
A BLOCKCHAIN-BASED FIRMWARE UPDATE ARCHITECTURE

FOR LONG-RANGE WIDE AREA NETWORK (LORAWAN)

by

Njabulo Sakhile Mtetwa

201409213

Dissertation in fulfillment of the requirements for the degree

Master of Science in Computer Science

Faculty of Science and Agriculture

Department of Computer Science

University of Zululand

KwaDlangezwa

RSA

Supervisor: Paul Tarwireyi

Co-supervisors: Mrs. C.N. Sibeko & Prof. A.M Abu-Mahfouz

2022

i

Abstract

Network security is increasingly becoming a critical and continuous issue due to technological

advancements. These advancements give rise to several security threats, especially when

everything is connected to the Internet. Security in IoT still requires a lot of research and it is

receiving a lot of attention both in industry and academic research. IoT devices are designed

for special use cases, and most are constrained in resources and lack important security features.

The lack of security features enables attackers to compromise IoT devices resulting in the

retrieval of sensitive information from the devices. One of the challenges in IoT is ensuring the

security of firmware updates on active devices on the Internet. This is a challenge because it

becomes difficult to incorporate traditional security techniques due to the limitations in

memory and processing capabilities of constrained IoT devices. Thus, IoT devices remain

vulnerable and open to security threats. The device manufacturers are required to release

firmware updates based on exposed vulnerabilities to fix bugs and improve the functionality of

the devices.

However, delivering a new version of the firmware securely to affected devices remains a

challenge, especially for constrained devices and networks. This study aims to develop an

architecture that utilizes Blockchain and the InterPlanentary File System (IPFS) to secure

firmware transmission over a low data rate and constrained Long-Range Wide Area Network

(LoRaWAN). The proposed architecture focuses on resource-constrained devices to ensure

confidentiality, integrity, and authentication through symmetric algorithms by providing high

availability and eliminating replay attacks. To demonstrate the usability and applicability of

the architecture, a proof of concept was developed and evaluated using low-powered devices

and symmetric algorithms.

The experimental results show HMAC-SHA256 as one of the symmetric algorithms utilized in

the firmware update process which consumes less memory compared to the CMAC algorithm.

When updating the 5 kB of firmware HMAC consumes 6.9 kB of RAM whereas CMAC

consumed 7.3 kB. The memory consumption results (RAM and flash) imply that MAC

algorithms are adequate in providing security on low-powered devices and are suitable for

constrained low-powered devices. This conclusion is premised on the fact that the memory

does not exceed the memory of the low-powered device thus, making the proposed architecture

feasible for constrained and low-powered LoRaWAN devices.

ii

Declaration

I, Mr. Njabulo Sakhile Mtetwa, hereby declare that the work presented in this dissertation is

my work and that it has not previously been submitted in full or in partial fulfillment of

requirements for an equivalent or higher qualification at any other recognized educational

institution. All sources of information used in this work have been acknowledged.

iii

Dedication

My dissertation is dedicated to my beloved parents who have been with me through this

entire journey. I thank God for them and their endless love, patience, and constant support

iv

Acknowledgments

I would like to express my special thanks to my supervisor Mr. P. Tarwireyi for this valuable

project idea. This project provided me with the platform to pursue my interest in Blockchain

technology and the Internet of Things. His constructive feedback, research guidelines, and

suggestions were of great help to me.

I would also like to thank my co-supervisors Prof. A.M Abu-Mahfouz and Mrs. C.N. Sibeko.

I thank Prof. A.M Abu-Mahfouz for extending the idea by introducing me to one of the amazing

Internet of Things technologies, LoRaWAN. I thank Mrs. C.N. Sibeko for her academic

teachings and for being with me in stressful situations. Without CSIR and the departmental

financial support, this research would not have been successful.

Finally, I must express my profound gratitude to my family for their support and understanding,

and for being patient with me from 2019 up to this day.

v

Table of Contents

Abstract .. i

Declaration... ii

Dedication ... iii

Acknowledgments ... iv

Table of Contents ... v

List of Figures ... ix

List of Tables ... xii

List of Abbreviations... xiii

List of Publications ...xv

Chapter 1: Introduction ... 1

1.1 Overview .. 1

1.2 IoT Challenges .. 2

1.3 Motivation .. 5

1.4 Problem Statement .. 6

1.5 Research Questions ... 7

1.6 Aim and Objectives ... 7

1.6.1 Research Goal .. 7

1.6.2 Research Objectives ... 7

1.7 Research Contribution ... 8

1.7.1 Firmware Updates in IoT and LoRaWAN .. 8

1.7.2 Firmware Update with Blockchain Technology in LoRaWAN 8

1.8 Organization of this Dissertation ... 9

Chapter 2: Theoretical Background ...11

2.1 IoT Networks and LoRaWAN ..11

2.1.1 IoT Networks ..11

2.1.2 LoRa and LoRaWAN ..13

2.2 Blockchain Technology..14

2.3 InterPlanentary File System (IPFS) ..17

2.4 Firmware Updates and Cryptography ...18

2.4.1 Security Threats and Challenges ..19

2.4.2 Security Measures, Symmetric and Asymmetric Cryptography21

vi

Chapter 3: Literature Review ...24

3.1 LoRaWAN and Blockchain Integration ..24

3.2 Centralized Firmware Update Mechanisms ..26

3.3 Decentralized Firmware Update Mechanisms ...29

3.4 Benefits, Limitations, And Summary of Firmware Mechanisms31

Chapter 4: Research Design and Methodology ..38

4.1 Research Methods ..38

4.2 Research Selection ...39

4.2.1 Prototyping ...39

4.2.2 Experimentation ..40

4.3 Requirements and Assumptions ...41

4.3.1 Security Requirements of the System ..41

4.3.2 Research Assumptions ..43

4.4 Proposed Architecture ..43

4.4.1 LoRaWAN System Components ...44

4.4.2 Blockchain and Storage Components ..46

4.4.3 FUS ..46

4.5 Application Scenario ..47

4.5.1 Scenario Assumptions ...47

4.5.2 Scenario Description ...47

4.5.3 Illegitimate Firmware Prevention on Blockchain48

4.5.4 Session Key Eavesdrop ...48

4.5.5 Illegitimate Firmware Prevention on the Device50

4.6 Security Algorithms ...50

4.6.1 Data Authentication ..51

4.6.2 Secure Distribution of Data Security and Replay Attack Prevention52

4.6.3 Data Confidentiality ..54

4.7 Proposed Blockchain Smart-Contract Operations ...54

4.7.1 Manufacturer Smart Contract ..55

4.7.2 The FUS Smart Contract ...57

4.8 Overall Procedure of the Proposed Architecture ...61

4.8.1 Firmware Upload Phase ..61

4.8.2 Registration Phase ...64

4.8.3 Initialization Phase ..65

4.8.4 Firmware Download..68

vii

4.8.5 Firmware Data Authentication ..70

Chapter 5: Implementation ...74

5.1 Blockchain Framework ..74

5.2 Data Storage ..76

5.2.1 Contract State Variables ..77

5.2.2 Methods and Functionalities ..79

5.3 Testing and Validation of the Smart Contract ...82

5.4 Networks Setup ..90

5.4.1 Blockchain and IPFS Network ..90

5.4.2 LoRaWAN Network ...91

5.5 Web Application Development ..95

5.6 The FUS Implementation ...97

Chapter 6: Results and Discussion ..99

6.1 Security Analysis: Threat Assessment ..99

6.1.1 Threat Models ... 100

6.1.2 Identified threats and Defense Mechanism Discussion 101

6.2 Evaluation Metrics ... 103

6.3 Cryptographic Costs on Low-Powered Devices .. 105

6.4 Evaluating LoRaWAN Costs.. 107

6.5 Blockchain Evaluation Costs .. 115

6.6 Requirements Satisfaction .. 118

Chapter 7: Conclusion ... 122

7.1 Problem Summary ... 122

7.2 Contributions ... 122

7.3 Research Questions Answers.. 123

7.4 Summary ... 125

7.5 Limitations and Future Work ... 126

References .. 127

Appendix A: Code for Adding Metadata on Blockchain .. 134

Appendix B: Code for Checking Latest Firmware Update 134

Appendix C: Code for Retrieving Metadata ... 134

Appendix D: Partial Code Snippet for Device Registration 134

Appendix E: Deleting the End Device ... 134

Appendix F: Partial Code Snippet for Updating Device Information 135

Appendix G: Code Snippet for Updating Device Status ... 135

viii

Appendix H: Code for Get the Device Information .. 135

ix

List of Figures

Figure 2.1 LoRaWAN Network Architecture ..13

Figure 2.2 Security Breaches in Different Sectors..20

Figure 2.3 Attacks Associated with Firmware Image. ..20

Figure 4.1 Prototyping stages. ...40

Figure 4.2 Overview of the Research Methodology ...41

Figure 4.3 System Architecture ...43

Figure 4.4 Prevention of illegitimate firmware distribution and metadata48

Figure 4.5 Session Key Eavesdrop Illustration...49

Figure 4.6 Prevention of Bob’s Illegitimate Firmware on the Device50

Figure 4.7 SHA256 hashing algorithm ..51

Figure 4.8 Replay attack in FUS component ..53

Figure 4.9 Replay Attack Illustration ...53

Figure 4.10 Smart Contracts Operations. ...55

Figure 4.11 Firmware Upload Procedure. ..62

Figure 4.12 Structure Example of the Metadata ...62

Figure 4.13 Verification process of firmware metadata ..63

Figure 4.14 Device registration phase ..65

Figure 4.15 Session Key Exchange..67

Figure 4.16 Firmware Downloads and Verification Phase.68

Figure 4.17 Firmware Downloads ...69

Figure 4.18 Firmware Verification on the End Device. ..70

Figure 4.19 Confidentiality and Authenticity of FUS and the Device71

Figure 4.20 Security Activity diagram. ..72

x

Figure 5.1 Development Tools and Libraries. ..75

Figure 5.2 Figure: Device Structure. ..78

Figure 5.3 Metadata Solidity Structure ..78

Figure 5.4 Blockchain Transactions and Event for Firmware Metadata Upload.80

Figure 5.5 Enable and Disable Auto-Updates. ...80

Figure 5.6 Starting the Blockchain Event. ...81

Figure 5.7 Updates the Device via CLI. ...81

Figure 5.8 Manufacturer Contract Deployment Logs ...83

Figure 5.9 Device Owner Contract Deployment Logs ..84

Figure 5.10 Add New Metadata Transaction Failure Logs.84

Figure 5.11 Add New Metadata Transaction Success Logs85

Figure 5.12 Check New Firmware Update Logs ..85

Figure 5.13 Register Device Transaction Pass Logs...86

Figure 5.14 Register Device Transaction Failure Logs...86

Figure 5.15 Delete Device Transaction Failure Logs ...87

Figure 5.16 Delete Device Transaction Pass Logs ...87

Figure 5.17 Update Device Transaction Pass Logs ..88

Figure 5.18 Update Device Transaction Failure Logs ..88

Figure 5.19 Get Device Information Transaction Pass Logs89

Figure 5.20 Get Device Information Transaction Failure Logs89

Figure 5.21 Get Device Status Transaction Pass Logs ...90

Figure 5.22 Get Device Status Transaction Failure Logs ...90

Figure 5.23 LoPy LoRa Node. ...92

Figure 5.24 The Expansion Board 3.0..92

Figure 5.25 LoPy Attached to the Expansion Board 3.0. ..93

Figure 5.26 Low-Powered Devices with Multi-Meters Attached..............................93

xi

Figure 5.27 Rapberry Pi 3 B Model. ..94

Figure 5.28 RAK832 LoRa Module. ...94

Figure 5.29 RAK831 LoRa Gateway. ..95

Figure 5.30 Computer Running the TTN Stack. ...95

Figure 5.31 Decentralized Web Application for Firmware Upload96

Figure 5.32 Structure Example of the Metadata ...97

Figure 5.33 FUS Utilized Libraries..98

Figure 6.1 Data Flow Diagram of Components of Proposed Architecture. 100

Figure 6.2 STRIDE Threat Modelling ... 101

Figure 6.3 Experiment Architecture. .. 103

Figure 6.4 CMAC RAM Consumption. ... 106

Figure 6.5 HMAC RAM Consumption. ... 106

Figure 6.6 Flash Memory Consumption on 5 kB of the Firmware. 106

Figure 6.7 Energy Consumption of Cryptographic Algorithms. 107

Figure 6.8 Cryptography Verification Time. .. 107

Figure 6.9 SF with Chosen Fragment Size. .. 108

Figure 6.10 SF with the Number of Fragments. ... 108

Figure 6.11 Airtime and Fragment Size. .. 109

Figure 6.12 Update Time for SF12 and SF11. ... 109

Figure 6.13 Update Time for SF10 and SF9. ... 110

Figure 6.14 Update Time for SF8 and SF7. ... 110

Figure 6.15 Delay in Update Time Due to Duty Cycle Restrictions 112

Figure 6.16 Low-Powered Devices Energy Consumption 114

Figure 6.17 LoRa Gateway Energy Consumption .. 115

Figure 6.18 Fee Cost on Adding New Metadata and Getting Metadata. 116

Figure 6.19 Gas Consumption on Adding New Metadata. 117

xii

List of Tables

Table 1.1 Targeted Areas of IoT ... 3

Table 2.1 Classes of Low-End IoT Devices ...12

Table 2.2 Methods of communication category. ..12

Table 3.1 Contributions and Limitations of Server-Based Firmware Approach31

Table 3.2 Comparison between proposed approaches ..36

Table 4.1 Devices Specification. ...40

Table 4.2 System requirements ..41

Table 4.3 FUS Operations. ..46

Table 4.4 Session Key Message Exchange ..66

Table 5.1 Blockchain Comparison ...74

Table 5.2 Smart Contracts Variables ...77

Table 5.3 LoPy device specifications...91

Table 5.4 Computer Specification ...93

Table 5.5 Utilized Devices Datasheet ..95

Table 6.1 Experiment Parameters .. 103

Table 6.2 Exchanged Number of Messages at SF12 using 1 kB Firmware. 112

Table 6.3 Gas Cost Execution on blockchain Operations 115

Table 6.4 Algorithm Complexity Analysis .. 117

Table 6.5 Comparison of The State-of-the-Art Against the Proposed Work 118

Table 6.6 Fulfilment of Requirements ... 119

xiii

List of Abbreviations

Abbreviation Stands for

AES Advanced Encryption Standard

AESSKey Advanced Encryption Standard Session Key

AMR Automatic Meter Reading

API Application Programming Interface

C0 Class 0

C1 Class 1

C2 Class 2

CLI Command-Line Interface

CMAC Cipher-Based Message Authentication Code

CPU Central Processing Unit

CSA Cloud Security Alliance

CTR mode Counter Mode

CoAP Constrained Application Protocol

DES Data Encryption Standard

DHT Distributed Hash Tables

DR Data Rate

Dapp Decentralized Application

ECDSA Elliptic Curve Digital Signature

ETH Ether

EU region European region

EVM Ethereum Virtual Machine

FOTA Firmware over-the-air

FUS Firmware Updates Service

HMAC Hash-Based Message Authentication

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IETF Internet Engineering Task Force

IPFS InterPlanentary File System

xiv

IPVC InterPlanetary Version Control Systems

ISM Band Industrial Scientific Medical Radio Band

IoT Internet of Things

KM Master Key

KMW Manufacturer’s Wallet Address

KPU Public Key

KS Session Key

LPWAN Low-Power Wide Area Network

LoRaWAN Long-Range Wide Area Network

MAC Message Authentication Code

MQTT Message Queue Telemetry Transfer

OS Operating System

OTA Over the Air

OTTA Over the Air Activation

PC Personal Computer

QoS Quality of Service

RAM Random Access Memory

RPC Remote Procedure Call

RX Receive Window

SF Spreading Factor

SFS Self-Certified Filesystems

xv

List of Publications

The research has resulted in the publication of one article in an accredited academic

journal and three presentations which were published as part of conference proceedings.

Accredited Journal Publication

• Mtetwa, N.S., Tarwireyi, P., Sibeko, C.N., Abu-Mahfouz, A. & Adigun, M. (2022).

Blockchain-Based Security Model for LoRaWAN Firmware Updates. Journal of

Sensor and Actuator Networks. [Online]. 11 (1). p.p. 5. Available from:

http://dx.doi.org/10.3390/jsan11010005.

Conference Proceeding(s)

1. Mtetwa, N.S., Tarwireyi, P., Sibeko, N. and Abu-Mahfouz. (2020) ‘OTA Firmware

Updates for LoRaWAN Using Blockchain’, in International Multidisciplinary

Information Technology and Engineering Conference. Kimberley, South Africa.

Available at: https://doi.org/10.1109/IMITEC50163.2020.9334108.

2. Mtetwa, N.S., Tarwireyi, P., Sibeko, N., Abu-Mahfouz A. and Adigun, M ‘Secure

Firmware Updates in the Internet of Things: A survey’, in Proceedings - 2019

International Multidisciplinary Information Technology and Engineering Conference,

IMITEC 2019. IEEE, pp. 1–7. Available at:

https://doi.org/10.1109/IMITEC45504.2019.9015845.

3. Mtetwa, N., Tarwireyi, P. and Sibeko, N. (2019) ‘Blockchain-based Architecture for

Firmware Update in IoT’, in Southern Africa Telecommunication Networks and

Applications Conference, pp. 1–2. Available at: https://www.satnac.org.za/proceedings

1

Chapter 1: Introduction

1.1 Overview

The Internet of Things (IoT) is a network of connected sensing devices with the ability to

communicate and perform tasks without human intervention (Makhdoom et al., 2019).

Recently, IoT has brought immense value to our lives with the ability to connect all things,

people, and environments to the Internet. It has created better experiences and improved

different areas of our lives which include healthcare, agriculture, smart cities, smart transport,

and mobility. However, the immense benefits of IoT are not without privacy and security

challenges. One of the main challenges is the software or firmware update challenge. The

Open Web Application Security Project OWASP, (2018) listed software updates as one of the

main challenges in IoT. The challenges with firmware updates include the lack of firmware

validation on the device, lack of secure delivery, or unencrypted in transit among others.

Furthermore, firmware updates become difficult to incorporate in IoT devices in constrained

networks, especially in devices that are constrained in nature or resources. Among these

constrained networks are Low-Powered Wide Area Networks (LPWAN) technologies such as

Long Range Wide Area (LoRaWAN), Sigfox, NarrowBand-Internet of Things (NB-IoT) with

data rate ranges between 0.3 kbit/s to 50 kbits/s per channel (Gambiroza et al., 2019). Besides,

the constraints presented by the networks, the device constrains also contribute to the difficulty

experienced in developing a secure firmware update mechanism. Several firmware update

approaches and challenges for IoT devices in the context of security have been discussed in

studies like Akshay et al., (2019) and Mtetwa et al., (2019) conducted a survey study based

on the firmware updates in LPWAN and IoT generally and found that many firmware update

mechanisms focus mainly on the IoT devices with enough resources. The survey study revealed

that not many mechanisms focused on constrained IoT devices in constrained networks. Using

the findings from the survey study, this research further investigated how firmware updates can

be performed on constrained IoT devices in a constrained IoT network, particularly

LoRaWAN.

2

1.2 IoT Challenges

The IoT merges the physical world with the digital world (Baranyi et al., 2021) and has opened

new opportunities for humanity. As it opens new opportunities, it has also brought challenges

and security threats to companies, governments, and consumers. The security threats result

from the lack of built-in security (Johnson et al., 2020) due to the limitation of the central

processing unit (CPU), memory, and power resources. As a result of these resource limitations,

Securing the IoT device becomes a challenge due to the limitations of the resources. For

example, the lack of built-in mechanisms responsible for firmware updates has been

highlighted by many studies like Zandberg et al., (2019); (OWASP, 2018) and is still a

challenge in IoT. Firmware update mechanisms are required in times of emergency due to

security breaches. Many successful attacks in the past occurred due to the vulnerabilities caused

by these limitations.

One of the well-known companies, Tesla, experienced a Bluetooth attack on their Tesla Model

X vehicle (Greenberg, 2020). The attack was related to a vulnerable key fog of the vehicle. The

vulnerability in the key fob firmware update mechanism over Bluetooth was exploited,

enabling the attacker to patch the key fob with the malicious firmware. This attack was possible

due to the lack of a code signing feature in the over-the-air (OTA) firmware update mechanism

of the key fob. Apart from the lack of code signing in the firmware update mechanism, other

vulnerabilities were found and they all made it possible for the attacker to unlock and steal the

car.

Another attack called ‘Jeep Hack’ (Miller and Valasek, 2015) was illustrated by a group of

researchers who took advantage of vulnerabilities found in the vehicle. The firmware reverse

engineering was performed which enabled the retrieval of sensitive information including,

encryption algorithms, sensitive URLs, encryption, and API keys. The researchers successfully

gained remote access to control a vehicle utilizing a Controller Area Network (CAN) bus that

enables communication among vehicle components including brakes, steering wheel, locks,

heaters, headlights, wipers, etc. The CAN messages were sent to take control of various

components of the vehicle to make it accelerate or decelerate the vehicle and even veer off the

road.

IoT attacks are not limited to only the automotive industry but also other areas such as

healthcare. A study conducted on medical implants demonstrated the effects of firmware and

communication protocol vulnerabilities on pacemakers. This attack was successful due to the

3

lack of provision of authentication and confidentiality on the remote management channel. As

a result of the vulnerabilities, it was possible to control the pacemaker’s behavior, such as

running the battery flat and controlling the patient’s heartbeat.

These attacks have clearly shown that the security of smart devices cannot be ignored, because

it can have detrimental effects not only on the affected systems but also on human lives. Thus,

this shows a need for strong encryption mechanisms to ensure security during firmware

updates. Table 1.1 lists different components and the vulnerabilities inherent in them

(Miloslavskaya and Tolstoy, 2019).

Table 1.1 Targeted Areas of IoT

Targeted

Components
Vulnerabilities

Device Data

Data is stored on the device unencrypted

Embedded security keys information on the developed code

Lack of data authentication and integrity checks both in transit and at

rest.

Lack of transport encryption and poorly implemented TLS/SSL enabling

network traffic or data of the device to pass data in plaintext.

Device Hardware

Exposed serial ports

Insecure authentication mechanism utilized in the serial ports.

Open access to dump the firmware either via flash chips or JTAG

Firmware Image

firmware modification at the storage level.

Insecure integrity and authentication/signature check.

Outdated device components with known vulnerabilities.

Hard-coded sensitive information such as passwords, and API keys, on

the firmware image.

IoT Mobile

Application &

Web Applications

Mobile and web applications allow controlling the IoT devices,

monitoring the devices, viewing analytics, controlling permissions for IoT

devices, etc. Implicitly trusted by device or cloud, username enumeration,

account lockout, known default

credentials, weak passwords, insecure data storage, lack of transport

encryption, insecure password recovery mechanism,

Dumping the source code of the mobile app

Client-side injection, Cross-site scripting.

4

Update Mechanism

Update the mechanism utilizing the unencrypted connection.

The unencrypted connection enables attackers to perform malicious

updates via DNS hijacking.

Eavesdrop on an unsecured mechanism channel to retrieve firmware

images.

There are many contributing factors to security vulnerabilities in IoT. One of them is the lack

of security knowledge among developers (Votipka et al., 2020). The developers of IoT devices

may have limited knowledge about the security vulnerabilities of these devices. Another factor

comes from the use of insecure third-party libraries and frameworks where developers utilize

existing libraries and frameworks which might have potential vulnerabilities and negatively

affect the developed product (Miloslavskaya and Tolstoy, 2019). The security check on the

code must be done before the devices or product is deployed to the Internet to eliminate any

possible security breach. In addition to these causes, the development of IoT devices involves

different vendors. This means that the developed IoT device comprises elements that are

manufactured by different vendors. This can lead to security issues if one of the elements has

vulnerabilities (Schiller et al., 2022).

After the above-mentioned IoT vulnerabilities are found in IoT devices, it is then required to

distribute the firmware image to the devices securely. This is done through firmware update

mechanisms. Without the firmware updates mechanism, critical security vulnerabilities cannot

be fixed, and IoT devices can become a permanent liability due to cyber-attacks (Zandberg et

al., 2019b).

The limitations of IoT devices are not the only factors contributing to IoT challenges. The

protocols for handling device traffic also have challenges that restrict specific use cases. For

instance, when it comes to firmware updates. One of the constrained networks with challenges

when delivering firmware updates to IoT devices is LoRaWAN. LoRaWAN is the protocol

responsible for handling network traffic according to Marais, Abu-Mahfouz, and Hancke,

(2020), and is considered a constrained network with a low data rate including restrictions on

the duty cycle and high packet loss, etc. These challenges are faced because LoRaWAN

operates in the unlicensed spectrum (ISM band) and hence, cannot offer the same Quality of

Service (QoS) that is offered by other networks. The restrictions mentioned above make it a

challenge to apply firmware updates in LoRaWAN. For example, during the firmware update

process, these limitations make it impossible for some fragments of the firmware image sent

5

over LoRaWAN to be received by the gateway. This is due to the interference of the signal

sent/packet loss, hence LoRaWAN cannot ensure successful packet delivery.

Why Decentralized and Blockchain Technology in LoRaWAN?

LoRaWAN relies on symmetric cryptography to secure the devices and to provide end-to-end

encryption between the devices and LoRaWAN servers. However, with the built-in symmetric

cryptography, LoRaWAN is still susceptible to some attacks (Brtnik, 2018). Recent studies

have been conducted to enhance the security of LoRaWAN. One of the popular technologies

that are utilized to enhance the security of IoT systems is Blockchain technology which is a

decentralized peer-to-peer network (Dika and Nowostawski, 2017) that is not managed by a

third party. Decentralized networks are known for their high resilience against many threats

and improved scalability compared to centralized networks. The most-used firmware update

approaches happen in a centralized manner, in which the IoT devices depend on a single

authority for the distribution of firmware.

The central approaches make the manufacturer’s server vulnerable to single-point-of-failure

Witanto et al., (2020) and latency issues. For example, when the manufacturer’s servers are

offline, there will be a delay in critical patches from being applied to IoT devices (Atzori,

2017). In a decentralized network that is not the case. A decentralized network does not allow

data and processing in a single place but involves different entities that store, communicate,

and process data, hence the single point of failure is eliminated. Moreover, a decentralized

network like Blockchain is considered to be highly secured because it uses advanced

cryptographic techniques such as hashing function and asymmetric cryptography (also known

as public-key cryptography) to secure its data. The data on the Blockchain is auditable and

impossible to alter or delete.

1.3 Motivation

Researchers recently conducted studies on firmware updates to come up with mechanisms that

were meant to deliver updates to different types of IoT devices. Each of these recent studies

either focuses on constrained networks targeting low-powered/low-end devices or on non-

constrained networks targeting IoT devices with more resources. Different strategies had been

developed to provide security for these devices during the update process. The client-server

and decentralized Blockchain-based strategies are the two main strategies being utilized to

deliver and secure firmware updates to the devices. Few studies targeted low-powered devices

in constrained networks literature, particularly LoRaWAN. The existing ones only utilize the

6

client-server approach to distribute and secure the firmware to the devices. On the other hand,

Blockchain is an emerging technology known for being resilient to cyber-attack and highly

secured compared to the client-server approach. However, while Blockchain is having these

advantages it has not been adopted in some IoT networks. The existing Blockchain-based

firmware update mechanisms focus more on medium-high-end devices in other IoT networks

but, not on low-powered devices in LoRaWAN.

In addition, existing Blockchain-based techniques of delivering the firmware update focusing

on another network cannot be even adopted in constrained networks, for instance, some

adoptions require more resources on the devices whereas constrained networks like LoRaWAN

comprise the devices that have limitations in memory and processing power. Jongboom and

Stokking, (2018a) came up with some requirements or challenges that need to be addressed

when delivering firmware updates to low-powered devices in LoRaWAN. Hence, most did not

consider these challenges which makes them unadoptable in constrained networks. Therefore,

this study proposed and implemented the Blockchain-based architecture or mechanism to

deliver firmware updates to low-powered LoRaWAN.

1.4 Problem Statement

The lack of robust security solutions in IoT is an area of concern to both academia and industry.

Due to their ubiquity, vulnerable IoT devices are not only a danger to the networks they connect

to, but also to the humans that seek to derive utility from them (Zandberg et al., 2019b). There

has been a rise in the number of cases where ransomware and malware have targeted firmware

vulnerabilities to cause harm, steal credentials, or even disable critical infrastructure. Research

has shown that some IoT devices are even attacked within five minutes after field deployment

and targeted by specific exploits within 24 hours (NetScouts, 2018). It is, therefore, evident

that after the initial deployment of IoT devices, it is inevitable for vulnerabilities to be

discovered (George Corser et al., 2017). If not mitigated, some of the vulnerabilities will have

detrimental effects. Thus, device manufacturers are expected to release new firmware versions

to fix bugs and vulnerabilities to improve the device’s security. The new firmware versions

must be transmitted via a secure firmware update mechanism to make them available securely

to the active devices on the Internet. Establishing a secure firmware update mechanism for IoT

devices is a challenge. It is a challenge due to many factors such as limitations posed by IoT

devices in memory and processing capabilities as well as the communication protocol with data

7

rate limitations. Additionally, the nature of IoT comprises a massive number of geographically

separated devices where some are active in areas that are difficult to reach.

This massive number of IoT devices makes it impractical and infeasible to apply manual

updates to the devices active in the field because it requires remembering all devices’ physical

locations and then connecting each with the PC via cable to apply manual updates. Hence, there

is a need for automated OTA methods of conveying firmware updates to the thousands of

devices active on the Internet. The most-used OTA approaches are based on the client-server

model which is a traditional model. However, this traditional approach exhibits a single point

of failure therefore, there is a need for ways to convey firmware updates that use the distributed

approach such as the Blockchain technology that provides high security that is resistant to

conventional attacks.

1.5 Research Questions

This research aimed to answer this main research question:

How can a Blockchain-based firmware update architecture for the LoRaWAN network be

designed and implemented?

From this research question, four sub-research questions emanated.

• What is the “state of the art” in LoRaWAN firmware updates?

• Why is Blockchain suitable for firmware updates in LoRaWAN?

• How can a Blockchain-based firmware update mechanism suitable for LoRaWAN be

implemented?

• How can the proposed firmware update mechanism be evaluated?

1.6 Aim and Objectives

1.6.1 Research Goal

This study aimed to implement and evaluate a secure Blockchain-based firmware update

mechanism that is suitable for LoRaWAN.

1.6.2 Research Objectives

The goal was broken down into the following achievable objectives:

8

• To establish the state of the practice of firmware updates in LoRaWAN contemporary

research literature.

• To explore the suitability of Blockchain in firmware updates for LoRaWAN.

• To design and implement a Blockchain-based secure firmware update mechanism that

is suitable for LoRaWAN.

• To analyze the performance of the proposed firmware update mechanism.

1.7 Research Contribution

In the recent era, the IoT network is vulnerable to many different cyber-security issues, and it

keeps on growing exponentially as more of these issues are discovered. Therefore, security

must be considered a major concern. In that regard, this research explored how firmware update

and Blockchain-based firmware update mechanisms can be designed, implemented, and

evaluated for constrained IoT devices specifically in the LoRaWAN network. To that end, we

contributed in the following ways:

1.7.1 Firmware Updates in IoT and LoRaWAN

This study explored the existing approaches for delivering firmware updates to the LoRaWAN

IoT network and what recent cybersecurity techniques can be utilized to implement a secure

solution. Firstly, Blockchain technology was noted as one of the few approaches that are

utilized for securing firmware updates in LoRaWAN, to the best of our knowledge, at the time

the study was conducted there was no Blockchain security approach targeted to deliver

firmware updates to a constrained LoRaWAN network. This was observed through the survey

study carried out by Mtetwa et al., (2019) and which was published in a conference proceeding.

Thus, this study sets a foundation for further exploration into Blockchain-based solutions for

LoRaWAN.

1.7.2 Firmware Update with Blockchain Technology in

LoRaWAN

The existing firmware update mechanisms for LoRaWAN are mostly done manually and some

rely on the client-server model to securely distribute the firmware to constrained low-powered

devices, however the client-server model exhibit the single-point-of-failure. The current

LoRaWAN-based research studies demonstrate the firmware update with the use of simulation

tools and to the best of our knowledge, there is no Blockchain-based study utilizing physical

9

devices to show how constrained LoRaWAN devices can be securely updated with Blockchain

technology. This study, therefore, focused on the testbed to demonstrate the possibility of

firmware updates in LoRaWAN taking advantage of Blockchain technology to securely deliver

firmware updates to low-powered devices. The study, therefore, demonstrated how Blockchain

technology can be utilized in LoRaWAN to securely deliver firmware updates to low-powered

devices by providing the design and implementation of a Blockchain-based firmware update

architecture.

Here are the following implementations the study accomplished:

• an automated Blockchain-based firmware update solution in Solidity (a smart contract

programming language).

• Firmware Update Service (FUS) is responsible for the entire orchestration of firmware

updates. The FUS manages the entire firmware update process of low-powered devices,

performs the fragmentation, and maintains the end-to-end encryption.

• The CLI script that works hand-in-hand with the FUS was implemented to help the

device owners manage low-powered devices registered in Blockchain and to initiate or

apply the firmware updates.

• Finally, the study implemented a decentralized application (Dapp) for manufacturers to

upload firmware images and metadata to the InterPlanentary File System (IPFS) and

Blockchain network respectively.

In addition, the study was evaluated to show the impact of the proposed solution and security

measures taken to secure the firmware. Furthermore, it shows the overall cost involved in LoRa

transmission.

1.8 Organization of this Dissertation

The remaining parts of this study are organized as follows:

Chapter 2 aims to provide the reader with background knowledge on LoRaWAN, Blockchain

technology, decentralized storage, security threats or challenges available during firmware

updates with the security measures. The background study is conducted to understand the

design, implementation, and evaluation of our proposed architecture.

Chapter 3 this chapter reviews recent studies and approaches utilized to deliver firmware

updates in IoT general and constrained networks. Apart from recent studies in firmware

10

updates, the chapter also presents the Blockchain and LoRaWAN integration studies that aim

to enhance the security of LoRaWAN. It closes by listing the benefits, limitations of each study.

Chapter 4 gives a detailed explanation of our system architecture. It starts by providing the

research methodology utilized in this study. This is followed by the application scenario

section, and the sections detailing the system’s requirements, Blockchain smart contract design,

and overall design including the security algorithm utilized.

Chapter 5 discusses how the proposed system was implemented, and what tools were utilized.

It also discusses the implementation of the smart contracts, the implementation of the

independently implemented FUS component responsible for the entire firmware update

process, and represents the decentralized web application that helps manufacturers to distribute

the firmware. The testing and validation of the smart contract operations are also provided in

this chapter.

Chapter 6 provides the results and analysis of the proposed architecture and the comparison

of the proposed solution against other firmware update mechanisms. The evaluation of the

system’s overall performance is provided by examining LoRaWAN, Blockchain, and

cryptographic algorithm costs.

Chapter 7 summarises the study and presents how each research question was answered. In

addition, it provides limitations and the future direction of this research.

 11

Chapter 2: Theoretical Background

This chapter is an introduction to important concepts underpinning the study. It starts by

explaining IoT networks which include the Long-Range Wide Area Network (LoRaWAN)

technology. It also explains the different categories of IoT devices and the different device

classes that are provided by LoRaWAN. The explanation of the Blockchain and InterPlanetary

File System (IPFS) technology is followed by the security threats, and the security measures in

firmware updates.

2.1 IoT Networks and LoRaWAN

This subsection explains the IoT networks and one of the constrained IoT networks specifically

LoRaWAN.

2.1.1 IoT Networks

IoT is a system of devices that can communicate without human intervention (Makhdoom et

al., 2019). This system comprises four main components namely: sensors, connectivity, data

processing, and user interface, which enable users to interact with the devices (Leverege LCC,

2018). Sensors are responsible for collecting, receiving, and exchanging data. The data sent by

the sensor is carried out by a particular connectivity such as Wi-Fi, Cellular, and many others.

It is then further processed to gain more insight. AWS IoT Core, AWS IoT, Analytics, Oracle

IoT, Cisco IoT Cloud, and Google Cloud IoT are examples of data processing services that

help to store sensor data and gain insight from it. The analyzed or processed data insight is

distributed to the users via the interfaces which could be in the form of mobile applications,

web applications, etc. Likewise, a user can send a message from the user interface to the

sensoring IoT device. IoT devices are categorized into three main categories: low-end, middle-

end, and high-end devices (Ojo et al., 2018).

The low-end devices are too constrained in resources compared to other categories; their

purpose is to sense, send, and sometimes receive a small amount of data without performing

complex calculations. Traditional operating systems (OSs) like Linux and Windows cannot run

on low-end devices, since most are low-powered or battery-powered devices and are without

enough resources to accommodate these operating systems. The Internet Engineering Task

Force (IETF) further subcategorizes these devices into three main subcategories: Class 0 (C0),

Class 1 (C1), and Class 2 (C2). The IETF device classification is based on the device’s

 12

capabilities: RAM and Flash memory are available on the device (Bormann, Ersue, and

Keranen, 2014). Table 2.1 shows the subcategory of low-end devices.

Table 2.1 Classes of Low-End IoT Devices

Name RAM Flash

Class 0 <<10 kB <<100 kB

Class 1 ~10 kB ~100 kB

Class 2 ~50 kB ~250 kB

Class 0 devices are constrained in memory and processing capabilities. They get connected to

the Internet via other devices like proxies, gateways, or servers. Class 0 devices are also

constrained and communicate via lightweight protocols like Constrained Application Protocol

(CoAP). Class 1 can communicate with other devices on the Internet with the help of gateways.

Class 2 devices are less constrained compared to other classes. They are capable of supporting

protocols stack used in servers such as Hypertext Transfer Protocol (HTTP). Apart from the

low-end devices, there are device types that have more resources compared to the low-end

devices. These types include middle-end and high-end devices. Middle-end devices are less

constrained than low-end devices and are capable of using more than one communication

technology (Sivagami et al., 2021).

High-end devices have enough resources, high processing power, a lot of Random-Access

Memory (RAM), and Flash memory and can run traditional OSs. Most of these devices are

used as IoT gateways because of their high level of resources. The most well-known example

of a high-end device is the raspberry pi. The data exchange of IoT devices is made possible by

communication protocols and many protocols suitable for specific IoT devices have been

developed in the past. These different methods of communication include Bluetooth, satellite,

cellular, Wi-Fi, RFID, NFC, Low Power Wide-Area Networks (LPWANs), etc. Each method

of communication has trade-offs between bandwidth, range, and power consumption.

These communications can be categorized into four major groups in Table 2.2:

Table 2.2 Methods of communication category.

 PAN LAN MAN WAN

 Standards
 Bluetooth

IEEE 802. 11a,

802. 11b, 802.11g

802.16 MMDS,

LMDS

GSM, GPRS,

CDMA, 2.5-3G

Range Short Medium Medium-Long

Long

 13

Examples

NFC, IrDA,

Bluetooth or

Zigbee

Ethernet, fibre

optics and Wi-

Fi

Wi-Fi

Satellite,

LPWAN

(LoRa, Sigfox)

This study focused on type of WAN network particularly the LPWAN network. LPWAN has

various of networks within such as LoRa, Sigfox etc. The study then focused on constrained

IoT devices and constrained networks, one of the communications based on low power

consumption, high range, and low bandwidth, particularly Long-Range (LoRa) and LoRa-

Range Wide Area Network (LoRaWAN).

2.1.2 LoRa and LoRaWAN

Long-Range (LoRa) is a robust ISO/OSI Layer 1 wireless technique that can transmit and

receive radio waves over long distances and is suitable for applications that transmit small

chunks of data with low bit rates (The Things, 2021). LoRaWAN refers to the communication

protocol and the system architecture, while LoRa refers to a physical layer. LoRaWAN system

architecture is made up of different components responsible for processing LoRa packets.

These components include a join-server, network server, and application server as shown in

Figure 2.1. The gateway and the end devices communicate with one another via the LoRa

interface.

Figure 2.1 LoRaWAN Network Architecture (LoRa Alliance, 2018)

LoRaWAN Alliance specification categorizes the end devices into three classes: Class A, Class

B, and Class C (Alliance, 2018). Each device class is suitable for a specific use case. The

difference between the classes is based on how the devices communicate and exchange

messages. When the device operates in Class A mode, communication is always initiated by

the end device. The downlink message transmission is allowed after a successful uplink

 14

transmission that opens through RX windows and these windows use the channel with a low

data rate. The common use cases for Class A device applications include Agriculture plant

monitoring, Animal tracking, location tracking, fire detection, earthquake early detection, and

more. Most of the Class A devices are often battery-powered and efficient in battery

consumption since they spend a lot of time in sleep mode and are inactive in the network.

Class B device opens a receive window after sending an uplink just like the Class A device

furthermore, it has an additional window that receives downlink messages. The use cases for

Class B devices include temperature reporting, and utility meters monitoring of resource

consumption, such as energy, water, gas, etc. A Class C mode offers the lowest latency for

communication from the server to an end device it enables the device to listen and send

downlink messages at any time continuously. The use cases for Class C include streetlight

applications, smart utility water meters with valves, etc. With Class C mode, it is possible to

schedule downlinks messages to a group of devices: this is called the multicast group. The

multicast group is commonly used when delivering firmware updates to the group of end

devices at the same time.

2.2 Blockchain Technology

A Blockchain is a cryptographically secure, shared, distributed ledger that stores data in an

immutable manner among distributed nodes (Makhdoom et al., 2019) and is one of the

implementations of Digital Ledger technologies (DLT). Blockchain maintains a list of

transactions or records known as blocks. The transactions in the block are validated a verified

by a special computer called miners. Miners are the ones maintaining and securing the network

by working together to build trust in the network. Miners validate, verify every transaction in

the network, and record it on the ledger then get rewarded with an amount of money for

performing validation. To lay a good foundation and to have a good understanding of

Blockchain, it is necessary to explain some important terms that are most known and used in

Blockchain.:

• Gas – Refers to the unit of measurement which is the computational effort needed to

execute specific operations. The different operations will result in different amounts of

gas

• Gas limit – Before the transaction starts, the maximum number of units of gas that will

be spent in a transaction should be available. This unit is specified by the owner of the

transaction and is called the gas limit.

 15

• Gas price – Before the transaction starts, there should be a gas price which is the amount

the owner is willing to pay for each unit of gas. This is usually represented as a small

fraction (gwei).

• Gas used by transaction – This is the actual amount of gas utilized by the transaction

for execution. Any excess amount of gas specified during the start of the transaction

will be returned to the owner.

• Gas or transaction fee – This is the product of the gas used by the transaction and the

gas price which represents the actual amount of fees the transaction owner paid. It is

usually presented in small fractions of the Ether (ETH), commonly referred to as gwei.

Below is an example of the successful execution of a transaction. The transaction comprises

the following information:

• Gas limit (TGL) and Gas price (TGP) were explained above and need to be specified by

the transaction owner.

• Nonce (TN) – keep track of the transaction number for the sending account. The nonce

value is incremented for each transaction made by the sender.

• To (TADR) – refers to the destination address. This can be the recipient account or the

smart contract address.

• Data (TD) – this field contains the instructions to execute a transaction in the Ethereum

Virtual Machine (EVM). For example, during the smart contract deployment, TD will

have the byte code of the smart contract together with the parameters (if any) required

to call the constructor function. TD may also contain the method signature together with

its parameters.

• Value (TV) – represents the amount of Ether that is transferred between sender and

recipient.

• {v, r, s} – the signature representing the transaction is represented by three variables:

v, r, and s

Now, suppose Alice wants to transfer 2 amounts of Ether (TV) to Bob. Alice will be required

to specify the maximum amount of gas (e.g., 25,000) she is willing to spend for the transaction

(that is TGL) and specify the price (e.g., 200 gwei) for each unit of gas (that is TGP). After

specifying the gas limit and gas price, Alice signs the transaction with her private key. The

signing mechanism is based on the Elliptic Curve Digital Signatures Algorithm (ECDSA):

 16

(𝑟, 𝑠) = 𝐸𝐶𝐷𝑆𝐴_𝑆𝑖𝑔𝑛𝑖𝑛𝑔_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐾𝑒𝑐𝑐𝑎𝑘256 (𝑇𝑁, 𝑇𝐺𝐿, 𝑇𝐺𝑃 , 𝑇𝐴𝐷𝑅, 𝑇𝐷, 𝑇𝑇𝑉))

The signing algorithm takes the data produced by the sender and generates the Elliptic Curve

Digital Signature Algorithm (ECDSA) signature represented by (r, s) values:

𝐾𝑃𝑈 = 𝐸𝐶𝐷𝑆𝐴_𝑉𝑒𝑟𝑖𝑓𝑖𝑛𝑔_𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐾𝑒𝑐𝑐𝑎𝑘256 (𝑇𝑁, 𝑇𝐺𝐿, 𝑇𝐺𝑃 , 𝑇𝐴𝐷𝑅, 𝑇𝐷, 𝑇𝑇𝑉)), 𝑣, 𝑟, 𝑠)

The transaction sent by Alice will be received on the network to be validated and verified by

miners using the ECDSA_Verifing_Algorithm. ECDSA_Verifing_Algorithm takes the original

data produced by Alice and the signature (r, s) as inputs. The original data signature is

recomputed and matched against the signature (r, s) produced during the signing process. The

ECDSA_Verifing_Algorithm produces the public key and if the public key produced is Alice’s

key, the transaction continues. A successfully executed transaction must have used a certain

amount of gas (e.g., 21,000 gas) from the initially specified gas (gas used by the transaction,)

and, if the specified gas is sufficient, the transaction executes successfully, and the excess

amount of gas will be sent back to Alice that is:

25,000 – 21,000 = 4,000 gas. Therefore, the total cost (gas fee) for the transaction will be

computed as:

𝐺𝑎𝑠 𝑓𝑒𝑒 = 21,000 ∗ 200 𝑔𝑤𝑒𝑖 = 4,200,000 𝑔𝑤𝑒𝑖

4,200,000 gwei is equivalent to 0.0042 Ether, and this is the amount the miner will receive.

Therefore, Alice pays

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 2 + 0.0042 = 2.0042 𝐸𝑡ℎ𝑒𝑟

The digital signatures and hashing algorithm strengthen Blockchain security. Hashing provides

the immutability of Blocks in the network where each block contains the previous block's hash.

Blockchain technology is known for the following unique key characteristics when compared

to traditional technologies (centralized technologies):

• Decentralization: Blockchain is a peer-to-peer platform that does not rely on central

authorities but is controlled and managed by multiple nodes in the network.

• Openness: Blockchain is for everyone. Anyone can become a participant and join the

network to store, validate, and verify transactions.

• Auditability: All Blockchain transactions can be traced back to the Genesis Block i.e

the transactions that were created at the start.

 17

• Persistency: With Blockchain, it is impossible to update, delete, or modify the

transaction once it has been created, verified, and stored in the block.

Blockchain was initially manifested in Bitcoin digital cryptocurrency (Adam and Dzang

Alhassan, 2020); then, in the later stages, it was applicable in many areas such as artificial

intelligence, machine learning, data sciences, augmented reality, IoT, software-defined

networks, and so forth (Zarrin et al., 2021). Blockchain has infrastructure that is independent

of other networks and for those networks to interact with Blockchain they need to connect to

interfaces. This is usually achieved through a smart contract. The smart contract is a logic that

is stored and runs on the Ethereum Virtual Machine (EVM); hence it inherits the characteristics

of the Blockchain. Several nodes can be utilized to access the data in the Blockchain:

• Ganache–CLI – This tool utilized in local development acts as a local

Blockchain node to simulate the network. It consists of fake accounts to test and

make Blockchain transactions (Truffle, 2021)

• Geth is a Blockchain client that can run on the local computer and sync with the

private or public Blockchain network (Go Ethereum, 2021).

• Infura Node – this node is controlled and managed by a third party that exposes

an Application Programming Interface (API) for anyone who wishes to access

the node to interact with the Blockchain network (Infura, 2021).

2.3 InterPlanentary File System (IPFS)

IPFS is defined as a protocol and distributed file system that connects all computing devices

with the same systems of files (Manoj Athreya et al., 2021). Traditionally, the content was only

accessible via the protocols like the Hypertext Transfer Protocol (HTTP), based on where is

hosted using the address or location of the server. HTTP relies on the client-server model and

the availability of the content managed by the central authority. If servers are down, the content

becomes inaccessible on the one hand and the IPFS is based on the decentralized model. where

multiple nodes hold the content in a distributed manner thus, eliminating a single point of

failure. IPFS utilizes content addressing to identify and access content instead of utilizing the

content’s location. IPFS is built from successful existing projects ideas or technologies which

are integrated to form the distributed file system. These are the following technologies IPFS is

derived from:

• Distributed Hash Tables (DHTs): A hash table is a data structure based on the key-value

pair and is utilized by IPFS to find the peers that host the requested file. The file can be

 18

retrieved by querying one of the connected peers in the network since they all have the

DHT which is shared and updated across all the peers in the network (IPFS, 2021a).

• Block Exchanges (Bitswap): Bitswap is a message-based protocol and a core module

that handles the exchange of blocks in the network. Bitswap handles the requesting and

sending of blocks to and from peers in the network. The Bitswap protocol is responsible

for two main tasks: it obtains the requested blocks and sends the blocks to peers in the

network (IPFS, 2021b).

• InterPlanetary Version Control Systems (IPVC): IPFS uses the version control system

to provide versioning for large files and any type of content.

• Self-Certified Filesystems (SFS): IPFS is a self-certifying filesystem which means the

data exchanged between peers is authenticated using a unique filename (Hackernoon,

2021). Each peer on the network comprises the node ID (uniquely identifying the peer)

which is created from the node’s public key. Apart from the node ID, the peer comprises

the public key. During peer communication, the public keys are exchanged so that when

the peer connects with others it can authenticate them. The peer authenticates another

by computing the hash of the public key and comparing it against the node’s ID, and,

if the computed hash from the public key matches with the node ID, the node can be

trusted. The combination of Blockchain and IPFS is said to be a great marriage and the

future of the distributed network. Blockchain networks and IPFS are integrated because

Blockchain networks have restrictions on how much data can be stored on the ledger

when it comes to storage. For instance, the Bitcoin network limits the block to store not

more than 1 MB of data (Vujičić, Jagodić, and Randić, 2018). Usually, a large amount

of data gets stored on the IPFS, which then returns the unique identifier for data. Instead

of Blockchain storing the data, it will store the returned identifier from IPFS. It should

be noted, that data stored on the IPFS is tamper-proof just like in Blockchain

2.4 Firmware Updates and Cryptography

Regardless of the use cases and the class mode of the end device, having support for over-the-

air (OTA) firmware updates is essential for all. Firmware updates refer to distributing binary

image which contains data, calibration values, authentication secrets, and a set of instructions

(firmware) that operate the hardware of the end device by telling it how to function and perform

certain tasks. The purpose of the firmware updates is to fix bugs, add new functionality, and

improve the security of the device. Having devices that can receive updates to their OTA is

critical, especially for constrained IoT networks like LoRaWAN. In addition, some IoT devices

 19

have limited resources which makes it impossible to incorporate traditional proven

cryptographic approaches to secure the firmware during the update process.

2.4.1 Security Threats and Challenges

IoT is the system of interconnected devices that changes how we live. Apart from the beauty

that IoT brings. IoT devices are designed for specific use cases without paying a lot of attention

to security. As devices and technology get more intelligent and more connected, the threats

increase as well. Devices connected to the Internet offer a variety of security risks that affect

privacy and also our health. For example, cases of pacemaker malfunction in the healthcare

industry were reported (Rehman, Rehman, and Khan, 2020). A pacemaker is a body implant

device that controls the patient’s heartbeat. The doctors communicate with the pacemaker via

an external computer called a pacemaker programmer. The pacemakers were found to be

vulnerable to insecure communication protocol being utilized by the pacemaker programmer

and pacemaker. The utilized protocol had no authentication scheme, and the messages were

sent unencrypted. It was demonstrated that the vulnerabilities found could be used by attackers

to modify the pacemaker’s behavior by running its battery flat and controlling the patient’s

heartbeat resulting in critical condition.

A quarterly report on security breaches and cyber-attacks by (IT Governance UK, 2021) shows

that firmware attacks are increasing, affecting both public sectors and businesses. The report

discovered security incidents that accounted for 185,721,284 breaches. Figure 2.2 shows the

affected sectors with corresponding percentages of incidents. The healthcare and health

sciences sector is the sector with the highest number of security incidents. This illustrates that

the breaches contribute more or bring more threats to our health.

 20

Figure 2.2 Security Breaches in Different Sectors (IT Governance UK, 2021).

These incidents do not occur only in IoT. One example is an incident that occurred to one of

the world’s biggest video game publishers. Attackers penetrated the systems and retrieved the

source code for FIFA 21, as well as the code for its matchmaking server (PandaSecurity, 2021).

The attackers target big companies because they store customers’ important data. The attack

on South Korean and Taiwan McDonald’s resulted in the compromise of customers’ data.

Attackers retrieved the customer’s data including phone numbers, emails, and addresses from

the system (BBC, 2021). These attacks highlighted the need for a solid mechanism to secure

systems and eliminate vulnerabilities that exist within them.

Figure 2.3 Attacks Associated with Firmware Image (Kvarda et al., 2016).

When security threats occur, new firmware must be created to fix the vulnerabilities. There are

threats associated with the firmware process such as reverse engineering, firmware alteration,

 21

unauthorized device access, etc (Kvarda et al., 2016). The threats can occur at different levels,

for instance during the transmission and after the firmware has been securely delivered to the

intended device. Figure 2.3 shows the entities involved in the update process and the possible

threats during the firmware transmission. The firmware manufacturer is the entity that creates

the new firmware version and shares it with the device owner over the network. The

communication channel between the manufacturer and the device owner can be secure or

insecure.

In the insecure case, the attacker can eavesdrop on the communication and get hold of the

firmware to perform firmware engineering. Extracting sensitive information from it can alter

the firmware and return it for distribution. The manufacturers usually share the firmware

publicly and the device owner is the one responsible for further distribution of firmware to their

devices. The same threats that occur between the manufacturer and the device owner can occur

during the firmware distribution of the device owner and the device. And even more threats

such as aborting the update procedure, loading unauthorized firmware into the devices, and

extracting sensitive information from the device such as the keys. It should be noted that the

attackers have an opportunity to interrupt the update procedure in an insecure channel between

the manufacturer and the device owner. The same interruption can occur on the channel

between the device owner and the end device; thus, it is required to secure the firmware in

transit and also at rest.

2.4.2 Security Measures, Symmetric and Asymmetric

Cryptography

Bugs and vulnerabilities are inevitably going to be discovered and attacks could occur in the

IoT system, therefore, security measures are needed. To fix the vulnerabilities, manufacturers

need to develop a secure mechanism to deliver patches successfully to the intended device.

Combining multiple security attributes such as confidentiality, integrity, and authentication

also known as CIA will make a secure firmware update mechanism. Security attributes can be

achieved either via symmetric or asymmetric cryptography. Symmetric cryptography requires

entities to share a common secret key which is used for both encryption and decryption

(TexasInstruments, 2015). Each entity must keep the shared secret key private and confidential.

Any entity possessing the shared secret key can produce encrypted messages with the key and

decrypt any message that is encrypted with the key. Symmetric cryptography algorithms are

faster compared to asymmetric algorithms. The symmetric algorithms require the secret key

 22

upfront before the encryption and decryption can take place, in addition, the secret key must

be shared securely between two entities.

Asymmetric cryptography (also known as public-key cryptography) solves the limitation of

key distribution by using different keys to encrypt and decrypt messages. Messages are

encrypted with a public key that is shared with everyone and decrypted with a private key that

is kept secret. Due to memory and processing power limitations, asymmetric algorithms

become difficult to incorporate into most IoT devices. In most cases, symmetric and

asymmetric cryptography is used to provide confidentiality, integrity, and authentication.

Encryption and Decryption

Encryption and decryption ensure data privacy and enables entities with a valid key to decrypt

the original message (University of Delaware, 2021). Encryption is when data is converted into

an unreadable form (ciphertext) whereas decryption is the process of converting the ciphertext

back to its original format. Advanced Encryption Standard (AES) and Data Encryption

Standard (DES) are symmetric key algorithms examples for encryption and decryption.

Integrity

Data integrity ensures that the original message has not been modified (Sun et al., 2014). In

the firmware update process, this means that the firmware image generated by the manufacturer

has not been modified before the device receives it. Data integrity can be achieved via different

cryptographic functions such as hash functions, digital signatures, Message Integrity Code

(MAC), or Message Authentication Code (MAC), etc. A hashing function takes an input

(message) and produces the output that transforms data of arbitrary size into a fixed size

(European Data Protection Supervisor, 2019). Given the output, it is not feasible to derive the

original message, and it is also not feasible to find two different messages leading to the same

hash. Apart from the hashing functions, digital signatures are also alternatives for achieving

message integrity. With hashing function, any entity can produce a hash value given the

message since it does not require any secret key. This means an attacker can change the

message and generate the hash value and the entity receiving the message cannot detect the

message alteration. Digital signatures overcome this problem by using the private key to

digitally sign the message, which will be verified with the corresponding public key to

determine its integrity. Digital signatures are based on asymmetric cryptography.

Symmetric cryptography can also be used to determine message integrity just like asymmetric

cryptography. As mentioned earlier, MAC is one of the algorithms for achieving integrity and

 23

it is similar to digital signatures, except that it is based on symmetric cryptography and uses

shared secret keys to encrypt and decrypt the message. Providing the integrity of the firmware

is essential in the firmware update process. If firmware integrity is not addressed by the

firmware update mechanism using cryptographic algorithms as part of security measures, the

update mechanism must then implement the error correction. For instance, the CRC checksum

is used to detect transmission errors during the firmware update process.

Authentication

Determining confidentiality and integrity is not sufficient because they do not prove the origin

of the message. Message authentication is required to ensure the validity of the message's

origin. Message authentication ensures both message integrity and authenticity of the message

(Dale Liu et al., 2009). It can be achieved with symmetric and asymmetric cryptography, for

example through digital signatures and the MAC. In the update process, the digital signatures

are used by the device manufacturer to sign the firmware image hence, the device needs to

know whether is installing the authentic firmware from the manufacturer. Utilizing the MAC

for authenticity will require the manufacturer and devices to have shared the same secret key

in front. If the key is compromised, the attacker will be able to create illegitimate firmware

with the valid MAC value which will be validated correctly by the end devices, hence it is

important to keep the key secure from unintended parties.

 24

Chapter 3: Literature Review

This chapter provides a review of relevant literature on Blockchain and LoRaWAN. It starts

by looking at the existing Blockchain and LoRaWAN integration studies in Section 3.1 and is

followed by Section 3.2 which explores studies that deal with firmware updates in the IoT

domain based on the client-server approach. In Section 3.3, the studies that deal with firmware

updates in a decentralized manner are examined. Section 3.2 and Section 3.3 describe each

study while Section 3.4 provides the gaps, benefits, and limitations of these studies in Table

3.1.

3.1 LoRaWAN and Blockchain Integration

Blockchain technology has been adopted in many areas such as the IoT, machine learning, data

science, argument reality, finances, and more. When it comes to LoRaWAN different studies

have integrated Blockchain technology for certain purposes. The integration of LoRaWAN into

a Blockchain infrastructure can be accomplished in many ways. Some researchers have studied

the integration of Blockchain and LoRaWAN to enhance the security of LoRaWAN. For

instance, Lin, Shen, and Miao, (2017) proposed a Blockchain-based solution to build an open,

trusted, decentralized, and tamper-proof system for LoRaWAN network servers. Private

organizations manage LoRaWAN networks whereas other LPWAN networks like NB-IoT are

mainly managed by mobile network providers. This means LoRaWAN has to solve the issue

of trust between the private network operators and the lack of network coverage. Therefore,

the authors of the aforementioned article aimed to propose a conceptual architecture design for

LoRaWAN network servers to solve the issue of trust of the private network operators and lack

of network coverage. The authors have stated that their work is the first work that integrates

Blockchain with LoRaWAN.

Durand, Gremaud, and Pasquier, (2018) proposed and built a global fully decentralized IoT

network using Blockchain and LoRaWAN. The study aimed to analyze the feasibility of a fully

decentralized LPWAN infrastructure and to build an architecture based on the LoRaWAN

protocol. The Blockchain-built prototype focused on passive roaming techniques and benefits

the crowd-sourced networks with commercial operators. The same authors (Durand, Gremaud,

and Pasquier, 2018) also conducted another study that focused on taking advantage of

asymmetric cryptography to provide security in LoRaWAN since it is based on symmetric

cryptography. Other studies focused more on building LoRa and Blockchain-Based

 25

applications to enhance the security of a specific use case. For instance, Subodhnarayan et al.,

(2018) proposed an Ethereum Blockchain-Based solution for the security and trust issues that

are present in pollution monitoring systems. Vlachos and Hatziargyriou, (2019) presented a

decentralized Blockchain-based Automatic Meter Reading (AMR) system over a LoRaWAN.

The Blockchain is utilized to store the meter readings of the energy meter and ensure that the

meter owner controls the data stored on the Blockchain. Ethereum Blockchain technology

seems like the most dominant Blockchain utilized to provide a proof of concept and it is

integrated with LoRaWAN. The Ethereum-Based proof of concept by (Ozyilmaz and

Yurdakul, 2019) was also proposed to enable low-power, resource-constrained to access a

Blockchain infrastructure. The study integrated Blockchain at the gateway which runs the

Ethereum client to route data to the Blockchain network. A proof of concept was demonstrated

using Raspberry Pi 2 connected to a Dragino LoRa/GPS Hat which acts as a LoRa node. The

gateway running the Ethereum client was built using Raspberry Pi 3 combined with LoRa

concentrator board iC880A.

Another study by Danish et al., (2019) focused on enhancing the LoRaWAN OTTA join

procedure by employing Blockchain specifically Ethereum Blockchain. The study proposed a

Blockchain-based framework that adds an extra layer of security for the LoRaWAN join

procedure since the join request message is not encrypted and susceptible to jamming and

replay attacks. Hence, the study presents the two-factor authentication scheme for the

LoRaWAN join procedure to improve authentication security and build trust among end

devices and network servers. Another integration by Tan, Sun, and Li, (2021) proposed the

secure architecture for LoRaWAN key management using permitted Blockchain. The study

adopted the characteristics of Blockchain to come up with a scheme that avoids the single-point

failure of the LoRaWAN join server and improves the performance of Over-the-Air Activation

(OTAA). Additionally, the key update protocol was proposed to solve the issue of the root keys

that remain unchanged once the device is created.

It was observed among the integrations provided by different studies that none was based on

integrating Blockchain with LoRaWAN to deliver firmware updates in LoRaWAN securely.

This was observed through the survey study that was conducted to examine firmware updates

in the IoT domain (N. S. Mtetwa et al., 2019). Therefore, this study proposed the Blockchain-

based firmware update architecture which will run on IoT devices. The authors, Anastasiou et

al., (2020) proposed a Blockchain-based framework to securely update the firmware of IoT

devices using the LoRa communication protocol. The authors’ study was based on the

 26

simulation tool which was implemented by Abdelfadeel et al., 2020a). The study was not clear

about how the Blockchain technology was integrated with a simulation tool and what the

cryptographic algorithms used in a firmware update to secure the IoT devices were and the

kind of devices the proposed framework targeted.

3.2 Centralized Firmware Update Mechanisms

In recent years, privacy in the IoT domain has been a serious issue and it is being deeply

investigated to provide better ways to secure IoT devices (Aqeel-ur-Rehman et al., 2016). The

issue of security results in various studies that try to improve different components of the IoT.

Several approaches have been proposed to deal with different aspects of privacy and also

numerous firmware mechanisms have been proposed to deliver firmware updates to IoT

devices. Most of the proposed firmware update mechanisms can be differentiated into manual

and automatic updates. Additionally, the mechanism may provide updates in a centralized or

decentralized manner. This section provides an overview of those proposals that are related to

the IoT domain. In particular, the focus is on the frequently used approach of client-server

approach. The different tactics provided by the mechanisms for securing the firmware are also

viewed.

Alexandre, (2016) proposed a solution on how to secure the firmware updates on IoT gateway

devices. The proposed solution assures the firmware image's confidentiality, integrity, and

authenticity and defeats the most relevant external security threats. It implemented 4

components namely: the development tool, the signing server, the update server, and the device

daemon. The manufacturers used the development tool to generate the images and upload the

images to the signing server. The signing server receives the firmware update images and

includes keys, certificates, and configuration files in them. The IoT devices to authenticate

images and the identity of the update server during TLS use these keys and certificates. The

update server calculates the SHA512 hash of the firmware and signs it with its Rivest–Shamir–

Adleman (RSA) private key then uploads the firmware package to the update server. It is also

responsible for alerting IoT devices about new updates. The proposed solution runs a daemon

that periodically sends a message to the update server to query new updates. Shortly, these

entities utilize Transport Layer Security (TLS) to secure the firmware image over the channel

and the firmware image is digitally signed using the private key. A checksum algorithm

SHA256 is used to ensure the integrity of the firmware image. After the implementation, the

solution is evaluated against network overhead and energy consumption. The authors utilized

 27

Raspberry pi as an IoT device which is one of the high-end devices and thus the work focuses

not on constrained IoT devices and IoT networks but on other unconstrained networks.

(Pycom, 2018) shows the firmware update method that targets LoRa-end devices. LoRa and

Wi-Fi are communication protocols used in their update process. The method used Wi-Fi to

retrieve the firmware from the servers. The reason for utilizing Wi-Fi instead of LoRa is due

to LoRaWAN restrictions. These network restrictions make it hard to get the firmware image

to update the devices quickly. Therefore, the mechanism switches from LoRa to Wi-Fi to

access the firmware image without the delay.

Doddapaneni et al., 2017) presented a Firmware Over the Air (FOTA) procedure for IoT

devices and introduced a new secure object. The work tries to improve the issues that are faced

with the LwM2M protocol. Currently, the protocols like LwM2M cannot handle packet loss

caused by network leakage, since the update process could be interrupted due to network

leakage. Therefore, the study proposed a new secure object to save power and provide longevity

on IoT devices.

Reißmann and Pape, (2017) presented an implementation of a durable and stable system for

building and publishing cryptographically secure firmware updates for embedded devices

based on ESP8266 microcontrollers. This includes mechanisms to build the updates from the

source and automatically sign, distribute and install them on the target devices. The proposed

mechanism is divided into four phases: checking for updates, reprogramming the device,

calculating and verifying the cryptographic signature of the updated firmware, and

reconfiguring the boot process to use the new firmware in case the update was updated

successfully. The mechanism focuses on constraint devices with very low resources and uses

the SHA256 and Curve25519 algorithms to secure the firmware. An approach for the secure

distribution of firmware using the Message Queuing Telemetry Transport (MQTT) protocol is

proposed by Borzemski (2019). The proposed approach utilizes the MQTT protocol as a

communication protocol to exchange messages between the firmware broker server, the

firmware server, and the gateway. The gateway communicates with IoT devices using Wi-Fi

or Bluetooth. The Elliptic Curve-based Diffie-Hellman key exchange and key-hashed message

authentication code are used to secure the exchanged messages and provide the authenticity of

the received firmware and the integrity of the received firmware. The study conducted the

security analysis to evaluate the security strength of the proposed framework.

 28

Sahlmann et al., (2021) proposed a secure firmware update protocol for MQTT-connected

devices. The protocol focused on constrained devices and ensured the authenticity of the

firmware and the freshness of the firmware image. It was shown that the protocol was easy to

integrate with an MQTT-based IoT network using a semantic approach. The study also

provided a detailed performance analysis of the prototype implementation on an IoT device

with 32 kB RAM.

Recently, there are firmware updates based on constrained LPWAN networks particularly, the

LoRaWAN network. Applying firmware updates in constrained networks like LoRaWAN

becomes a challenge. This is because of the network nature since they have lower data rates

compared to traditional networks. The traditional network’s data rate is measured in megabytes

per second (Mbit/s) while the LPWANs data rate is in bits per second (bit/s). The LoRa

Alliance introduced some standards to minimize the costs when performing firmware updates

in LoRaWAN (Alliance et al., 2018). The standards include firmware fragmentation, clock

synchronization, and multicast. Semtech (Swanson, 2020) discussed how to use these

application layer packages provided by Alliance et al., (2018). Semtech demonstrated the

“Fragmented Data Block Transport” and “Remote Multicast Setup” application layer packages.

The discussion is based on how to provide an efficient and reliable fragmented file delivery

service. The authors also explained how to use the fragmented-file delivery service which can

be used to push binary firmware updates over-the-air to large groups of devices. The delivery

of firmware updates to a large group of devices is achieved by utilizing the LoRaWAN

protocol’s unique over-the-air multicast capability in conjunction with an efficient fragment

coding scheme, which significantly reduces the number of repeated transmissions required.

The authors of (Jongboom and Stokking, 2018b) also made the requirements of what firmware

update mechanism should consider when delivering firmware updates to low-powered devices

in LPWAN. This includes how to provide the firmware update to the set of devices. The authors

of Abdelfadeel et al., (2020b) used the LoRa Alliance specifications to demonstrate how

firmware updates can be applied in LoRaWAN. The Firmware Update Over the Air Simulator

(FUOTASim) was implemented and evaluated to demonstrate the effect of the different

FUOTA parameters, however, the security of the IoT devices in this study was out of scope.

Verderame, Ruggia, and Merlo,(2021) introduced a self-protection mechanism that ensures

firmware integrity through the entire production and delivery process. The authors of the work

proposed the self-protection mechanism because most of the existing mechanisms lack proper

integrity verification, leaving firmware exposed to repackaging attacks. The mechanism

 29

eliminates the use of signing certificates therefore, the security is provided without requiring

external trust anchors or verification processes. Techniques, (2021) investigated adaptive data

rate (ADR) techniques in an application that monitors cattle utilizing low-powered devices.

The low-powered devices transmit the cattle’s location and health using LoRa. The study also

focused on the issues related to firmware updates such as speed, and reliability concerns with

security when updating the firmware to both mobile and low-powered devices. The study state

that the firmware update could be interrupted when the cattle are moving out of the

transmission range, or the device battery may not be adequate to finish the update process. The

study addressed this issue by proposing a secure and reliable firmware update process using

ADR techniques that is suitable for mobile or low-powered LoRa device. conducted the

experiments via simulation that focuses on LoRaWAN to examine the impact of multiple

gateways during the firmware update process. The impact of multiple gateways was

investigated since the single gateway cannot optimize the firmware update over-the-air

(FUOTA) mechanism. The authors Charilaou et al., (2021) extended the FUOTAsim

simulation tool to support multiple gateways. The results of this study have shown that several

gateways can eliminate the trade-offs that appeared using a single gateway. The contributions

of the authors include the investigation of the impact of multiple gateways by analyzing the

network's behavior during the firmware update process by varying the firmware size and

network parameters. The authors also investigate the minimum set of gateways that can be used

to provide full coverage with the greatest performance during the firmware update procedure.

and the final contribution of the study provides insights between the firmware size and the

number of gateways. The study focused only on the IoT gateway not particularly on the end

IoT devices.

3.3 Decentralized Firmware Update Mechanisms

One of the popular ways of transmitting firmware to IoT devices is to transmit it in a

decentralized and distributed manner. Distributing the firmware in this manner has more

benefits compared to the client-server-based distribution (Makhdoom et al., 2019). In this

section, the different approaches proposed to convey the firmware in a decentralized manner

are examined critically with a focus on the decentralized firmware updates utilizing Blockchain

technology. Lee and Lee, (2017) proposed a Blockchain-based scheme that focuses to secure

embedded devices in the IoT environment. The proposed scheme relies on Blockchain

technology to verify the firmware version and validate the firmware's correctness. The IoT

device acts as a Blockchain node on the network, meaning it is required to store the Blockchain

 30

ledger. This becomes a challenge since many IoT devices have limited resources such as

energy, computation, and storage capacity. Hence, the mechanism might be difficult to

incorporate in IoT-constrained devices in the IoT environment. Yohan and Lo, (2019) proposed

framework that focuses on providing secure verification of the firmware. The proposed

firmware update framework consists of four processes: the creation of firmware update

contract, the creation of firmware replication contract, the direct firmware update mechanism,

and the indirect firmware update mechanism. The framework only ensures the correctness of

the firmware version and only provides security integrity.

Mtetwa, Tarwireyi, and Adigun, (2019) proposed the Blockchain-based where Ethereum

Blockchain and IPFS were used to store the firmware metadata and firmware image

respectively to achieve high availability. The proposed mechanism ensures the integrity of the

firmware file and targets the devices with enough resources to carry out cryptographic

operations that are the high-end devices. The raspberry pi was used to test the proposed

mechanism.

Witanto et al., (2020) proposed two techniques that deliver firmware updates. One of the

techniques is a direct firmware update that is based on the client-server model. This technique

enables IoT devices to download the update from the manufacturer’s server via the IoT

gateways which then share the downloaded firmware updates from the manufacturer’s server.

IoT gateways perform the integrity check and validity of the update to the Blockchain network.

The second technique is a distributed peer-to-peer technique. This technique uses the

Blockchain contract to check the firmware updates. The proposed techniques work well with

IoT devices that have sufficient resources but not for constrained IoT devices with limited

storage. The reason for this is that the IoT devices need to hold the firmware and share the

available newest update through IoT gateways.

Fukuda and Omote, (2021) proposed a firmware distribution method that reduces gas costs,

using a contract and access control. The proposed scheme was evaluated, and the results show

that the proposed scheme successfully lowers the gas cost required for firmware updates. Some

studies are based on a constrained network where Blockchain is used for securing the data. In

one of our survey research studies, Mtetwa et al., (2019), several IoT firmware schemes were

examined. The examined studies were based in the IoT environment focusing on IoT devices

with limited resources and the ones with adequate resources to handle firmware updates. The

study revealed that there was a need for a Blockchain-based firmware update mechanism that

targets IoT devices with limited resources.

 31

After our survey study has been conducted, Anastasiou et al., (2020) proposed a Blockchain-

based framework to securely update the firmware of the IoT devices using the LoRa

communication protocol. The proposed framework was based on the simulation tool which was

implemented by Abdelfadeel et al., (2020a). However, the work is not clear on the

cryptographic algorithms used to secure the end device and what kind of devices the proposed

framework targets. Another Blockchain-based study by (Tsaur, Chang and Chen, 2022) where

a secure and efficient protection mechanism that is based on blockchain technology was

proposed. The study prompts to improve traditional update methods security and also reduce

the need for storage space. The proposed solution aims at integrity, device anonymity, security,

and system security. In addition, the study compares the solution with the existing one.

Sanchez-Gomez et al., (2021) presented a solution that provides firmware update distribution

and trust monitoring. The presented solution leverages LoRaWAN, Low-Overhead EAP over

CoAP (LO-CoAP-EAP), a novel lightweight bootstrapping protocol, a wide-spread long-range

communication technology, IPv6 header compression and fragmentation mechanism, The

Object Security for Constrained RESTful (OSCORE), end-to-end application-layer protection,

decentralized IPFS network, and hyper ledger as a distributed ledger technology for secure

validation of the distributed information.

3.4 Benefits, Limitations, And Summary of Firmware
Mechanisms

The previous sections review the related work that focuses on firmware updates in IoT. These

works provide certain benefits and limitations in the IoT context. Hence, this section provides

clear limitations and benefits for each study as shown in Table 3.1.

Table 3.1 Contributions and Limitations of Server-Based Firmware Approach

References Benefit(s) Limitation(s)

Centralized-based

(Alexandre, 2016) Covers basic security threats

include confidentiality,

integrity, and authenticity.

Proposed, implemented, and

evaluated the proposed

mechanism.

May not be suitable for too

constrained IoT devices,

since it uses an RSA

signature which may not be

incorporable to some IoT

devices.

(Pycom, 2018) Accommodates constrained

devices specifically low-

The approach requires that

the end device must be

 32

References Benefit(s) Limitation(s)

powered LoRa devices. Uses

both LoRa and Wi-Fi to

transmit firmware.

equipped with Wi-Fi which

other devices may not have.

Moreover, the mechanism is

good for devices that are not

battery-powered, otherwise

using traditional

technologies may consume

the battery of the end device.

(Doddapaneni et al., 2017) Demonstrated firmware

update procedure that can

handle loss packets in the

lossy network.

Only proposes the FOSE and

no implementation, or

analysis of the proposed

work.

(Reißmann and Pape, 2017) This paper focused more on

the implementation of

firmware updates based on

ESP8266 microcontrollers.

Implemented and evaluated

the solution.

No evaluation and

performance analysis.

Incompatible with

constrained networks.

(Lo and Hsu, 2019)

Discussed the security

analysis of ECSH key

exchange, man-in-the-

middle, and replay attack

The study is on the client-

server model and uses

subscribe publish model.

Each manufacturer manages

its broker's bad patch server.

This model may scale well

with a large amount of IoT

devices. Only proposed but

have not implemented the

scheme.

(Abdelfadeel et al., 2020b) Demonstrated how the LoRa

firmware standards or

specifications can be used to

provide the firmware update

The work focuses more on

how the firmware update can

be done on a large scale in

 33

References Benefit(s) Limitation(s)

to a large number of devices

using the simulation tool.

LoRaWAN but does not

cover the security part of it.

(Sahlmann et al., 2021) Discussed existing updates

for constrained devices that

use MQTT protocol to

transmit firmware.

Based on the client-server

model may scale well with a

large amount of IoT devices.

(Techniques, 2021)

Presents a firmware update

methodology for both mobile

and low-powered devices.

The methodology

demonstrates the update

mechanism using only a

single device. In other

words, the mechanism must

be able to serve firmware

updates to the set of devices

in the IoT network.

(Charilaou et al., 2021)

Provides support for the

utilization of multiple

gateways instead of a single

gateway during firmware

updates.

Some security properties can

be improved for example

providing the end-to-end

encryption between the

Firmware Update Server and

the LoRaWAN servers and

providing data

confidentiality between the

Firmware Update Server and

the end devices.

Blockchain-based

(Lee and Lee, 2017) Discussed the Blockchain-

based scheme that provides

high availability, integrity,

and authentication in-depth.

The proposed mechanism

might be difficult to

incorporate in constrained

IoT devices because of

limited resources. The

scheme has not been

implemented and evaluated.

 34

References Benefit(s) Limitation(s)

(Yohan and Lo, 2019)

Discussed feature

comparison between the

proposed firmware update

framework and existing

frameworks

The limited literature on

firmware updates.

The mechanism only ensures

the integrity of the firmware

image. No implementation

and evaluation only

proposed the mechanism.

(Mtetwa et al., 2019) The study focuses in-depth

on how the software update

may take place with

Blockchain utilized to secure

the entire process.

The proposed mechanism

targets IoT devices but is not

suitable for devices that are

too constrained in resources.

(Witanto et al., 2020) The work provides two ways

of updating IoT devices, the

client-server and the

distributed approach.

Discuss the implementation

and analysis of these two

techniques.

The proposed techniques are

good for IoT devices with

sufficient resources but not

for constrained devices with

limited storage.

(Anastasiou et al., 2020)

Discussed how Low-

powered devices can be

updated based on the

simulation tool.

The study performs firmware

updates utilizing Blockchain

but it is not clear how the

Blockchain was

implemented in the

simulation tool developed by

(Abdelfadeel et al., 2020b).

The mechanism claims to

provide authenticity and

integrity but does not specify

which algorithms are utilized

to achieve such. Moreover,

 35

References Benefit(s) Limitation(s)

no security analysis was

performed.

(Fukuda and Omote, 2021) Explored previous updates

method considering

incentivize and provides the

comparison of the proposed

scheme with the previous

ones based on the gas cost.

Not clear which encryption

and hashing algorithm is

used for confidentiality and

integrity. Not compatible

with the constrained

network.

(Tsaur, Chang and Chen,

2022)

Focuses on security goals

such as Malicious code

resistance and Distributed

denial-of-service (DDoS)

resistance.

Fewer comparisons against

available existing

Blockchain solutions, only

three studies were compared.

The fundamental security

goal achieved is firmware

integrity only with no

confidentiality and

authentication.

(Sanchez-gomez et al., 2021)

Enables trust-worthy

management of large

heterogeneous IoT networks

for firmware update

distribution.

The implementation and

execution details of the

platform are not provided as

yet, it is part of future work.

This includes the test

validation results of the

details of the operation

together with the

performance analysis and

scalability testing.

The authors proposed different mechanisms that provide certain security properties in the

firmware update process. These properties include availability, confidentiality, integrity,

authentication, and data freshness. Each mechanism may target a certain group of devices,

including low-end, middle-end, and high-end. Some of these mechanisms target constrained

networks and constrained devices while others do not. Moreover, some of the mechanisms

were evaluated and the security analysis was provided while some were proposed without

performing any evaluations on how the mechanism behaves. Table 3.2 gives a summary of all

the mechanisms and shows which properties were achieved, what type of approach was taken

to provide firmware update, which type of IoT network it targets e.g., constrained network, and

 36

finally if the mechanism was evaluated. These mechanisms are categorized based on the client-

server and Blockchain-based or decentralized models.

Table 3.2 Comparison between proposed approaches

A
u
th

o
rs

L
o
w

/M
id

d
le

-E
n
d

D
ev

ic
e

H
ig

h
-E

n
d
 D

ev
ic

e

C
o
n
st

ra
in

ed
-n

et
w

o
rk

A
v
ai

la
b
il

it
y

C
o
n
fi

d
en

ti
al

it
y

In
te

g
ri

ty

A
u
th

en
ti

ca
ti

o
n

D
at

a
F

re
sh

n
es

s

P
er

fo
rm

an
ce

 E
v
al

u
at

io
n

Centralized-Based

(Alexandre, 2016) ✓ ✓ ✓ ✓ ✓

(Pycom, 2018) ✓ ✓ ✓

(Doddapaneni et al., 2017) ✓ ✓ ✓

(Reißmann and Pape, 2017) ✓ ✓ ✓

(Lo and Hsu, 2019) ✓ ✓ ✓

(Abdelfadeel et al., 2020b) ✓ ✓ ✓

(Sahlmann et al., 2021) ✓ ✓ ✓ ✓ ✓ ✓

(Verderame et al., 2021) ✓ ✓ ✓ ✓

(Techniques, 2021) ✓ ✓ ✓ ✓ ✓ ✓

(Charilaou et al., 2021) ✓ ✓ ✓ ✓ ✓

Blockchain-Based

(Lee and Lee, 2017) ✓ ✓ ✓ ✓ ✓

(Yohan and Lo, 2019) ✓ ✓

(Mtetwa et al., 2019) ✓ ✓ ✓

(Witanto et al., 2020) ✓ ✓ ✓ ✓ ✓

(Anastasiou et al., 2020) ✓ ✓ ✓ ✓

(Fukuda and Omote, 2021) ✓ ✓ ✓ ✓ ✓ ✓

(Sanchez-gomez et al., 2021) ✓ ✓ ✓ ✓ ✓ ✓

(Tsaur, Chang and Chen,

2022)

✓ ✓

 37

Table 3.2 shows that a lot of the update mechanisms ensure the confidentiality, integrity, and

authentication properties and some add extra properties such as availability, and data freshness.

It is observed that most of the client-server-based mechanisms target low-end devices and

middle-end devices and none of the Blockchain-based mechanisms targeted low-end devices.

Note that the low-end and middle-end devices are also called low-powered devices because a

low-powered device may belong either to the low-end or middle-end class.

From Section 3.1, it was stated that there was no integration focused on delivering firmware

updates to LoRaWAN using Blockchain technology when this study was conducted. This was

observed through our survey study by Mtetwa et al., (2019) that was conducted and published

as a journal article. However, after the survey study, Anastasiou et al., (2020) conducted a

Blockchain-based study that utilizes a simulation tool developed by Abdelfadeel et al., (2020b).

The study used the simulation tool and was not clear how Blockchain was integrated into the

simulation tool and does not show any real-world implementation of Blockchain being

integrated with LoRaWAN. Apart from this study, most of the tactics used in the update process

of the mechanisms make the mechanism incompatible in constrained networks. Perhaps they

do not aim to utilize the Blockchain to provide security in the constrained networks. This

suggests the need to develop a real-world mechanism that utilizes Blockchain technology to

secure low-powered devices. Therefore, this research proposed a Blockchain-based mechanism

that promises to deliver firmware updates for low-powered devices in LoRaWAN. The

Blockchain in LoRaWAN is used to make the distribution of the firmware decentralized and

enhance security during the firmware updates.

 38

Chapter 4: Research Design and

Methodology

The literature review presented in Chapter 3 showed the need to develop a firmware update

architecture that focuses on low-powered devices in the Long-Range Wide Area Network

(LoRaWAN). This chapter presents an architecture based on Blockchain technology to deliver

firmware updates to low-powered IoT devices in the LoRaWAN network. Before the

architecture is presented the methodology is presented after which the application scenario is

provided for clarity on where the architecture can be utilized.

4.1 Research Methods

Research in the discipline of Computer Science (CS) and Information Systems (IS) is generally

carried out via the utility of one or more research methods. The most-used study methods for

CS and IS include simulation, design prototypes, design science, surveys, and experimental

methods.

The Simulation Method

The simulation methods are widely used in the CS field as they offer the possibility to study

systems outside of the experimental field or the system under development or construction.

This can involve complex events that cannot be performed in a laboratory. Areas that often

involve simulation include astronomy, physics, economics, and specialties such as the study of

artificial life, virtual reality, or nonlinear systems.

The Design Prototyping

The prototyping method enables the layout of a working "prototype". Prototyping is frequently

used to predetermine a large portion of resource deployment in development and influences the

success of design projects (Dooley, 2002).

The Experimentation Method

The experimentation method refers to the task of conducting real-life experiments.

Experiments are often used to test truth and theories. The experimental research method is

widely used in proof automation, natural languages, performance, and behavioral analysis

(Fatjon Muca, 2014).

The Design Science

 39

Design science research is a qualitative research approach in which the object of study is the

design process. Design science generates knowledge about the method used to design an

artifact (Carstensen and Bernhard, 2019). The Design Science research methodology

incorporates, practices, procedures, and principles necessary to carry out the research with three

main objectives: it is consistent with past literature, it offers a nominal procedure model for

undertaking research, and it provides a mental model to present and evaluate the research.

4.2 Research Selection

Since this study introduces an artifact, prototyping and experimentation were the most

appropriate methods to use. This study required that experiments be conducted to determine

how well the proposed architecture behaves in low-powered devices and LoRaWAN-

constrained networks. In this research, the aim was to design, implement and evaluate a secure

Blockchain-based firmware update mechanism that is suitable for LoRaWAN. While

conducting research, it is important to ensure that the selected methods align with the objective

of the study. A survey method was first used to establish the literature on an existing firmware

update in LoRaWAN examining different approaches to be utilized to deliver firmware

updates.

In addition, the method also examines the state of the art in Blockchain and LoRaWAN

integration. The problem analysis and the literature review were conducted to fully understand

the need to develop a secure Blockchain-based solution for LoRaWAN and to identify the gaps

that need to be addressed in firmware updates in LoRaWAN. Subsequently, this research

adopted two research methods that align with the research objectives and provide answers to

the research questions described in Chapter 1. The first method is the prototyping method. This

method was the most appropriate for the implementation of the Blockchain-based firmware

update solution for LoRaWAN. The second method selected was the experimental method.

This method was adopted because it provides an important paradigm for conducting applicable

yet rigorous research. In the following Subsections, the use of the selected methods is

described.

4.2.1 Prototyping

Based on the design criteria gathered from the literature, a prototype that adheres to low-

powered devices specification was designed and then implemented. The prototype was

implemented to meet the requirements gathered in the literature survey.

 40

Figure 4.1 Prototyping stages.

LoRaWAN is one of the Low-Powered Wide Area Network (LPWAN) technology that was

utilized as a protocol. Blockchain was integrated into LoRaWAN, to enforce the security in the

firmware update process. For every requirement, the preliminary design was conducted. In the

design stage, a simple design of the firmware update mechanism is created. This preliminary

design helps in developing the prototype. The next stage represents an actual prototype which

is based on the preliminary design from the previous stage. This stage outputs a small working

model of the required firmware architecture. Once a small working prototype is produced the

next stage deals with the evaluation of the prototype to help discover the strength and

weaknesses of the working architecture. A working architecture prototype is refined until all

the requirements gathered in the literature are met. Once the final architecture is developed

based on the final prototype, it is thoroughly tested and deployed to both Blockchain and

LoRaWAN networks.

4.2.2 Experimentation

This research method aimed to examine how well the proposed solution performs. This

includes examining whether the architecture suits the constrained low-powered devices, by

examining energy consumption, memory consumption, cost of proposed Blockchain smart

contract operations, and the time the solution takes to update the devices. Hence, the

aforementioned properties are the metrics used in the proposed architecture evaluation. The

experiment utilized physical low-powered devices. These are LoPy devices from Pycom, LoRa

gateway, and personal computers. Table 4.1 shows the experimental devices respectively.

Table 4.1 Devices Specification.

Devices RAM Storage CPU Model Devices

Pycom Lopy 4 MB 8 MB Espressif

ESP32 chipset

LoPy4 2

LoRa Gateway
1GB

LPDDR2

SDRAM

4GB SD Card Cortex-A53

64-bit SoC @

1.4GHz

Raspberry Pi

3 Model B+
1

PC 8 GB SSD 4th gen Intel®

Core™ i5

Lenovo

T440p

1

 41

The LoPy devices served as LoRa end devices, the gateway was built using the RAK831

module combined with the Raspberry Pi 3 B model. The personal computer (PC) was utilized

to run the LoRaWAN network server which handles LoRa packets.

Figure 4.2 Overview of the Research Methodology

The overview of the research methodology is illustrated in Figure 4.2. The literature survey

method aimed to answer the first two research questions and to achieve the first two objectives.

The prototype method answers the third research question to achieve the third objective and

the experimentation method answers the fourth research question and achieves the fourth

objective. All these methods culminate in achieving the research goal as illustrated in Figure

4.2.

4.3 Requirements and Assumptions

This section presents the requirements (REQs) of the proposed work with the assumptions as

well as the reasons for the given assumptions. Some of the requirements presented are based

on the studies covered in Chapter 3: They are also influenced by the firmware updates

recommendations made in publications such as Cloud Security Alliance (CSA), NIST Special

Publication (Regenscheid, 2018), and other recommendations on performing updates in

LPWAN networks (Jongboom and Stokking, 2018b).

4.3.1 Security Requirements of the System

The proposed work has seven requirements as explained in Table 4.2.

Table 4.2 System requirements

 42

Requirement

Number
Description

REQ1

Push Updates – The system should enable administrators or device owners

to schedule firmware updates to their devices to avoid network saturation

and limit unintended downtime.

REQ2
Manage Updates – One component or entity must manage updates of

multiple IoT devices.

REQ3

Over-The-Air Updates – The firmware update mechanism must adopt

the over-the-air strategy, and be adapted to the network bandwidth

constraints.

REQ4

Updates mechanism should provide end-to-end security, authentication,

and integrity which must be protected

• Authentication – The architecture must be able to identify the

origin of the firmware image or any sensitive information. For

example, the architecture must be able to authenticate if the

firmware image comes from a legitimate manufacturer before it gets

installed on the end device.

• Integrity – The data must be protected from unauthorized

changes to ensure reliability and correctness. Integrity assures the

accuracy and completeness of any sensitive firmware information.

The sensitive information should be protected both at rest and in

transit between systems. Therefore, the architecture should be able

to check if the sensitive information, has not been modified both at

rest and in transit.

• Confidentiality – Any sensitive data must be protected from

unauthorized viewing and other access. The firmware update

process consists of the firmware updating sensitive information

transmitted between entities of the system. Hence, the information

must be viewed by the authorized entity.

REQ5

Availability – The end device must not rely on the central repository to

receive firmware updates, the device must be updated regardless of

whether the manufacturer’s servers are offline or not. This means that

there must be no single point of failure during the updates

REQ6

Replay Attack – The architecture has to consider that no old messages

are allowed during the update process. The attacker can try to eavesdrop

on the exchanged messages during the update and later try to replay the

same messages to disrupt the updates. Thus, the system must be tactful

and resilient against such actions.

REQ7
Low-power consumption – The architecture must accommodate

resource-constrained and low-powered (battery-powered) devices in the

LoRaWAN network. In addition, it must be able to accommodate devices

 43

without any WiFi interface or devices that cannot connect directly to the

Internet.

4.3.2 Research Assumptions

The proposed architecture has three assumptions listed as follows.

• Encryption and decryption keys are on the secure hardware module. This means that

the security keys reside in a place that cannot be manipulated or retrieved by bad entities

like attackers.

• The firmware image is stored in public storage where anyone can access it. Usually, the

firmware is stored on the manufacturer’s website and the device owner can download

the firmware from that public repository of the manufacturer.

• The firmware updates are assumed to be applied on battery-powered or low-powered

constrained devices with low processing capabilities and memory limitations.

4.4 Proposed Architecture

Figure 4.3 System Architecture

The system architecture comprises eight main components as illustrated in Figure 4.3. These

are the LoRa end devices (low-powered devices), LoRa gateway, LoRaWAN servers, firmware

update service (FUS), Blockchain, IPFS, device manufacturer, and the device owner. This

section explains each component, the role it plays in the proposed architecture, and the part of

the requirements it fulfills.

 44

4.4.1 LoRaWAN System Components

Low-powered Device

This is the entity equipped with LoRa and needs to be updated over time. A low-powered

device communicates with other system entities via the LoRa gateway.

The low-powered device chosen is a LoRa end device. The Low-powered device serves as the

constrained IoT device that provides the LoRa interface; this enables us to send firmware

updates to the end device without any internet connection. Utilizing this component helps to

meet REQ7 where the low-powered device is required for demonstrating the proposed

architecture.

LoRa Gateway

LoRa gateway connects Low-powered-devices to the outside world of LoRa. It receives and

transmits data from multiple end devices and sends data to the network server for further

manipulation.

The main purpose of this component is to facilitate communication between the servers and

IoT devices without the need for low-powered devices to require any internet connection to

communicate with the servers. In addition, a gateway helps to provide long-range

communication for low-powered devices since most are deployed in areas with no electricity

and they are required to communicate with the internet. This component helps to meet the

REQ3 (helps low-powered devices to receive over-the-air updates) and REQ7.

Manufacturer

The device manufacturer is the entity responsible for the creation of new firmware and

publishing the newly created firmware to the IPFS and Blockchain network. The manufacturer

is one of the main entities in firmware updates. It has no more role than uploading the newly

created firmware to the Blockchain network.

Device Owner

The device owner owns the low-powered device as well as the FUS which is connected both

to IPFS and Blockchain network. The device owner is responsible for managing the Low-

powered devices and can initiate the update process to update the owned devices. Hence, the

owner interacts with FUS to manage and initiate the update.

 45

Since the IoT network consists of a massive number of devices, and they need to be maintained

by the device owner, the device owner entity helps to meet the REQ1 and uses the command

line tool developed in this study to maintain the devices.

LoRaWAN Servers

LoRaWAN servers handle packets sent from the LoRa gateway and the FUS. They all form

part of the LoRaWAN server for processing LoRaWAN packets. These servers are explained

below:

Gateway Servers

The gateway server is responsible for maintaining connections with gateways that support the

UDP, Message Queue Telemetry Transfer (MQTT), Google Remote Procedure Call (gRPC),

and Basic Station protocols. It forwards uplink messages to Network Servers and schedules

downlink messages to the end devices via a LoRa gateway

It is also responsible for maintaining connections with gateways that support the UDP, Message

Queue Telemetry Transfer (MQTT), Google Remote Procedure Call (gRPC), and Basic Station

protocols. It forwards uplink messages to Network Servers and schedules downlink messages

to the end devices via a LoRa gateway.

Join Server

It is connected to the network server and the application server and has the responsibility of

storing the end device’s root keys and handling the OTAA join procedure. It generates and

shares session keys with the network server and application server for the secure transmission

of LoRaWAN messages.

Network Server

It is responsible for handling the LoRaWAN network layer. It keeps track of the end devices,

performs an authentic and integrity check using the MIC algorithm, detects if there are any

replayed messages by performing frame counter checks, and sends the message to the

appropriate application server.

Application Server

It handles the LoRaWAN application layer which includes decoding and decryption of the

uplink message and performs encoding and encryption of downlink messages. It also hosts an

MQTT server that exposes the MQTT topic for streaming the application data.

 46

4.4.2 Blockchain and Storage Components

The proposed solution utilizes IPFS and Blockchain as storage.

Blockchain

Blockchain is a decentralized peer-to-peer network that stores firmware metadata and low-

powered device information in a smart contract. The main purpose of this component is to

enable trust during the firmware update process. Blockchain ensures that there is a single source

of truth containing tamper-proof firmware metadata from the manufacturer. This component

helps to fulfill some parts of the REQ4 by ensuring the integrity of firmware metadata. It also

provides high availability of firmware metadata which fulfills the requirements of REQ5.

IPFS

IPFS is a decentralized peer-to-peer network responsible for storing the firmware image of

low-powered devices. It acts as file storage ensuring the high availability of data in the

proposed architecture. It particularly ensures the high availability of firmware images which

also fulfills the REQ5.

4.4.3 FUS

The important component that this research implemented is the FUS. This component is

explained in Table 4.3. The purpose of the component is to provide firmware updates to low-

powered devices through Blockchain, providing the low-powered device with a single source

of truth, and providing security during the update process.

Table 4.3 FUS Operations.

Tasks Description

Firmware Request

▪ The FUS handles and manages firmware requests of low-

powered devices which can be also initiated by the device owner.

▪ It communicates with the application server via the MQTT

protocol and exchanges messages via the topics exposed by the

MQTT server.

Connects to

Decentralized

Networks

▪ FUS is connected to both IPFS and Blockchain networks via

HTTPS and the WebSocket.

▪ It runs a daemon that connects with the Blockchain network

and handles firmware updates triggered by the manufacturer

upon the new upload of firmware metadata.

 47

State Update
It continuously updates the device’s progress on the Blockchain

during the update process.

Firmware

Fragmentation

It performs the firmware fragmentation based on the spreading

factor (SF) or the data rate (DR) used by the low-powered device.

Cryptographic

Operations

▪ It generates session keys to be utilized for a particular session

of the firmware update.

▪ It handles encryption and decryption of sensitive data such as

session keys and more.

• It performs authentication and integrity check of the sensitive

data and firmware image.

The FUS fulfils REQ1, REQ2, REQ3, REQ4, and REQ6. The detailed fulfillment of these

requirements is explained in Chapter 5:

4.5 Application Scenario

To understand the proposed architecture, it is important to provide an application scenario to

have a better understanding of where it could be applicable. The scenario actors include the

manufacturer, Firmware Update Service (FUS), constrained device, Alice as a device owner,

and Bob as the attacker.

4.5.1 Scenario Assumptions

• Assume that Alice has planted a garden in a rural area, that is far from where she stays.

• The garden is located in an area where there is no electricity.

• It is assumed that Alice has configured the LoRa devices together with LoRaWAN

servers and the FUS, which will be responsible for the entire firmware update process.

4.5.2 Scenario Description

Suppose Alice has a garden and desires to monitor her plants so that she knows their state and

treats them according to their need. To achieve this, she buys a battery-powered IoT device

equipped with LoRa and Wi-Fi and places it in the garden to monitor the plants. Since the

garden is separated by kilometers from her home and planted in an area with no electricity, she

cannot rely on Wi-Fi to connect with the device. Alice is worried about the security of the

device because people like Bob may intrude on the device to generate misleading data. To

overcome this, Alice plans to keep the device up to date with the latest firmware so that the

possible vulnerabilities that Bob may use to intrude on the device may be patched. The

 48

following sections demonstrate how the proposed architecture can assist Alice to secure her

data and have a secure firmware update mechanism.

4.5.3 Illegitimate Firmware Prevention on Blockchain

Suppose the manufacturer has deployed the contract to the Blockchain and it is ready to

contract to store firmware data. Let us assume that before the manufacturer releases a new

firmware, Bob impersonates the manufacturer by uploading fake firmware. Note that Bob may

have a manufacturer’s contract address. This contract logic was deployed by the manufacturer

on the network and he knows the public key or wallet address of the manufacturer. He then

tries to publish the fake firmware to the storage and fake metadata to the Blockchain network

and expects that the FUS will feed the malicious firmware to Alice’s devices.

Figure 4.4 Prevention of illegitimate firmware distribution and metadata

Unfortunately, Bob fails to publish the firmware to the network because he does not know the

manufacturer’s private key and the manufacturer’s contract logic allows only the manufacturer

to publish new firmware metadata. Figure 4.4 illustrates how this illegitimate activity could be

prevented by the proposed solution.

4.5.4 Session Key Eavesdrop

Suppose the manufacturer publishes a new firmware and Alice’s FUS generates the session

keys and sends them to Alice’s devices. During the transmission, Bob eavesdrops on the

session keys to use them later. For the next firmware update process when FUS shares session

 49

keys with the devices, Bob captures the moment and sends old session keys to Alice’s devices

that FUS shared on the previous update. However, Alice’s devices prevent this kind of attack

because the FUS and devices use a function that keeps track of the nonces preventing replaying

data. Therefore, it becomes impossible for Alice’s devices to accept Bob’s session keys to be

used during that session of firmware update. Figure 4.5 illustrates how the proposed solution

prevents Bob from replaying sensitive data like session keys.

Figure 4.5 Session Key Eavesdrop Illustration

 50

4.5.5 Illegitimate Firmware Prevention on the Device

Figure 4.6 Prevention of Bob’s Illegitimate Firmware on the Device

After Bob failed to send the session keys to Alice’s devices, he somehow found a way to push

a fake firmware fragment to Alice’s devices. After Alice’s devices received all firmware

fragments including the malicious Bob’s fragment, will then verify their authenticity and

integrity. Since one of the fragments came from Bob the verification process will capture that

and not install the firmware. This illegitimate activity performed by Bob and its prevention is

illustrated in Figure 4.6.

With the proposed solution preventing Bob from performing such activities, Alice can now

grow her plants without worrying more about Bob and the security of the devices. In addition,

Alice, can monitor the plants from a distance and be able to update the devices in an

environment where there is no electricity, with no need for Wi-Fi.

4.6 Security Algorithms

With the requirements and different system components being presented in the previous

section, this section focuses on security algorithms utilized by the proposed architecture. These

security algorithms mainly focus on achieving data confidentiality, authentication, integrity,

and elimination of replay attacks.

 51

4.6.1 Data Authentication

The data authentication proves the origin of the data and ensures that the data has not been

modified or fabricated. Data authentication may be achieved using conventional encryption

algorithms such as symmetric cryptography or public-key cryptography, also known as

asymmetric cryptography. Conventional encryption algorithms can be easily incorporated into

low-powered devices unlike asymmetric cryptography and do not require many resources since

most of the low-powered ones are limited in resources. Therefore, the proposed architecture

utilized symmetric cryptography to provide the data authentication of the firmware image to

prove its integrity and authenticity on the end device. Specifically, the MAC is used to

determine both integrity and authenticity on low-powered devices.

The FUS component uses an asymmetric cryptography algorithm to provide the authenticity of

firmware images at the application layer. ECDSA algorithm provides the authenticity of the

firmware utilizing three security keys: wallet address, public key, and private key. The

alternative to the ECDSA algorithm would be an RSA algorithm which is commonly used for

providing authenticity. The proposed solution however does not utilize RSA, and the reason

for this is that some studies like Vahdati et al., (2019) have shown that is more successful in

terms of parameters like execution time, energy consumption, memory requirements,

decryption time, key sizes, signature generation time, and key generation in constrained IoT

devices.

Firmware integrity is achieved through the cryptographic hashing function which is the

SHA256 algorithm. A hash function takes an input, breaks it into pieces, mixes them up, and

produces a new output. For example, the SHA256 algorithm will take session keys, crumple

them, and produces an irreversibly fixed output that can be used to determine the integrity of

session keys. Figure 4.7 shows how SHA-256 works.

Figure 4.7 SHA256 hashing algorithm

 52

With the SHA256 algorithm, the input value is divided into elements of equal length. These

are called blocks. Since a multiple of the block length is required, it is usually necessary to fill

in the data, that is, expand it. The padded value is the padding. Then, the processing is done in

blocks. The blocks are executed and used as a key for intermediate calculations on the data to

be encoded later. The result of the last calculation is the output value is the hash value. SHA256

is the most-used hashing algorithm. There are alternative algorithms such as MD5, and SHA1

however, collisions have been found with these algorithms (Stevens et al., 2017) but no

collisions have been found yet with SHA256 algorithms.

SHA256 is used in the MAC algorithm to help in providing not only the integrity but also the

authenticity of data. As mentioned before, the proposed solution utilizes the MAC algorithm

specifically, the HMAC-SHA256. Although there are other types of MAC algorithms apart

from the HMAC-SHA256, it is the proposed architecture because it provides integrity and

authenticity through hashing. The hashing functions are faster than block ciphers which other

MAC algorithm like Cipher-Block Chaining Message Authentication Code (CBC-MAC) uses

to provide integrity and authenticity (Kaliski, 2011).

4.6.2 Secure Distribution of Data Security and Replay Attack

Prevention

The authentication and encryption of data are not enough in distributing the firmware securely.

The communication between a sender and the receiver (for instance, between the FUS and the

low-powered device) can be taped in by the attacker. The attacker could break the

communication to uncover the plaintext from the ciphertext or try to discover the encryption

key to attempt to decrypt the data sent between the sender and receiver in the future. The

attacker can try to record the data being exchanged and then replay the old data to the low-

powered device. Note, that the sent old data will be interpreted correctly by the low-powered

device since it was encrypted by the FUS using the shared secret key. Figure 4.8 illustrate how

a replay attack can happen between the FUS and the low-powered device.

 53

Figure 4.8 Replay attack in FUS component

 To avoid the replay attack in the proposed system, the architecture utilizes the nonce values.

The nonce values must be:

• A number that is used only once

• Different for each request

• Difficult for an attacker to guess

An example of the nonce values could be a timestamp, counter, random value, etc. Since most

of the low-powered devices do not have an internal clock and are not directly connected to the

Internet, the timestamp cannot be utilized.

Figure 4.9 Replay Attack Illustration

 54

The architecture uses the counter as a nonce value to prevent a replay attack. This is illustrated

in Figure 4.9. The counter values are generated by the function f(n), where f(n) is a function

that increments the nonce value. Both FUS and the low-powered device must know this

function. When the FUS receives N1, it uses the function f(n) to increase the nonce and generate

N2 which are both sent along with the encrypted data. The device will then decrypt the data

with the nonce values using the shared secret key. The correctness of the nonce values will be

verified by the low-powered device which will then send an increment to the N2 using f(n) and

send it to the FUS.

4.6.3 Data Confidentiality

LoRa stack provides confidentiality of data through AES. This means every low-powered

device runs an AES algorithm to encrypt and decrypt incoming and outgoing LoRa payloads.

The proposed architecture is designed to achieve confidentiality through the AES algorithm.

The counter mode of operation (CTR mode) is used for the encryption and decryption of data.

4.7 Proposed Blockchain Smart-Contract Operations

At this point, the security algorithms responsible for securing the update process have been

presented. In the following sections, the focus is mainly on describing the interaction between

the system components. But before the overall interaction/procedure is described, there is a

need to introduce an important component of Blockchain which is a smart contract. Two

contracts were designed, and each has its operations. The first contract is a manufacturer’s

contract which stores firmware metadata to be used during the update process. The second

contract is a FUS contract that stores the low-powered device's data such as the device's unique

ID, the manufacturer’s contract address, device model, current firmware, and the status. The

manufacturer’s contract is publicly stored and can be utilized by any entity to retrieve firmware

metadata and check for the availability of the new firmware. Figure 4.10 illustrates the

operations from both contracts.

 55

Figure 4.10 Smart Contracts Operations.

4.7.1 Manufacturer Smart Contract

The manufacturer’s smart contract has four Blockchain operations that include deployment of

the contract, adding new metadata, checking updates, and retrieving metadata. These

operations are explained in this section together with their pseudocode.

Deployment

The manufacturer must first deploy the contract to the Blockchain network before any firmware

update process occurs. When the contract is deployed, there is an algorithm responsible for

assigning the manufacturer’s contract address as an address that owns a contract in the network.

This gives the opportunity in the future to know who created and deployed the contract and to

restrict access to sensitive data. The pseudocode of this algorithm is represented in Algorithm

1.

Algorithm 1: Pseudocode for assigning manufacturer’s contract address and name to Blockchain

Input: deployer’s contract address and name

Result: stores the deployer’s contract address to storage variable

string manufacturer_id;

string manufacturer_name;

function constructor (string id, string name) do

 Add id, name to manufacturer_id and manufacturer_name storage variable;

end

 56

Adding New Metadata

Once the contract is deployed on the network. The manufacturer can add the new metadata.

Adding new metadata is a crucial operation that must not be allowed to be executed by any

other entity in the Blockchain but only the manufacturer. Therefore, Algorithm 2 has to check

first who calls it before it accepts the metadata. The newly uploaded metadata is saved on the

metadata list structure and is represented in the form of key-value pair.

Algorithm 2: Pseudocode for adding new metadata

Input: model, version, firmware metadata represented in key-value

Result: Firmware record is updated with a new metadata

mapping (string => Firmware Metadata) metadata_list;

if msg.sender == firmware Provider then

 loop through the entire model_list upload and check if the version of the model exists

 emit new Firmware (Firmware Details);

 else

 error: Not authorized for such operation;

end

Checking Updates

After the metadata has been uploaded, anyone who wants to check for newly uploaded

metadata can interact with Algorithm 3. For example, The FUS will call this function on the

manufacturer’s contract to check if there are any new firmware updates available for the

provided current version of the device and the provided device’s model. The algorithm returns

true or false based on the availability of the firmware, meaning true is returned if the device’s

current version is less than the version that exists on the Blockchain.

Algorithm 3: Pseudocode for firmware availability check

Input: model, current_version

Result: Returns true or false based on the firmware availability

mapping (string => Firmware Metadata) metadata_list;

string [] public model_list;

uint256 i;

for an available model in model_list do

 if model == model_list[i] then

 if metadata_list[model.version] is greater current_version then

 return true;

 end

 57

 end

increment i

return false;

end

Download Metadata

Algorithm 4: Pseudocode for retrieving the firmware metadata

Input: model,

Result: Return metadata

mapping (string => Firmware Metadata) metadata_list;

uint256 i;

for an available model in model_list do

 if model == model_list[i] then

 return metadata_list[model].metadata

 end

increment i

end

If the availability state of the firmware update returned by Algorithm 3 results is true,

Algorithm 4 will return the latest firmware metadata when is called. The FUS calls this

operation to get the new metadata for the low-powered devices. The algorithm first checks if

the provided model is valid before it returns the metadata. If this is not checked, this will result

in using the invalid key on the metadata list and lead to confusion.

4.7.2 The FUS Smart Contract

In Section 4.7.1, the manufacturer's smart contract operations were explained, this section

presents the FUS contract operations. which is owned and managed by the owner of the low-

powered IoT device. This contract stores, updates and retrieves low-powered device

information. It has several operations that can be invoked, including device registration,

updating the device, and getting the device information. This section explains and presents

these operations.

Deployment

The device owner (the FUS owner) needs to deploy the contract to the Blockchain network so

that it can store information on the low-powered devices. When the contract is deployed, this

function stores the owner’s contract address and the name of the owner on the Blockchain

network. The owner’s address can be used later to restrict access to some of the contract

 58

operations. For example, the FUS owner is the only entity allowed to update device

information. Algorithm 5 is similar to Algorithm 1 whereby the manufacturer’s contract

deploys the contract on the Blockchain network.

Algorithm 5: Pseudocode for assigning device owner’s contract address and name to Blockchain

Input: owner’s contract address and name

Result: stores the owner’s contract address to storage variable

string owner_id;

string owner_name;

function constructor (string id, string name) do

 add id, name to owner_id and owner_name storage variable;

end

Device Registration

Algorithm 6: Register a new LoRa device

Input: device details

Result: Updated device list record

mapping (string => string[]) devs;

mapping (string => Devices[]) devicesList;

string[] public deviceIDList

 if msg.sender == updateServiceOwner then

 for available device in deviceIDList do

if devID == deviceIDList[i] then

 exist == true;

end

 end

if not exist then

 add a new device to the deviceList

end

 else

 Error: Not authorized for such operation;

end

After a successful deployment, the device owner needs to register low-powered devices on the

network since the FUS component needs to know which Low-powered devices need to be

updated. The registration operation is crucial because it must not be called by anyone other

than the FUS owner. The device information includes the LoRaWAN device application id, the

 59

device id, the manufacturer’s smart address, wallet address, model, current version, and the

device update status. The registration is handled by Algorithm 6.

Update Device Information and Status

The device information on the Blockchain can be updated together with the update status. The

updated information includes the LoRaWAN device application id, the device id, the device

manufacturer’s smart address, the wallet address, the device model, and the device version.

The status update keeps track of the update process of the device, e.g., the status of the session

keys whether were exchanged or not, and the number of firmware fragments sent. Keeping the

state helps in case of any interruptions during the update process. Algorithm 7 and Algorithm

8 illustrate the pseudocode for updating device information and device status respectively.

Algorithm 7: Update Device Information

Input: devID, device information

Result: return true for the device's successful update and false if device information is not updated

mapping (string => Devices[]) devicesList;

 if msg.sender == updateServiceOwner then

 if devicesList[devID].exist do

update device information

return True

end

 else

 Error: Not authorized for such operation;

end

Algorithm 8: Update Device Status

Input: devID, new device status

Result: updated device status

mapping (string => Devices[]) devicesList;

 if msg.sender == updateServiceOwner then

 update devicesList[devID].status with a new device status

 else

 Error: Not authorized for such operation;

end

Delete device

Algorithm 9: Delete low-powered device

 60

Input: devID

Result: delete device from the list

mapping (string => Devices[]) devicesList;

 if msg.sender == updateServiceOwner then

 if devicesList[devID].exist do

delete a device with matching devID

return True

end

 else

 Error: Not authorized for such operation;

end

Apart from updating the device on the Blockchain, the device owner can also delete the device

if it is no longer needed. This operation will only be executed by the owner of the FUS contract

and if another entity tries to execute the function, it will fail because it requires the address of

the owner for successful execution. The delete operation is illustrated by Algorithm 9

pseudocode.

Get Device(s) Information Operations

The owner’s contract has three algorithms that get information about the device on the network.

These algorithms include the retrieval of devices by the model’s name, getting the device

information, and the device update status and are illustrated by Algorithm 10, Algorithm 11,

and Algorithm 12 respectively.

Algorithm 10: Get devices by Model

Input: model

Result: Returns devices with matching model

mapping (string => Devices []) devicesList;

function getDevicesByModel(string model) do

 return devicesList[model]. model;

End

Algorithm 11: Get device information

Input: devID

Result: Returns device update status

mapping (string => devicesInfo []) devicesInfo;

function getDevStatus (string devID) do

 61

 return devicesInfo[devID];

End

Algorithm 12: Get device update status

Input: device ID

Result: Returns device update status

mapping (string => Devices []) devicesList;

function getDevStatus (string devID) do

 return devicesList[deviceID].status;

End

4.8 Overall Procedure of the Proposed Architecture

This section explains the interaction between the system components during the firmware

update process. The interaction is classified into four main phases: firmware upload, device

registration, firmware initiation, firmware download, and firmware verification. In each phase,

the interaction is explained with the security measures taken.

4.8.1 Firmware Upload Phase

The firmware upload phase occurs after the manufacturer’s contract has been successfully

deployed to the Blockchain network and after the manufacturer has successfully connected to

the IPFS network.

The firmware upload involves the interaction between three main system components the

device manufacturer, the IPFS network, and the Blockchain network. The objective of this

phase is to have a firmware image successfully deployed on the decentralized IPFS network

and the metadata stored on the Blockchain network. The manufacturer connects to the IPFS

node to publish the new firmware image to the IPFS network and also connects to the

Blockchain node that is synced with the network to publish the metadata. After the firmware

and metadata are deployed via the connected nodes, they are synced with the rest of the

network. Figure 4.11 illustrates this process of uploading the firmware and metadata to the

Blockchain and IPFS network.

 62

Figure 4.11 Firmware Upload Procedure.

The metadata that is deployed on the Blockchain is structured as follows:

{

 name: 'LoPy4-firmware',

 version: '1.2.0',

 model: 'LoPy4',

 SHA256: '569948b4baa...',

 IPFS_HASH: 'QmaY7aKo...',

 Signature: 'Ed30Ac8a...',

}

Figure 4.12 Structure Example of the Metadata

Figure 4.12 shows the metadata that is deployed by the manufacturer to the Blockchain.

This metadata is constructed or created from the web application this is illustrated in the

implementation chapter.

 63

Security Measures: During Firmware Upload Phase

Security measures need to be taken when the firmware is uploaded to the networks. Thus, this

section explains the security involved in the firmware upload phase. During this phase, it is

very important to verify when the uploaded firmware is legitimate before it gets stored. The

illustration of how the verification process of firmware metadata is done is shown in Figure

4.13:

Figure 4.13 Verification process of firmware metadata

• Integrity - The firmware image can be modified during transmission. Therefore, the

manufacturer hashes the firmware image using the SHA-256 algorithm to prevent

any alteration that could take place in the update process. The calculated SHA-256

hash forms part of the metadata.

• Authentication - The manufacturer needs to sign the firmware to prove the

ownership digitally. The manufacturer uses the private key to sign the metadata.

The Elliptic curve digital signature (ECDSA) signature is produced and appended

to the firmware metadata. By appending the signature to the metadata, it will be

 64

easy to verify the authenticity of the firmware image. Moreover, this enables

metadata to be immutable and tamper-proof since it is on the Blockchain network.

• Firmware Availability - The firmware image is deployed on the manufacturer’s

IPFS node that syncs with the IPFS network. The other IPFS nodes on the network

will sync with the uploaded firmware; this ensures the high availability of the

firmware image even if the manufactures node is unavailable on the network.

• Authorization - The firmware metadata describes the firmware images. It consists

of the integrity hash, the manufacturer's digital signature, the firmware's size, the

firmware version, the location of the firmware, etc. Firmware metadata plays a

considerable role during the verification process; therefore, no other entity apart

from the manufacturer is allowed to deploy the firmware metadata. The Blockchain

contract enforces authorization only, allowing the manufacturer to be the only entity

of the network to upload firmware metadata.

4.8.2 Registration Phase

Registration is required for the low-powered device to be a part of the LoRaWAN network.

This includes the generation of keys that the device will use during the join procedure. It is

assumed that the end device is already configured to join the LoRaWAN network in this phase.

This phase particularly describes the device registration to the Blockchain network. It involves

interaction between three system components: the device owner, the FUS, and the Blockchain.

The owner registers the LoRa device to the Blockchain network via the FUS. The FUS directly

connects the owner with the Blockchain network to manage the devices. Device management

includes registering the device, deleting the device, and updating the device information. Note

that for the FUS to register the device invokes the contract operation illustrated in Algorithm

6. This phase ensures that the device is successfully registered and is ready to receive a

firmware update.

Security Measures: During the Registration Phase

The FUS exchanges device information with the Blockchain during the registration phase.

However, the exchanged information is stored securely on the public Blockchain, even though

the device’s information is immutable and tamper-proof on the network. It is required that the

FUS encrypts the information before it is stored in the Blockchain. Therefore, the

confidentiality of the data must be ensured. The FUS ensures the confidentiality of LoRa device

 65

information through the Advanced Encryption Standard (AES). The encryption of this

information is done utilizing the Counter Mode (CTR) as a mode of operation. FUS uses the

shared secret key (KFUS)of 128-bit for both encryption and decryption of the Blockchain data

and is responsible for generating the master key (KM) for each registered device. The KM is

used in AES to provide confidentiality of messages between the FUS and the end device. This

key should be kept secret between these entities. Figure 4.14 demonstrates the security

activities for this phase.

Figure 4.14 Device registration phase

4.8.3 Initialization Phase

At this point, the devices are registered and ready to be updated. This phase talks about how

the firmware process starts and what entities are responsible for it. The firmware update process

could be started by two entities or triggered in two different ways. Firstly, it could be triggered

by the device owner since he is responsible for managing the end device. The second way is

based on the Blockchain event which is triggered by the device manufacturer when uploading

the new firmware metadata on the Blockchain network. This phase aims to initialize the

firmware update process and then successfully exchange the session keys between the FUS and

the low-powered device(s).

The device owner triggers the firmware process by communicating with the FUS via a

command-line (CLI) script which implements the MQTT protocol. The FUS exposes the

MQTT topic, which listens to the device owner's firmware request. The FUS will be then

responsible for the entire update process afterward. The session keys will be generated by the

 66

FUS and exchanged with the end device via the LoRaWAN network. The session keys will not

only be exchanged but the security also needs to be considered since they are a crucial part of

the firmware update process. After successfully delivering the session keys, the end device

performs a security check on them before they are utilized. The end device also sends the uplink

message for confirming the successful delivery of session keys.

Security Measures: During Firmware Initiation Process

Before the session key exchange occurs, both the end device and the FUS must have shared

the secret key in front. The shared secret key KM is the one that was generated earlier by the

FUS during the device registration phase. The FUS prepares the session key message shown in

Table 4.4. The session key message is formatted as follows:

Table 4.4 Session Key Message Exchange

 ID IV Nonce DevNonce ServNonce Mode DR AESSKey MACSKey TAG

Bytes 1 4 3 3 1 1 16 16 4

• ID - The id uniquely identifies the message.

• IV nonce - IV nonce is used during the encryption and decryption process of session

keys.

• DevNonce and ServNonce - DevNonce and ServNonce are used to prevent replay

attacks between the FUS and the device.

• Mode - This is a LoRaWAN device class mode. E.g., Class A, Class C, and multicast.

• DR - The data rate to be used to update the device e.g., DR0, DR1, etc.

• AESSKey and MACSKey - Security keys generated for the particular session of the

firmware update process.

• TAG – Refers to the signature or tag to be used by the end device to verify integrity

and authenticity.

The FUS generates the session keys (Ks) AESSKey and MACSKey using KM which are the

two keys used to determine the confidentiality, integrity, and authentication of the messages

during the particular firmware update session. One of the session keys being exchanged is the

AES session key (AESSKey), which provides confidentiality of sensitive messages such as

MAC tags and nonce values. The FUS randomly generates AESSKey and MACSKey, updates

 67

the nonce value of the end device using an incremental function, and finally generates its nonce

value N2. The session key exchange message is encrypted using the KM.

When the end device receives the session key data, it decrypts it using the same shared secret

key KM and then checks if the data has not been replayed by checking the nonce value N1

received. As a response to the received session keys, the end device sends an acknowledgment

message with the updated values of N1 and N2 Encrypted with the recently shared session keys.

The FUS receives the message and decrypts, checks for any replay attack, and updates N1 and

N2. The firmware update process can also be initiated by the manufacturer's Blockchain event

on adding new firmware metadata on the Blockchain. The firmware event initialization may

work very well when updating a set of the end device because it enables FUS to look for all

devices that match this new metadata. The process of session key exchange and detection of

replay attacks is still the same as shown in Figure 4.15.

Figure 4.15 Session Key Exchange.

During the session key exchange, the architecture provides confidentiality, and data

authentication and protect against replay attack. These security properties are clearly explained

as follows:

• Replay Attack - The nonce values are randomly generated to prevent replay attacks

and must be only used once during the firmware update session. The FUS and the

device have a function that keeps track of these values and checks for any possible

replay attack on each message sent, i.e., session keys.

• Confidentiality - The architecture utilizes AES to provide confidentiality of session

keys. It is recommended that the encryption keys be changed over time. Therefore,

 68

The FUS generates these session keys instead of using the KM for both encryption

and decryption.

• Data Authentication - The second key is the MAC session key used for providing

the integrity and authentication of the message

4.8.4 Firmware Download

This phase of the firmware update demonstrates what happens after the session keys were

successfully exchanged. After successfully exchanging the session keys, the FUS requests

firmware metadata on the Blockchain network and the firmware image on the IPFS network.

Figure 4.16 Firmware Downloads and Verification Phase.

The FUS is connected via a secure channel (HTTPS) both on the IPFS node and Blockchain

node. The firmware authenticity must be achieved at this phase to ensure that the right firmware

will be sent and updated by the end devices.

Security Measures: During Firmware Download Phase

After the firmware has been successfully downloaded from the IPFS file storage, it needs to be

verified against any malicious activities. This includes alteration and determining its

authenticity. Figure 4.16 shows the download process, and Figure 4.17 further illustrates how

both authenticity and integrity are achieved.

 69

Figure 4.17 Firmware Downloads

• Authentication - In the previous phase of firmware distribution, the

manufacturer had signed the firmware metadata and uploaded the metadata to the Blockchain

network. Now in this phase, the manufacturer's digital signature is utilized to prove the

authenticity of the metadata. The manufacturer has three important keys on the Blockchain

network: the private key, the public key, and the wallet address (KMW). The private key is used

to sign the firmware and must be kept secret. The wallet address is a hashed public key and is

allowed to be shared with other entities on the Blockchain network. The wallet address plays a

huge role in determining the authenticity of the firmware in the update process. The proposed

architecture uses a function that takes the ECDSA digital signature with the metadata to

produce the wallet address that signed the firmware metadata. The produced wallet address is

matched against the wallet address registered earlier in the registration phase by the device

owner. If both addresses match, the metadata does come from an authentic source and can be

used to download the firmware image.

• Integrity - Regardless of the secure channel between the IPFS and the FUS,

firmware integrity has to be achieved. The FUS obtains the firmware image and recomputes

 70

the SHA-256 hash which is then compared with the SHA-256 hash of the metadata. If both

hashes are the same this confirms that the firmware image has not been altered in transmission.

4.8.5 Firmware Data Authentication

Figure 4.18 Firmware Verification on the End Device.

After a successful firmware verification, the firmware image is ready to be sent over to

LoRaWAN. This section describes how the firmware image is secured and explains the

verification process shown in Figure 4.18 that the end device performs.

The FUS performs fragmentation based on the spreading factor (SF) and the end device's

region. The MAC of the firmware is first calculated using the HMAC-256/CMAC algorithm

and sent over to the LoRaWAN so that the end device can verify both the integrity and the

authenticity of the firmware. Usually, the digital signatures based on the public and private

keys are used to verify the authenticity and the integrity of the firmware image on the end

device, however, since these devices are limited in storage, some cannot incorporate digital

signatures because they require more processing power to do the verification. Most of the

constrained device's symmetric cryptography is considered lightweight, even LoRaWAN is

based on symmetric-key cryptography to determine the authenticity and integrity of the data.

Therefore, the proposed architecture adheres to the current cryptographic technique provided

by LoRaWAN to deliver firmware updates to the end device via cryptographic technique. Note

that asymmetric cryptography is used at the application layer to ensure the firmware’s

authenticity and integrity before sending it over to the LoRa.

 71

Security Measures

Figure 4.18 shows how the verification process is done by the low-powered device when the

firmware is received but to further clarify this process, Figure 4.19 is presented to illustrate

how the confidentiality and authenticity of the firmware update are achieved between the FUS

and the low-powered device.

Figure 4.19 Confidentiality and Authenticity of FUS and the Device

• Confidentiality - The MIC needs to be sent encrypted over the channel; hence the MIC

is encrypted with the session-shared secret key KS. The end device receives the MIC

and decrypts it with a similar AES session key. The end device uses the CTR mode

when decrypting the MIC as the data was encrypted using the same mode of operation.

• Authentication and Integrity - After the device has received all the firmware

fragments including the missing ones, it needs to determine whether the firmware

comes from the authentic source and has not been changed on the transmission. Figure

4.18 and Figure 4.19 demonstrate this process of verification where authentication is

achieved via the MIC algorithm.

 72

Figure 4.20 Security Activity diagram.

To summarize all the phases and to give a clear overall interaction, the activity diagram is

utilized. The activity diagram visualizes the data flow behind the proposed architecture as

illustrated in Figure 4.20. It also clearly describes how each component interacts with the other

while representing the data flow.

The data flow begins with a manufacturer providing the firmware and metadata as input to the

system. Firmware and metadata are deployed on the IPFS network and Blockchain network

respectively. Firmware metadata is validated to ensure it consists of the necessary information

 73

required to determine its origin and integrity. The ECDSA and integrity hash are checked and

once successfully checked, the validated metadata data is produced and it is sent to the

Blockchain. The FUS then checks updates or gets notified via event as mentioned in the

initialization section.

After the successful update, necessary session keys, signature validation, integrity check, and

replay attack checks are done between the FUS and the Low-powered device. If all firmware

checks are successfully performed, the device can flash the firmware into memory, and once

done, the device status about the newly installed firmware is updated in the Blockchain.

Chapter 5: Implementation

This chapter details the implementation process of the proposed architecture that was discussed

in Chapter 4:. A quick overview of the development tools and programming languages utilized

is provided. This is followed by the implementation of the Long-Range Wide Area Network

(LoRaWAN) network and Long-Range (LoRa) nodes used in this study.

5.1 Blockchain Framework

The Blockchain can either be public or private. The public Ethereum Blockchain framework

was chosen for the implementation of the Blockchain-based firmware update architecture

proposed in this study. Table 5.1 provides a comparison of possible Blockchain that can be

utilized to securely deliver firmware updates to the devices. Our choice of Blockchain is also

justified.

Table 5.1 Blockchain Comparison

 Public Blockchain Private Blockchain

Anonymity

Public Blockchain provides

anonymity by establishing the

user identity utilizing addresses.

Public Blockchain is handy when

developing solutions that do not

require any knowledge of the user

identity. Thus, user identity is of

no importance when it comes to

the firmware update.

The private network requires true

user identity since it may want to

grant access to only specific users. It

can be noted that in the firmware

updates process, all users have equal

access, thus, a private network may

not be practical in this case.

Transparent

The data is fully transparent

enabling anyone to have access

to it. Note firmware updates are

open and allow open downloads

for device owners.

The private network has low

transparency since some of the data

may be not fully visible to the user.

Decentralized

The public network is controlled

by multiple entities that validate

and verify the transactions in the

network.

Only a certain group of people or an

organization owns the network.

Note this can lead to the single-

point-of-failure which may not be a

75

desirable attribute for firmware

updates.

The reasons for the choice of the public Blockchain, particularly the Ethereum Blockchain are:

• The firmware is usually shared publicly with the device owners via websites, blogs,

etc. Therefore, Ethereum as a public network was chosen because it allows anyone

to be a part of the network.

• Ethereum supports contract technologies that enable external entities to interact

with the Blockchain ledger and enforce the rules over the data stored on the ledger.

• Moreover, Ethereum has extensive documentation, large community support, and

development tools available.

• In addition, Ethereum Blockchain seems to be the most used public Blockchain in

many studies, thus, it is easier to improve, extend and identify current encountered

challenges that are outlined by the existing studies.

Ethereum Blockchain utilizes the Ethereum Virtual Machine (EVM) to compile and run

contracts. Contracts are created using a solidity programming language which is the language

made solely for developing Ethereum contracts. The Ethereum development tools and libraries

utilized in the development and implementation of the proposed contract are illustrated in

Figure 5.1.

Figure 5.1 Development Tools and Libraries.

76

Ganache-CLI

This is a local Blockchain simulator that features a graphical user interface to simulate the

networks and provide contract testing without the need to set up real Ethereum networks. It

consists of fake Ethereum addresses to be used for testing purposes.

Truffle

Truffle is a development environment that integrates the compilation, testing, and deployment

of Ethereum contracts. It is used to build and deploy decentralized applications for testing

purposes.

Web3.js

Web3.js is a JavaScript library that implements the JSON-RPC protocol. It is used in the web

application to connect and interact with the Blockchain network.

These tools were used to create, test, and deploy both FUS and manufacturer contracts. Unit

tests were performed to validate the correct execution of contract functions and also to measure

the costs of execution of the function in the network.

5.2 Data Storage

The proposed contracts have several storage and memory variables. The memory variable is a

temporary place to store Blockchain data which gets erased between external function calls.

Storage holds persistent data and is visible in all contract functions. Important data is stored in

storage variables and guarantees its preservation.

The proposed contracts utilize two data structures namely arrays and mappings. An array can

be of a fixed or dynamic size. The only downside of the arrays is the gas consumption. The

array can consume too much gas, when it is big and searching for a specific value, which

requires iterating the entire array,

 It becomes more costly and may exceed the gas limit leading the contract to terminate the

operation. Mappings allow storing key-value and using the key to access the data. It is costly

to loop through the entire entries to find the desired data while with the arrays. Both mapping

and array can be used together as the optimal solution to access the data to reduce costs. For

example, the mapping keys can be stored in a separate array while the actual data is stored in

the mapping. This guarantees that data accessibility is not lost but it comes at the cost of more

storage.

77

5.2.1 Contract State Variables

This section explains the purpose of the storage variable used in both contracts. Table 5.2 lists

and summarizes each storage variable presented in both contracts.

Table 5.2 Smart Contracts Variables

Smart Contract Variables Description

FUS

FUS_IDs Holds the wallet address of the

firmware update service at the time

of deployment.

FUS_name Holds the FUS owner’s name

during the time of deployment.

devices → (dev_id → Device) Mapping of device ids to their

respective device information

which is represented by the struct.

number_of_devices The number of registered LoRa

devices.

Manufacturer

manufacturer_id Holds the wallet address of the

manufacturer at the time of

deployment.

FUS_name Holds the manufacturer’s name

during the time of deployment.

Metadata_list → (model → metadata) Mapping of models to their

respective metadata

Model_list [] List of device models of LoRa

devices.

The FUS_ID, manufacturer_id, FUS_name, and Manufacturer state variables serve to hold the

contract deployer’s details. This is so important since it is necessary to know who owns the

contract. Certain data is only accessible by the deployer of the contract. The FUS_ID and

manufacturer_id variables hold the Blockchain addresses which are later used to authorize and

give access to the data. The devices mapping data structure store all the registered LoRa devices

that need to be updated via Blockchain. The dev_id is used as a key to map the LoRa end

device.

78

1

2

3

4

5

6

7

8

9

10

struct Device{

 string appID;

 string devID;

 string s_address;

 string w_address;

 string model;

 string version;

 string status;

 bool exist;

}

Figure 5.2 Figure: Device Structure.

This is the same device id that was provided in the LoRaWAN application console during the

device registration. The dev_id maps to the Device struct which is a solidity structure that

enable us to create custom data type. The Device Struct is presented in Figure 5.2. The device

structure consists of the LoRa device information which includes: the application id, the device

id, the device manufacturer’s contract address, the manufacturer’s wallet address, the model,

the currently installed version, the update status, and the ‘exist’ variable. The ’exist’ variable

helps to avoid adding the new device that already exists in Blockchain. The Manufacturer’s

contract has a metadata_list mapping which maps a model with the respective latest metadata.

The metadata is also represented in structure as shown in Figure 5.3. The structure is made up

of firmware version and metadata variable which represents the actual metadata. The model

list variable is an array that keeps track of all device models that have firmware metadata. It is

useful when checking if the device model exists before checking its new firmware update

availability.

1

2

3

4

5

struct FirmwareMetadata{

 string f_model;

 string f_version;

 string f_metadata;

}

Figure 5.3 Metadata Solidity Structure

79

5.2.2 Methods and Functionalities

This section describes important implementations of the contract algorithms proposed in 4.7.

and also shows the important lines of implantation code of the functions. These functions use

the storage variable discussed in 5.2.1. Appendix A shows the addNewFirmware() function

that adds new metadata to the Blockchain. The function takes the model, the new version, and

the metadata of the firmware. The device’s model was checked to ascertain that it exists in the

Blockchain and if not, it gets added to the model_list array defined in Section 5.2.1.

The purpose of adding the model to the model_list array is to check the provided model at a

time when the isUpdateAvailable() function is called as shown in Appendix B. When

isUpdateAvailable() is called the model is checked to be sure it exists. It can only exist after

the addNewFirmware() function is called. The addNewFirmware() function creates the in-

memory metadata structure which gets added to the list of metadata. When the new metadata

is added, the LoRa devices or FUS need to know they should be updated. The function emits

the event to broadcast the new arrival of metadata. Moreover, the function ensures that is only

executed by the manufacturer of the devices on the network. This is achieved by using the

required statement which requires that the entity which calls the function should be the one

who deployed the contract that is the address of the manufacturer (manufacturer_id).

Figure 5.4 demonstrates the transaction made by the manufacturer when the new firmware

metadata is uploaded and shows the events that get triggered when the new metadata is

uploaded. The Blockchain event can be disabled or enabled in the configuration file. This is

shown with the key value of ‘auto-updates’ in Figure 5.5. When the value is set to ‘True’, the

event is enabled, and the FUS will start a Blockchain event thread shown in Figure 5.6 in line

63 that listens for new firmware updates. This illustrates how the auto-updates take place.

Figure 5.6 also demonstrates that if the FUS receives the new metadata, it gets published via

the MQTT topic (as shown in line 58) that will handle the metadata received and start the

firmware update process.

80

Figure 5.4 Blockchain Transactions and Event for Firmware Metadata Upload.

Figure 5.5 Enable and Disable Auto-Updates.

81

Figure 5.6 Starting the Blockchain Event.

Figure 5.7 Updates the Device via CLI.

When the value of ‘auto-updates’ in the configuration file is set to ‘False’, it means the

firmware update process could be only started by the FUS owner via the CLI script. Figure 5.7

shows the snapshot of the fus_cli.py script implementation utilized by the device owner to

initiate the firmware update process. When the owner initiates the firmware updates, the FUS

call is UpdateAvailable() function shown in Appendix A which checks if there is any new

firmware available by using the model and the current provided version. The current version

of the device is compared with the latest version available on the Blockchain network. If the

82

provided version of the model is less than the latest version the function returns true or else

false if the provided version is equal.

The fus_cli.py script is not only limited to initiating the firmware update process, it can also be

used to manage the end devices registered in the Blockchain. This means the owner can connect

to the Blockchain via the script to get metadata, register, delete, update device status, update

device state, and get device information operations. The implementation of these operations is

illustrated in Appendixes C, D, E, F, G, and H respectively.

The Blockchain functions such as registering, deleting, and updating that make a transaction to

Blockchain must be called by the owner of the contract otherwise, if a different entity calls

them, they would not be executed successfully. The registerDev() registers the LoRa device

information into the Blockchain. The function takes the information as an argument and

represents it in the Device structure presented in Figure 5.2. The number of devices variable

gets updated since there is a new device being added. The created device gets added to the

mapping of the device. Once the device is created, it may be deleted when it is no longer

needed. The deleteDev() function can be called to delete it. The function takes the dev_ID as

an argument that serves as a key to the device mapping. Once the device is deleted in the

mapping the number_of_devices storage variable is decremented.

The updating functions, the updateDeviceInfo(), and updateDeviceStatus() use the required

statement to authorize only the device owner to manipulate the device. The updateDeviceInfo()

accepts the information required to update the device structure as arguments presented in

Figure 5.2. The devices mapping is then utilized to retrieve the device using the devID then the

existing device information is updated with the input arguments. The updateDeviceStatus takes

the device ID and the status. The device ID is used to retrieve the device on devices mapping

to update the status. The getDevInfo() function only takes the device ID and returns the

corresponding device’s information. The other get operations such as getDeviceStatus also take

the device ID and return the corresponding device’s status. The retrieveMetadata() and

getDevicesByModel() both take the model as arguments. retrieveMetadata() returns firmware

metadata represented as key-value pair shown in Figure 5.32 and getDevicesByModel()

returns the list of device IDs that can be used to retrieve the set of devices.

5.3 Testing and Validation of the Smart Contract

In this section, we test the proposed smart contracts operations and present the log results. In

our testing, the functions are tested for their functionality as well as the access control. Each

83

function is executed by an entity with the right access to execute it, meaning there is access

control posed by function data on the Blockchain during the firmware update. In addition,

events and their logs are checked to ensure the function executes as intended. Each smart

contract has an owner. A smart contract identifies its owner with an owner’s address. This

owner’s address was captured during a smart contract deployment. Two contracts mean that

two entities own the contracts namely: the device manufacturer and owner. Their addresses are

shown in the table below.

Entity Addresses

Manufacturer 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2

Device Owner 0x5B38Da6a701c568545dCfcB03FcB875f56beddC4

Attacker 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db

The functions are tested in Remix IDE and their results are shown in the snapshots.

Figure 5.8 Manufacturer Contract Deployment Logs

During the deployment of both smart contracts, the device manufacturer and owners are

identified with the addresses 0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 and

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2 respectively.

84

Figure 5.9 Device Owner Contract Deployment Logs

Figure 5.8 and Figure 5.9 show successful deployment transactions of both smart contracts. It

is at this point where Algorithm 1 and Algorithm 5 execute. Both contracts’ constructors assign

the aforementioned address to the Blockchain storage.

Adding metadata to the Blockchain network requires the

0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 address, which was the address that

deployed the device manufacturer’s contract.

Figure 5.10 Add New Metadata Transaction Failure Logs.

Figure 5.10 shows that if a different address tries to add the metadata to the Blockchain the

transaction will be unsuccessful. This is illustrated with an attacker’s address

0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db which invokes the addMetadata

operation shown in Algorithm 2. In addition, the event that emits upon the upload of the

metadata will not be called.

85

Figure 5.11 Add New Metadata Transaction Success Logs

A successful transaction of adding metadata is only possible with the manufacturer’s address

0x5B38Da6a701c568545dCfcB03FcB875f56beddC4 as shown in Figure 5.11 and this will

result in the successful emission of upload metadata event. The question is if the impersonation

is possible through this address. This address corresponds to a private key, and that private key

is owned and held secret by a single entity. This means spoofing may be possible when

someone knows another person’s private key. There is no way an attacker could successfully

impersonate a Blockchain address without knowing their private key and the private key is

irreversible. Unlike, in traditional networks where one can do IP address spoofing when one

creates data with a false source IP address to impersonate another entity. In this case, the public

key is not changeable and is only produced through the private key. It is not easy to manufacture

a private key from a public key. The attack is possible when an attacker changes the data itself

or the address. However, when that data gets to the Blockchain, it will not be added since the

signature and the address will not correspond to the expected address. This is also demonstrated

in Figure 5.10.

Figure 5.12 Check New Firmware Update Logs

86

After the metadata is uploaded then the isUpdateAvailable operation can be called. This is

operation is tested with an address 0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2.

Note, this operation does not require any special access meaning it does not need to be called

by only the manufacturer but any entity that wants to check for firmware updates can invoke

the operation.

Figure 5.13 Register Device Transaction Pass Logs

Device registration to the Blockchain network is only permitted to be done by the address

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2. Figure 5.13 shows a successful

registration of the low-powered device to the network where the owner’s address was used to

execute the registerDevice() operation.

Figure 5.14 Register Device Transaction Failure Logs

87

When testing this operation with the 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db

address, the operation execution fails because only the owner’s address is permitted to execute

this operation.

Figure 5.15 Delete Device Transaction Failure Logs

Deleting a device is one of the crucial operations. To test this operation to see whether it

behaves as intended and only permits the device owner to delete the device, we utilized an

address 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db. If this address calls the

operation, the transaction will be successfully mined but results in an unsuccessful execution

since it will fail due to a calling address.

Figure 5.16 Delete Device Transaction Pass Logs

Figure 5.16 demonstrates that only the address

0xAb8483F64d9C6d1EcF9b849Ae677dD3315835cb2 can successfully execute the

transaction.

88

Figure 5.17 Update Device Transaction Pass Logs

Figure 5.18 Update Device Transaction Failure Logs

Updating the low-powered device information on the network requires the caller of the

updateDevInfo() to be the owner of the contract.

Figure 5.17 and Figure 5.18 shows the successful and unsuccessful execution of the

updateDevInfo() transaction respectively where the address

0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db led to an unsuccessful transaction.

The contract operations that get device information are also restricted to being executed by the

device owner only. All these operations were tested using two addresses: the device owner’s

address and the address 0x4B20993Bc481177ec7E8f571ceCaE8A9e22C02db representing an

illegitimate entity calling the functions. The successful and unsuccessful test results of these

functions including getDevInfo, getDevStatus are shown in Figure 5.19, Figure 5.20, Figure

5.21, and Figure 5.22 and respectively.

89

Figure 5.19 Get Device Information Transaction Pass Logs

Figure 5.20 Get Device Information Transaction Failure Logs

90

Figure 5.21 Get Device Status Transaction Pass Logs

Figure 5.22 Get Device Status Transaction Failure Logs

5.4 Networks Setup

5.4.1 Blockchain and IPFS Network

This section explains how Blockchain and IPFS networks were set up. There are various ways

of setting up the Blockchain network and these were explained in Section 2.2. One of the ways

explained is based on the third-party services which are services consisting of the nodes that

can be utilized to access the Blockchain network. Note, instead of setting up your Blockchain

91

nodes or network manually, one can simply set up the network via third-party services. The

proposed solution utilizes a third-party service called Infura.

Instead, of creating the custom node one can register to an IPFS service that offers a node that

is already connected to the network which can be accessed via the API. The node gives access

to different Ethereum networks such as Rinkeby, Ropsten, Kovan, and even the Ethereum main

network. In this study, the infura node is used to connect to the Rinkeby network where our

contracts were deployed. For accessing the IPFS network, the custom IPFS node was not used

but instead, the infura service was used to access the network. Once both Blockchain and IPFS

nodes were set up, the smart contract can be implemented, and made available publicly by

deploying them to the public Ethereum Blockchain networks. The RPC calls were made to

interact with the deployed contract to the network.

The Blockchain and IPFS nodes fulfill the requirement of REQ5. These nodes ensure that the

stored data is distributed in multiple places eliminating a single point of failure thus the high

availability of data is achieved

5.4.2 LoRaWAN Network

This section explains the LoRaWAN network setup, which includes setting up the Low-

powered devices, LoRa gateway, and LoRaWAN servers.

LoRa Node

The Pycom Expansion Board is a development board that operates as a shield for the LoPy

model. The Expansion Board provides additional hardware features for the modules attached

to it. The features comprise powering the LoPy via a USB port, additional storage for microSD

cards, and enabling serial communication. Figure 5.23 and Figure 5.24 show the Lopy4 and

Pycom Expansion Board 3.0 respectively. The LoPy is equipped with several connection

methods which include LoRa, Sigfox, Wi-Fi, and Bluetooth. It has an Espressif ESP32 chipset,

and Semtech LoRa transceiver SX1276 for transmitting LoRa packets and supports the 433

MHz, 510 MHz, 868 MHz, and 915 MHz frequencies. During the firmware update process,

only the LoRa interface was utilized whereas other interfaces were not active. Throughout the

experiments, the LoPy devices were battery-powered with the LiPo battery attached to the

battery connectors. Table 5.3 summarizes the specifications of the LoPy device.

Table 5.3 LoPy device specifications

Details Specifications

RAM 4 MB

92

Storage 8 MB

CPU Espressif ESP32 chipset

Model LoPy4

Frequencies
433 MHz, 510 MHz, 868 MHz, and

915 MHz

Number of Devices 2

LoPy was combined with the expansion board 3.0 as shown in Figure 5.25 and set up to operate

in the European region on 868 frequencies. The LoRa channels were randomly selected, and

servers were set up to operate in similar channels along with the devices. The LoPy was

powered by a battery of 3.7 V supplying 1200mAh of current. LoPy4 is programmed by using

the constraint version of python suitable for the constrained devices which is micro-python.

We intended to measure the power used by the end device during the firmware updates

therefore the multi-meters were attached to measure both current and voltage as shown in

Figure 5.26. The current is measured in series with the circuit whereas the voltage was

measured in parallel with the series. The end devices need to be registered to LoRaWAN

servers for them to join or form part of the LoRaWAN network. The LoRaWAN servers

utilized are explained in the next section.

Figure 5.23 LoPy LoRa Node.

Figure 5.24 The Expansion Board 3.0.

93

Figure 5.25 LoPy Attached to the Expansion

Board 3.0.

Figure 5.26 Low-Powered Devices with Multi-Meters

Attached.

LoRaWAN Gateway and Servers

LoRa devices need a way to receive firmware fragments. It should be noted, it cannot connect

directly with the network servers since they do not have LoRa interfaces therefore, the LoRa

gateway is utilized to connect LoRa devices with the servers. The Gateway comprises the

RAK831 concentrator module, Raspberry Pi B Model, and Antenna that supports 868.1 MHz

frequency as shown in Figure 5.29. The created gateway is then utilized to handle LoRa packets

sent between the devices and the servers. The gateway is only responsible for sending LoRa

packets thus, there must a component that is responsible for filtering packets, removing

duplicates of messages, performing encryption, and more.

Table 5.4 Computer Specification

Specifications Description

Processor family 4th gen Intel® Core™ i5

Processor model i5-4300M

Processor frequency 2.6 GHz

RAM 8 GB

Storage media SSD

The LoRaWAN servers help to perform such operations. Many available LoRaWAN servers

are being developed for his purpose. The Things Network stack community (version 3.13.2)

was chosen to handle LoRa packets. The TTN stack was installed in the Lenovo computer

shown in Figure 5.30 with Intel® Core™ i5-4300M CPU @ 2.60GHz, 8GB of RAM with

Ubuntu 20.04 as an Operating System.

94

The stack was hosted locally meaning that the private LoRaWAN network was created instead

of utilizing the existing public Things Network. Note that after the successful setup both Low-

powered devices and the gateway need to be registered first to the servers before being able to

exchange any LoRa packets with the servers. The TTN stack provides different integration that

helps to process data and trigger events. One of the integrations that the proposed work used is

an MQTT integration. The stack exposes an MQTT server to be able to create the MQTT client

that subscribes to messages coming from the Low-powered devices and can schedule the

downlink messages to the end devices. Many other integrations can be used, such as gRPC,

and HTTP, but MQTT is being utilized for this study. MQTT is a lightweight protocol made

for IoT devices. Other protocols are more suitable for the exchange of messages between

devices that do not have resource constraints e.g., gRPC, and HTTP. When it comes to MQTT

and HTTP. MQTT ensures high delivery guarantees of messages, has a low power

consumption, provides an open connection between devices, and is mainly used for sending a

small message. HTTP on the other hand has high power consumption, opens and closes the

connection for every request made, and is mainly useful for sending large messages. In this

study, MQTT is used because we always want to keep the connection open between the LoRa

end devices/LoRaWAN server and the FUS to constantly send and receive firmware fragments.

Moreover, the messages being sent are of t a small size which makes it even more suitable

compared to HTTP integration.

Figure 5.27 Rapberry Pi 3 B Model.

Figure 5.28 RAK832 LoRa Module.

95

Figure 5.29 RAK831 LoRa Gateway.

Figure 5.30 Computer Running the TTN Stack.

Table 5.5 Utilized Devices Datasheet

Specifications URLs

LoPy

https://pycom.io/wp-

content/uploads/2017/11/lopy4Specsheet17.pdf (accessed date: 21

November 2021)

Pycom Expansion Board
https://docs.pycom.io/gitbook/assets/expansion3-specsheet-1.pdf

(accessed date: 21 November 2021)

Raspberry Pi 3 Model B

https://static.raspberrypi.org/files/product-briefs/Raspberry-Pi-

Model-Bplus-Product-Brief.pdf (accessed date: 21 November

2021)

RAK831 Module

https://docs.rakwireless.com/Product-

Categories/WisLink/RAK831/Datasheet/ (accessed date: 21

November 2021)

The datasheets for LoPy, the Expansion Board, Raspberry Pi, and the RAK831 module can be

accessed via the URL provided in Table 5.5.

5.5 Web Application Development

The Web application (Manufacturer UI) was developed to interact with the Blockchain

network. The device manufacturers utilize the application to upload both the firmware and the

metadata to the IPFS and Blockchain respectively. The web application is connected to the

Blockchain and IPFS through the third-party service node called the INFURA. The firmware

image must be first uploaded to the IPFS network before uploading the metadata to the

Blockchain. This is because the IPFS network will return an IPFS hash that uniquely identifies

the firmware being uploaded. The hash also needs to be part of the metadata; therefore, it must

be generated first before the metadata upload. The manufacturer UI was developed utilizing

these tools:

96

Web3Js

The web3.js enables the UI to communicate with Blockchain via the provider that does Remote

Procedure Call (RPC) to interact with the deployed contract.

IPFS.Js

It is a JavaScript library that connects the user interface with the IPFS public network. This

library helps to upload the firmware image to decentralized IPFS storage.

MetaMask

When the manufacturer makes a transaction via the web application to the Blockchain.

Blockchain identity is required, therefore, Blockchain keys are needed to sign the transactions.

MetaMask is used as a wallet to store the private and public keys that sign Blockchain

transactions when the metadata is being uploaded.

ReactJS

The front end of the web application was created in ReactJS which is the JavaScript library for

building user interfaces.

Figure 5.31 Decentralized Web Application for Firmware Upload

97

{

 name: 'LoPy4-firmware',

 version: '1.2.0',

 model: 'LoPy4',

 SHA256: '569948b4baa...',

 IPFS_HASH: 'QmaY7aKo...',

 Signature: 'Ed30Ac8a...',

}

Figure 5.32 Structure Example of the Metadata

The developed UI shown in Figure 5.31 takes values from the fields and represents them in a

key-value pair. The UI enables the manufacturers to dynamically create the key-value pairs

which form part of metadata. The example structure of the firmware metadata is shown in

Figure 5.32.

5.6 The FUS Implementation

The FUS is the core component that interacts with Blockchain and is responsible for the entire

update process. This section views how the FUS was implemented together with the libraries

used to implement it and how it addresses some of the requirements stated in Section 4.3. Just

like the web application presented in Section 5.5., the FUS also connects to both IPFS and

Blockchain networks and additionally to the LoRaWAN network. Figure 5.33 shows how FUS

interacts with these networks.

98

Figure 5.33 FUS Utilized Libraries.

The FUS was implemented in python and utilizes the libraries shown in Figure 5.33. The

libraries help to connect the FUS to the IPFS, LoRaWAN, and Blockchain network.

IPFS.Py for IPFS

The FUS utilized the ipfs python module which connects the FUS via HTTPS connection

during the firmware update to retrieve firmware images. The FUS does not connect to the

locally IPFS node to get access to the network, however, it uses the third-party service node to

get access to the public network. From this python module, we only utilize the get method

which retrieves the firmware image from the IPFS decentralized file storage.

PAHO-MQTT

The FUS implements the MQTT client which directly connects with the LoRaWAN

application via the exposed MQTT broker. It uses the paho-MQTT python library to create the

MQTT client that connects to the application server.

Blockchain network – The FUS interacts with the Blockchain by utilizing the web3 library that

is implemented in python. It also gets access to the Blockchain via the infura node and uses the

service API keys to make RPC calls to the Blockchain. Web3 library enables the FUS to

connect via the HTTPS and the WebSocket. When the FUS is connected via WebSocket, it

becomes easy to listen to Blockchain events in real-time.

99

Chapter 6: Results and Discussion

This chapter provides an evaluation of the developed and implemented system. It starts by

introducing a STRIDE thread model and analyses all possible weaknesses of the proposed

solution and associates them with the mitigations that were adopted by the solution. The overall

setup of our experiment together with the parameters used is also explained then after the costs

of cryptographic techniques on low-powered devices are examined. Afterward, the analysis of

the costs involved when updating low-powered devices in the Long-Range Wide Area

(LoRaWA) network is provided, with the Blockchain operation costs involved during the

update process. Finally, the chapter provides comparisons between the state-of-the-art

solutions and our proposed solution.

6.1 Security Analysis: Threat Assessment

In this study, we performed a security analysis of our system. We performed threat modeling

on selected components and data flows which are illustrated in Figure 6.1. These components

include the manufacturer’s user interface, Firmware Update Service (FUS), IPFS (INFURA

service), Blockchain, LoRa Servers, IoT gateway, and IoT device. It is important to note that

the threat analysis for some components including IPFS networks and Blockchain networks

was kept out of scope but their interaction with important system components was examined.

The reason for this is that these components belong to providers, and it is believed that the

providers take appropriate countermeasures for possible security issues as they are accounted

for. This research considered only threats that are associated with major components and data

flows.

100

Figure 6.1 Data Flow Diagram of Components of Proposed Architecture.

6.1.1 Threat Models

This research utilized the Spoofing, Tampering, Repudiation, Information disclosure, Denial

of Service, and Elevation of Privilege (STRIDE) threat Model which is an industry-standard

for evaluating systems regarding security. STRIDE is considered a lightweight approach

compared to the Process for Attack Simulation and Threat Analysis (PASTA), Operationally

Critical Threat Asset and Vulnerability Evaluation (OCTAVE), and Common Vulnerability

Scoring System (CVSS) which are other modeling methodologies.

The choice of STRIDE is motivated by several reasons:

• STRIDE is widely accepted in industry and academia.

• It analyses security properties such as authentication, integrity, confidentiality,

authorization, availability, and non-repudiation which are security properties that the

proposed architecture desires to achieve as well.

101

STRIDE provides analyses of cyber threats against each system component based on its

technical knowledge and provides a clear understanding of the impact of a component

vulnerability on the entire system. Figure 6.2 explains the STRIDE model terms.

Figure 6.2 STRIDE Threat Modelling (Azam et al., 2022)

6.1.2 Identified threats and Defense Mechanism Discussion

A data flow diagram for all components of the proposed firmware architecture was presented

in Figure 6.1. This section identifies the possible threats and provides the defense mechanisms

used to eliminate the threats.

I to IPFS and IPFS to UI

The attacker can get the manufacturer’s UI and try to upload the firmware image to the IPFS

network if the UI is open and perform a MITM attack to tamper with the firmware image while

it is in transit or before it reaches the IPFS network. On the other hand, the IPFS returns the

IPFS hash to the UI which later forms part of the metadata thus, when the hash returns the

attacker can perform a MITM attack to view the hash (Information Disclosure) and possibly

tamper it.

UI to Blockchain and Blockchain to UI

The attacker could upload badly signed firmware metadata as well as sniff and obtain legitimate

firmware metadata. Metadata transmission could be susceptible to tampering, information

disclosure, spoofing, and elevation of privileges. Spoofing the manufacturer's identities could

be possible if an attacker somehow knows a manufacturer’s identity keys and can act as a

manufacturer. When the metadata reaches the Blockchain network specifically the smart

contract, it can be susceptible to an elevation of privilege, enabling an attacker to store

unauthorized firmware metadata on the smart contract.

FUS component, IPFS to FUS, and FUS to IPFS

One of the actions that the FUS performs during these processes is to download the firmware

image from IPFS. The FUS controlled by an attacker could download a firmware image and

102

the attacker could perform a MITM attack and force a FUS to download the image. This

violates integrity and confidentiality and the tampering and information disclosure get affected.

CLI (Device Owner) to FUS

The CLI request tool and FUS controlled by an attacker could initiate a firmware update

procedure causing the Denial of Service of the FUS and if knows the attacker knows

authentication keys can spoof the FUS.

Blockchain to FUS and FUS to FUS

There is an open web socket between Blockchain and the FUS. If an attacker eavesdrops on

the connection when it is not secured, then tampering and information disclosure could take

place. In addition, if the user is in control of the FUS during that particular moment of firmware

metadata transmission, an attacker could authenticate (spoof) the metadata.

FUS to Servers to Gateway and IoT Device

An attacker in control of the FUS could perform a Denial of service and replay downlink

messages to the LoRaWAN servers. The FUS can be spoofed and a MITM attack could occur

where the session keys eavesdrop which results in tampering and information disclosure. This

could occur during the FUS to Server, Servers to Gateway, or Gateway to IoT device

interaction. Subsequently, the Elevation of Privilege could take place if illegitimate downlinks

and replayed session keys are allowed by the architecture. It can be noted that from IoT devices

to gateway, server, and FUS the Elevation of Privilege, Spoofing, tampering, and information

disclosure is also possible. The attacker in control of the device can do several things, assuming

he has control of the cryptographic keys. It is possible to tamper with information like session

keys, firmware images, and signatures. Moreover, an attacker could send back the confirmation

message to the FUS spoofing it as if the device was successfully updated.

Thread Category Defense

Spoofing

Elliptic Curve Digitial Signature Algorithm (ECDSA), HMAC-

SHA256, RSA keys, Use of nonce values for the elimination of

replay attack

Tampering HMAC-SHA256, SHA256

Repudiation Logging

Information Disclosure Encryption: used Advance Encryption Standard (AES), RSA keys

Denial of Service Data Rate restriction by the network, Multiple nodes storing data

Elevation of Privilege
Access Control Authorization e.g. through a smart contract,

cryptography

103

Considering the STRIDE analysis, it is believed that the usage of encryption, authentication,

and integrity mechanisms in our proposed architecture such as AES, HMAC algorithm,

SHA256 algorithm, ECDSA algorithm, RSA certificates, logging of the firmware update

process, and the use of nonce values for spoofing elimination can defeat all mentioned attacks.

This is true if legitimate entities such as the manufacturer and the device owner retain their

cryptographic keys and are not exposed to be obtained by an attacker. We can then conclude

that ours is a system safe and that it is protected against all possible attacks.

6.2 Evaluation Metrics

The previous chapter presented the setup of each network namely the LoRaWAN and

decentralized network setup (Blockchain and IPFS). Figure 6.3 summarizes the overall

experiment setup of these networks. This section aims to present the parameters used in the

evaluations and the evaluation metrics and how each was measured.

Figure 6.3 Experiment Architecture.

Table 6.1 Experiment Parameters

Parameters Description

Receive Window (Rx1) This receive window is used for both downlink and

uplink messages

104

Receive Window (Rx2) The Rx2 window is used for downlink messages

utilizing 869.525 frequency

Region EU (8 channels with a duty cycle of 1% and one with

10%)

Gateway(s) 1

LoRa devices/Low-powered 2

Devices Modes Class A and Class C modes. Devices were also set to

operate in multicast

Rx1, Rx2 delay 5s, 1s delay respectively

Bandwidth LoRa.BW_125KHZ

SFs 7-12

Table 6.1 shows the experimental parameters used in the evaluation:

• Class Mode: The architecture is evaluated and tested against Class A and Class C

modes. For Class A mode, the device needs to send the uplink message before it can

receive the firmware fragment. In addition, the architecture is evaluated against

multicast sessions where the end device operates in Class C mode which is always

listening to receive firmware fragments.

• RX1, RX2, and RX delay: The firmware fragments are received in both RX1 and RX2

windows. The RX2 window/channel comprises 10% duty cycle restrictions, whereas

the other channels comprise 1% duty cycle restrictions (per sub-band).

• Gateway and end devices: Only one gateway and two end devices are utilized. Both the

end device and the gateway respect the duty cycle restrictions.

• Region and Bandwidth: The low-powered devices are equipped to operate in the

European region; this modulation operates in the radio band 863–870 MHz, with a

bandwidth of 125 kHz.

• SFs: LoRa SF ranges between 7 and 12. The SF impacts the communication

performance of LoRa. The architecture will be tested on different SF to see how the

low-powered devices perform during the firmware update on these SFs.

The evaluations were divided into three phases: The initial phase started by looking at the

security aspect of low-powered devices. This includes examining the memory consumption

utilized by cryptographic algorithms during the update process. The second phase looks at the

LoRaWAN evaluations which include examining the different modes of classes of low-

powered devices, SFs, airtime, update time, and the effects of firmware fragments. The third

phase looked at the Blockchain-based costs of the operations of the proposed contract. The

evaluation results are presented in terms of the following metrics:

105

• Memory consumption indicates the amount of RAM and Flash memory consumed

by low-powered devices. This metric was measured by running a python script that

calculates the memory consumption for a specific firmware image update.

• Power consumption indicates the power consumption of the devices during the

firmware update process. This metric was measured using the two multi-meters of

each device. One multi-meter was used to measure the current and the other the

voltage at the epoch during the firmware update.

• Update time indicates the time it takes for a device to successfully receive all

firmware fragments and includes the time to verify the firmware. This metric was

measured by running a python script that utilizes the timer to calculate the time it

takes for a firmware update to complete,

• Gas used indicates the amount of gas used from the provided gas limit. The metric

was measured or obtained in two ways. The gas used for a transaction is part of the

transaction data and this data can be obtained on the blockchain network by

providing the transaction hash. The second way we measured this metric is by

running a JavaScript code that obtains the Blockchain transaction data that then

extracts the gas used from the data.

• Gas fee indicates the amount of Ether charged during the transaction of an

operation. The gas fee is obtained the same way as the gas used metric where it is

obtained by visiting Blockchain explorer or running JavaScript instructions that are

used to obtain it.

6.3 Cryptographic Costs on Low-Powered Devices

To determine whether the proposed architecture suits the constrained devices, the cost of

cryptographic algorithms used to secure the firmware during the update process needs to be

examined. RFC has defined the categories of constrained devices (Bormann, Ersue, and

Keranen, 2014) shown in Table 2.1 to help us determine whether the proposed architecture

suits the constrained devices in the network or not. Thus, the device's memory consumption

cost which is RAM and flash memory needs to be examined. Figure 6.4, Figure 6.5, and Figure

6.6 show the CMAC, HMAC-SHA256 RAM consumption, and flash memory consumption,

respectively. The low-powered device takes 96.7 kB of flash memory when being updated with

5 kB of the firmware. This memory consumption comprises the firmware size and the firmware

code during the verification process.

106

Figure 6.4 CMAC RAM Consumption.

Figure 6.5 HMAC RAM Consumption.

The RAM consumption varies due to the firmware size being updated and the algorithm being

utilized to verify the firmware. The results show that the HMAC-SHA256 algorithm verifies

faster and consumes less memory compared to the CMAC algorithm. This is due to the

implementations of the HMAC-SHA256 algorithm. The HMAC-SHA256 is based on the hash

function and hash functions are considered to be faster than block ciphers. Another reason for

it being faster than the CMAC algorithm could be the mode of operation used. The mode of

operation used by CMAC is MODE_ECB which is considered slower.

The HMAC-SHA256 consumes 6.9 kB of RAM when 5 kB is updated whereas CMAC

consumes 7.3 kB of RAM. The RAM and flash consumption imply that MAC algorithms are

adequate in providing security on low-powered devices and are suitable for constrained low-

end devices that belong to Class 0, Class 1, and Class 2. This suitability is from the fact that

the RAM and flash consumption does not exceed the memory of the constrained device classes.

Figure 6.6 Flash Memory Consumption on 5 kB of the Firmware.

We now look at the energy consumption of cryptographic techniques. Measuring the energy

consumption is so important because these devices operate on a battery, and it is required to

107

know how much energy is being consumed during the firmware updates. The energy

consumption is obtained by a formula:

𝐸 = I × V × T (1)

where I represent the current, V represents the voltage and T represents the time in seconds.

The current and voltage are measured using the multi-meters demonstrated in Figure 5.26.

Figure 6.7 and Figure 6.8 demonstrate the energy consumption results obtained for the

cryptographic algorithms used in the update process and also show their update time

respectively.

Figure 6.7 Energy Consumption of Cryptographic

Algorithms.

Figure 6.8 Cryptography Verification Time.

The results show that the HMAC consumes less energy and takes less time compared to the

CMAC algorithm. This can be because the HMAC id is faster than the CMAC in this case due

to the encryption differences utilized by each. As of this result, it can be noted that if the

firmware size increases directly proportional to the verification time, memory consumption,

and energy consumption. It is then recommended to apply a delta update in these devices

instead of sending the larger firmware image, which may consume less memory and less

energy.

6.4 Evaluating LoRaWAN Costs

Figure 6.9, Figure 6.10, and Figure 6.11 demonstrate the relationship between firmware size,

fragment size, airtime, and SF. When the fragments are sent at a lower SF, it decreases the

airtime of the fragment whereas when sent at a higher SF, the airtime increases. It is also

observed that increasing the SF by one step for example, from SF11 to SF12 doubles the airtime

as it is shown in Figure 6.11. Note: at higher the SFs, the higher the airtime even for the same

108

fragment size. For example, for the same fragment sizes at SF11 and SF12, the airtime tends

to differ and SF12 has the higher airtime. Figure 6.9 shows that the produced number of

fragments depends on the SF. The higher SF produces a greater number of fragments e.g., if

sending 5 kB of firmware with SF12, the number of fragments is 108 whereas with SF7 the

fragments produced are 24. This is due to the regional restrictions of LoRaWAN.

Figure 6.9 SF with Chosen Fragment Size.

Figure 6.10 SF with the Number of Fragments.

Since the low-powered devices operate in the European region, the maximum number of

payloads must not be exceeded. For instance, when the end device is operating with SF12,

SF11, and SF10, the fragment size must be less than 51 bytes. For SF9 the fragment size must

not exceed 115 bytes and for SF8, and SF7, the fragment size must be less than 222 bytes for

efficient transmission. Figure 6.9 depicts the chosen number of fragment sizes for each

spreading factor, and the chosen fragment sizes adhere to the European Region (EU).

109

Figure 6.11 Airtime and Fragment Size.

Now looking at the time it takes to update LoRa end devices. Figure 6.12, Figure 6.13, and

Figure 6.14 show the update time, which starts from where the firmware update is initiated

until the firmware image is verified.

Figure 6.12 Update Time for SF12 and SF11.

110

Figure 6.13 Update Time for SF10 and SF9.

Figure 6.14 Update Time for SF8 and SF7.

The two modes of LoRa end devices were examined which are Class-A and Class-C. The

update time, firmware size, and the SF show a directly proportional relationship. For example,

updating operating in the Class-A mode with 4 kB of firmware at SF 11 takes more time, i.e.,

111

796.10 seconds (13 minutes), compared to updating the firmware at SF7 which takes only

108.65 seconds (1.8 minutes).

There are several reasons which could cause the increase in update time. This could be the

firmware size and fragment size. The firmware size greatly impacts update time because it

needs to be fragmented. Bigger firmware size means many fragments are required to be

produced and therefore, more fragments are required to be sent to the end device. It could also

be affected by SF and airtime, increasing the SF the update time increases. This is mainly due

to the large number of fragments that are produced at higher SFs. And this will result in long

airtime. One of the LoRaWAN restrictions is the duty cycle, which impacts the update time.

LoRaWAN limits the maximum application payload that needs to be sent over the channel.

This increases the update time because each SF LoRaWAN restricts the payload size, resulting

in higher SFs sending more fragments to lower SFs. When comparing the update time of the

different modes which include Class-A, Class-C, and multicast, it was observed that when the

devices are operating in the Class-A mode, it always takes more time to update the devices

compared to other modes. In Class-A mode, the end device needs to send some data before it

receives any firmware fragment. Moreover, the network servers set the recommended RX1

delay to 5s for Class-A. This means that the next firmware fragment will be received after 5s.

The multicast mode is similar to the Class-C; the difference is sending the single firmware to

the set of devices. Figure 6.12, Figure 6.13, and Figure 6.14 show that the update time for both

Class-C and multicast is quite the same in some cases. For example, when updating the end

device at SF8, the update time is quite the same with all firmware sizes for both Class-A and

Class-C, but this does not hold in some cases. The update time is not predictable.

112

Figure 6.15 Delay in Update Time Due to Duty Cycle Restrictions

This is observed in Figure 6.15 where the device was updated with 3 kB of firmware operating

in Class-A mode. It was expected that the SF11 update time should be less compared to SF12,

however, that was not the case. This is because there was a time when the end device was

inactive, not receiving the fragment for some time. This is due to the LoRaWAN restriction

which affected the update time. If the time to deliver the firmware image matters a lot, it is

preferable to use the lowest SF, i.e., SF7. During the firmware update, it was observed that

more firmware fragments were lost when the LoPy was operating on the SF7. The higher SF

has the benefit of extended airtime. It gives better sensitivity or better coverage for the LoRa

end device that are further away to receive the firmware fragments however this causes some

delays for the end device to be updated. The total number of firmware fragments exchanged is

not fixed; it depends on several things which are the class modes the device is operating in, the

data rate or SF utilized by the low-powered device, and the number of retransmitted firmware

fragments during the update process. Table 6.2 shows the exchanged number of messages

when the low-powered device was updated with 1 kB of the firmware at SF12.

Table 6.2 Exchanged Number of Messages at SF12 using 1 kB Firmware.

Description Number of Messages

Class A uplinks 33

Class A downlinks 25

Class C uplinks 5

Class C downlinks 25

113

When the device utilized Class A mode, many firmware fragments were exchanged compared

to the number of fragments exchanged when the low-powered device utilized Class C mode.

this was because, in Class A mode, the low-powered device was always sending an uplink

message to receive the firmware fragment, whereas Class C mode required no uplink messages

to be transmitted by the low-powered device to receive the firmware fragment. However, for

Class C downlink scheduling to start, the activation uplink message needs to be sent by the

device to the LoRaWAN network servers, specifically after the OTAA join–accept. The total

number of uplinks comprises the activation messages, uplink messages for requesting the

retransmission of lost packets, the acknowledge (ACK) messages for both the session keys and

metadata, and finally the update status message. The exchanged activation messages are only

applicable if the device is operating in Class C mode. The low-powered device sends two

activation messages to increase the chances for it to be activated to receive downlink messages.

The retransmission query messages are sent in case there were lost firmware fragments. From

Table 6.2 there was no query for the retransmission of firmware fragments, the low-powered

device successfully received all the firmware fragments. The update status message exchange

indicates a successful update status after the verification of the firmware image by the end

device.

Note that, for Class A mode, the number of uplink messages produced by the device may

increase when the FUS performs other tasks while preparing for a response for the device. For

instance, when the FUS receives a confirmation message from the device that session keys

were successfully received, the device will keep on sending uplinks while the FUS is busy

downloading, verifying firmware and metadata, etc. The number of downlink messages for 1

kB firmware transmission is made up of 22 firmware fragments, the session key exchange

message shown in Table 4.4, the metadata exchange message, and the last downlink message

designating that all firmware fragments have been sent. The 1 kB firmware was fragmented

into 22 fragments because the device was operating with SF12, and Figure 6.9 shows that each

fragment size is 46 bytes when the device operates at SF12. Therefore, to read the 1 kB of

firmware, it has to be read 22 times.

It is also significant to examine the energy consumption of the low-powered device and the

gateway. This depicts energy consumed by the low-powered device when operating in Class A

and Class C modes (multicast session uses Class C mode hence, the energy consumption of

Class C was only examined). The effect of SFs from 7 to 12 against energy consumption was

examined. Figure 6.16 shows that SF12 had the higher energy consumption and SF7 had the

114

lower energy consumption. Energy consumption continues to increase from SF7 for every SF

up to SF12. Airtime is one of the factors that cause the increase in energy consumption. Figure

6.11 demonstrated that with the increase in SF, the transmitted fragment requires more airtime

to reach the low-powered device hence, there is more energy consumption on the low-powered

devices because higher SFs use more chirps for longer transmission.

Figure 6.16 Low-Powered Devices Energy Consumption

The energy consumption of the gateway was also examined when the low-powered devices

were operating in Class A and Class C modes. Figure 6.16 depicts that Class C mode has higher

energy consumption compared to Class A mode. Figure 6.17 shows that the gateway’s energy

consumption is higher compared to the device's energy consumption. The advantage of a high

SF is the extended transmission which gives the receiver more opportunities to sample the

signal power, resulting in better coverage; but it consumes high energy compared to other lower

SFs.

115

Figure 6.17 LoRa Gateway Energy Consumption

6.5 Blockchain Evaluation Costs

This section examines the Blockchain operation costs involved during the update process.

Figure 6.18 and Table 6.3 depict Blockchain operations costs in the Blockchain network which

are represented in terms of fee and gas. Each figure depicts that the firmware metadata costs

vary from time to time depending on its size. The increase in metadata data size increases the

gas cost execution on the Blockchain network. This is illustrated in Table 6.3 where firmware

size of 1 kB to 5 kB was used.

Figure 6.18 shows that the reason for an increase in the cost is that the transaction was made

when the new firmware metadata was added to the network. In other words, a certain amount

of gas or fee is provided by the manufacturer to the network for the successful execution of the

transaction. The manufacturer specifies the gas limit which must always be higher than the gas

to be used.

Table 6.3 Gas Cost Execution on blockchain Operations

Parameter Description

addNewFirmware(1 kB) 378,328

addNewFirmware (2 kB) 689,116

116

addNewFirmware (3 kB) 1089466

addNewFirmware (4 kB) 1176024

addNewFirmware (5 kB) 1282079

registerDevice(devInfo) 49,418

updateDevInfo(devInfo) 28,852

retrieveMetadata() 0

retrieveDevsInfo() 0

Figure 6.18 Fee Cost on Adding New Metadata and Getting Metadata.

Figure 6.19 demonstrates the relationship between the gas limit and the gas used by the

manufacturer when the transaction was executed for storing the metadata.

It is observed that the gas limit must always be higher than the gas used and the manufacturer

must ensure that it is enough to cover a transaction otherwise it will not execute successfully.

This steadily increasing relationship between fee/gas consumption and metadata is caused by

adding more data to the Blockchain, and the fee required to execute the transaction is directly

proportional to the amount of data being added. Hence, operations like registering the low-

powered device, publishing new metadata, deleting the device, and updating the low-powered

device information require gas/fee. Whereas operations like retrieving metadata, and device

information require no gas because no transactions are involved. More importantly, the gas/fee

consumption may vary from time to time depending on the price at that particular moment on

the network.

117

Figure 6.19 Gas Consumption on Adding New Metadata.

The implemented algorithms presented in 4.7 and 5.2.2 which is the complexity analysis are

presented in Table 6.4 with the Big-O Notation technique. The addNewFirmware() is

responsible for uploading metadata to the network and it takes metadata as an argument. The

algorithm performs a comparison operation which is a constant operation taking O (1). If the

comparison passes, then the metadata is inserted into a mapping structure. Mapping is

essentially a kind of hash table where values are mapped to keys. Since the metadata is being

inserted into the mapping, the operation will show a constant O (1). The last part will be to

emit the event, which is a constant operation resulting in the time complexity of T(N) = 1 + 1

+ 1 = 3. Hence, the total complexity is constantly at O (1). For checking firmware availability

in isUpdateAvailable(), the algorithm first checks if the model is in the model list using the for-

loop which executes N times, together with the operation inside its body. Therefore T(N) = N

(for-loop) + 2N (2 times N comparison inside the loop) = 3N = N; hence, the order of growth

is O (N). The order of growth for retrieveMetadata (), registerDev(), and getDevInfo() is

affected by the for-loop which takes N steps O (N). The deleteDev(), updateDeviceInfo(),

updateDeviceStatus(), and getDeviceStatus() consists of the instruction that retrieves the

device status from the mapping, which makes the order of growth O (1).

Table 6.4 Algorithm Complexity Analysis

Algorithm Complexity

addNewFirmware() O (1)

isUpdateAvailable() O (N)

118

retrieveMetadata () O (N)

registerDev() O (N)

deleteDev() O (1)

updateDevInfo() O (1)

updateDeviceStatus() O (1)

getDevInfo() O (N)

getDeviceStatus() O (1)

The efficient way of measuring the complexity of the algorithms is through gas. The gas price

affects the execution time of the operation. Lowering the amount of gas price paid will lower

the total cost of a given operation, it will also ensure that it takes longer. Paying a higher gas

price will ensure a transaction is prioritized in the Blockchain, while, in most cases, paying a

lower gas price will essentially ensure that a transaction will not take place for at least a few

minutes. Higher gas prices generally mean that transactions will be completed faster, while

lower gas prices mean they will take more time. The gas costs are shown in Table 6.4.

6.6 Requirements Satisfaction

This Section compares the proposed architecture and the state-of-the-art firmware updates

mechanisms as shown in Table 6.5. It also provides how the properties and requirements were

addressed by the proposed solution in Table 6.6. The Section explains how the proposed

solution fulfilled each property with the requirements listed in Section 4.3.1.

Table 6.5 Comparison of The State-of-the-Art Against the Proposed Work

A
u
th

o
rs

L
o
w

/M
id

d
le

-E
n
d

D
ev

ic
e

H
ig

h
-E

n
d
 D

ev
ic

e

C
o
n
st

ra
in

ed
-n

et
w

o
rk

A
v
ai

la
b
il

it
y

C
o
n
fi

d
en

ti
al

it
y

In
te

g
ri

ty

A
u
th

en
ti

ca
ti

o
n

D
at

a
F

re
sh

n
es

s

P
er

fo
rm

an
ce

 E
v
al

u
at

io
n

Centralized-Based

(Alexandre, 2016) ✓ ✓ ✓ ✓ ✓

(Pycom, 2018) ✓ ✓ ✓

(Doddapaneni et al., 2017) ✓ ✓ ✓

(Reißmann and Pape, 2017) ✓ ✓ ✓

(Lo and Hsu, 2019) ✓ ✓ ✓

(Abdelfadeel et al., 2020b) ✓ ✓ ✓

(Sahlmann et al., 2021) ✓ ✓ ✓ ✓ ✓ ✓

(Verderame et al., 2021) ✓ ✓ ✓ ✓

(Techniques, 2021) ✓ ✓ ✓ ✓ ✓ ✓

119

(Charilaou et al., 2021) ✓ ✓ ✓ ✓ ✓

Blockchain-Based

(Lee and Lee, 2017) ✓ ✓ ✓ ✓ ✓

(Yohan and Lo, 2019) ✓ ✓

(Mtetwa et al., 2019) ✓ ✓ ✓

(Witanto et al., 2020) ✓ ✓ ✓ ✓ ✓

(Anastasiou et al., 2020) ✓ ✓ ✓ ✓

(Fukuda and Omote, 2021) ✓ ✓ ✓ ✓ ✓ ✓

(Sanchez-gomez et al., 2021) ✓ ✓ ✓ ✓ ✓ ✓

(Tsaur, Chang and Chen,

2022)
 ✓ ✓

Proposed Work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6.6 Fulfilment of Requirements

Requirement

Number
Description

REQ1

Push Updates – One of the requirements was to ensure that the system

should enable administrators or device owners to schedule firmware

updates to their devices to avoid network saturation and limit unintended

downtime. The system met this requirement by implementing the python

script that can be used in CLI to schedule firmware updates. The utilization

of the script is shown in Figure 4.8. The Figure shows the command the

owner of the devices uses to initiate the firmware update.

REQ2

Manage Updates – The implemented CLI script does not only limit the

device owners to initiate the firmware update, but it also enables them to

manage the updates of devices e.g., deletes, updates, and registers the

low-powered devices to the Blockchain network. Hence, this fulfills the

second requirement that there must be one component that manages

updates of multiple microcontrollers that compose IoT devices. In

addition, the FUS was implemented as a component that manages the

entire firmware update process.

REQ3

Over-The-Air Updates and Network Constrians Adoption – The

third requirement stated that the firmware update mechanism must adopt

over-the-air updates, and the mechanism strategy should be adapted to

the network bandwidth constraints. This study adopted the OTA

mechanism instead of applying manual updates to low-powered devices.

120

The mechanism adheres to the network restrictions, for instance,

LoRaWAN is a restricted network with a very low data rate and requires

a small amount of data to be exchanged. The proposed update

mechanism ensured that the exchanged messages including the firmware

image adhered to the LoRaWAN bandwidth. For example, if distributed

firmware image is greater than the regionally specified bandwidth, the

FUS will perform the firmware fragmentation based on the DR or the SF

being utilized by the low-powered devices.

REQ4

• Integrity & Authentication – The integrity and authentication

of data are provided by utilizing hashing, symmetric and

asymmetric algorithms namely the SHA256, MAC, and ECDSA

algorithms. ECDSA and SHA256 algorithms are used by the FUS

to check firmware authenticity and integrity after it has been

downloaded. The low-powered device also performs integrity and

authenticity checks through the MAC algorithm based on the shared

secret key.

• Confidentiality – The proposed architecture provides

confidentiality of data through AES encryption. The mode of

operation for AES utilized by the architecture is the counter mode

(MODE_CTR). The encryption of messages is performed in a

different area, for example, the FUS encrypts the low-powered

device information before it gets pushed to the public Blockchain

network and decrypts the information when it retrieved data on the

Blockchain network. The low-powered device also uses AES for the

encryption and decryption of information such as session keys.

REQ5

Availability – The proposed architecture ensures the availability of

firmware images through decentralized networks. The architecture

utilizes the IPFS and Blockchain networks. Both networks rely on the set

of nodes to achieve the high availability of firmware images. The

traditional ways of storing the firmware are based on a central entity like

a centralized server. The distributed and decentralized ways are good for

achieving availability where the firmware is published on multiple

121

devices and synced with the rest of the devices connected to the network.

The architecture uses an infura node to store and retrieve the firmware

image stored on the decentralized IPFS network. This allows access to

the firmware image even if the manufacturer’s node is offline in the

network. Just like the firmware image being stored on the decentralized

IPFS network, the metadata is stored on the Blockchain network, which

comprises many nodes that ensure the high availability of metadata. The

architecture utilizes an infura node to connect and communicate the

metadata with the rest of the Blockchain nodes.

REQ6

Replay Attack – Replay attack or Data freshness ensures that the

messages are fresh and the man-in-the-middle has not replayed old

messages. The data freshness in our architecture must be ensured because

sensitive information like session keys and signatures are being

exchanged hence, encryption alone is not sufficient. The architecture

ensures the data freshness between the FUS and the low-powered. These

two entities have a function that keeps track of a nonce value to ensure

data freshness and the nonce values are encrypted and kept secret

between the entities. For example, when the low-powered device

receives the session key, it will decrypt them with the shared secret key

and verify the nonces against the expected value of nonces. If the nonce

values are correct, it will accept the respective message as fresh.

REQ7

Low-power consumption – The proposed architecture has been

developed, tested, and evaluated in a constrained network. The

constrained network being utilized is the LoRaWAN network which

provides low-power consumption, and long-range connectivity, at low

bandwidth between 250 bit/s and 11 kbit/s in Europe using LoRa

modulation. The proposed architecture is demonstrated by utilizing

constrained devices to show its suitability on a constrained network. The

work also performs an evaluation of Blockchain operations, LoRaWAN,

and cryptographic costs which are demonstrated in Section 5.2, Section

5.3, and Section 6.4.

Chapter 7: Conclusion

This chapter aims to summarise and conclude this study. The chapter summarizes the research

problem and research questions introduced in Chapter 1, and how they were answered in this

study. Finally, the recommendations for future work and the limitations are discussed.

7.1 Problem Summary

IoT consists of a massive number of devices and the devices will inevitably require

patches to improve the performance after the deployment and functioning in the field. Most of

the devices are deployed in environments with no Internet connectivity which makes it hard to

reach and deliver firmware updates. Several studies have targeted securing and delivering

firmware to different devices in different IoT networks trying to enhance the security of the

devices. Studies based on constrained IoT networks specifically LoRaWAN as an emerging

IoT technology, consider traditional ways of securing and delivering firmware updates to the

devices. IoT devices are exponentially growing, and thousands of deployments are expected in

the future. Thus, traditional approaches exhibit single-point-of-failure which is a downside to

the IoT networks by looking at the way it scales. Hence, new ways of delivering firmware

updates are required. Therefore, this study proposed to develop a decentralized solution as a

better way to deliver firmware updates to constrained LoRaWAN networks using Blockchain

technology.

7.2 Contributions

In this study, we reviewed the existing literature on firmware updates in IoT. Further, we

identified the gaps in the current firmware update solution. We addressed these deficiencies by

implementing an end-to-end firmware update mechanism for low-powered devices in the

LoRaWAN network. The research makes the following contributions:

• This dissertation designed and implemented a Blockchain-based component called

Firmware Update Service (FUS) which can be integrated with LoRaWAN application

server and be responsible for handling firmware updates of the low-powered devices in

the LoRaWAN network. This contribution comes from the fact that the currently

existing research only conducts LoRaWAN firmware update research utilizing

simulation software tools. Our study, therefore, provides the real implementation of

firmware updates in LoRaWAN and integrates Blockchain technology to provide a

resilient firmware update mechanism.

123

• The CLI tool that helps device owners or administrators to manage and schedule

firmware updates to the low-powered devices in the LoRaWAN network was

developed. To the best of our knowledge, the existing LoRaWAN research, that

integrates Blockchain is based on the simulation tool and does not provide a way how

to manage LoRa-end devices' firmware updates. Therefore, our study contributes by

implementing the command line tool that can be utilized to schedule and manage the

devices.

• And finally, the study evaluated the suitability of the proposed solution for low-

powered devices in the LoRaWAN network.

• In addition, 4 scientific articles which include the publication of an article in an

accredited journal and three conference proceedings articles proceeded from the

research

7.3 Research Questions Answers

This dissertation wanted to answer the following main research question.

How can a Blockchain-based firmware update architecture for the LoRaWAN network

be designed and implemented?

From the main research question, four sub-research questions were constructed. The questions

and how each was answered are presented below.

1. What is the “state of the art” in LoRaWAN firmware updates??

To address this sub-question, it was essential to understand the existing firmware mechanism

approaches and look at the tactics utilized to secure the firmware updates. As a result, the study

looked at the different approaches in the literature review presented in Chapter 3. The

approaches were categorized into two main categories: the centralized which is based on the

client-server model, and the decentralized approach particularly based on Blockchain

technology. In addition, each study was observed with the properties it aims to achieve. The

properties include:

• Security properties - Security properties include confidentiality, integrity,

authentication, and data freshness (replay attack).

• Type of IoT network – the IoT comprises of different types of networks. A certain

study is either focused on the constrained network or not.

124

• Type of IoT device targeted – Section 2.1.1 described different devices that exist in the

IoT networks, and the investigated studies were categorized based on the type of

devices that were targeted. This includes the constrained low-end, middle-end, and

high-end devices

• Performance Evaluation – certain studies only focused on proposing the firmware

update solution design without providing the proof of concept, some only propose and

provide the proof of concept without doing any evaluations. Therefore, the observed

studies were investigated to see whether the performance evaluation was provided or

not.

As a result, the identified properties in the literature helped to identify the gaps and directed

our study to focus on constrained IoT devices in the constrained network while providing the

required security attributes and evaluation.

2. Why is Blockchain suitable for firmware updates in LoRaWAN?

This research question was addressed using the background study which was observing the

advantages of Blockchain technology and addressed by reviewing the literature in Chapter 2:

In Section 3.1 different Blockchain LoRaWAN integration studies were reviewed to see how

Blockchain is used in LoRaWAN. Section 3.1 showed that Blockchain technology can be

suitable for LoRaWAN in many ways. For instance, LoRaWAN is based on symmetric

cryptography and when Blockchain is integrated with LoRaWAN, it can take advantage of the

advanced features of Blockchain in terms of security e.g., using asymmetric cryptography for

enhancing LoRaWAN security. Moreover, when it comes to data that is generated by LoRa

devices Blockchain provides a highly secured way of storing the data and tamper-proof data.

3. How can a Blockchain-based firmware update mechanism that suits LoRaWAN

be implemented?

We tackled this question in Chapter 4: and Chapter 5: We focused on the design of the system

architecture in Chapter 4: and the implementation of the system in Chapter 5: We identified

the key requirements which must be met by firmware update mechanisms which in general are

the IoT networks and also LoRaWAN. The requirements were obtained from the literature and

the firmware updates recommendation from the report notes. These were presented in Section

4.3.1. For example, (Jongboom and Stokking, 2018a) came up with some recommendations

that need to be followed when updating low-powered devices in LPWAN e.g. the mechanism

must adhere to network restrictions. Thus, the design and implementation were based on such

125

recommendations. The system architecture was presented in Section 4.4 and illustrated in

Figure 4.3. The study implemented the independent components (that is FUS) that connect the

integrated Ethereum Blockchain, LoRaWAN, and IPFS network. The FUS component is

responsible for the entire firmware update process connected to LoRaWAN via the LoRaWAN

application server. The Blockchain smart contracts were implemented using solidity and the

developed smart contracts enforced the rules during the firmware updates and securely stored

the low-powered device's information in the Blockchain.

4. How can the proposed firmware update mechanism be evaluated?

Experiments were conducted to evaluate the effectiveness of the proposed architecture. The

experiments aimed to find out whether the architecture is suitable for constrained low-powered

devices. This led us to examine certain metrics explained in Section 6.2 to determine the

suitability of the architecture to the devices, for example examining memory consumption of

cryptographic algorithms utilized to secure the firmware, etc. The architecture was evaluated

using devices listed in Table 5.5 which include the LoRa node (LoPy), LoRa gateway

(Raspberry Pi and RAK831 module), and the PC running LoRaWAN servers.

7.4 Summary

Privacy and security in the IoT are still in the early stages. Bugs and vulnerabilities were

discovered on the devices while being active on the Internet, therefore, it is important to keep

the security of the devices up to date to mitigate the vulnerabilities. This dissertation has

presented the design and implementation of a Blockchain-based architecture targeting to

delivery of firmware to low-powered constrained devices in the LoRaWAN network. The

solution presented in this study showcases the potential of Blockchain technology in solving

some of the issues found with centralized firmware update approaches. For example, since IoT

devices are exponentially growing, the existing centralized solutions may not ensure the high

availability of firmware thus, they exhibit single-point-of-failure which may seriously affect

the security of the devices and the privacy of the consumers when security threats occur. Hence,

the study took the advantage of the decentralized technology to enhance the security of

firmware updates in LoRaWAN. The obtained results show that the architecture is suitable for

LoRaWAN and constrained low-powered devices in the network. This suitability is observed

through the examination of memory consumption during the update process. It depends on the

firmware image size, for example, a larger firmware image size requires more resources during

the verification process.

126

7.5 Limitations and Future Work

Even though the Blockchain-based solution for LoRaWAN is developed and presented, there

are still many open issues that this work did not cover when it comes to firmware updates in

constrained LoRaWAN networks. In this study, unfortunately, the larger-scale tests were not

possible, due to the limited number of LoRa nodes we had. Furthermore, the scope of this study

does not focus on the security of the bootloader. In future work, the study can be extended by

improving the solution incorporating asymmetric cryptography for instance incorporating the

Elliptic Curve Digital Signature Algorithm (ECDSA) and examining the effect of the

Blockchain-based ECDSA algorithms during the device’s verification of the firmware image.

References

Abdelfadeel, K. et al. (2020a) ‘How to make Firmware Updates over LoRaWAN Possible’,

in 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and

Multimedia Networks, pp. 16–25. Available at:

https://doi.org/10.1109/WoWMoM49955.2020.00018.

Abdelfadeel, K. et al. (2020b) ‘How to Make Firmware Updates over LoRaWAN Possible’,

Proceedings - 21st IEEE International Symposium on a World of Wireless, Mobile and

Multimedia Networks, WoWMoM 2020, (February), pp. 16–25. Available at:

https://doi.org/10.1109/WoWMoM49955.2020.00018.

Adam, I.O. and Dzang Alhassan, M. (2020) ‘Bridging the global digital divide through digital

inclusion: the role of ICT access and ICT use’, Transforming Government: People, Process

and Policy, 15(4), pp. 580–596. Available at: https://doi.org/10.1108/TG-06-2020-0114.

Alexandre, T. (2016) UpdaThing : A secure and open firmware update system for Internet of

Things devices. Tecnico Lisboa. Available at:

https://www.semanticscholar.org/paper/UpdaThing%3A-a-secure-firmware-update-system-

for-of-Pinho/b8d685f27d6122cbd967a3db4bdf6d97fc46aa2d.

Alliance, L. et al. (2018) ‘LoRa Alliance Enhances LoRaWAN Protocol with New

Specifications to Support Firmware Updates Over the Air’. Available at:

https://resources.lora-alliance.org/technical-specifications/lora-alliance-enhances-lorawan-

protocol-with-new-specifications-to-support-firmware-updates-over-the-air.

Alliance, L. (2018) ‘LoRaWAN 1.0.3 specification’, Lora-Alliance.Org, (1), pp. 1–72.

Available at: https://lora-alliance.org/sites/default/files/2018-07/lorawan1.0.3.pdf.

Anastasiou, A. et al. (2020) ‘IoT Device Firmware Update over LoRa : The Blockchain

Solution’, in 2020 16th International Conference on Distributed Computing in Sensor

Systems (DCOSS) IoT. IEEE, pp. 404–411. Available at:

https://doi.org/10.1109/DCOSS49796.2020.00070.

Aqeel-ur-Rehman et al. (2016) ‘Security and privacy issues in IoT’, International Journal of

Communication Networks and Information Security, 8(3), pp. 147–157. Available at:

https://doi.org/10.4018/978-1-7998-8954-0.ch021.

Atzori, M. (2017) ‘Blockchain technology and decentralized governance: Is the state still

necessary?’, Journal of Governance and Regulation, 6(1), pp. 45–62. Available at:

https://doi.org/10.22495/jgr_v6_i1_p5.

Azam, N. et al. (2022) ‘Data Privacy Threat Modelling for Autonomous Systems: A Survey

from the GDPR's Perspective’, IEEE Transactions on Big Data, pp. 1–27.

Available at: https://doi.org/10.1109/TBDATA.2022.3227336.

Baranyi, P. et al. (2021) ‘Introducing the concept of internet of digital reality – part i’, Acta

Polytechnica Hungarica, 18(7), pp. 225–240. Available at:

https://doi.org/10.12700/APH.18.7.2021.7.12.

BBC (2021) McDonald’s Hit by Data Breach in Taiwan and South Korea. Available at:

128

https://www.bbc.com/news/business-57447404 (Accessed: 6 December 2021).

Bormann, Ersue and Keranen (2014) Terminology for Constrained-Node Networks, Internet

Engineering Task Force (IETF). Available at:

http://www.springer.com/series/15440%0Apapers://ae99785b-2213-416d-aa7e-

3a12880cc9b9/Paper/p18311.

Brtnik, V. (2018) Master thesis Security Risk Assessment of LoRaWan. Leiden University.

Available at:

https://openaccess.leidenuniv.nl/bitstream/handle/1887/64567/Brtnik_V_2018_CS.PDF?sequ

ence=2.

Carstensen, A.K. and Bernhard, J. (2019) ‘Design science research–a powerful tool for

improving methods in engineering education research’, European Journal of Engineering

Education, 44(1–2), pp. 85–102. Available at:

https://doi.org/10.1080/03043797.2018.1498459.

Charilaou, C. et al. (2021) ‘Firmware update using multiple gateways in lorawan networks’,

Sensors, 21(19), pp. 1–19. Available at: https://doi.org/10.3390/s21196488.

Dale Liu et al. (2009) Chapter 3 - An Introduction To Cryptography, Next Generation SSH2

Implementation. Elsevier Inc. Available at: https://doi.org/B978-1-59749-283-6.00003-9.

Danish, S.M. et al. (2019) ‘A Lightweight Blockchain based Two Factor Authentication

Mechanism for LoRaWAN Join Procedure’, 2019 IEEE International Conference on

Communications Workshops (ICC Workshops), pp. 1–6. Available at:

https://doi.org/10.1109/ICCW.2019.8756673.

Dika, A. and Nowostawski, M. (2017) ‘Ethereum Smart Contracts: Security Vulnerabilities

and Security Tools’, (December). Available at:

https://brage.bibsys.no/xmlui/bitstream/handle/11250/2479191/18400_FULLTEXT.pdf.

Doddapaneni, K. et al. (2017) ‘Secure FoTA Object for IoT’, Proceedings - 2017 IEEE 42nd

Conference on Local Computer Networks Workshops, LCN Workshops 2017, pp. 154–159.

Available at: https://doi.org/10.1109/LCN.Workshops.2017.78.

Dooley, K. (2002) ‘Simulation Research Methods Kevin Dooley Arizona State University’,

(April), pp. 829–848.

Durand, A., Gremaud, P. and Pasquier, J. (2018) ‘Resilient, crowd-sourced LPWAN

infrastructure using blockchain’, CRYBLOCK 2018 - Proceedings of the 1st Workshop on

Cryptocurrencies and Blockchains for Distributed Systems, Part of MobiSys 2018, pp. 25–29.

Available at: https://doi.org/10.1145/3211933.3211938.

European Data Protection Supervisor (2019) Introduction to the Hash Function as a Personal

Data. Available at: https://edps.europa.eu/sites/edp/files/publication/19-10-30_aepd-

edps_paper_hash_final_en.pdf.

Fatjon Muca (2014) ‘Reaserach Methods’, in. Available at:

https://www.academia.edu/29798644/Method_Research.

Fukuda, T. and Omote, K. (2021) ‘Efficient Blockchain-based IoT Firmware Update

129

Considering Distribution Incentives’, 2021 IEEE Conference on Dependable and Secure

Computing, DSC 2021 [Preprint]. Available at:

https://doi.org/10.1109/DSC49826.2021.9346265.

Gambiroza, J.C. et al. (2019) ‘Capacity in lorawan networks: Challenges and opportunities’,

2019 4th International Conference on Smart and Sustainable Technologies, SpliTech 2019

[Preprint], (June). Available at: https://doi.org/10.23919/SpliTech.2019.8783184.

George Corser et al. (2017) ‘Internet of Things (Iot) Security Best Practices’, Ieee,

1(February), p. 17. Available at:

https://internetinitiative.ieee.org/images/files/resources/white_papers/internet_of_things_feb2

017.pdf.

Go Ethereum (2021) Official Go implementation of the Ethereum Protocol. Available at:

https://geth.ethereum.org/ (Accessed: 6 December 2021).

Greenberg, A. (2020) This Bluetooth Attack Can Steal a Tesla Model X in Minutes. Available

at: https://www.wired.com/story/tesla-model-x-hack-bluetooth/ (Accessed: 14 August 2022).

Hackernoon (2021) IPFS: A Beginner’s Guide. Available at: https://hackernoon.com/a-

beginners-guide-to-ipfs-20673fedd3f (Accessed: 6 December 2021).

Infura (2021) Ethereum | Infura Documentation. Available at:

https://infura.io/docs/ethereum#section/Make-Requests/JSON-RPC-Methods (Accessed: 6

December 2021).

IPFS (2021a) Distributed Hash Tables. Available at: https://docs.ipfs.io/concepts/dht

(Accessed: 6 December 2021).

IPFS (2021b) How Bitswap works. Available at: https://docs.ipfs.io/concepts/bitswap/

(Accessed: 6 December 2021).

IT Governance UK (2021) Data breaches and cyber attacks quarterly review: Q3 2021 - IT

Governance UK Blog. Available at: https://www.itgovernance.co.uk/blog/data-breaches-and-

cyber-attacks-quarterly-review-q3-2021 (Accessed: 6 December 2021).

Johnson, S.D. et al. (2020) ‘The impact of IoT security labelling on consumer product choice

and willingness to pay’, PLoS ONE, 15(1), pp. 1–21. Available at:

https://doi.org/10.1371/journal.pone.0227800.

Jongboom, J. and Stokking, J. (2018a) ‘Enabling firmware updates over LPWANs’,

Embedded World Conference [Preprint]. Available at:

http://janjongboom.com/downloads/ew2018-paper.pdf.

Jongboom, J. and Stokking, J. (2018b) Enabling firmware updates over LPWANs, Embedded

World 2018 Exhibition & Conference. Embedded World. Available at:

http://janjongboom.com/downloads/ew2018-paper.pdf.

Kaliski, B. (2011) ‘Hard-Core Bit’, Encyclopedia of Cryptography and Security, 47(3), pp.

534–535. Available at: https://doi.org/10.1007/978-1-4419-5906-5_412.

Kvarda, L. et al. (2016) ‘Software implementation of a secure firmware update solution in an

130

IOT context’, Advances in Electrical and Electronic Engineering, 14(4Special Issue), pp.

389–396. Available at: https://doi.org/10.15598/aeee.v14i4.1858.

Lee, B. and Lee, J.H. (2017) ‘Blockchain-based secure firmware update for embedded

devices in an Internet of Things environment’, Journal of Supercomputing, 73(3), pp. 1152–

1167. Available at: https://doi.org/10.1007/s11227-016-1870-0.

Leverege LCC (2018) An Introduction to the Internet of Things. 1st edn. Leverege LCC.

Available at: https://www.leverege.com/iot-ebook/introduction.

Lin, J., Shen, Z. and Miao, C. (2017) ‘Using Blockchain Technology to Build Trust in

Sharing LoRaWAN IoT’, Proceedings of the 2nd International Conference on Crowd

Science and Engineering - ICCSE’17, (February), pp. 38–43. Available at:

https://doi.org/10.1145/3126973.3126980.

Lo, N.-W. and Hsu, S.-H. (2019) A Secure IoT Firmware Update Framework Based on

MQTT Protocol. Available at: https://doi/10.1007/978-3-030-30443-0.

Makhdoom, I. et al. (2019) ‘Journal of Network and Computer Applications Blockchain ’ s

adoption in IoT : The challenges , and a way forward’, Journal of Network and Computer

Applications, 125(November 2018), pp. 251–279. Available at:

https://doi.org/10.1016/j.jnca.2018.10.019.

Manoj Athreya, A. et al. (2021) ‘Peer-to-Peer Distributed Storage Using InterPlanetary File

System’, in N.N. Chiplunkar and T. Fukao (eds) Advances in Artificial Intelligence and Data

Engineering. Singapore: Springer Singapore, pp. 711–721. Available at:

https://doi.org/10.1007/978-981-15-3514-7_54.

Marais, J.M., Abu-Mahfouz, A.M. and Hancke, G.P. (2020) ‘A survey on the viability of

confirmed traffic in a LoRaWAN’, IEEE Access, 8, pp. 9296–9311. Available at:

https://doi.org/10.1109/ACCESS.2020.2964909.

Miller, C. and Valasek, C. (2015) ‘Remote Exploitation of an Unaltered Passenger Vehicle’,

Defcon 23, 2015, pp. 1–91. Available at: http://illmatics.com/Remote Car Hacking.pdf.

Mtetwa, N. et al. (2019) ‘Secure Firmware Updates in the Internet of Things : A survey’, in

International Multidisciplinary Information Technology and Engineering Conference, pp. 1–

7. Available at: https://doi.org/10.1109/Cybermatics_2018.2018.00051.

Mtetwa, N., Tarwireyi, P. and Adigun, M. (2019) ‘Secure the Internet of Things Software

Updates with Ethereum Blockchain’, in Proceedings - 2019 International Multidisciplinary

Information Technology and Engineering Conference, IMITEC 2019. IEEE, pp. 1–6.

Available at: https://doi.org/10.1109/IMITEC45504.2019.9015865.

Mtetwa, N.S. et al. (2019) ‘Secure Firmware Updates in the Internet of Things: A survey’, in

Proceedings - 2019 International Multidisciplinary Information Technology and Engineering

Conference, IMITEC 2019. IEEE, pp. 1–7. Available at:

https://doi.org/10.1109/IMITEC45504.2019.9015845.

NetScouts (2018) ‘Dawn of the TerrorBIT Era NETSCOUT Threat Intelligence Report-

Powered by ATLAS Findings from Second Half 2018’, p. 2. Available at:

131

https://www.netscout.com/sites/default/files/2019-02/SECR_001_EN-1901 - NETSCOUT

Threat Intelligence Report 2H 2018.pdf.

Ojo, M.O. et al. (2018) ‘A Review of Low-End, Middle-End, and High-End Iot Devices’,

IEEE Access, 6(November), pp. 70528–70554. Available at:

https://doi.org/10.1109/ACCESS.2018.2879615.

OWASP (2018) ‘OWASP Top 10 Internet of Things’, Salem Press Encyclopedia of Science,

pp. 5–7. Available at:

http://search.ebscohost.com/login.aspx?direct=true&db=ers&AN=100558386&site=eds-live.

Ozyilmaz, K.R. and Yurdakul, A. (2019) ‘Designing a Blockchain-Based IoT with Ethereum,

Swarm, and LoRa: The Software Solution to Create High Availability with Minimal Security

Risks’, IEEE Consumer Electronics Magazine, 8(2), pp. 28–34. Available at:

https://doi.org/10.1109/MCE.2018.2880806.

PandaSecurity (2021) The Stolen Source Code For FIFA 21 Was Just Published Online.

Available at: https://www.pandasecurity.com/en/mediacenter/security/source-code-fifa-21/

(Accessed: 6 December 2021).

Pycom (2018) Pycom Documentation. Available at:

https://docs.pycom.io/chapter/datasheets/.

Regenscheid, A. (2018) ‘Platform Firmware Resiliency Guidelines’, NIST Special

Publication, 193(May). Available at:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf.

Rehman, M.M.U., Rehman, H.Z.U. and Khan, Z.H. (2020) ‘Cyber-attacks on medical

implants: A case study of cardiac pacemaker vulnerability’, International Journal of

Computing and Digital Systems, 9(6), pp. 1229–1235. Available at:

https://doi.org/10.12785/ijcds/0906020.

Reißmann, S. and Pape, C. (2017) ‘An Over the Air Update Mechanism for ESP8266

Microcontrollers’, ICSNC 2017 : The Twelfth International Conference on Systems and

Networks Communications An, (October), pp. 11–17. Available at:

https://www.researchgate.net/publication/320335879_An_Over_the_Air_Update_Mechanism

_for_ESP8266_Microcontrollers.

Sahlmann, K. et al. (2021) ‘Mup: Simplifying secure over-the-air update with mqtt for

constrained iot devices’, Sensors (Switzerland), 21(1), pp. 1–21. Available at:

https://doi.org/10.3390/s21010010.

Sanchez-gomez, J. et al. (2021) ‘Holistic IoT Architecture for Secure Lightweight

Communication , Firmware Update , and Trust Monitoring’, pp. 353–358. Available at:

https://doi.org/10.1109/SmartIoT52359.2021.00066.

Schiller, E. et al. (2022) ‘Landscape of IoT security’, Computer Science Review, 44, p.

100467. Available at: https://doi.org/10.1016/j.cosrev.2022.100467.

Sivagami, P. et al. (2021) ‘IoT Ecosystem- A survey on Classification of IoT’. Available at:

https://doi.org/10.4108/eai.16-5-2020.2304170.

132

Stevens, M. et al. (2017) ‘The first collision for full SHA-1’, Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 10401 LNCS(July), pp. 570–596. Available at: https://doi.org/10.1007/978-

3-319-63688-7_19.

Subodhnarayan, S. et al. (2018) Design and Implementation of an Integrated Water Quality

Monitoring System and Blockchains. University of Zurich. Available at:

https://files.ifi.uzh.ch/CSG/staff/Rafati/Sanjiv-Jha-MA.pdf.

Sun, Y. et al. (2014) ‘Data Security and Privacy in Cloud Computing’, International Journal

of Distributed Sensor Networks, 2014. Available at: https://doi.org/10.1155/2014/190903.

Swanson, M. (2020) ‘LoRaWAN: Firmware Updates Over-the-Air’, in, pp. 217–225.

Available at: https://doi.org/10.1007/978-3-319-64933-7_10.

Tan, M., Sun, D. and Li, X. (2021) ‘A Secure and Efficient Blockchain-based Key

Management Scheme for LoRaWAN’, in. Available at:

https://doi.org/10.1109/WCNC49053.2021.9417304.

Techniques, R. (2021) ‘Secure LoRa Firmware Update with Adaptive Data Rate Techniques’,

21(7), pp. 1–17. Available at: https://doi.org/https://doi.org/10.3390/s21072384.

TexasInstruments (2015) ‘Secure In-Field Firmware Updates for MSP MCUs’, in, pp. 1–13.

Available at: https://www.ti.com/lit/slaa682.

The Things (2021). Available at: https://www.thethingsnetwork.org/docs/lorawan/what-is-

lorawan/ (Accessed: 6 December 2021).

Truffle (2021) Ganache: A Tool for Creating a Local Blockchain for Fast Ethereum

Development. Available at: https://github.com/trufflesuite/ganache (Accessed: 6 December

2021).

Tsaur, W., Chang, J. and Chen, C. (2022) ‘A Highly Secure IoT Firmware Update

Mechanism Using Blockchain’. Available at: https://doi.org/10.3390/s22020530.

University of Delaware (2021) Managing data confidentiality. Available at:

https://www1.udel.edu/security/data/confidentiality.html (Accessed: 1 February 2022).

Vahdati, Z. et al. (2019) ‘Comparison of ECC And RSA Algorithms in IoT’, 97(16).

Available at: https://www.semanticscholar.org/paper/COMPARISON-OF-ECC-AND-RSA-

ALGORITHMS-IN-IOT-DEVICES-Vahdati/a43da6aa57ca8dbeeeb70c144a25b0f288caa8bb.

Verderame, L., Ruggia, A. and Merlo, A. (2021) ‘PATRIOT: Anti-Repackaging for IoT

Firmware’, pp. 1–9. Available at: http://arxiv.org/abs/2109.04337.

Vlachos, I. and Hatziargyriou, N. (2019) ‘Design and Implementation of a Decentralized Amr

System Using Blockchains , Smart Contracts and Lorawan’, (June), pp. 3–6.

Votipka, D. et al. (2020) ‘Understanding security mistakes developers make: Qualitative

analysis from build it, break it, fix it’, in Proceedings of the 29th USENIX Security

Symposium, pp. 109–126. Available at: https://dl.acm.org/doi/10.5555/3489212.3489219.

133

Vujičić, D., Jagodić, D. and Randić, S. (2018) ‘Blockchain technology, bitcoin, and

Ethereum: A brief overview’, 2018 17th International Symposium on INFOTEH-JAHORINA,

INFOTEH 2018 - Proceedings, 2018-Janua, pp. 1–6. Available at:

https://doi.org/10.1109/INFOTEH.2018.8345547.

Witanto, E.N. et al. (2020) ‘A blockchain-based ocf firmware update for IoT devices’,

Applied Sciences (Switzerland), 10(19), pp. 1–22. Available at:

https://doi.org/10.3390/app10196744.

Yohan, A. and Lo, N.W. (2019) ‘An Over-The-Blockchain Firmware Update Framework for

IoT Devices’, DSC 2018 - 2018 IEEE Conference on Dependable and Secure Computing, pp.

1–8. Available at: https://doi.org/10.1109/DESEC.2018.8625164.

Zandberg, K. et al. (2019a) ‘Secure Firmware Updates for Constrained IoT Devices Using

Open Standards: A Reality Check’, IEEE Access, 7, pp. 71907–71920. Available at:

https://doi.org/10.1109/ACCESS.2019.2919760.

Zandberg, K. et al. (2019b) ‘Secure Firmware Updates for Constrained IoT Devices Using

Open Standards: A Reality Check’, IEEE Access, 7, pp. 71907–71920. Available at:

https://doi.org/10.1109/ACCESS.2019.2919760.

Zarrin, J. et al. (2021) ‘Blockchain for decentralization of internet: prospects, trends, and

challenges’, Cluster Computing, 24(4), pp. 2841–2866. Available at:

https://doi.org/10.1007/s10586-021-03301-8.

134

Appendix A: Code for Adding Metadata on Blockchain

Appendix B: Code for Checking Latest Firmware Update

Appendix C: Code for Retrieving Metadata

Appendix D: Partial Code Snippet for Device Registration

Appendix E: Deleting the End Device

135

Appendix F: Partial Code Snippet for Updating Device Information

Appendix G: Code Snippet for Updating Device Status

Appendix H: Code for Get the Device Information

