the 

transaction. The manufacturer specifies the gas limit which must always be higher than the gas 

to be used.  

 

 

Table 6.3 Gas Cost Execution on blockchain Operations 

Parameter Description 

addNewFirmware(1 kB) 378,328 

addNewFirmware (2 kB) 689,116 
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addNewFirmware (3 kB) 1089466 

addNewFirmware (4 kB) 1176024 

addNewFirmware (5 kB) 1282079 

registerDevice(devInfo) 49,418 

updateDevInfo(devInfo) 28,852 

retrieveMetadata() 0 

retrieveDevsInfo() 0 

 

 

Figure 6.18 Fee Cost on Adding New Metadata and Getting Metadata. 

Figure 6.19 demonstrates the relationship between the gas limit and the gas used by the 

manufacturer when the transaction was executed for storing the metadata. 

It is observed that the gas limit must always be higher than the gas used and the manufacturer 

must ensure that it is enough to cover a transaction otherwise it will not execute successfully. 

This steadily increasing relationship between fee/gas consumption and metadata is caused by 

adding more data to the Blockchain, and the fee required to execute the transaction is directly 

proportional to the amount of data being added. Hence, operations like registering the low-

powered device, publishing new metadata, deleting the device, and updating the low-powered 

device information require gas/fee. Whereas operations like retrieving metadata, and device 

information require no gas because no transactions are involved. More importantly, the gas/fee 

consumption may vary from time to time depending on the price at that particular moment on 

the network.  
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Figure 6.19 Gas Consumption on Adding New Metadata. 

The implemented algorithms presented in 4.7 and 5.2.2 which is the complexity analysis are 

presented in Table 6.4 with the Big-O Notation technique. The addNewFirmware() is 

responsible for uploading metadata to the network and it takes metadata as an argument. The 

algorithm performs a comparison operation which is a constant operation taking O (1). If the 

comparison passes, then the metadata is inserted into a mapping structure. Mapping is 

essentially a kind of hash table where values are mapped to keys. Since the metadata is being 

inserted into the mapping, the operation will show a constant O (1). The last part will be to 

emit the event, which is a constant operation resulting in the time complexity of T(N) = 1 + 1 

+ 1 = 3. Hence, the total complexity is constantly at O (1). For checking firmware availability 

in isUpdateAvailable(), the algorithm first checks if the model is in the model list using the for-

loop which executes N times, together with the operation inside its body. Therefore T(N) = N 

(for-loop) + 2N (2 times N comparison inside the loop) = 3N = N; hence, the order of growth 

is O (N). The order of growth for retrieveMetadata (), registerDev(), and getDevInfo() is 

affected by the for-loop which takes N steps O (N). The deleteDev(), updateDeviceInfo(), 

updateDeviceStatus(), and getDeviceStatus() consists of the instruction that retrieves the 

device status from the mapping, which makes the order of growth O (1). 

Table 6.4 Algorithm Complexity Analysis 

Algorithm Complexity 

addNewFirmware() O (1) 

isUpdateAvailable() O (N) 
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retrieveMetadata () O (N) 

registerDev() O (N) 

deleteDev() O (1) 

updateDevInfo() O (1) 

updateDeviceStatus() O (1) 

getDevInfo() O (N) 

getDeviceStatus() O (1) 

The efficient way of measuring the complexity of the algorithms is through gas. The gas price 

affects the execution time of the operation. Lowering the amount of gas price paid will lower 

the total cost of a given operation, it will also ensure that it takes longer. Paying a higher gas 

price will ensure a transaction is prioritized in the Blockchain, while, in most cases, paying a 

lower gas price will essentially ensure that a transaction will not take place for at least a few 

minutes. Higher gas prices generally mean that transactions will be completed faster, while 

lower gas prices mean they will take more time. The gas costs are shown in Table 6.4. 

6.6 Requirements Satisfaction  

This Section compares the proposed architecture and the state-of-the-art firmware updates 

mechanisms as shown in Table 6.5. It also provides how the properties and requirements were 

addressed by the proposed solution in Table 6.6. The Section explains how the proposed 

solution fulfilled each property with the requirements listed in Section 4.3.1. 

Table 6.5 Comparison of The State-of-the-Art Against the Proposed Work 
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Centralized-Based 

(Alexandre, 2016)   ✓    ✓  ✓  ✓   ✓ 

(Pycom, 2018)  ✓   ✓    ✓    

(Doddapaneni et al., 2017)  ✓   ✓    ✓    

(Reißmann and Pape, 2017)  ✓      ✓  ✓   

(Lo and Hsu, 2019)    ✓    ✓  ✓   

(Abdelfadeel et al., 2020b)  ✓   ✓       ✓ 

(Sahlmann et al., 2021)  ✓     ✓  ✓  ✓  ✓  ✓ 

(Verderame et al., 2021)  ✓     ✓  ✓    ✓ 

(Techniques, 2021) ✓  ✓  ✓ ✓ ✓  ✓ 
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(Charilaou et al., 2021) ✓  ✓   ✓ ✓  ✓ 

Blockchain-Based 

(Lee and Lee, 2017)   ✓  ✓  ✓  ✓ ✓   

(Yohan and Lo, 2019)   ✓     ✓    

(Mtetwa et al., 2019)   ✓   ✓   ✓    

(Witanto et al., 2020)   ✓   ✓   ✓  ✓   ✓ 

(Anastasiou et al., 2020)     ✓   ✓  ✓   ✓ 

(Fukuda and Omote, 2021)   ✓   ✓  ✓  ✓  ✓   ✓ 

(Sanchez-gomez et al., 2021) ✓  ✓ ✓ ✓ ✓ ✓   

(Tsaur, Chang and Chen, 

2022) 
 ✓ ✓       

Proposed Work ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

Table 6.6 Fulfilment of Requirements 

Requirement 

Number 
Description 

REQ1 

Push Updates – One of the requirements was to ensure that the system 

should enable administrators or device owners to schedule firmware 

updates to their devices to avoid network saturation and limit unintended 

downtime. The system met this requirement by implementing the python 

script that can be used in CLI to schedule firmware updates. The utilization 

of the script is shown in Figure 4.8. The Figure shows the command the 

owner of the devices uses to initiate the firmware update.  

REQ2 

Manage Updates – The implemented CLI script does not only limit the 

device owners to initiate the firmware update, but it also enables them to 

manage the updates of devices e.g., deletes, updates, and registers the 

low-powered devices to the Blockchain network. Hence, this fulfills the 

second requirement that there must be one component that manages 

updates of multiple microcontrollers that compose IoT devices. In 

addition, the FUS was implemented as a component that manages the 

entire firmware update process.   

REQ3 

Over-The-Air Updates and Network Constrians Adoption – The 

third requirement stated that the firmware update mechanism must adopt 

over-the-air updates, and the mechanism strategy should be adapted to 

the network bandwidth constraints. This study adopted the OTA 

mechanism instead of applying manual updates to low-powered devices. 
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The mechanism adheres to the network restrictions, for instance, 

LoRaWAN is a restricted network with a very low data rate and requires 

a small amount of data to be exchanged. The proposed update 

mechanism ensured that the exchanged messages including the firmware 

image adhered to the LoRaWAN bandwidth. For example, if distributed 

firmware image is greater than the regionally specified bandwidth, the 

FUS will perform the firmware fragmentation based on the DR or the SF 

being utilized by the low-powered devices. 

REQ4 

• Integrity & Authentication – The integrity and authentication 

of data are provided by utilizing hashing, symmetric and 

asymmetric algorithms namely the SHA256, MAC, and ECDSA 

algorithms. ECDSA and SHA256 algorithms are used by the FUS 

to check firmware authenticity and integrity after it has been 

downloaded. The low-powered device also performs integrity and 

authenticity checks through the MAC algorithm based on the shared 

secret key. 

• Confidentiality – The proposed architecture provides 

confidentiality of data through AES encryption. The mode of 

operation for AES utilized by the architecture is the counter mode 

(MODE_CTR). The encryption of messages is performed in a 

different area, for example, the FUS encrypts the low-powered 

device information before it gets pushed to the public Blockchain 

network and decrypts the information when it retrieved data on the 

Blockchain network. The low-powered device also uses AES for the 

encryption and decryption of information such as session keys. 

REQ5 

Availability – The proposed architecture ensures the availability of 

firmware images through decentralized networks. The architecture 

utilizes the IPFS and Blockchain networks. Both networks rely on the set 

of nodes to achieve the high availability of firmware images. The 

traditional ways of storing the firmware are based on a central entity like 

a centralized server. The distributed and decentralized ways are good for 

achieving availability where the firmware is published on multiple 
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devices and synced with the rest of the devices connected to the network. 

The architecture uses an infura node to store and retrieve the firmware 

image stored on the decentralized IPFS network. This allows access to 

the firmware image even if the manufacturer’s node is offline in the 

network. Just like the firmware image being stored on the decentralized 

IPFS network, the metadata is stored on the Blockchain network, which 

comprises many nodes that ensure the high availability of metadata. The 

architecture utilizes an infura node to connect and communicate the 

metadata with the rest of the Blockchain nodes. 

REQ6 

Replay Attack – Replay attack or Data freshness ensures that the 

messages are fresh and the man-in-the-middle has not replayed old 

messages. The data freshness in our architecture must be ensured because 

sensitive information like session keys and signatures are being 

exchanged hence, encryption alone is not sufficient. The architecture 

ensures the data freshness between the FUS and the low-powered. These 

two entities have a function that keeps track of a nonce value to ensure 

data freshness and the nonce values are encrypted and kept secret 

between the entities.  For example, when the low-powered device 

receives the session key, it will decrypt them with the shared secret key 

and verify the nonces against the expected value of nonces. If the nonce 

values are correct, it will accept the respective message as fresh.  

REQ7 

Low-power consumption – The proposed architecture has been 

developed, tested, and evaluated in a constrained network. The 

constrained network being utilized is the LoRaWAN network which 

provides low-power consumption, and long-range connectivity, at low 

bandwidth between 250 bit/s and 11 kbit/s in Europe using LoRa 

modulation. The proposed architecture is demonstrated by utilizing 

constrained devices to show its suitability on a constrained network. The 

work also performs an evaluation of Blockchain operations, LoRaWAN, 

and cryptographic costs which are demonstrated in Section 5.2, Section 

5.3, and Section 6.4. 



  

Chapter 7: Conclusion 

This chapter aims to summarise and conclude this study. The chapter summarizes the research 

problem and research questions introduced in Chapter 1, and how they were answered in this 

study. Finally, the recommendations for future work and the limitations are discussed. 

7.1 Problem Summary 

IoT consists of a massive number of devices and the devices will inevitably require 

patches to improve the performance after the deployment and functioning in the field. Most of 

the devices are deployed in environments with no Internet connectivity which makes it hard to 

reach and deliver firmware updates. Several studies have targeted securing and delivering 

firmware to different devices in different IoT networks trying to enhance the security of the 

devices. Studies based on constrained IoT networks specifically LoRaWAN as an emerging 

IoT technology, consider traditional ways of securing and delivering firmware updates to the 

devices. IoT devices are exponentially growing, and thousands of deployments are expected in 

the future. Thus, traditional approaches exhibit single-point-of-failure which is a downside to 

the IoT networks by looking at the way it scales. Hence, new ways of delivering firmware 

updates are required. Therefore, this study proposed to develop a decentralized solution as a 

better way to deliver firmware updates to constrained LoRaWAN networks using Blockchain 

technology.  

7.2 Contributions 

In this study, we reviewed the existing literature on firmware updates in IoT. Further, we 

identified the gaps in the current firmware update solution. We addressed these deficiencies by 

implementing an end-to-end firmware update mechanism for low-powered devices in the 

LoRaWAN network. The research makes the following contributions: 

• This dissertation designed and implemented a Blockchain-based component called 

Firmware Update Service (FUS) which can be integrated with LoRaWAN application 

server and be responsible for handling firmware updates of the low-powered devices in 

the LoRaWAN network. This contribution comes from the fact that the currently 

existing research only conducts LoRaWAN firmware update research utilizing 

simulation software tools. Our study, therefore, provides the real implementation of 

firmware updates in LoRaWAN and integrates Blockchain technology to provide a 

resilient firmware update mechanism. 
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• The CLI tool that helps device owners or administrators to manage and schedule 

firmware updates to the low-powered devices in the LoRaWAN network was 

developed. To the best of our knowledge, the existing LoRaWAN research, that 

integrates Blockchain is based on the simulation tool and does not provide a way how 

to manage LoRa-end devices' firmware updates. Therefore, our study contributes by 

implementing the command line tool that can be utilized to schedule and manage the 

devices. 

• And finally, the study evaluated the suitability of the proposed solution for low-

powered devices in the LoRaWAN network. 

• In addition, 4 scientific articles which include the publication of an article in an 

accredited journal and three conference proceedings articles proceeded from the 

research 

7.3 Research Questions Answers 

This dissertation wanted to answer the following main research question. 

How can a Blockchain-based firmware update architecture for the LoRaWAN network 

be designed and implemented? 

From the main research question, four sub-research questions were constructed. The questions 

and how each was answered are presented below. 

1. What is the “state of the art” in LoRaWAN firmware updates?? 

To address this sub-question, it was essential to understand the existing firmware mechanism 

approaches and look at the tactics utilized to secure the firmware updates. As a result, the study 

looked at the different approaches in the literature review presented in Chapter 3. The 

approaches were categorized into two main categories:  the centralized which is based on the 

client-server model, and the decentralized approach particularly based on Blockchain 

technology. In addition, each study was observed with the properties it aims to achieve. The 

properties include: 

• Security properties - Security properties include confidentiality, integrity, 

authentication, and data freshness (replay attack).  

• Type of IoT network  – the IoT comprises of different types of networks. A certain 

study is either focused on the constrained network or not. 
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• Type of IoT device targeted – Section 2.1.1 described different devices that exist in the 

IoT networks, and the investigated studies were categorized based on the type of 

devices that were targeted. This includes the constrained low-end, middle-end, and 

high-end devices 

• Performance Evaluation – certain studies only focused on proposing the firmware 

update solution design without providing the proof of concept, some only propose and 

provide the proof of concept without doing any evaluations. Therefore, the observed 

studies were investigated to see whether the performance evaluation was provided or 

not.   

As a result, the identified properties in the literature helped to identify the gaps and directed 

our study to focus on constrained IoT devices in the constrained network while providing the 

required security attributes and evaluation. 

2. Why is Blockchain suitable for firmware updates in LoRaWAN? 

This research question was addressed using the background study which was observing the 

advantages of Blockchain technology and addressed by reviewing the literature in Chapter 2: 

In Section 3.1 different Blockchain LoRaWAN integration studies were reviewed to see how 

Blockchain is used in LoRaWAN. Section 3.1 showed that Blockchain technology can be 

suitable for LoRaWAN in many ways. For instance, LoRaWAN is based on symmetric 

cryptography and when Blockchain is integrated with LoRaWAN, it can take advantage of the 

advanced features of Blockchain in terms of security e.g., using asymmetric cryptography for 

enhancing LoRaWAN security. Moreover, when it comes to data that is generated by LoRa 

devices Blockchain provides a highly secured way of storing the data and tamper-proof data. 

3. How can a Blockchain-based firmware update mechanism that suits LoRaWAN 

be implemented? 

We tackled this question in Chapter 4:  and Chapter 5: We focused on the design of the system 

architecture in Chapter 4: and the implementation of the system in Chapter 5: We identified 

the key requirements which must be met by firmware update mechanisms which in general are 

the  IoT networks and also LoRaWAN. The requirements were obtained from the literature and 

the firmware updates recommendation from the report notes. These were presented in Section 

4.3.1. For example, (Jongboom and Stokking, 2018a) came up with some recommendations 

that need to be followed when updating low-powered devices in LPWAN e.g. the mechanism 

must adhere to network restrictions. Thus, the design and implementation were based on such 
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recommendations. The system architecture was presented in Section 4.4 and illustrated in 

Figure 4.3. The study implemented the independent components (that is FUS) that connect the 

integrated Ethereum Blockchain, LoRaWAN, and IPFS network. The FUS component is 

responsible for the entire firmware update process connected to LoRaWAN via the LoRaWAN 

application server. The Blockchain smart contracts were implemented using solidity and the 

developed smart contracts enforced the rules during the firmware updates and securely stored 

the low-powered device's information in the Blockchain. 

4. How can the proposed firmware update mechanism be evaluated? 

Experiments were conducted to evaluate the effectiveness of the proposed architecture. The 

experiments aimed to find out whether the architecture is suitable for constrained low-powered 

devices. This led us to examine certain metrics explained in Section 6.2 to determine the 

suitability of the architecture to the devices, for example examining memory consumption of 

cryptographic algorithms utilized to secure the firmware, etc. The architecture was evaluated 

using devices listed in Table 5.5 which include the LoRa node (LoPy), LoRa gateway 

(Raspberry Pi and RAK831 module), and the PC running LoRaWAN servers.  

7.4 Summary 

Privacy and security in the IoT are still in the early stages. Bugs and vulnerabilities were 

discovered on the devices while being active on the Internet, therefore, it is important to keep 

the security of the devices up to date to mitigate the vulnerabilities. This dissertation has 

presented the design and implementation of a Blockchain-based architecture targeting to 

delivery of firmware to low-powered constrained devices in the LoRaWAN network. The 

solution presented in this study showcases the potential of Blockchain technology in solving 

some of the issues found with centralized firmware update approaches. For example, since IoT 

devices are exponentially growing, the existing centralized solutions may not ensure the high 

availability of firmware thus, they exhibit single-point-of-failure which may seriously affect 

the security of the devices and the privacy of the consumers when security threats occur. Hence, 

the study took the advantage of the decentralized technology to enhance the security of 

firmware updates in LoRaWAN. The obtained results show that the architecture is suitable for 

LoRaWAN and constrained low-powered devices in the network. This suitability is observed 

through the examination of memory consumption during the update process.  It depends on the 

firmware image size, for example, a larger firmware image size requires more resources during 

the verification process. 
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7.5 Limitations and Future Work 

Even though the Blockchain-based solution for LoRaWAN is developed and presented, there 

are still many open issues that this work did not cover when it comes to firmware updates in 

constrained LoRaWAN networks. In this study, unfortunately, the larger-scale tests were not 

possible, due to the limited number of LoRa nodes we had. Furthermore, the scope of this study 

does not focus on the security of the bootloader. In future work, the study can be extended by 

improving the solution incorporating asymmetric cryptography for instance incorporating the 

Elliptic Curve Digital Signature Algorithm (ECDSA) and examining the effect of the 

Blockchain-based ECDSA algorithms during the device’s verification of the firmware image. 
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Appendix A: Code for Adding Metadata on Blockchain 

 

Appendix B: Code for Checking Latest Firmware Update 

 

Appendix C: Code for Retrieving Metadata 

 

Appendix D: Partial Code Snippet for Device Registration 

 

Appendix E: Deleting the End Device 
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Appendix F: Partial Code Snippet for Updating Device Information 

 

Appendix G: Code Snippet for Updating Device Status 

 

Appendix H: Code for Get the Device Information 

 

 

 

 

 

 


