
A Contracts-Based Model for Managing

Web Services Evolution

by

Chiponga Kudzai

(201329712)

A dissertation submitted in fulfilment of the requirements for the degree of

Master of Science in Computer Science

in the Faculty of Science and Agriculture

Department of Computer Science

University of Zululand

KwaDlangezwa

Supervisor: Prof. M.O Adigun

Co-supervisor: Mr. P. Tarwireyi

2015

i

ABSTRACT

Service-based systems need to be designed in such a way that they are able to accommodate the

volatility of the environment in which they operate. Failure to evolve service-based systems will

result in service providers losing their competitive edge. Additionally, failure to evolve these

systems properly will have far-reaching negative impacts on all stakeholders, especially if

disruptions are allowed to occur. However, evolving service-based systems in a non-disruptive

manner is still a challenge both to the research community and industry. Over recent years, many

organisations have been adopting technology-based service solutions in what has become a

technology-driven business environment, with web services at the forefront of being a business-

enabler. This dissertation focusses on developing a contracts-based model for managing the

evolution of web services in a manner that is consistent and transparent to business partners. The

design science research methodology was used to architect a model that can alleviate the challenge

of evolving service oriented systems. It was found that technical web service contracts can be

leveraged upon to manage and maintain consumers while evolution is carried out. A contracts-

based service proxy was developed as an instantiation of the model. Experiments demonstrated

that this proxy maintained compatibility between evolving services and existing consumers. The

model developed in this research presented a cost effective solution to managing the evolution of

webservices while reusing the same computing resources and cutting down on the development

time needed in evolving web services. Even though the proxy introduced processing overheads,

the resultant loss in service throughput was negligible, especially when we take into consideration

the amount of time and effort taken in evolving services manually.

ii

DECLARATION

I, Kudzai Chiponga, declare that this dissertation represents my own work and that this work has

not been previously submitted to any university or institution of tertiary education. All sources of

information used in this work have been acknowledged.

Kudzai Chiponga

Signature………………………………

Date ……………………………………

iii

DEDICATION

I dedicate this work to the Author and Finisher of our Faith.

iv

ACKNOWLEGEMENTS.

I would like to thank my supervisors Professor Matthew. O. Adigun and Mr. Paul. Tarwireyi, for

their expertise, support and mentorship, without which, this work would not have made it to

fruition. Your continued dedication to both me and my work can never be equalled. I look forward

to more fruitful work with you again beyond this point.

A special thank you goes to Brother Edgar Jembere, for his invaluable contribution in the reasoning

around this work. I would also like to extend my thanks to my colleagues and friends not in any

order of importance, namely, Z. Nxumalo, S. Dlamini, T. Akinola, M. Shabalala, D. Afuro, S.

Fakude, L. Qwabe, O.Oki, N. Sibeko, B. Mutanga, P. Mudali, S. Fatyi, N. Mdletshe, T. Ntuili, D.

Zibani, Professor S.S.Xulu, I. Mba, S. Mthembu, O.J. Pooe, S. Makumire, X. Makoba and U.

Tsuro for the continued support and motivation to soldier on.

A thank you again goes to my family for their unwavering support and love, and for bearing with

my absence throughout the duration of this work.

Last and most importantly, I would like to extend my sincere gratitude to Dr. T. Chirima, my pillar

and source of strength.

v

TABLE OF CONTENTS
Abstract .. i

Declaration .. ii

Dedication .. iii

Acknowlegements .. iv

List of Figures .. viii

List of Tables .. x

List of Equations .. xi

List of Publications ... xii

Chapter One .. 1

1. Introduction .. 1

1.1. Research Context and Motivation .. 1

1.2. Problem Statement .. 5

1.3. Research Questions... 7

1.4. Research Goal and objectives ... 7

1.5. Research Methodology ... 8

1.6. Delimitations .. 10

1.7. Structure of Dissertation ... 11

Chapter Two.. 13

2. Background and State of the art Analysis .. 13

vi

2.1. Web services and SOA ... 13

2.2. SOAP Web services.. 18

2.3. Service contracts ... 19

2.4. Lehman’s Laws of Evolution ... 22

2.5. Literature Review ... 24

2.6. Summary ... 36

Chapter Three.. 39

3. Running Scenario ... 39

3.1. Introduction .. 39

3.2. Description of the Scenario .. 40

3.3. The Hotel Booking Service .. 41

3.4. The Stock Service ... 44

3.5. Evolution Scenarios .. 44

3.6. Summary ... 47

Chapter Four ... 48

4. Design of the Contract-based model .. 48

4.1. Conceptualisation ... 50

4.2. Design criteria ... 52

4.3. Best Practices in Software development .. 53

4.4. The model setup.. 56

vii

4.5. Summary ... 66

Chapter Five .. 68

5. Model Validation and proof-of-concept prototype .. 68

5.1. The Proof-of-Concept Prototype .. 69

5.2. The Prototype Implementation ... 75

5.3. Summary ... 90

Chapter Six.. 92

6. Results and Discussions ... 92

6.1. Web Service-Performance testing .. 93

6.2. SoapUI .. 95

6.3. Experimental Results and Analysis .. 99

6.4. Economic and Industrial Implications .. 113

6.5. Summary ... 120

Chapter Seven ... 122

7. Conclusion and future work ... 122

7.1. Summary of the research .. 122

7.2. Research Questions Review ... 124

7.3. Future work... 130

7.4. Contributions to knowledge .. 130

References ... 132

viii

LIST OF FIGURES

Figure 2.1: The Basic Service Oriented Architecture (“Web Services Architecture,” n.d.) 15

Figure 2.2: The Service Oriented Model (Booth et al., 2004) .. 16

Figure 2.3 The chain of adapters technique (Kaminski et al., 2006) .. 31

Figure 3.1: Hotel Booking Service activity diagram .. 43

Figure 3.2: Client request and response for StockQuote version 1.0.. 45

Figure 3.3: Client request and response for StockQuote version 1.1(Chiponga et al., 2014a) 45

Figure 3.4: Client request and response for StockQuote version 1.2.. 46

Figure 4.1: Sequence diagram for the contracts-based proxy model .. 51

Figure 4.2: The ideal relation between service provider and consumer in SOA 56

Figure 4.3: The realistic typical service consumer-service provider request................................ 58

Figure 4.4: The contracts-based proxy for web service management model (Chiponga et al.,

2014b). .. 59

Figure 4.5: The main proxy functions... 62

Figure 4.6: The service proxy algorithm listing (Chiponga et al., 2014b) 65

Figure 5.1: The experimental setup and technologies employed. ... 71

Figure 5.2: Graphical view of the Web service contract (Erl et al., 2008). 75

Figure 5.3: The code listing for StockQuote version 1.0 .. 77

Figure 5.4: The code listing for the StockQuote web service version 1.0 80

Figure 5.5: StockQuote version 1.2 deployed in tomcat and Axis2 ... 81

Figure 5.6: Generating code with the WSDL2Java tool ... 82

Figure 5.7: The code listing for the Choice for transformation path .. 85

ix

Figure 5.8: SOAP request version identification. ... 86

Figure 5.9: The code listing for XSLT transformer and map ... 86

Figure 5.10: The code listing for XSLT transformation template .. 87

Figure 5.11: SOAP request transformation. .. 88

Figure 5.12: SoapUI client simulation for versioned StockQuote web service 89

Figure 6.1: Valid positive functional test .. 97

Figure 6.2: Valid negative functional test ... 98

Figure 6.3: Test case for StockQuotev1.0 ... 102

Figure 6.4: Load testing for each service version. .. 104

Figure 6.5: Load testing for all services through the Proxy. ... 105

Figure 6.6: Relation between the thread-count and the number of requests. 107

Figure 6.7: Throughput for service version 1.0 .. 108

Figure 6.8: Throughput for service version 1.1 .. 108

Figure 6.9: Throughput for service version 1.2 .. 109

x

LIST OF TABLES

Table 2.1: Summarised Laws of software evolution (González-Barahona et al., 2014). 23

Table 5.1: The server machine specifications. ... 72

Table 6.1: Some tools for web service testing .. 95

Table 6.2: Response times for StockQuote 1.0 TestCase ... 100

Table 6.3: Summary of cost estimation techniques (Sommerville, 1982) 114

Table 6.4: Strengths and weaknesses of software cost-estimation methods. (Boehm, 1981) 115

Table 6.5: Linear productivity factors for software development (Cost Expert group, www) ... 116

Table 6.6: Estimate effort for the development of the StockQuote web service and the proxy . 117

xi

LIST OF EQUATIONS

Equation 6.1: Calculating percentage loss in throughput ... 111

Equation 6.2: Calculating effective loss in throughput. .. 112

Equation 6.3: Calculating effort in man-months (MM) (Cost Expert group, www) 116

xii

LIST OF PUBLICATIONS

Chiponga, K., Tarwireyi, P., Adigun, M.O., “Contract-based Web Service Evolution Model”, In:

2014 Proceedings of the Southern Africa Telecommunication Networks and Applications

Conference (SATNAC), Boardwalk Conference Centre, Nelson Mandela Bay, Eastern Cape, South

Africa. 2014

Chiponga, K., Tarwireyi, P., Adigun, M.O., “A Version-Based Transformation Proxy For Service

Evolution”, In: The 6th IEEE International Conference on Adaptive Science and Technology

(ICAST) 2014, Covenant University, Ota, Nigeria. 2014

1

CHAPTER ONE

1. INTRODUCTION

1.1. Research Context and Motivation

In today’s business world, effective marketing is the key to business growth. Internet Service

Providers (ISPs) and website hosting companies have seen the demand for web hosting space

increase over the years. The increase in demand for hosting space is because organisations are

turning to websites as a marketing tool. Having a solid Internet presence is therefore critical to

business success. Internet presence may be mistaken, by some, to refer to an organisation having

a good website only, however an Internet vantage point goes well beyond that. It extends to the

ability of an organisation to consume services offered by partners and or other organisations (as

third-parties in a business process) to enhance business operations in delivering value for their

customers. Businesses are adopting Service Oriented Computing as a business enabler.

Service Oriented Computing (SOC) is a relatively new computing paradigm within Services

Oriented Architecture (SOA) which exhibits characteristics that favour automation of some

complex business processes over a network across a variety of stakeholders. The characteristics of

SOC include but are not limited to: the ability of services to be published, discovered, composed

and bound to; platform-independence; loose-coupling; and self-contained interactions enabling

independence of any interaction from others (Papazoglou, 2008a). SOC allows for services to

interoperate between heterogeneous systems integrating complex systems to reduce the expense

of rebuilding and rewriting pieces of code for every new SOA application being built. The generic

SOA is composed of three main functionalities, which are the service provider, the service

consumer and the registry (Papazoglou, 2008a).

2

Businesses tapping into the nature of SOC harness the advantages of a SOA implementation as it

is a cost effective solution to enhancing old systems that were not designed with the services

architecture in mind (hereafter referred to as legacy systems). A SOA implementation may be

realised in the form of web services, which can be composed of other web services giving rise to

a web service ecosystem. Due to the distributed nature of a SOA implementation (Tsai et al.,

2002), these web services used in the composite web service are not owned by one organisation,

and are not housed under one roof. Not having these web services under one roof and one

administration ushers in a new set of challenges in administering systems. The challenges emanate

from the fact that one organisation cannot control the internal systems of another organisation.

A typical SOA implementation has three main entities, namely: a service provider, a service

registry and at least one service consumer (Bloomberg, 2015). The entity considered as a service

provider is responsible for the development, deployment and registration of a web service. The

implementation detail lies with the service provider and is not necessarily to be revealed to the

outside world. Only the information about how to interact with the web service and what response

to expect from the web service are made publicly available through the process of publishing that

information in a service registry. The service registry is an eXtensible Markup Language (XML)

based registry known as the Universal Description, Discovery and Integration (UDDI) (Mallayya

et al., 2015). The service registry may be a public or a private UDDI depending on who the service

provider targets as the end users of their service offerings. The information published in the registry

is the description of the web service written using XML in a file known as a Web Services

Definition Language (WSDL) file for Service Oriented Architecture Protocol (SOAP) based web

services. The WSDL file contains information such as the location of the web service, how to

invoke/use the service, the parameters to pass to the web service in order to invoke it and the

3

expected response or result that the web service sends back to the service consumer. The WSDL

offers all the control information needed by a customer in order to know how the service can be

used and what to expect from the service. This makes the WSDL an essential part of the service

capable of being leveraged for more than just service description. The service consumer is

interchangeably referred to as the client to a web service, or consumer, the term consumer will be

used throughout this work. The consumer is usually in the form of a program implementation by

the persons or organisation seeking to use a service provided in the form of a web service. The

consumer is built based on a particular WSDL file retrieved from a registry in order to conform to

the expected methods and parameters of invocation of the web service. A consumer can be the

end-system, implying that the consumer displays the response from the web service or uses the

returned result for further computation and execution of the functions the consumer was designed

for. Consumers may also be service providers to other service consumers. Thus, a web service can

be composed of other web services in order to orchestrate a complete business transaction,

resulting in an ecosystem of web services.

Web services are used in general to perform a business function for users or other software

applications. In a typical SOA implementation, the services are not limited to a single user, hence,

a web service is designed for a set of users sharing some common functionality provided by the

web service. However, the service providers do not explicitly know the set of users who will use

their service. The users find the WSDL file in a registry and build consumers to bind to the web

service without the need to inform and formally signup with the service provider. As businesses

operate, their expectations of the service offerings are not entirely the same yet still rely on the

same service for the execution of a particular function. The different expectations of the web

service consumers influence the web services to be changed in order to meet the requirements of

4

other users, while at the same time trying to maintain the web service for the users who are satisfied

with the current web service. An ever-changing and competitive business environment implies that

software will change and in turn, influences rapid changes in deployed web services, inevitably

affecting the web services ecosystem. As technology advances, service interfaces, data types,

operations, expected messages and exchange patterns, can change as web services evolve to meet

changing business rules and changing operating environments. Some of these changes in a web

service may cause disruption to the interaction between a service provider and a service consumer,

resulting in a possible chain of operational and business losses to the organisations relying on the

web service. It is therefore of paramount importance that these changes be implemented in a

controlled manner so as to minimise, if not eradicate business and service losses.

Studies on software evolution have been ongoing since the late 1960s, leading up to the birth of a

series of Laws now commonly referred to as the Laws of software evolution. These Laws are also

known as Lehman’s Laws of software evolution formulated around 1974 (González-Barahona et

al., 2014). Around 1980, Lehman further classified programs into the SPE-scheme where:

 S-type programs do not evolve and are written from a static specification

 P-type programs are a mixture of S and E-type programs in which the specifications cannot

be completely defined before the program exists and

 E-type programs are a reflection of human processes or in SOA terms, business process

modelling

The process of E-type software evolution has proved to be a challenge owing to their multi-input

and multi-output nature. In a typical SOA implementation, there may be limited to no feedback

from targeted customers during the development or the evolution of a web service. Some of

5

Lehman’s Laws applied in E-type systems also apply in SOA, as a SOA implementation attempts

to address business problems in the real world environment.

1.2. Problem Statement

Given that SOC adoption is quite recent (Kijas and Zalewski, 2013), much of the research effort

has been focussed on the building and deployment of web services. From an engineering

perspective, processes to support the evolution of service oriented systems are a challenge (Lewis

et al., 2010). Conventional development methodologies such as Object-Oriented Analysis and

Design (OOAD), Component-Based Development (CBD) and business process modelling, despite

their usefulness, do not address the key elements of SOC (Papazoglou, 2008a). Conventional

development methodologies can only address some of the requirements of SOC applications.

Unlike traditional software, Services are not necessarily owned by a single organisation and are

consumed by more than a single unknown and randomly developed consumer. As a result, service

providers may not know how many clients use their services or how often they are used by the

clients (Fokaefs et al., 2011).

Service evolution precedes successful service adaptation (Bellahsène and Léonard, 2008). The

current assumption with service adaptation approaches is that services can evolve independently

of other services yet when a change is made, service consumers are not immediately aware of the

service change made. Services will inevitably change over time to meet ever changing business

requirements (Papazoglou, 2008a). These changes and modifications result in altered services

(Andrikopoulos et al., 2012), which if uncontrolled will disrupt the operations of consumers that

depend on the services. Hence changes introduced at the service provider level may cause severe

disruptions on the client’s side (Bellahsène and Léonard, 2008). This was evident in a study to

analyse evolution practices employed by large API providers such as Google Maps, Facebook,

6

Twitter and Netflix (Espinha et al., 2015). According to Espinha et al., (2015), a survey entitled

“API integration pain”, conducted among 130 Application Programming Interfaces (API) client

developers, showed there are a lot of complaints about current web service providers. The

developers claimed that the APIs randomly change without warning, causing their systems to

break. Developers mentioned that they are faced with an endless struggle to keep up with the

changes pushed by the web service providers. They said: “… As developers we build our

livelihoods on these APIs, and we deserve better”. In a subsequent survey, Facebook came out as

the worst because of its never-ending breaking API changes (Perez, 2015).

In order therefore to manage changes in a meaningful and effective manner, the service consumers

using a service that needs to be upgraded by the client developers must also be considered when

service changes are introduced on the service provider's side (Bellahsène and Léonard, 2008).

Failure to do so will most certainly result in severe application disruption (Kijas and Zalewski,

2013). Unfortunately, the management of change in the context of service orientated computing

environments has, to the best of the researcher’s knowledge, not been discussed sufficiently thus

far. As supported by (Kontogiannis et al., 2008; Lewis and Smith, 2013), not much research

specifically addresses or provides guidelines for maintenance activities in a service-oriented

environment. Hence, there is a need for a methodology for evolving shared services which will

help identify users of the service, how they will be affected, and estimate the potential business

costs when changes cause disruptions (Fokaefs et al., 2011; Lewis and Smith, 2013). The

methodology should evolve shared services while maintaining consistency (well-formed and valid

product) as the services evolve from one state to the next. This view has driven the formulation of

the following research questions.

7

1.3. Research Questions

How can service contracts be used to incorporate and manage service evolution?

Sub-Research Questions:

1. What is the state of the art of service evolution in SOC and what other fields can we take

lessons from?

2. How can we design a model to ensure that there will be no major disruptions to business

functions after a service is upgraded or changed?

3. How can we identify the service version that is being requested by a consumer?

4. How can the proposed model be validated and what mechanisms or procedures can be used

to evaluate the efficacy and utility of the proposed solution?

1.4. Research Goal and objectives

To tackle the research problem that has been highlighted, this research work’s main goal is to:

 Formulate a contract-based model for managing evolution of shared services in order to

minimise disruptions to service consumers when a service changes.

1.4.1. Research Objectives

To achieve this goal, the objectives that need to be met are to:

 Establish how the WSDL file (also known as the contract) can be incorporated into the

management of services evolution

 Develop a mechanism for identifying which service version is being requested by a

consumer

8

 Develop a service message transformation proxy relying on contracts, upon which tests

and assessments of the proposed model will be conducted

1.5. Research Methodology

In fulfilling the goal of this research, the design science methodology was followed, where a given

problem is solved by introducing new artifacts into the environment (Hevner and Chatterjee,

2010). Design science seeks to come up with new and innovative artifacts to enhance human and

organisational capabilities through the use of Information Systems (IS). Artifacts include

constructs, models, methods and instantiations but not explicitly the process by which such

artifacts evolve (Göbel and Cronholm, 2012; Hevner and Chatterjee, 2010). These artifacts help

us to understand the problem being addressed and the feasibility of the artifacts’ approach to the

solution.

In this research, the goal was to develop a contracts-based model for managing services evolution.

This model is the artifact of this research. However, when following design science, it is not

enough just to produce an artifact, the artifact has to be evaluated to determine its feasibility. In

this research, the model was instantiated into a prototype that provided proof-by-construction.

The research methodology in this work was broken down into four phases namely: the problem

analysis phase, establishment of the state of the art phase, solution design, and the evaluation

phase.

1.5.1. Phase 1. Problem analysis

According to the design science methodology, the first step when conducting research is to

understand the problem at hand. This understanding will help construct artifacts aimed at changing

the phenomena (Hevner et al., 2004). The research context and motivation helped in finding the

9

problem statement stated in Section 1.2. The problem statement was broken down into the research

questions, following which a literature review was conducted.

1.5.2. Phase 2. Establishment of the state of the art

A state of the art analysis of literature was conducted to ascertain what has been done to address

services evolution concerns in SOC. It is very important to analyse and understand the relevance

of any research work to the domain in which it is being carried out. This helped identify the

problem in the literature and establish to what extent contracts have been used to manage services.

This phase in the methodology aided in achieving the first objective which was to establish how

web service contracts can be used in managing service evolution. The combination of phase 1 and

phase 2 helped to answer the 1st research sub-question.

1.5.3. Phase 3. Solution design and implementation

The result of design science is a purposeful Information Technology (IT) artifact(s) designed to

solve an important problem in industry (Hevner et al., 2004). This phase involved the design and

the implementation of the solution. After this solution was designed as a response to the 2nd

research sub-question, a service message transformation proxy which relies on service contracts

was implemented as a proof-of-concept prototype. The prototype uses a common use-case SOA

application described in Chapter 3, Section 3.1 and 3.3 of this dissertation, that other scholars

proposed as a standard case study which researchers can use to compare and benchmark their

solutions (Guo et al., 2011; Tiago Espinha, 2012). How useful the proposed solution is and in what

ways this solution can be adopted in industry was demonstrated using the prototype with the aid

of a running scenario. As part of the solution, a proxy that could match and identify compatible

10

consumers to web service implementations was implemented, thus achieving the second research

objective. This helped in answering the third research sub-question.

1.5.4. Phase 4. Evaluations

This is one of the most significant tasks in design science. The utility, quality and efficiency of an

artifact must be demonstrated via well-executed evaluation methods (Hevner et al., 2004).

Performance tests were carried out to measure the quality of service parameters which needed to

be maintained during the evolution of a web service. This assisted in achieving the third research

objective. The checking of consistency of the service before and after evolutionary processes were

governed by the Laws of evolution and the best practices in software configuration management.

Evaluation methods in design science also include:

 Testing: The proposed solution was examined to see where it fits in the state of the art

 Performance tests: The efficiency of the proposed model was tested to find the

request/response times and efficiency of change-over times for evolving web services

 Experimentation: Simulation and execution of the artifacts was performed with artificial

data

The collected and analysed data enabled the defining and refining of the model that was designed

for managing the evolution of web services. This phase was in an effort to answer the fourth

research sub-question.

1.6. Delimitations

Evolution and maintenance of web services still have challenges that this research work does not

address. It is therefore imperative that this research work was done with some limitations and

assumptions having been made. Some of the assumptions and limitations are listed below:

11

 Service evolution dictates that there should be a trace of evolution between new services

and their predecessors. Therefore it is important that the implementation of new services

should always show the link or the relationship with the old services, otherwise it would

be regarded as a new product. The model therefore assumes that there are similarities

between subsequent service versions

 This research assumes that the service registry is implemented within the Enterprise

Service Bus (ESB) that was selected and that all contract versions are published and

retrieved from this registry

 This work was simulated to resemble a distributed architecture, however this architecture

was not across the Internet but in a laboratory setting. Hence, the traffic results would not

reflect a scenario wherein other forms of network traffic exist other than the SOAP requests

and responses generated by the simulation

1.7. Structure of Dissertation

The remainder of this work is structured as follows:

Chapter 2 presents a review of the work that has been done in addressing some of the concerns in

web services evolution and brings to light some lessons that can be learnt from other disciplines

in IT that can be modified and adapted to web service evolution. Chapter 3 gives a description of

the running scenario around which the research method was applied. This is the running scenario

that is referred to thereafter in the chapters that follow. Chapter 4 presents the model that was

proposed in managing the evolution of a web service and the design criteria behind this model.

The validation of the model, and the evaluation thereof, are presented in Chapters 5 and 6

respectively, to show the technical feasibility, and applicability of the contracts-based proxy

12

model. The economic implications of the contracts-based proxy approach are also discussed in

Chapter 6. Chapter 7 concludes the dissertation and summarises the findings from the work, and

the possible future directions to extending and improving the work are also briefly discussed.

13

CHAPTER TWO

2. BACKGROUND AND STATE OF THE ART ANALYSIS

This chapter aims to achieve the first objective stated in Section 1.5 of Chapter 1, which is to

establish how contracts can be incorporated into the management of service evolution.

Establishment of how contracts can be employed in service evolution could enable us to determine

the mechanisms to be developed as stated in the remaining two objectives of this work. This

analysis helps us respond to the first research sub-question by picking out and drawing lessons

from other disciplines in IT that can be adopted and adapted in addressing some of the evolution

concerns in web services.

 In step with the chosen research methodology as established in Chapter 1, Section 1.5, design

science research methodology phase 2, is the problem identification phase in which the gap that

exists in the work and accomplished so far was identified, to the best knowledge of the author.

2.1. Web services and SOA

Over the years, services have become the building blocks of distributed applications and systems

(Gu and Lago, 2011). One of the main reasons why services are now a more preferred option for

distributed systems than networked legacy systems is because they offer a common interface and

a common set of standards that enable interoperability across organisations that need to exchange

information (Berners-Lee, 2009). To complete a business task, businesses offer each other services

that perform subtasks of a business transaction and this is referred to as a business process. A

common interface that is publicly available means that more businesses can integrate and share

resources to complete a business process. This also brings competition and flexibility in choosing

whose services to use, thus opening up a whole world of possibilities in service integration and

14

service delivery. SOC facilitates the interoperability of the services across organisations and across

different software and hardware platforms, removing the barriers to information exchange in this

networked and growing worldwide online economy (Bhuvaneswari and Sujatha, 2011).

The maintenance activities and evolution in SOC systems are made complex and challenging

largely due to the distributed nature of SOA (Hägg et al., 1996). The services comprising a

distributed system may not only reside on different servers in an organisation but may be across

organisations, placing the administration of some parts beyond the control of any particular

organisation (Fokaefs and Stroulia, 2012). Due to enterprise competition, the key to remaining

competitive lies in an organisation’s agility to respond to a fluid competitive environment

susceptible to an ever changing set of stakeholder requirements and expectations (Govardhan and

Feuerlicht, 2009). Responding to changing requirements and being proactive or innovative on the

part of any service provider means that the services they offer would have to change to meet the

expectations of their service requestors.

SOA is described as a business enabler providing easy composition of distributed applications,

software reuse, business agility and rapid and low-cost development (Bloomberg, 2015). SOA is

an architectural approach to addressing problems of integrating different enterprise legacy systems

in closed environments and minimizing the dependencies between them. In reality, these systems

would have been developed at different times, by different people or organisations for different

reasons using different technologies and programming platforms and languages and for varying

sets of end-users (Khadka et al., 2013). SOA enables these systems to interconnect and share

information across the Internet in a standard way understood by humans and more importantly, by

machines. A SOA implementation being platform and language independent implies that different

systems interacting through the Internet via messaging can be grouped together to complete

15

complex business processes, thereby allowing for extensive software reuse in a now distributed

environment (Lewis et al., 2005). SOA implementations can thus use other available services

online without having to develop new in-house applications to accomplish the same business

process and this speeds up development-time and cuts down on development budgets (Ren and

Lyytinen, 2008). SOA enables reuse of existing platforms and services thus emphasising business

value as opposed to the technologies underlying the implementation thereof.

The basic Service Oriented Architecture depicted in Figure 2.1 has three components

(Registry/Discovery Agents, Provider, and Consumer/Requestor) which are related by a set of

operations, commonly summarised as the Publish, Find and Bind/Interact operations.

Figure 2.1: The Basic Service Oriented Architecture (“Web Services Architecture,” n.d.)

Following the basic service oriented architecture depicted in Figure 2.1, Figure 2.2 shows the

relationships between the entities involved. For example, Figure 2.2 shows that a person or

organisation provides or owns a service. Another person or organisation owns a consumer which

16

uses the service and the consumer is a service requestor agent. The service has a service description

which is housed or published in discovery agencies. The service description defines the service

interface and the messages that need to be passed in order for a consumer to use the service. The

service executes an action, resulting in a response message that is returned to the consumer.

Figure 2.2: The Service Oriented Model (Booth et al., 2004)

A typical implementation of a SOA can be in the form of a web service. A web service can thus

be described as any piece of software that makes itself available over the Internet and uses a

standardized XML messaging format (Alonso et al., 2004; Lippert and Govindarajulu, 2015).

There is no one specific definition of what exactly a web service is as this term may mean different

17

things to different people (Berners-Lee, 2009), and various definitions have been given. A web

service can be summarised as being any service exhibiting the following characteristics:

 Is not tied to any operating system or programming language

 Can be invoked over the Internet

 Is self-describing

 Can be discovered online

There are two kinds of web services, Representational State Transfer (REST) and Simple Object

Access Protocol (SOAP) (Khan and Abbasi, 2015; Mulligan and Gracanin, 2009). These present

a method of communication mainly between devices over the Internet. SOAP defines a set of rules

for the XML messages that are exchanged between systems using various protocols, such as Send-

Mail Transfer Protocol (SMTP) and Hypertext Transfer Protocol (HTTP). Since HTTP and SMTP

are unblocked on most firewalls and used as standard ports, SOAP needs no special

reconfigurations to tunnel across firewalls.

On the other hand, REST presents an architectural style in which each object is represented by a

unique Uniform Resource Locator (URL). REST uses the POST, GET, PUT, DELETE, and

HEAD standard operations in HTTP to manipulate the contents of the objects. REST is considered

lightweight and easy to build whereas SOAP is easy to consume and adheres to a contract.

For simple smaller Application Program Interfaces (API), and faster results with a lower learning

curve, REST would be ideal, but for more complex systems that need to be exposed to the outside

world, SOAP is more useful as it is regulated by standards that are globally accepted (Mulligan

and Gracanin, 2009; Wagh and Thool, 2012).

18

Following the Service Oriented Architecture, although consumers bind to the service, the service

provider has no full knowledge of all the consumers using the service, and this brings a new set of

service maintenance and evolution challenges (Kajko-Mattsson et al., 2008). An improperly

planned maintenance activity on a service or an update that takes a service from a service state

from up to down or a service change that changes the structure of the messages to be exchanged

between systems. These are just a few examples of maintenance and evolution activities that can

have far reaching and potentially disastrous consequences for the consumers of that service

(Kajko-Mattsson et al., 2008).

2.2. SOAP Web services

SOAP is an XML-based protocol that is used to exchange information among web services. SOAP

was developed to address the limitations of the conventional distributed communication protocols

such as DCOM, Java/RMI and other application-to-application across-the-Internet

communications. SOAP facilitates interoperability in a distributed architecture and is platform

independent, making it accessible and available to a wide range of programs. SOAP messages can

be transported across the Internet via a number of protocols, for example, HTTP, SMTP and Java

Message Service (JMS) (Papazoglou, 2008a).

SOAP embodies the following advantages which make it popular with web services (Tsalgatidou

and Pilioura, 2002):

 SOAP is based on XML, making it simple and easy to parse

 SOAP easily passes through firewalls without the need for firewall reconfigurations as it

uses HTTP / SMTP whose ports are permitted on most if not all firewalls

19

 SOAP uses open standards. The use of STANDARDS implies that it conforms to some set

of rules making it extendable and easy for the community to support

 SOAP is the most widely accepted standard and is portable. It can be used on any platform

from high capacity server machines to limited profile devices

SOAP web services are described using the WSDL, which defines the available functions and how

information as SOAP messages can be transferred from the requestor to the service provider and

vice-versa. WSDL was standardised by the World Wide Web Consortium (W3C) and has wide

acceptance from vendors and developers alike (Jepsen, 2001). The WSDL is considered the

interface of a web service and clients need to know the interface in order to know how to invoke

the services. Like SOAP, the WSDL is also written using XML, making it parse-able. Typically

WSDL files are stored in a UDDI where they can be found by the clients who want to subscribe to

the services.

2.3. Service contracts

In Section 2.1, the WSDL was introduced and briefly described as the interface of a web service

that contains the functional and non-functional characteristics and how information may be

transferred between interacting services.

Terms that have been used to define a contract in the social context include:

a) A promise to perform

b) Terms and conditions for performance

c) Agreement with specific terms between two or more entities in which there is a promise

to do something in return for a benefit

20

These descriptions of a contract are not too dissimilar to what a WSDL describes. The WSDL

specifies a contract that a client accepts in order to invoke a service correctly and what the service

provider promises to deliver upon correct invocation of the service offerings (Papazoglou, 2008).

For any pair (provider | consumer) to interoperate successfully there must be a common

understanding and agreement of what the provider offers and what the consumer can use. The

WSDL document is considered the de facto standard for writing web service contracts (Erl et al.,

2008). The formal arrangement of the contents of a service, the price, the expected protocols for

integration and quality aspects of a service are presented in the form of a contract. A contract is

therefore defined as the service schema elements that are expected by the consumer and offered

by the provider (Papazoglou, 2008a). The XML Schema expresses the shared language for

defining the structure of documents and helps machines to carry out rules made by people. Web

Service (WS)-policy specifies the behavioural expectations of a service and can be used to extend

the contract provided by the WSDL and Schema (Erl et al., 2008). Service Level Agreements

(SLA), although outside the scope of this work, help establish the conditions and verifiable

qualities of a service that a service provider should meet (Bianco et al., 2008; Ruz and Baude,

2010). When a service consumer accepts the contract and can implement all parts of the contract

to achieve all possible interactions with it, then the consumer is said to be compatible with the

service.

2.3.1. Contract compatibility and Service Design

The notion of contracts gives a mechanism to define compatibility (Papazoglou, 2008b). It is

necessary to maintain the same contract running for as long as possible in order to support existing

consumers. It is also necessary to ensure that when services are developed and deployed they work

properly (Bordeaux et al., 2005), and that consumers can use the service on the basis of the contract

21

for that service. When are two contracts said to be compatible? Two contracts are compatible if

they work together with no need for alterations to achieve interoperability. Compatibility has two

variants, namely backward compatibility and forward compatibility, which need to be incorporated

in web service design in order to sustain manageable web service evolution (Wilde, 2004). This

calls for proper design of web service contracts. Proper evolution is not supposed to be destructive

to current consumers and hence must remain backward compatible. When a contract evolves in

such a way that there is no common feature maintained between subsequent versions, this is an

altogether new service contract and not an evolved product.

2.3.2. Backward Compatibility

Already existing service consumers and service providers develop trust (Malik and Medjahed,

2010) when they become coupled by consumers binding to a web service. Backward compatibility

implies that a newer web service version can interpret correctly and respond to the requests sent

to it from older consumers. Developers therefore strive to maintain backward compatibility to

avoid negative consumer impacts. This is the easier variant to implement (Wilde, 2004). That is to

say, the new version of the contract has to continue to support consumers designed to operate with

the old version of the contract which the consumer was using in a compatible manner, thereby

maintaining compatibility and uninterrupted service in an evolved web service.

2.3.3. Forward Compatibility

Forward compatibility is difficult to incorporate in service design as there is no easy way to predict

future changes that will need to be made (Karus, 2007). So contracts can be implemented with

some degree of forward compatibility by adding optional elements. This allows for the existing

22

provider contract to seamlessly interoperate with a new version of a consumer with no

modifications of the provider contract in any way.

2.4. Lehman’s Laws of Evolution

Around 1980, M.M. Lehman grouped large programs into three types, giving rise to the SPE

scheme (Lehman, 1980). This grouping was a classification of programs according to the

relationship they have with the environment they run in. Studies reported in Lehman’s work

culminated in the Laws of software evolution as listed in Table 2.1. Having identified that web

services are classified under E-type systems, it was also noted that not all the Laws of evolution

will apply to web services, hence a selection of the Laws that were found to apply in this research

work are as follows:

Law 1: Continuing Change –Once they have been published, web services are expected to undergo

continuous changes to satisfy the consumers’ needs. The changes are not limited to those coming

from consumers but also from within management and the development teams in a bid to offer

both improved quality and competition in a growing global market.

Laws 2 & 6: Increasing Complexity and Continuing growth: As long as the web service is

improved and not replaced, it is evolving, which in turn makes the web service increasingly

difficult to maintain and manage. The complexity of the evolved web service, is more than that of

the original implementation and composition. In general, as web services are improved upon, they

continue to grow and, more likely than not, the lines of code also increase.

Law 5: Conservation of Familiarity: As web services evolve for any given reason, there needs to

be something common that is maintained which a consumer can identify with. During the lifecycle

of a web service there may be updates, deletions and changes but once this gets to a point where

23

consumers cannot identify anything of the previous familiar web service, then it is no longer

evolution but is considered as a replacement of an existing web service.

Table 2.1 presents a summary of the Laws of evolution from which the Laws that apply in the

context of SOAP web service evolution were identified.

Table 2.1: Summarised Laws of software evolution (González-Barahona et al., 2014).

No. Brief Name Law

I

1974

Continuing Change E-type systems must be continually adapted else they

become progressively less satisfactory.

II

1974

Increasing Complexity

As an E-type system evolves its complexity

increases, unless work is done to maintain or reduce

it.

III

1974

Self-Regulation E-type system evolution process is self-regulating

with distribution of product and process measures

close to normal.

IV

1980

Conservation of

Organisational Stability

(invariant work rate)

The average effective global activity rate in an

evolving E-type system is invariant over product

lifetime.

V

1980

Conservation of

Familiarity

As an E-type system evolves all associated with it,

developers, sales personnel, users, for example, must

maintain mastery of its content and behaviour

[leh80a] to achieve satisfactory evolution. Excessive

growth diminishes that mastery. Hence the average

incremental growth remains invariant as the system

evolves.

VI

1980

Continuing Growth The functional content of E-type systems must be

continually increased to maintain user satisfaction

over their lifetime.

24

VII

1996

Declining Quality The quality of E-type systems will decline unless

they are rigorously maintained and adapted to

operational environment changes.

VIII

1996

Feedback System (first

stated 1974,formalised as

law 1996)

E-type evolution processes constitute multi-level,

multi-loop, multi-agent feedback systems and must

be treated as such to achieve significant

improvement over any reasonable base.

2.5. Literature Review

2.5.1. SOA governance (Service Change-oriented Lifecycle

and Evolution)

SOA governance has been proposed as an approach to manage the evolution process of web

services, where Information Technology (IT) governance refers to management and control

mechanisms to ensure that standards, procedures and Laws are followed (Witte, 2013; Brown et

al., 2006; Schepers et al., 2008). SOA governance extends IT governance and focuses on the life-

cycle of services, metadata and composite applications in SOA (Brown et al., 2006). The SOA

governance process is aimed at managing the SOA lifecycle and should be applied through the

four stages of modelling, assembling, deploying and managing a SOA. IBM’s SOA governance

and management method approach is based on the SOA governance process, seeking to engage

customers in identifying reusable IT governance elements to build a new model (Brown et al.,

2006). The IBM approach seeks to establish an iterative governance method that a customer will

follow to verify whether services and processes meet the objectives for which they are

implemented. Schepers et al., (2008) also advocate that SOA governance is not just a process but

should be an ongoing alignment of strategic goals and the use of gained experience. With respect

25

to web service evolution, their approach focusses on controlling the service lifecycle through the

use of service registries imposing validations on a service before it is published to avoid the

cropping up of rogue services which cannot be governed (Schepers et al., 2008). Although they

acknowledge that there is complexity in the change management process in SOC and that

consumers would need to be allowed time to switch to a new version of a service, there is no

mention of how the customers will be informed and how their provider will be sure that no one is

still using the older service versions. This might mean the older services still being maintained

longer than the time Schepers et al., (2008) called “temporary”, in order to avoid service

disruptions to the unknown consumers who are still using the older service versions. Other authors

view SOA governance as the processes, policies, structures and practices that are in an IT

governance program which, if implemented correctly, will enable an organisation to deliver

reliable and high quality services (Afshar et al., 2007; Bernhardt and Seese, 2009; Witte, 2013).

SOA governance is identified as important in delivering an effective SOA, but does not directly

address the issues in evolution of web services in SOC such as how exactly a web service is to be

evolved and versioned while maintaining consistent service to existing consumers.

In complex Service Based Systems (SBSs), the services will evolve to meet changing user

requirements and execution environments and what may hinder this is poor implementation or

evolution. Evolving to meet the need for changing requirements may result in poorly implemented

solutions, referred to as antipatterns. There are several solutions that have been proposed relative

to some identified antipatterns by authors at enterprise level (Krai and Zemlicka, 2007). Multi

service and Tiny service have been identified as common antipatterns and found to be the main

cause of SOA failures. Moha et al., (2012) proposed an approach with framework support for

detecting these antipatterns. They reported that their solution had a precision of more than 90% in

26

detecting SOA antipatterns (Moha et al., 2012). Their work ultimately contributes to the ease of

maintenance and evolution of service based systems by assessing the design and quality of service

metrics. Their approach looks at possible ways that SOA may fail, but does not present a solution

to maintaining web services consistently while they evolve.

When web services are evolved by the service provider, they have an impact on the consumers of

that service. Some customers may be forced to upgrade their consumers, some may discontinue

completely and others may have unforeseen business impacts; it is therefore prudent to investigate

the impact of the changes to determine how best to maintain web services with minimal or no

disruption to consumers. Treiber et al., (2008) investigated the changes of web services focusing

on a single web service as the atomic building block for a composite business process fulfilling a

web service. They argue that evolution of web services needs to be looked into from a holistic

point of view as opposed to the focus of some approaches such as WSDL and WSDL-S (Akkiraju

et al., 2005) which single out interface related issues. Treiber et al., (2008) identify the

stakeholders that influence modifications on web services and describe the modifications in

interface, implementation, requirements and quality-of-service for web services. This work does

not directly address the evolution itself but sets a foundation for the process of web service

evolution and identifies the changes that can occur in a web service as a whole.

Papazoglou, (2008b) also presents a theoretical approach to identifying and handling shallow

changes, and a change oriented service life cycle methodology in SOA for deep changes. Web

services can be offered to a specific set of customers where the provider knows the consumers who

are using the service. Thus when service changes are effected they are localised to affecting the

specific clients to that service and Papazoglou (2008b) refers to these as shallow changes. He

reports that shallow changes can be handled through service substitutability, compliance and

27

service compatibility between versions. However, once services go beyond a point where they can

have compatible change other mechanisms have to be employed that can ensure the continued

support of old consumers while new service versions are introduced. Web services can also be

published publicly, where in a typical SOA implementation consumers find and bind to that web

service without any formal means of contacting the provider such that the provider is unaware of

the actual customers using the service. This brings about complications in that the provider may

not know the consequences of making a service change during evolution. Papazoglou (2008b)

classified these changes as deep changes which can disrupt the whole business chain. In order to

resolve or minimise the effects of deep changes, he introduced the change-oriented service

lifecycle methodology to govern the changes as they occur. His work provides the theory which

can be employed in practice to implement a model that may effectively manage the evolution

process of a web service.

Espinha et al., (2015) acknowledge that there are no specific industry standards being followed by

organisations for evolving web services and that the rate at which providers change their service

versions and the support thereof, is not uniform. Thus Espinha et al., (2015) made the following

recommendations for service providers to ease the burden of maintenance on client developers:

 Services should not be changed too often. (For example, Facebook was found to push

breaking changes on a monthly basis)

 Old service versions should not stay in service too long as client developers tend to relax

and not bother to apply the changes

 Use the technique of blackout testing such as the one employed by Twitter

 Examples of how to interact with the new versions of the web services need to be provided

by the providers

28

The afore mentioned recommendations, if followed, provide value to industry and client

developers, there still remain challenges such as, competition amongst providers which will

necessitate for the continual improvement of existing services thus dictating the rate at which

service versions will inevitably be introduced. Another challenge may be that there will be a need

to maintain the service for longer periods as was the case where version 2 of Google Maps which

had to be maintained for more than 3 years as opposed to the initial 1 year period for change that

had been established by Google (Espinha et al., 2015). This calls for a solution that is versatile and

can accommodate both the provider’s need to change and provide support for client developers

who do not want to be forced to upgrade their applications but wish to do it in their own time and

out of their own need.

2.5.2. Service Evolution Frameworks

Frameworks are the foundations or blueprints upon which predictions about the relationships

between variables are based, while methods are the procedures that can be followed in

implementing a research solution to a problem. Mosser and Blay-Fornarino,(2013) proposed a

general framework they called the Activity meta-moDel suppOrting oRchestration Evolution

(ADORE) framework to support process design and application of evolution on large processes,

and detecting interference between the components. ADORE focuses more on the evolution of

web services from a compositional perspective but does not drill down to the individual unit web

services that are used in putting together the composite web service. Another theoretical

framework was proposed for controlling the evolution of services that deal with changes caused

by structural, behavioural and quality-of-service levels (Kajko-Mattsson et al., 2007). In their

work, Kajko-Mattsson et al.,(2007)identify the roles that are played by the teams in an organisation

that are required for SOA-evolution. In their framework, they identify the SOA roles of evolution

29

as the responsibility of the SOA Project Manager and the Project members but do not explicitly

highlight the actual aspects of service evolution that the manager or the members would be taking

care of.

Lessons can be drawn from literature that may not necessarily be addressing services evolution

concerns. For instance, combining Software Product Lines (SPL) and SOA has seen some

techniques being applied to achieve high levels of reusability and, flexibility in software, enabling

software configuration and customization (Dlamini et al., 2013; Murugesupillai et al., 2011).

Variability evolution analysed in SPL can also be modified and extended to variability evolution

in SOA. Other approaches reported in the literature addressing evolution include feature and

variability management, where these concepts that are being extended from SPL to SOA.

COVAMOF was developed as a framework for describing variability in SPL (Sinnema et al.,

2004), which Sun et al.,(2010)used to manage variability in web service-based systems. Another

example of SPL concepts being extended to manage evolution through variability is the feature

modelling technique. Feature modelling was also extended to managing and modelling web

services in which feature diagrams are used to present the commonality and differences in features

highlighting variability (Robak and Franczyk, 2003). We maintain however that, although

evolution can be addressed by maintaining variability in web services from a composition

perspective, this only addresses evolution of the composed web service and not the actual unit

services that make up the whole. Neither does the work on variability management address service

disruptions to consumers as each service evolves and how the effects can be minimised if not

eradicated.

The Service Evolution Management Framework (SEMF) addresses issues to do with information

provision and management while keeping track of web service changes as evolution occurs

30

(Treiber et al., 2008). SEMF monitors evolution changes and analyses the dependencies among

the changes implemented in a web service. Their work categorises some types of changes and

sources of the changes, for example, the interface changes caused by the developers when they

add/remove operations in the WSDL. Their work highlights SEMF as a useful web service

information management tool but it is limited to monitoring web services for management and

does not give information on how to implement and deal with the changes, or how to minimise the

effects of evolution on consumers.

Frank et al., (2008) describe their approach of hosting versioned web services which introduces a

proxy to receive a request and redirect it to the correct service implementation. Their work shields

the consumers from service disruption while new versions of the web service are implemented.

The proxy acts as an intermediary between the consumers and the versioned service

implementations, rerouting the service requests to the intended implementation. For each version

of the web service that is implemented, a new proxy associated with that new version is

implemented, and during what Frank et al., (2008) describe as the transition states, multiple

implementations of the service versions are maintained. While this work addresses the challenge

of making version changes transparent to consumers, it does not take into account the economics

of managing the multiple service versions that need to be maintained, such as what resources will

be required to run the setup of multiple proxies increasing with each new version implementation

and how much labour in terms of man-months the implementations will take. Neither does it take

into account the challenges that are associated with maintaining the multiple proxies as the number

of web service versions grow, given that the authors acknowledge there is no prescribed or explicit

versioning strategy that is universally followed by providers.

31

The chain of adapters proposed by Kaminski et al., (2006), promises to address the concern of

backward compatibility in an evolving web service scenario. Perhaps the best way to describe the

chain of adapters is by showing it – Figure 2.3 presents the solution proposed by Kaminski et al.,

(2006). As apparent from Figure 2.3, the challenge existing as an essential constituent (inherent)

of the chain of adapters approach should become evident – i.e., as the web service versions

increase, the adapters increase. The distance from the interface v1 also increases along the chain,

degrading the quality of service offered to the consumers still binding to that v1 interface. It is also

important to highlight that there are maintenance challenges that come in to adjust and update each

adapter along the way when a change that affects all consumer versions is to be implemented.

Figure 2.3 The chain of adapters technique (Kaminski et al., 2006)

The chain of adapters addresses some of the pertinent requirements in the maintenance of an

evolving web service in the light of independently developed, unknown and unsupervised

consumers. It maintains backward compatibility such that no old consumers relying on an older

web service version are forced to upgrade in order to remain serviced, until the web service is

formally withdrawn. The technique also employs a common data store across service versions in

32

an effort to make sure of the consistency of information served to consumers, this was felt to be

an implementation specific detail that need not be a concern in web service evolution. Kaminski

et al., (2006) also implement automation in the creation of the adapters forming the chain, helping

to ease administration of the adapters on the occasion of long chains of adapters. However, if the

adapters are across a networked setup, this technique suffers a potential high performance

degradation owing to the latencies not only in the network but also due to the operations in the

adapters themselves. Thus a more compact solution might be more useful in achieving better

results while managing the evolution of a web service effectively.

2.5.3. Service evolution methods and models

Zuo et al., (2014a) proposed a model-driven method to manage web services by managing

variability based on Model Driven Architectures (MDA). The service industry indeed needs tools

to support the actual evolution of the services they provide. Few of the works propose development

of support tools for SOA evolution (Zuo et al., 2014a). Zuo et al. (2014a) presented a model in

which they describe the stakeholders in a web service in SOC. In their model, they introduce a

service broker as having the roles of maintaining the registry in which services are published and

notifying the customers who are interested in the service, of the service’s changes as they evolve.

Consequently, customers are expected to upgrade their consumer instances upon receiving

notifications. This model is expected to work well in the case where customers are known to the

provider or where consumer agents are intelligent enough to continuously check the registry for

service changes in what is classified as shallow changes (Papazoglou, 2008b), but in the case where

customers are not known, the model will not be able to support the older consumers who rely on

the older version. Customers are forced to upgrade their consumer implementations in the case of

33

this model, which may cause unforeseen and unbudgeted-for development expenses, and that

would be a disservice to the customer.

Mingyan et al., (2008) proposed what they called the Service-Oriented Dynamic Evolution Model

(SOEM) to manage the dynamic evolution of web services. They argue that the concepts that had

been put forward showed that SOA was better at evolution than the traditional development

patterns as SOA added a service level uniting the business logic and the technology levels.

Evolution where the system need to restart in order to accommodate an evolution update is referred

to in their work as static evolution and hence they usher in SOEM. SOEM is described as

dynamically evolving on the basis of a user request relying on a service bus to decide on the

evolution of the web service. When the evolution is completed other users will then see the evolved

service. SOEM does not, however, reveal how the evolution will be controlled since there is a need

to have someone or something in place to make sure the evolution requests from users maintain

the evolved product in a consistent manner. The evolution of the service also needs to be in such

a manner that other users are not affected negatively, while it is mentioned in their work that, once

a service is evolved, all other users see the new service. This poses a challenge to users who may

not wish to upgrade and rely on the older state of the service.

Most solutions to web service evolution that researchers have provided contribute to varying

aspects of the bigger picture which includes service providers, customers and infrastructure (Zuo

et al., 2014b). Zuo et al., (2014b) proposed a change-centric holistic model for managing web

service evolution which factors in the changes that have been made to a service, when the changes

occur and how to apply the changes including performing client adaptation to the changes

implemented. In their work they employ a similar technique to the chain of adapters, Kaminski et

al., (2006), and improves upon the chain by limiting the number of endpoints in the chain. This

34

work however assumes that they have control over the customer implementations, which may not

be true in a SOA deployment.

Compatibility is key to the usability of any service. If a service is evolved from one version to the

next, the newer version needs to remain compatible with the service customers otherwise service

is lost (Vara et al., 2012). Vara et al., (2012) present a domain specific language toolkit that has

the reasoning to determine the compatibility of subsequent service versions. They compare abstract

service descriptions and conclude the compatibility on the basis of similar elements and

relationships being in both versions. Primarily, the work presented by Vara et al., (2012) reduces

the work that has to be done parsing WSDL files to look for compatibility and provides a good

foundation by which compatibility can be ascertained. However, their work focusses on non-

breaking changes between services, whereas breaking changes also need to be addressed in an

evolving web service implementation. In conclusion, their work gives a possible future research

direction of using service contracts to achieve flexibility in evolving services resulting in

compatible outcomes.

2.5.4. Contract Evolution

As web services are updated, and new functionality is implemented, there can be reduced quality

in the service offerings. For instance, the size of the request message may increase, and that

impacts the processing time for each request. Gorinsek et al., (2003) discussed a methodology for

managing the quality of service of components in an evolving system. Their methodology uses

component contracts to determine the impacts of an update on the running implementation and on

the resources available for the program. Using contracts provides the information on how

components behave and their expectations to its neighbour components and the amount of

resources the component requires. This helps in the area of dynamic systems adaptation and

35

evolution where a component can choose services from another component on the basis of

understanding the component that can complete the task within the available resources and

acceptable quality of service parameters. Though this work was not directly concerned with web

service evolution, it extends the notion that evolution of a software service can be achieved and

managed through the contract and Andrikopoulos et al., (2012) formalised the use of contracts in

determining compatibility of web services.

Contracts promote the separation of implementation and description of the web service, thereby

enhancing the loose coupling feature in a SOA implementation. Similarly in legacy systems,

contracts enable systems to be designed and developed in a compositional way which ultimately

improves flexibility in an evolving system (Andrade and Luiz, 2000). In their work, Andrade and

Luiz focus on how component-based systems can leverage the notion of a contract in achieving

evolution of the system by replacement and addition of contracts without necessarily changing or

affecting the whole system. The contract, in their view, consists of classes and the roles they play

in the system and the effect description of the behaviour that the other components should expect.

Though it is a very useful notion to use contracts in managing compositional evolution while they

(Andrade and Luiz) claim to have increased levels of flexibility in the development process on

component-based systems, their focus is on evolution by contract of a composed system. There

still remains a need to focus on managing the evolution of the individual components themselves

which the contracts describe.

Evolution of web services has also seen attempts at evolution management through versioning.

There are several versioning strategies that have been described in the literature, each with its

advantages and disadvantages (Erl et al., 2008), for example:

36

 Strict versioning strategy, which disregards backward and forward compatibility but gives

full control over contract evolution. Any change in the contract would imply a new version

has to be implemented

 Flexible versioning strategy, which considers maintaining backward compatibility

supporting existing consumers, but the changes are irreversible as a reversal would bring

about incompatibilities

 Loose versioning strategy, which has policy assertions that are optional and wildcards in

the contract design allowing for an expansion in the acceptable messages and data content.

Though this strategy caters for both backward and forward compatibility, it presents

challenges with message validation since some features are optional and leave the

validation to be handled by the implementation of a service

Contract versioning is not sufficient on its own to address the challenges of web service evolution.

It leaves challenges such as how version changes are to be communicated to consumers as these

consumers are not intelligent and are statically built and bound to a particular existing version.

Another challenge lies in deciding whether to maintain an older version and for how long in order

to maintain older consumers, then also determining the impact on consumers if the older version

support is dropped altogether.

2.6. Summary

Web services are experiencing an increasing infusion into the business environment. Web services

are taking over from legacy (in-house) systems running single business tasks to a service-oriented

environment where sub-tasks are subcontracted to services offered across the Internet from other

service providers. Composed services complete a business process by cooperating with other

37

providers across the world. This has changed the ways in which software is managed in the light

of the fact that not all of the service is offered by the same provider, hence there is a need to ensure

interoperability even after a services are changed or updated. These service changes may affect the

consumers relying on that service and disrupt business processes, resulting in possible huge losses.

In general, all the studies reviewed in this Chapter are not lacking in insight, contributing some

technology, method, framework or even tools, towards the management of evolving web services

in SOA. SOAP web services provide a convenient means for describing what the service offers

and how it can be used through the WSDL file which is the essential component of the service

contract. Consequently, the contract can be used to effectively develop web services and extend

the loose coupling in web services and legacy systems. Service versioning and contract versioning

help in managing the changing services but that still leaves the challenge of communicating the

changes to consumers who are unknown and independently developed.

Other approaches that have been proposed concentrate on the evolution of a composed system as

a whole, leaving the evolution of the web service, as a unit, to the provider. The challenge, again,

that remains in such approaches is that they do not address directly the effects of the unit evolutions

on the composed web service as a whole. On the other, hand there are authors who have looked

into unit evolution and proposed adapter approaches and multiple version hosting. These

approaches go a long way to maintaining uninterrupted services and maintaining backward

compatibility with the old consumers, yet they overlook the challenges and expenses incurred in a

real-world implementation of the suggested solutions.

It is in this light that the solution of a contracts-based proxy model for web service evolution

management can bridge the gap between the theories of contracts in evolution of services, the

maintenance of an evolving web service as a unit and the cost implications in terms of time, labour

38

and resources. In the following chapter, we describe a possible scenario in which the solution can

be applied.

39

CHAPTER THREE

3. RUNNING SCENARIO

This chapter introduces the running scenario which is used from this point on to show the

applicability of this work in real life. The goal of this work, however, is not to reinvent the wheel

in web service development but to manage the evolving web services, hence the running scenario

considered in this study is based on an existing SOA hotel reservation application that was

developed as a common platform case study by other scholars at the Department of Computer

Science, University of West Florida.

3.1. Introduction

It has been noted that software maintenance research does not have a standard case study that can

be used to develop research ideas and compare and benchmark solutions (Espinha et al., 2012).

Isolated research, though not entirely bad, reduces the rate of advancements in research. It is in the

light of this that this research work does not re-engineer web services used herein, but builds upon

an existing system and implements a versioned StockQuote services upon which the tests are

based. It is also well established in different fields that having such a standard case study system

brings many benefits in that it helps determine which approaches work best for specific problems.

For comparative results, there is a need for the use of a common case development and test

platform. A web services based hotel reservation system was developed and made freely available

as a teaching and research platform for Services Oriented Computing by the Computer Science

Department of the University of West Florida (Wilde et al., 2012). The web services based hotel

reservation system is an integration of mainly two applications; the hotel reservation and Currency

Exchange applications which were both implemented using PHP. The hotel reservation application

40

requires the Currency Exchange application, which provides the quotations for the exchange rates

on currencies. In the implementation of the web services based hotel reservation application for

this work, Currency Exchange implemented using PHP was replaced with the StockQuote web

service implemented using java. The StockQuote web service offers the same service of quoting

forex exchange rates, and more options were added as the StockQuote web service was upgraded.

It is upon the StockQuote web service application that the evolution of web services was

demonstrated and the model applied and evaluated.

3.2. Description of the Scenario

Today’s software development is largely composed and integrated through web Application

Programming Interfaces (APIs), with large API providers like Google, Amazon, Twitter and

Facebook allowing for programmers to interface with their systems through APIs which are

essentially web services. A study by Espinha et al., (2015) revealed that client developers face a

number of problems when web service providers evolve their services since there is no standard

policy governing the evolution thereof (Espinha et al., 2015). Twitter and Google were found to

use versioning while providing up to 2 years for client developers to migrate to a new service

version. Facebook, on the other hand, was found to push out breaking changes every 3 months

irrespective of who is affected, leaving client providers to face the consequences of these changes

on their own. Client developers had this to say: “Facebook continually alters stuff thus rapidly

outdating my apps” and “[…] [the biggest headache] is the never ending changes to the API”

(Espinha et al., 2015). Though Google gives up to 2 years for clients to upgrade, “if you have other

projects, if you have to make money on other projects, even in the two years it is difficult to find

time to implement [the changes]” (Espinha et al., 2015).

41

Picture a hotel reservation system. It sounds simple and appears to be just another software until

you look under the hood. The reservation system in this scenario is composed of multiple services

provided by various organisations all to orchestrate a business process of booking a room(s) for a

customer(s).

3.3. The Hotel Booking Service

The hotel reservations system is a SOA application which allows users to reserve hotel rooms in

any country from any of the hotels registered in the system. Using the reservations system, a

customer is expected to provide information required by the specific hotel. These details will

include full name, country of origin, credit card details, currency in which the client wishes to pay

and other relevant details such as contact details. When a customer chooses a destination country

and region, a list of available hotels, rooms and pricing is provided for them to choose from. If the

customer chooses a room and provides the duration of stay, the system invokes the StockQuote

automatically to provide the best exchange rate on offer from the banks that conduct currency

exchange. The system then computes the total to be paid in the local currency to the customer and

displays it to the customer for confirmation of transaction. The customer is given a limited amount

of time in which to approve the quoted pricing and book the room, as exchange rates fluctuate

quite rapidly in a trade period.

Figure 3.1 shows the SOA based hotel reservation application activity diagram in which the

customer chooses the location and room to book. In the solution implementation the assumptions

made are that:

 Hotels in various destinations are already registered as members in the reservation system

42

 Forex houses and banks that trade-in forex, are also registered in the system and their in-

house services are queried for quotations on the specific currencies in which the payments

to hotels will need to be made

 The StockQuote service is not limited to stock on trading floors but checks the registered

banks and forex houses for their offers in a particular currency and returns the best rate on

offer

 Once the customer confirms a booking the customer’s bank purchases the forex and makes

the necessary payments to the selected hotels

Figure 3.1 is a model for the logic that the implementation follows in booking a room. To use the

system, the customer fills in the online forms with their personal details and credit information.

The system validates the form input and displays a page for the customer to choose the location,

the duration of stay and the currency they wish to settle the payments in. Once the customer enters

this information, the systems invokes the StockQuote service and the credit worthiness check

service. The StockQuote service queries the registered forex banks and companies for the

exchange rate of the destination country and chooses the best rate on offer. The hotel reservation

system then receives the currency rate from the StockQuote service, displays the hotel rooms

available and computes the pricing in the currency chosen by the customer. If the customer chooses

a room, they can confirm the reservation of their room and the system initiates with the banks, the

purchasing of forex and the settlement of the payments with the chosen hotel. Had the credit card

been declined or invalid, the transaction would be cancelled and the customer would be informed,

otherwise the hotel generates a receipt and issues it to the customer.

43

Figure 3.1: Hotel Booking Service activity diagram

The StockQuote service was developed independently of all the other services listed in this

composite SOA hotel reservation system. The hotel reservation system is a consumer of the

StockQuote web service as it relies on the StockQuote for currency exchange rates in order to

quote and bill the persons making reservations. The StockQuote service is not only useful for

providing current exchange rates for the hotel reservation application but can also service other

consumers with slightly different needs such as stock history and real-time quotes as opposed to

static quotes. The possibilities of the service being modified to address such requirements from

other users outside of the hotel reservation application, brings about the challenges of evolving the

StockQuote web service consistently while maintaining service to the hotel reservation application

as an already existing consumer.

44

3.4. The Stock Service

The StockQuote service is queried to return the current exchange rate which each bank is offering.

However, seeing as this is a service used by a variety of consumers who have varying needs and

for all intents and purposes varying uses for the requested information, they have different

expectations of the service offering. Investors increasingly assess stocks to decide when to trade

and when to invest. This is being done online via limited profile mobile devices, smartphones,

computers and tablets more than print media as the value of stocks change several times in a day

as trade progresses. Print media offers stock quotes that are correct as at the end of the previous

day close of trade, while some websites may offer static delayed stock quotes and last trades prices,

while there is also the possible extension of offering real-time stock quotes to subscribers. The

variations can be viewed as changes that can be effected on the StockQuote services and this work

investigates the evolution of web services in this context.

3.5. Evolution Scenarios

To model the evolution of the StockQuote service, the service in this work was evolved into at

least three versions for demonstration purposes, which were used for investigations into web

service evolution. StockQuote version 1.0 was the first implementation and is a version which

returns the value of the currency/price to the clients after receiving the stock symbol as the

invoking parameter. Figure 3.2 shows a sample client request message invoking the web service

with the stockSymbol “zar” and receiving the static price of “110.25” as the value for the day. A

service client may request real-time quotes instead of the static standard ones as investors may

need to make business critical decisions based on current information. This prompted the evolution

of StockQuote service version 1.0 to version 1.1 which was enhanced so that a client can send an

additional parameter indicating that they need real-time quotes.

45

Figure 3.2: Client request and response for StockQuote version 1.0

As shown in Figure 3.3, the service at version 1.1 returns the minimum and maximum value of

that stock symbol on the previous day after receiving the optional realTime value of “True”.

Without the optional value, the web service at version 1.1 would treat the request as a version 1.0

request, responding with only the price information. The version 1.1 has to process a slightly bigger

payload and send back a larger payload, the result of which is discussed in Chapter 6, Section 6.3

of this work.

Figure 3.3: Client request and response for StockQuote version 1.1(Chiponga et al., 2014a)

There is a further enhancement in the next evolution step of the StockQuote service where in

addition to the minimum and maximum stock values, Figure 3.4 shows service version 1.2 also

having an optional parameter that returns earnings related information to the service clients. This

46

additional information shows an increased payload in the web service response, inevitably further

degrading the quality of service.

Figure 3.4: Client request and response for StockQuote version 1.2

There is a contractual agreement between the service provider and the service customers that the

service upgrades are only available to the service clients that have been upgraded or implemented

using the contracts (interfaces descriptions) matching the upgraded service. The old clients will

continue to function in the normal manner even if not upgraded.

The hotel reservation system used in this scenario can be likened to Airbnb, which is a large

community online marketplace connecting travellers with accommodation facilities in over 190

countries and 34 000 cities and has a listing worldwide of over 1,5billion (“Airbnb,” n.d.). Catering

for large volumes of people such as the ones implied by the figures stated by Airbnb, would need

careful and flawless management for the system as it evolves. Imagine the possible ramifications

that could result from failed system evolution, and the companies, countries and people that could

be affected.

47

Though the web service evolution as described in this chapter offers economic value to the service

provider by allowing for a larger base of different subscribers and to the customers by offering

updated information and options, if a service version is discontinued by the provider there are

service disruptions to the consumers relying on them and losses that may be incurred by the

consumers, hence the evolution process of a web service needs to be carefully managed. Chapter

4 discusses the design of the model to manage the evolution of a web service.

3.6. Summary

The running scenario that will be referenced through the remainder of this work was described in

this chapter. The scenario shows how developers of APIs (web service consumers), constantly face

challenges when service providers upgrade their web services. The hotel reservation scenario

described in this chapter consists of web services, one of which is the StockQuote service. The

StockQuote service was upgraded, resulting in three service versions that still require support to

be maintained for the sake of the consumers using these versions. The remainder of this work

focusses on building a model that can be used as a solution to the challenges associated with the

maintenance activities of these service versions. Chapter 4 describes the design and reasoning

behind this solution.

48

CHAPTER FOUR

4. DESIGN OF THE CONTRACT-BASED MODEL

Chapter 3 described a scenario that presents some of the challenges that are experienced by

developers maintaining their services and applications that rely on web services. A request to make

payments in the hotel reservation application would fail if the underlying web services were

removed or changed in an incompatible manner to the current implementation of the reservation

application. This chapter presents the design of the solution that is implemented in this research.

Epistemologically, a research activity need to have a sound basis in theory and knowledge to

ensure that rigorous research is done (Olivier, 2009). If a project follows a generally accepted

perspective, pattern or model in a particular discipline, it is highly likely to be qualified as research.

Sometimes, common sense leads researchers to assume that no tests are needed, but this causes a

bias towards what the researcher would think is obvious. Following a scientific methodology

attempts to minimize the influence of the researchers’ bias towards a particular outcome of the

work. There is no single universal scientific method, but that the researcher has to tune the

processes to the type of problem under study. There are two main types of research approaches to

a problem, quantitative and qualitative research. Quantitative approach generates data that can be

quantified while qualitative focuses on verbal data as opposed to numeric values. This research

work falls mainly under the quantitative experimental research method, which involves standard

practices of manipulating quantitative data that can be analysed and repeated or nullified.

However, it also uses some elements of qualitative approaches. Hence, one can correctly classify

it as a blended approach.

49

Research in computer science predominantly follows the following methodologies: Modelling,

Theoretical and Experimental Computer Science, computer simulation and controlled

experiments. This research work combines theoretical and experimental computer science, within

which, the paradigm followed by this research is design science. Innovative design calls upon

design science research, where the focus is on developing artifacts to solve problems in the real

world. Design science has been used mostly in Computing Science and Engineering to design

artifacts such as algorithms, process models and human/computer interfaces, with some leading

research institutions like Stanford’s Centre for Design Research, MIT’s Media Lab and PARC in

Xerox (Haynes and Carroll, 2007) employing the design science research methodology (Hevner

et al., 2004).

This chapter presents a model which is the design science artifact that will be used in minimising

the effects of service change in response to the second research question. In this model, a record

of at least two previous service contracts is maintained as proof of the concept that a service has

evolved according to Lehman’s Laws of evolution summarised in Table 2.1. Hence, through these

older contracts conserving familiarity (law number 5) one can trace the evolution of the service

over time.

The literature survey conducted in this research revealed that there is no standard practice in the

industry that every web service provider is legally required to follow. As a result, new versions of

services come and go as fast as the provider dictates, irrespective of the clients they serve.

Organisations such as Google can afford to maintain older versions of a service running for longer

periods extending for up to 3 years or more (Espinha et al., 2015), but this will not hold true for

all application providers. However, with the aid of a suitably designed proxy, multiple versions

can be maintained by any organisation for longer periods without needing extra resources.

50

For illustration purposes, the model is presented as maintaining the current contract version,

contract (Vn+1), and the previous contract (Vn). The actual number of service contracts

maintained can be more than the two, used for illustration, but limited to the organisational polices

of the organisation in question. This chapter also sets out to achieve the third research objective,

namely to develop a service message transformation proxy model relying on contracts to handle

the incoming and outgoing SOAP messages between the client and the provider.

4.1. Conceptualisation

Conceptualisation is meant to give a mental picture of the model that was designed.

Conceptualisation can be viewed as the concepts defining the relationships in the domain of web

service evolution. These concepts set the limits and context in which web service evolution can be

described.

Figure 4.1 shows the flow of logic within the contracts-based model. The provider, registry and

customer are the actors that initiate an active part in this model while the consumer, proxy and web

service can be considered as the objects or classes that respond to messages through invocation of

an operation. A service provider builds a web service and publishes the contract of that web service

into a registry. Once successfully published the registry keeps a record that the web service exists

and is available for discovery. A customer wishing to use the service finds the web service in the

registry and builds a requestor agent called a consumer. The consumer invokes the service by

sending a service request message which is received by the proxy. The proxy collects the contracts

of the web service versions it is supporting, checks if there is a need to transform the message or

not and performs the necessary action to the request message. The proxy forward the request to

the actual web service for processing. The web service responds with the reply to the invocation

51

by the proxy, and the proxy performs the necessary actions on the response, if needed, before

sending the response message to the consumer.

Figure 4.1: Sequence diagram for the contracts-based proxy model

The model is expected to receive incoming requests, understand which service version is being

requested, perform the necessary operations on the incoming messages and deliver the correctly

formatted message to the running web service. To achieve these capabilities, some thought went

into the design of the functionality of the model, hence a set of design criterion was drawn up.

52

4.2. Design criteria

The contracts-based model was developed to support the seamless evolution of a web service from

one version through to the next in its lifespan while also supporting active service to consumers.

In particular, the design criteria that were laid out for the model were as follows:

 The model must be able to perform routing of messages between the web service endpoints

and consumers. This can be achieved using content-based-routing, where a message is

routed using the contents of that message. The routing includes choosing the correct path

for a targeted transformation of a SOAP message and forwarding the message to the correct

endpoint of the running web service

 The model must be able to match the request messages to the contracts determining which

transformation paths the message will need to be routed through. The key feature of the

model is the ability to match the SOAP request from the consumer to the running web

service version and back to the expected SOAP response for the specific consumer that has

invoked the service

 The model must be able to mediate messages between service requestors and service

providers. For example, if a request message matches the most recent/ running version of

the web service, no transformation will need to be performed. The request will be entirely

compatible with the running web service so it will be forwarded as it is. If the message is

matching an older service version, then the model is expected to perform the necessary

transformation and deliver the correctly formatted response to the correct calling consumer

 Transparency is the key to the model’s utility. The changes to a web service using the

model should neither be visible nor disruptive to existing consumers. It must appear to the

53

consumer as if the old service version still exists while the actual service has been replaced.

The only expected downtime may perhaps be during scheduled maintenance

 Availability is always a key requirement for any system in use and the model needs to

exhibit maximum availability of the supported web service versions. The model needs to

maintain an uptime of 99.99% where possible, leaving room for scheduled maintenance

per month (Kern, 2003) and also needs to be responsive timeously for it to be considered

“available”

 The model must maintain records of the previous versions so that the evolution from one

stage to the next is traceable (Zuo et al., 2014b). It is considered to be evolution if one can

trace back the history of a web service, and if possible, all the way back to the original

version

4.3. Best Practices in Software development

4.3.1. Software Configuration

Software Configuration Management (SCM) is needed in controlling the evolution of software

systems. Systems are composed of parts that have varying names such as interfaces, modules,

components and subroutines. These components are identified using versioning and as such have

some version numbering associated with them. The different parts have interfaces that are

compatible with some interface versions and not others. Some best practices key to a successful

system development/evolution in SCM can be summarised as:

 Identify and store artifacts in repositories: there is a need to identify the artifacts that would

need to be versioned. Appropriate version control schemes need to be used to version them

and store the artifacts in secure, scalable and accessible repositories

54

 Control and audit changes to artifacts: the updates to an artifact need to be controlled and

any changes made need to be tracked. This may be in the form of documentation so that

any changes that introduce errors into a system due to changes in an artifact can be easily

rolled back

 Record and track requests for change: changes made to any system involve a request for

the change being made. The change may emanate from management, platform upgrades or

users of the system and good change management will enable good project management

and decision making

Keeping a record of the changes that have been made is one of the best practices in SCM and this

enables traceability of the evolution steps that have been applied to the web service as it evolves.

Records of the existence of a web service can be kept in a registry that acts as a repository for web

service artifacts. The repository maintains a copy of each published contract. Each contract

(WSDL) has enough detail to identify the web service version and the parameters expected, giving

enough information to track all the changes that have been implemented across versions. The

model developed in this work was designed with the Lehman’s Laws of evolution and SCM in

mind, where a record of the previous version(s) of the web service has to be maintained for

traceability. In keeping with the law of conservation of familiarity and best practices in SCM the

model also maintains that there has to be some common element(s) in each subsequent version of

the web service for it to be called evolution, else the new web service version without anything in

relation to the previous, becomes a totally new web service. In order to achieve controlled

evolution the Top-Down Approach (also known as the Design by Contract approach) was used to

develop the web services.

55

4.3.2. Contract Design

Design by Contract (DbC) is a design methodology that ensures software correctness by using

preconditions and postconditions to document (or programmatically assert) the change in state

caused by a piece of a program. DbC is a trademarked term of Bertrand Meyer (Crocker, 2004),

which he implemented in his Eiffel Language as assertions, as the mechanism for expressing the

pre and post conditions of any subroutine handling a subtask. Parallels can be drawn between web

service composition and Object Oriented Programming (OOP) in that software components used

in OOP need to be built on the basis of carefully designed contracts. In SOC there is a binding

between the web service consumer and the web service provider which is specified by the pre and

post conditions in the WSDL, which is considered the contract in the case of SOAP web services.

Through the contract published by a service provider in the UDDI, each consumer binding to a

service expects some or no result after invoking a web service and on the basis of the same contract,

the web service provider expects to receive some parameter or more than one in order to deliver

the promised response in a timely fashion (as stated in the assertions).

The WSDL and XML Schema Definition (XSD) are technical components making up a web

service contract. Web services can be designed following the Bottom-Up-Approach in which the

development of the web service starts with the implementation (e.g. Java methods), and the WSDL

file is generated from the implementation. The Top-Down-Approach, also referred to as the Design

by Contract, focusses on setting up the contract first, WSDL, and all relevant schemas followed

by the implementation (Hollunder et al., 2012).

Following DbC presents advantages such as defining the XSDs separately and allowing reuse of

the same XSD file in other relevant scenarios, and there is looser coupling between contract and

implementation as the contract is not dependent on the implementation. Loose coupling allows

56

versioning control and performance is enhanced as one has more control over what is sent over the

wire, than when java is converted automatically into XML. DbC allows us to design custom

contracts that point to the same endpoint, hence there is no need for the proxy to advertise multiple

endpoints for each web service version and in essence no need for upgrading customers to concern

themselves with any change in the physical interface.

4.4. The model setup

4.4.1. The ideal provider and consumer setup

Typically, web services are deployed on different machines on the Internet and are exposed to the

rest of the world by the service providers through the web service interfaces. In Figure 4.2, a

service provider exposes a service’s functionality using the service interface to which consumers

direct all their service requests. A service consumer invokes the web service by sending a service

request to the web service interface and receives a service response from the service provider via

that interface. Communication between the service provider and consumer may be in the form of

simple messages or parameters passed in the Uniform Resource Identifier. In the case of SOAP

web services, the service request and service response are in the form of SOAP messages.

Figure 4.2: The ideal relation between service provider and consumer in SOA

57

4.4.2. The Realistic Provider and Consumer setup

A service can be both a service provider and a service consumer at the same time as it can consume

other services. As illustrated in Figure 4.3, the consumer and provider communicate using a

communication medium in a local area network for internal services or the Internet for external

services. This communication medium is called a service bus. The service busses offer real value

in scenarios where there are a few integration points or at least three applications that need to be

integrated. Integration is a process commonly known as service composition, where a business

process is accomplished by combining atomic services to complete subtasks of the main business

process. Service busses exhibit capabilities such as message routing, transaction management,

message security, transportation and transformations from one message format to another, which

web services can leverage upon. Service busses are also well suited to scenarios where loose

coupling, scalability and robustness are required. The service bus is an abstract pattern employed

in the transfer of data between multiple systems following some common policy to send and

receive messages or to route messages between systems. Web services are designed for machine

to machine interaction. This presents the advantage that any other platform can be used to consume

the service and present the information offered by the service in any format. Web service interface

provides a standard and open platform understood by the service consumers and the service

providers without needing to restrict to a particular programming language or programming

environment and hardware.

58

Figure 4.3: The realistic typical service consumer-service provider request.

With the realistic setup in mind Figure 4.4 depicts the resultant contracts-based proxy model for

managing the evolution of web services. Figure 4.4 shows the service provider publishing the

versioned contracts of the service to the service registry. The consumers discover/find the service

and bind to it and then invoke the web service through the interface defined in the contract. The

SOAP requests sent by the consumers are received by the proxy, which performs that necessary

transformations as described later in this chapter. The proxy forward the transformed request to

the web service hosted by the provider. The proxy receives the response from the web service and

routes the response to the consumer that invoked the service.

59

Figure 4.4: The contracts-based proxy for web service management model (Chiponga et al.,

2014b).

A. Service Provider

In Figure 4.4, the service provider refers to a system, an organisation or an individual that provides

a service by exposing it to other organisations or individuals such that they can consume it over

the Internet. The service provider owns the web service and implements the necessary technologies

on which the web services they offer are deployed. They provide the web service implementations,

publish the service descriptions (contracts), and maintain the web services .i.e., provide the

technical support for business processes. The services that the service provider offers are reusable

60

components representing a complete business task such as a weather lookup, a StockQuote lookup

or a credit-card validation. The full descriptions of the capabilities of the service are published in

a service registry.

B. Registry

The registry in Figure 4.4 allows businesses to find each other and facilitates communication by

hosting a catalogue of published and available web services. The registry uses the Universal

Description, Discovery and Integration protocol as the standard method for providers to publish

and consumers to discover network-based software components of SOA. The main purpose of the

registry is storing and representing the data and metadata of web services. There are private and

public registries, and in this work a public registry was used, in which the eventual consumers of

the web services published by the service provider are not known. A public registry may appear to

the end-user as just a service in the cloud and access to the registry data is open to the public. In

Figure 4.4, the registry is the catalogue in which the service provider publishes the technical

contracts of the available services.

C. Consumers

A consumer is a member of the set of users of the web service. The consumer can be a web

application, software application, mobile application or another web service that requires a service.

The consumer is the entity that initiates the discovery of a contract in the registry. They bind to

the service upon accepting the contract. The consumer invokes the service by sending a service

request formatted according to the contract.

61

D. The contracts-based model

The consumer described in item C can be a mobile application or a web-based application running

through a website. With reference to the running scenario as presented in Chapter 3, Section 3.3,

the web application is viewed through a web-browser by the customer to the hotel booking service.

Upon submission of a form from the customer, the PHP code creates a SOAP request message and

sends it to the Internet address of the web service in the proxy. The proxy receives the SOAP

request and opens to read it in order to ascertain which consumer is requesting the service and

what service version the consumer is based on. The proxy collects the contract matching that of

the identified consumer and the contract of the running StockQuote web service to verify the

differences in compatibility between the two contracts. Using the intelligence built into itself the

proxy transforms the incoming request from the consumer to match the expected input request of

the running StockQuote web service. The proxy then routes the transformed request to the actual

Internet address of the StockQuote web service for processing. The web service responds with the

appropriate SOAP Response to service the consumer and the response is sent through the proxy in

the model, which performs the necessary transformations and routing again on the response. The

consumer, the PHP code, receives the SOAP response and proceeds to display the stock values as

quoted to the customer. The customer can then proceed to declining or accepting the quote, and

continue to book the hotel they wish to stay in.

4.4.3. The Proxy

The main proxy operations as shown in Figure 4.5 are SOAP message identification and SOAP

message transformation. Message identification in this case refers to picking out attributes in the

incoming message and matching them to an expected set of attributes found in the published

contracts to identify which version of the web service is being requested. Once that operation is

62

complete, then the transformation to match the incoming message to the expected message for that

latest running web service is done using a transformer.

Figure 4.5: The main proxy functions

To achieve these operations the proxy uses the algorithm shown in Figure 4.6. This algorithm

compares incoming SOAP request formats with the contract of the running service versions’

requirements. This comparison is the basis for the identification of incoming SOAP messages to

determine which web service version is being requested and which web service consumer version

to service. If the SOAP request format is not a match then the proxy transforms the request to the

expected format matching the requirements. The transformed request is then passed on to the actual

service for processing. The proxy is targeted for when the service provider does not wish to keep

more than one service running in parallel as this will tie up resources that could otherwise be in

use for other purposes. Running more than one service in parallel also brings in unnecessary

63

technical overheads in terms of monitoring, maintenance and troubleshooting. In the algorithm

Service(Vn+1) and Contract (Vn+1) are taken to represent the current (most recent) web service

version and web service contract respectively, while Service(Vn) and Contract (Vn) are taken to be

the older versions of the web service and contract respectively.

1) The proxy is implemented in this work as a web service which is made available in a service

bus to allow for integration. It exposes one endpoint through which all incoming requests

will arrive and be accepted for processing. When the proxy is started it reads the contracts

that have been manually copied from the registry and saved in a local folder on the host

server. These contracts contain all the information and version identification that will be

needed by the proxy to identify web service requests. All the contracts reference the same

endpoint which is the proxy’s endpoint

2) When a consumer is created after accepting a contract, the consumer is regarded as

compatible with the web service version that it requests. The consumer invokes the web

service through sending a SOAP request message to the message endpoint. The message

is received by the proxy for processing

a. Inside the proxy, upon receiving an incoming message, the proxy has to check and

identify the version being requested in order to route it to the correct transformation

channel. By checking the parameters that are being requested in the SOAP request

the proxy compares that with the expected number of parameters in each contract

to find a match. The compatible contract identifies the service version that is being

requested and that tells the proxy which path to route the SOAP request

b. Once the SOAP request has been directed to the correct transformer, the

transformer reads the request and creates the new SOAP request using the values

64

that were in the original incoming request. The transformer creates a message that

is compatible with the contract of the implemented web service version

c. The transformer forward the newly created SOAP request to the endpoint of the

implemented web service version which is the latest version and waits to receive

the SOAP response that will be returned by the web service. If there is any error in

invoking the web service, such as no service running, caused by the service being

temporarily down for any reason, the transformer returns a SOAP Fault message to

the calling consumer

d. After processing, the invoked web service returns as a SOAP response which is

received by the proxy. The proxy is already aware of the version of the consumer

that invoked the web service, so it converts the SOAP response to the format

matching the contract that the consumer accepted. This process uses transformation

through a transformer to do the necessary transformations

e. Once the conversion is done to match the contract version that was used by the

consumer the SOAP response is sent back to the invoking consumer

3) The default web service version that is configured to respond to incoming requests is the

most recent version. This is because the most recent web service is evolved and up-to-date

with the expectations of all the consumers and administration of the web service.

a. Hence any incoming SOAP request unmatched to a previous web service version

is assumed to be a request for the most recently implemented web service. No

transformation is applied. If that request does not match the requirements of all the

contracts then a SOAP Fault message is returned to the calling consumer

65

b. A SOAP response from the web service is related to the calling service, and no

transformation is applied as the response already matches the most recent contract

1. If not-exists then cache the contracts of the services

2. If a request from consumer requires Service(Vn) send to proxy:

a. Get SOAP request and compare format with Contract(Vn+1) requirements

b. Identify the service version being requested

c. Apply Transformation to match Service(Vn+1) format

d. Forward request to Service(Vn+1) and Listen for response

e. Get the SOAP response and apply Transformation to match Contract(Vn)

response

f. Send response to consumer

3. Else send request to Service(Vn+1)

a. Listen for response from Service(Vn+1)

b. Send response to requesting consumer

Figure 4.6: The service proxy algorithm listing (Chiponga et al., 2014b)

This algorithm in Figure 4.6 allows for the identification and transformations of incoming SOAP

requests from the consumers from any number of versions of the web service. For easier

management and demonstration purposes, these consecutive versions were limited to three in this

work. Change processes and organisational policies can be put in place to recommend how many

virtual versions should be supported by the proxy. The introduction of a new version means minor

reconfigurations in the proxy. There are two possibilities that were identified. The first is the

introduction of a new web service version while maintaining the same number of supported web

service versions. The first possibility assumes that the organisational policies says for example that

66

at most three web service versions are to be supported at the same time. This would mean the

organisation has put out a notice to all its customers that all support for the oldest version of that

web service will cease on a particular date and time. To replace a web service version that was

currently being supported by the proxy, there is no reconfiguration of the proxy that is required.

The new contract will need to be uploaded to the container where the other contracts reside, and

the matching to the new web service version in the corresponding transformers will need to be

updated. The proxy will then need to be restarted for the updates to be activated.

The second possibility is the introduction of a new web service version, increasing the number of

supported versions while maintaining the already existing support for older versions. This would

be the case if say the organisational policy on the maximum number of service versions to be

maintained is more than the currently supported versions. Extending from the already three

supported web service versions to four implies the addition of a transformation path to the choice

router in the proxy. The new contract will need to be uploaded to where the rest of the contracts

are located, and a new transformer will be added in the new path that is needed to support the new

web service version. As in the first possibility, all the transformation files associated with the

transformers for each transformation path will need to be replaced with an updated one that maps

to the new web service version. In this instance however, the proxy will need to be recompiled and

restarted for the updates to be effected.

4.5. Summary

This chapter discussed the design of a contracts-based proxy model for managing web service

evolution. The model was presented in this chapter as the artifact aimed at resolving some of the

challenges in the maintenance of evolving web services. Best practices in software configuration

management, the principles of evolution and best practices in contract design were incorporated

67

into the design of the model. The overall design of the model theoretically supports any number

of web service versions without disrupting service to the consumers of the older versions.

Chapter 5 validates the model that was designed in this chapter. Furthermore, Chapter 5 describes

an instantiation of the model as a proof-of-concept prototype.

68

CHAPTER FIVE

5. MODEL VALIDATION AND PROOF-OF-CONCEPT

PROTOTYPE

In Chapter 4, the contracts-based model was designed. System development resulted in an artifact

which was the proof-of-concept for the fundamental research that was done. The artifact is the

model construction. Design science (Hevner et al., 2004) seeks to validate the result in order to

ascertain the artifacts’ applicability in a real world environment. Thus in this chapter, the goal is

to validate the proxy-based web services evolution model that was presented in Chapter 4. The

validation in this work was done in three stages:

1) Stage 1 was the validation of the Model’s efficacy through professional consultations

2) Stage 2 was demonstrating the practical utility and applicability of the model through the

use of the running scenario described and used in the previous chapters

3) Stage 3 demonstrated the technical feasibility by means of proof-of-concept prototyping

and experimentation while replicating the theoretical results

Since the 2nd type of validation has been demonstrated through the running scenario in Chapters 3

and 4, this chapter briefly discusses the 1st type of validation then focuses on the realisation aspects

of the prototype, which is the 3rd type of validation.

69

5.1. The Proof-of-Concept Prototype

The 1st type of validation was achieved through consultation. With the design criteria in mind, and

both Lehman’s Law of Software Evolution and the best practices in Software Configuration

Management a model targeted at managing the evolution process of a web service using contracts

was designed. For the purposes of continuous improvement and to ensure applicability to evolution

management of web services the proposed model was subjected to the critique of experts in the

field of web service management. The objectives for exposing the proposed model to professionals

in the field included:

 Determining a range of possible program alternatives and solutions

 Exploring the underlying principles, theories and assumptions leading to different

conclusions or judgements

 Correlating informed judgements on a topic that may be spanning a wide range of

disciplines and

 Educating the respondent group on the aspects of the topic in question

To achieve the aforementioned objectives, the proposed model was sent to peer reviewed

conferences to obtain views and comments with regards to the efficacy, utility and applicability of

the model. The model was exposed to a total of 9 reviewers, who contributed to the refining of the

model and extended the thinking around the same. A concern on how the model caters for a

situation where a web service completely evolves leaving no resemblance of the previously

existing versions was raised. This concern aided the research presented in this work, to include

and understand how the Laws of evolution help clarify that. In evolution, once all familiarity with

a previous version is lost, it can no longer be classified as evolution but replacement [of a web

service]. The contracts-based proxy has an impact on the overall performance of the web service,

70

relative to the client applications. This was further explored with the aid of some of the experts to

focus on the specific performance metrics that would need further investigation. Hence, Chapter 6

details the performance metrics and evaluations on the proposed model instantiation to investigate

impact of the contracts-based proxy model. With each new service feature/upgrade, the proxy

needs to be maintained to reflect the same. Some discussions around maintenance of the proxy as

updates are rolled in and new service versions are implemented, were brought up. This further

strengthened the advantage that comes with having the contracts-based proxy compared to hosting

multiple versions or forcing customers to upgrade their consumer applications because

development and redeployment costs can soar out of control, depending on how often upgrades

are introduced. Thus updates will mean a little extra work on the part of the service provider’s

development team but a more reliable service with respect to consumers, hence maintaining

evolution of the web service in a more controlled manner. All in all, consultations with

professionals in the field helped shape and refine the model to what was presented in Chapter 4 –

the contracts-based proxy for web service evolution management.

5.1.1. The Experimental Setup

For the 3rd type of validation free and widely supported open source software tools like apache-

tomcat were chosen. The underlying technologies in the implementation of this open source

software are common standardised software tools used in the industry and used by most developers

from all over the globe. Figure 5.1 is illustrating the setup that was implemented in contribution to

the validation of this model.

71

Figure 5.1: The experimental setup and technologies employed.

Web services are platform independent. To host the StockQuote web service a server running the

Windows operating system was configured, whose specifications are tabulated in Table 5.1.

Although the minimum requirements for setting up an environment to program and develop web

services are as low as 512MB of memory and Windows 2000/XP professional operating system

with a Pentium 3 processor, a server machine with high specifications was selected. The reason

for such a selection was in an effort to limit or eliminate if possible, the hardware impedances in

the performance of the proxy due to machine processing capabilities. On the server-side, Eclipse

as the IDE and apache Tomcat 7 were configured to host the implementation of the StockQuote

web service. MuleESB was installed and configured to host the implementation of the contracts-

based proxy that would manage the incoming requests for the StockQuote services. This is

described in more detail in the implementation section of this chapter, Section 5.2. The StockQuote

72

in this work’s experimentation had three variants representing the three versions of the web service

that has evolved from version 1.0, through 1.1 to 1.2.

Table 5.1: The server machine specifications.

Processor: Intel Core i7 – 4500U, 1.8GHz 2.40GHz

Hard Drive space: 1Tb

Memory: 8GB (7.89GB usable)

OS: Windows 8 Single Language

System Type: 64-bit OS, x64-based processor

Other : USB, DVD support

In the experiment, the Hotel Booking Service was set up on a Linux box, and written in PHP as

one of the consumers of the StockQuote service. Consumers / Client devices access the services

over the Internet, and in the experimentation two clients were used to invoke the StockQuote in

the local area network. SoapUI was used to mimic a large number of clients invoking the web

service randomly from a laptop on the network. The web services used in the evolution scenario

to test the usability and applicability of the proposed model were implemented in a closed

laboratory environment across a local area network to simulate the Internet.

5.1.2. Underlying Technologies

Web services are known to provide a language-independent and platform-independent

infrastructure for the integration of heterogeneous components. After having chosen the

architecture in which lies the context of this work, the task was to choose the platform capable of

building and supporting SOA. Given that the goal of this work was not to reinvent the wheel by

73

building a new set of stand-alone web services that would be used to investigate the proposed

model, a set of services that were made available for teaching and research in SOA were employed.

Though the original services were implemented using PHP, implementing some parts of the system

proved challenging as the updated versions of the software environments were incompatible with

the original configurations and coding. But due to the platform independence and loose coupling

feature of web services, the StockQuote functionality was implemented and integrated using java.

For the purpose of illustrations, Eclipse, apache tomcat, apache axis2, and the ESB from Mulesoft

(Mule-ESB) were used to build the service environment and SoapUI to simulate the clients.

5.1.3. Eclipse

Eclipse Juno build 20130225-0426 (on jdk1.8.0.5) is the development environment which was set

up. Eclipse provides a universal toolset for developers mostly in but not limited to java. It is an

open-source integrated development environment (IDE) (Guindon, n.d.), whose development

language support is independent and not limited in any way. It is also the most widely used open-

source IDE.

5.1.4. Apache tomcat

The highest version of the suitable server runtime compatible with Eclipse Juno at the time of

implementation was Apache Tomcat v 7.0. Apache Tomcat is also an open-source software like

Eclipse. It is developed in a participatory environment in an effort to foster collaboration between

the best of developers from around the globe and is developed under the Java Community Process.

Apache Tomcat is behind the numerous mission-critical, large-scale application across the globe

and a diverse range of organisations, industries and personal developers.

74

5.1.5. Apache Axis2

Axis2 web services core v1.1 was used as it enables web services generation through the web

services engine in Eclipse using the dynamic web module 2.5 facet of the target apache tomcat

runtime environment. Apache Axis2 is the most popular and widely used core engine for web

services because it is more XML-oriented, and more efficient and modular compared to Axis. It

was carefully designed for easy plugin modules to extend its functionality for security and

reliability features.

5.1.6. Mule ESB

Mule ESB is a lightweight java-based ESB and integration platform. Developers can connect

applications easily allowing for the exchange of data among applications. Mule ESB allows

different applications irrespective of the technologies used (JMS, HTTP, REST, Web services, and

JDBC) to communicate across an enterprise or even the Internet.

The contracts-based proxy was implemented in the ESB. MuleESB provided a visual / graphical

programming environment with drag-and-drop components which could be easily and quickly

configured. The components were customised to achieve the logic of the proxy as described in

Chapter 4, Section 4.4.3 of this work. Custom XSLT files were written and incorporated into the

proxy to perform the required transformations in the ESB.

This set of technologies formed the basis for the prototype implementation of the contract-based

proxy for web service evolution management. Section 5.2 describes the implementation of the

prototype that was developed.

75

5.2. The Prototype Implementation

To realise the prototype, this work started off by designing the main and most important component

of the functionality of the proxy. The main component in this model is the contract. The contract

describes the web service’s offerings and the expectations of any consumer that chooses to use the

service. DbC is regarded as the best approach to designing web services and it is a design pattern

that focuses on creating the WSDL file first. In SOAP web service development, the WSDL is the

most important and essential component for presenting the web service contract. The contract

structure, written using XML, is defined and can be extended by the use of other technologies such

as XSD or XML Schema and Web Service Policy Language (WS-Policy) as shown in Figure 5.2.

XSD provides a language defining the validation constraints of messages in XML format. XSD is

also written in XML and thus seamlessly integrates with the contract either by embedding it in the

contract or by having the XSD being kept as a separate file. Separating the WSDL, XSD and WS

Policy files further enhances decoupling in SOAP web services.

Figure 5.2: Graphical view of the Web service contract (Erl et al., 2008).

 The decoupling enables easy readability of the service contract for the developer as they are

designing the web service. The WS-policy is also expressed in XML and specifies behaviour

76

related constraints of the web service supplementing (adding to) the definitions in the descriptions

of the contract. As illustrated in Figure 5.2, Service Level Agreements can be part of a web service

contract but are outside the technical contract that is used by machines, and hence are not included

in the implementation of this work.

XML is the markup language that is used to write the web service’s contract. Figure 5.3 shows the

contract for our StockQuote web service version 1.0 expressed using XML.

Figure 5.3 is organised into the basic structure of a contract showing what the purpose of the

StockQuote web service is, how the StockQuote web service can be accessed and where the

StockQuote web service is located. This structure is what the consumer needs to understand in

order to successfully invoke the web service.

77

Figure 5.3: The code listing for StockQuote version 1.0

78

5.2.1.1. Contract Port-type

The port-type is the access point for the web service. One can think of the port-type as an

international airport on an island. All the incoming and outgoing people pass through the airport

and without it they would have nowhere to land so ultimately no entry or exit point. A port-type

contains the set of operations exposed by the service for example, lines 35-41 in Figure 5.3. The

contract can have one or more ports-types.

5.2.1.2. Contract operation definition

The operation is the function that is exposed to the consumers for what the web service can do.

The operation definition is where the message definition is found. The message definition defines

the data that will be transmitted between consumer and provider. Lines 38 and 39 in Figure 5.3

show that the expected message will be a SOAP message. Message definitions could be one of

three types: input, output or fault message. The StockQuote implementation exchanges the input

of a stock symbol and returns a StockQuote thus implementing the first two types of message

definitions.

5.2.1.3. Endpoint and address bindings

The address binding shows where the web service is located. The address binding is a pointer to

the actual network address where the web service can be accessed; Lines 42 and 43 in Figure 5.3.

The endpoint is the container for the address binding. The same endpoint can be used for different

operations, different message bindings and different port-types thus enabling us to use the same

endpoint for different StockQuote web service versions implemented for the purposes of testing

this prototype instantiation.

79

5.2.1.4. Data exchanged

According to the contract for the StockQuote version 1.0 in Figure 5.3 the consumer is expected

to supply a correctly formatted SOAP request with the requesting element name StockQuote. The

request should contain the stock symbol which is a string; Line 13 in Figure 5.3. The consumer

expects a response from the StockQuote service which is the value of the stock at the time of the

request. The response named StockQuoteResponseType, will be the float value of the stock on the

day; Line 18 in Figure 5.3. The implementation of this contract was designed with evolution in

mind as is evident in Figure 5.3, line 25. The “xsd:any” element is optional as indicated by the

minOccurs value of 0, and can be used for additional information when needed. This means that

this element can be used in a future version where the consumers need more data from the web

service. The number of occurrences is unbounded and thus the service in a newer version can use

this element without having to redefine the contract and avoiding disrupting the consumers already

running with the version 1.0 contract.

5.2.1.5. The StockQuote web service

In an effort to demonstrate the efficacy of the proposed model, the first version of the StockQuote

web service implementation was designed as illustrated in Figure 5.4. In summary, Figure 5.4

shows the business process implementation of a live StockQuote version 1.0 which was built to

demonstrate the evolution of the web service. The change and evolution scenarios are fully

described in Chapter 3, Section 3.5 where the StockQuote web service evolves from version 1.0

through to version 1.2. The StockQuote web service version 1.0 in Figure 5.4 receives a

stockSymbol from the requestor and, in turn, calls on another web service and receives the stock

values. It then prints the resulting quote and returns a response to the consumer.

80

Figure 5.4: The code listing for the StockQuote web service version 1.0

81

Figure 5.5 shows the available StockQuote version 1.2 that was deployed in the setup. In deploying

the most up-to-date web service, StockQuote version 1.2, a dynamic web service was created in

eclipse and the web module was set to version 2.5, which is required by Axis2. The target runtime

environment was Apache Tomcat version 7.0. The configuration was set to custom settings in

order to select and enable Axis2 web services core 1.1, which prepares the project for Web services

generation through the Axis2 Web services engine.

Figure 5.5: StockQuote version 1.2 deployed in tomcat and Axis2

Figure 5.6 shows the process of creating the StockQuote web service. Having designed the contract

following the DbC approach the wsdl2java tool was used to create the default skeleton code that

is required to implement the web service. The business logic of the updated StockQuote web

service version 1.2 was implemented like that in Figure 5.4 by modifying the skeleton code. The

generated Service Endpoint Interface (SEI) plus the business logic that was implemented are

collectively known as the source code of the StockQuote web service as depicted in Figure 5.6.

82

Once the business logic was written and “dry-runs” were performed to test the logic, the code was

compiled using the “ant” compiler. The compiled code was packaged and deployed in the Tomcat

container resulting in the web service that is depicted in Figure 5.5.

Figure 5.6: Generating code with the WSDL2Java tool

At version 1.0, the service returns a price of the stock symbol upon being invoked. At version 1.1,

the service can also return additional information on the previous day’s highest and lowest value

of the stock symbol. This is after a consumer has provided the optional parameter to request the

additional information for a real-time quote. At version 1.2, the web service is now more enhanced

to accept a third parameter requesting earnings. This enhancement is on top of the already existing

capabilities of the two previous versions. Version 1.2 was carefully designed following the DbC

approach, while keeping in mind the Laws of evolution and SCM best practices. This careful

design enable version 1.2 to support requests from older service consumers. The contract is

backward compatible in that it has the capability to support the old consumers but the problem that

comes up is that the implementations of the old consumers would need to be updated in order to

use the latest version of this service; hence, the implementation of the proxy to address challenges

83

faced in upgrading. This will be suitable for application in web based financial systems where you

do not want to break any service because “the stakes are too high in the financial context”,

according to the interviewed developers (Espinha et al., 2015).

5.2.2. The proxy implementation

To implement the proxy, the host environment chosen was MuleESB. MuleESB exhibits

properties that include message routing, transport management, transaction management and

security. Mule is capable of supporting different vendor implementations, can connect multiple

applications at the same time, and is highly scalable. The reasons behind choosing MuleESB over

other competitors include the fact that Mule allows for the use of existing components without

changes improving component reuse, components do not require Mule-specific code to work with

Mule, and messaging logic is kept completely separate from the business logic. MuleESB does not

limit design to any specific architecture and is lightweight, reducing time-to-market for projects

and increasing productivity.

Implementing the contract-based proxy in MuleESB gives us access to all the built-in advantages

already implemented, allowing focus to be placed on the core functionalities needed in managing

the evolution process of a SOA. To build the proxy, the already existing components in Mule were

assembled and reconfigured to suit the purposes for which they were needed in the script as,

according to the design criteria, much of intelligence needed to achieve the routing capability and

scalability is implemented in the MuleESB software - which has recently gained popularity and

become part of the architecture in many SOA implementations.

The service proxy algorithm discussed in Chapter 4, Section 4.4.3, was used as the template for

the logic that was followed in implementing the contract-based proxy service. In MuleESB, the

84

proxy was deployed as a web service performing service mediation, shielding the running web

service from receiving incorrectly formatted requests and shielding the consumers from receiving

a message response incorrectly formatted for a different contract than the one they are expecting.

To achieve the functionality following the algorithm, the design advertises a single endpoint,

<soap12:address location="http://localhost:8081/StockQuote"/>, which is advertised in all

contract versions published in the registry in the model, i.e., all contracts have the same endpoint

so that all consumers are directed to the same proxy that is running on the published port. Once

the proxy is up and running it receives messages from consumers, extracts the body of the

incoming SOAP request and sets the body as the payload to be used for consumer version

identification. The payload is forwarded to the secondary function of the proxy.

A secondary function of the proxy is to detect the service version on a SOAP request and to

determine which transformations path the request should be sent through as shown in Figure 5.8.

After a SOAP request is received by the proxy, the proxy checks the service version of the

incoming request by comparing the supplied parameters in the request to the expected parameters

in the published service contracts to determine which service version is being requested. Once the

version being requested is identified, the SOAP request is forwarded to the primary function of the

proxy. The XML in Figure 5.7 represents the choice flow control and criterion used to determine

the transformation path a request will be sent through.

85

Figure 5.7: The code listing for the Choice for transformation path

The primary function of the proxy is the transformation of the SOAP request to meet the

expectations of the implemented service version. In the model proposed, the most recent version

of a service is the one maintained as it can meet all the needs of both the old and new consumers.

Figure 5.8 shows the examples of the transformation paths for the transformation of a SOAP

request to match the current running version of the web service. The transformations in the case

of the proposed model are done using XML transformations.

 The choice flow control: this routes SOAP requests on the basis of the properties of the

payload. The payload is the body of the SOAP message

 The expression: this is the evaluation criteria to check the content of the message. Using

XPATH, the tree structure of the SOAP message is traversed to the existence or lack

thereof, of an element: this evaluates to true or false allowing for a decision to be made on

the basis of the existence of the property

 The flow-ref: this is the routing path or option taken in the case that the expression has

been validated. “flow-ref: name=”transformForV1.0”” will imply that the SOAP message

will be forwarded to the flow called transformForV1.0 inside the main flow

86

Figure 5.8: SOAP request version identification.

Extensible Stylesheet Language Transformations (XSLT) is a language for transforming XML

documents into other XML documents. This is used in this work in conjunction with XPath, an

expression language that is fundamental to XML processing. Figure 5.9 and Figure 5.10 show

snippets of the XML and the XSLT used to transform an incoming SOAP request for service

version 1.1 to meet the contractual expectations of service version 1.2:

 xslt-transformer: in Figure 5.9, the transformer transforms the SOAP message using an

XSLT style sheet. The template file used to transform the SOAP request message of service

version 1.1 to match the expectation of the contract version 1.2 is shown in Figure 5.10.

Figure 5.9: The code listing for XSLT transformer and map

87

Figure 5.10 shows the xml transformation template that is used in transforming incoming SOAP

messages. Using the XSLT template in Figure 5.10, the SOAP request is reconstructed to match

the expectations of the service contract version 1.2. The result is the transformed SOAP request

for version 1.1 that can be used to successfully invoke a version 1.2 service. The template matches

the StockQuoteSymbol and the realTime elements and populates their values using the, <xsl:value-

of select=”.”/>, values from the incoming SOAP request. The template then adds the addInfo

element into the SOAP without a value to create the transformed SOAP request. This SOAP

request is valid as the contract for version 1.2 was designed with backward compatibility and

addInfo having been specified as an optional element.

Figure 5.10: The code listing for XSLT transformation template

Figure 5.11 shows the transformation processing of the SOAP request as it passes through the

proxy. The XSL tool transforms the request by applying the XSLT template, and the DOM-to-

XML tool converts the result of the XSL tool to XML which is mapped by the data-mapper tool

88

to the expected structure of the request before calling the web service version 1.2 using the web

service consumer tool. The SOAP response is subjected to similar transformation to match it to

the calling service before the SOAP response is given to the calling client.

Figure 5.11: SOAP request transformation.

5.2.3. Client simulation and results collection with SoapUI

SoapUI is an open-source web service mocking and testing application for SOAP and REST. It

has the function of web service compliance testing, load testing, functional testing, simulation,

development, and mocking. This was used to simulate the consumers that invoke the web services.

Figure 5.12 shows SoapUI and the SOAP requests for each StockQuote web service version. Each

of these requests is sent to the endpoint that belongs to the proxy as specified in the contract and

processed as described in the proxy implementation.

89

Figure 5.12: SoapUI client simulation for versioned StockQuote web service

Having the most up-to-date StockQuote web service version 1.2 and the contracts-based proxy for

web service evolution management in place, consumers that would generate service requests for

all the StockQuote web service versions needed to be developed. Consumers based on each

contract version that was developed and published could have been created but as the purpose of

this work was not in “reinventing the wheel” by creating web services and consumers, a suitable

open-source tool was chosen to simulate the consumers and generate the requests for the

experimentation. SoapUI is also equipped with the ability to collect the data relative to the

simulation of consumers and was used to gather the data presented in Chapter 6.

90

5.3. Summary

This Chapter discussed the validity of the proposed model by implementing an instantiation of the

proof-of-concept. This proof of the technical feasibility of the proposed and developed model

complimented the theoretical validity that was discussed at the beginning of this chapter. In the

next chapter, results and discussions are presented. Experts in research and SOC were consulted

in asserting the need, and consequently the applicability in web service evolution for the contracts-

based proxy model for managing web service evolution as presented in Chapter 4. The consultation

helped in refining the model design and strengthened the theory behind it. Having established the

importance of the model, we set out to further show the technical soundness of the model by means

of a successful implementation.

MuleESB was the choice ESB in which to implement the contracts-based proxy for managing the

evolution process of the StockQuote web service. MuleESB comes preconfigured with message

routing capabilities and was the ideal integration platform, enabling easy message exchange

between the StockQuote web service and its consumers. The consumers of the web service virtual

versions were emulated using SoapUI, the Swiss-knife software tool for testing SOAP web

services.

SoapUI was used to send a SOAP request for a particular service version. The proxy in the ESB

successfully detected the StockQuote version that was being requested, performed the correct

transformations and successfully invoked the running StockQuote web service in Eclipse. All three

StockQuote web service versions were supported successfully through the proxy by only the latest

implementation of the web service and in all test instances, the consumer always had the correct

and expected SOAP response. It was noted that there was a small increase in the response times

due to the processing time required in the proxy, but all three web service versions were

91

concurrently supported. The concurrent support for all StockQuote versions show that the model

can manage the evolved web service without disrupting consumers or requiring that the older

consumers be upgraded.

92

CHAPTER SIX

6. RESULTS AND DISCUSSIONS

According to the design science methodology, evaluation provides evidence that the solution

artifact developed is applicable; hence, this chapter seeks to provide some evidence that the model

actually works in managing the evolution of a web service in a consistent and transparent manner.

This chapter discusses the results of the experimentation carried out on the proposed web services

evolution model based on web service contracts.

The research described an evolution scenario in Chapter 3 where a StockQuote web service was

evolved from service version 1 through to 3, and this is the context in which the results presented

in this chapter were obtained. The StockQuote web service firstly started with version 1.0, where

only one parameter was required to invoke the web service, evolved to version 1.1, which required

two parameters and returned extra information and lastly evolved to version 1.2, which expected

an invocation message with three parameters.

The results obtained are then compared with the principal goal of showing the utility of the model

versus the cases in which the web services are not proxied. It should be appreciated that although

there is low degradation in the Quality of Service when the web service is invoked through the

proxy, the response time differences are small and can be tolerated in most non-mission critical

systems. Furthermore, from a software engineering point of view, there is always a tradeoff

between performance and maintainability so this result was not unexpected. It is apparent that the

proxy added more programming logic to alleviate evolution challenges but in turn this had an

adverse effect on performance. This is discussed further, in the experimental results section. Like

93

all conflicting requirements, it is not possible to achieve the best from all a balance needs to be

struck.

Performance testing needs to be done as it is highly important to the success of the software

systems of today. Fixing problems is costly to any organisation and thus Software Performance

Engineering (SPE) tries to ensure that all software meets the expected performance objectives.

Responsiveness and scalability are the dimensions that are of importance in SPE. Scalability refers

to the ability of a system to meet the performance objectives as the demand for service and pressure

on the system increase (“Load Testing Overview | Load Testing,” n.d.), while responsiveness

refers to the timeous service of the system to its requestors. SPE is a systematic quantitative

approach to constructing software systems that meet performance objectives.

To measure performance for web services we need to select the metrics that are of importance to

this study and which have been considered by other experts in this field. Using performance testing

tools enables the collection of information about the web service and helps in decision making

processes such as deciding on which web service to choose over the other on the basis of

performance and not just the fees and terms of use.

6.1. Web Service-Performance testing

Web service performance testing is carried out in order to ascertain how well a system performs

under a particular workload and to demonstrate that the system meets certain performance criteria.

Testing also helps to identify how the system performs when exposed to specific conditions in

each scenario. After testing, the stakeholders in the systems will need to know, in general, the

performance metrics associated with the system, which will in turn determine the quality of service

they will get from a web service, (Wala and Sharma, 2014). For example, Clients may need to

94

know the Response times and Throughput of an API apart from just the pricing. Service Providers

need to know the resource demands of the APIs under different workloads to identify the critical

use cases, to assess risk and to establish performance objectives that meet the client demands and

expectations. Thus, web service performance metrics can be categorised into server-side and

client-side metrics.

Server-side: can be generated by stress testing on the server end.

 Server throughput (number of requests per second)

 Latency (time between request arrival and response being served)

Client-side: distributed load testing or client-side monitoring can be used to gather this data.

 Latency (WS processing time + network latency) - from service call to earliest response

bytes

 Throughput (average byte flows per minute / average transactions per minute)

 Error rate (identifies the dependability of the service)

Both server-side and client-side web service performance testing can be conducted through the use

of testing tools. With the growing popularity of web services, a number of testing tools have

surfaced in order to help verify that a web service does what it is supposed to do. Table 6.1 shows

a summary of some of the tools that are commonly used in web service performance testing. Table

6.1 also gives a brief description of the test tools considered as at the time of doing this work.

SoapUI was determined to be the most suitable testing tool for this work.

95

Table 6.1: Some tools for web service testing

LoadRunner An HP-Mercury lab performance testing tool for testing

Web 2.0 and mobile web applications

JMeter An Apache performance testing tool for static and dynamic

server resources

Rational Performance Studio A proprietary IBM tool for testing web and server

applications

SoapUI The Swiss-knife web service simulation and performance

testing supporting SOAP, REST, HTTP, JMS and

other protocols

6.2. SoapUI

SoapUI is a cross-platform open source tool allowing for rapid creation of compliance, functional

and loads tests. It provides standards support and also supports industry-leading technologies from

REST and SOAP based web services to databases to JMS enterprise messaging, including scripting

support for personalised automation of tests. The design of SoapUI is simplified so that anyone

can have a complete testing experience using a GUI. With the GUI, any user can create a test from

simple to complex scenarios (“What is SoapUI? | About SoapUI,” n.d.).

6.2.1. Functional Testing

Functional testing focusses on checking the validity of a web service. To test functionality, SoapUI

reduces the challenge of manually rewriting code to perform the functional tests using the Form

Editor which allows a user to drag and drop controls. The functional test is generated using the

96

WSDL file of the service to create a TestCase. Assertions are added in the TestCase in order to

validate the validity of the result in the response message for correctness. An example of an

Assertion can be a Response SLA, in which a response time to be validated can be set to 500ms.

That is to say, if the response is returned from the web service in a time less than or equal to 500ms,

then the assertion is a valid assertion and the test passes, else the assertion validates to a failed test.

Figure 6.1 shows a functional test with three assertions. The first assertion is to check if the service

is giving back a valid SOAP response after having been invoked by a SOAP request based on the

contract requirements from the consumer. The result of this assertion shows that the service

responded with a valid SOAP response. The second assertion checks the compliance of the

response from the StockQuote service to see if it complies with the schema / condition set in the

contract. The result in the example in Figure 6.1 shows that the response from the web service is

schema compliant. The third and last assertion was set to test if the SOAP response actually

contains the information that the consumer will be expecting to receive through the provisions of

the contract. This last assertion also shows that the web service was successfully invoked and

accepted the incoming request or not. The Not SOAP Fault assertion is valid, showing that the web

service has responded with a valid SOAP message that contains the data as promised by the

provider through the contract. The functional test was therefore successful.

97

Figure 6.1: Valid positive functional test

Figure 6.2 shows an unsuccessful functional test. In this functional test, the schema that was sent

by the consumer (SoapUI), may appear to be a valid SOAP request, however, a request was

generated that was not compliant with the expectations of the StockQuote web service, and it was

that which was used to invoke the web service. The web service responded with a valid SOAP

response, which was compliant with the expected schema but the last assertion resulted as a failed

assertion. The assertion expects to receive a response which is not a fault message. The web service

response is a fault message because it has generated an error upon picking up that the web service

request message was not a valid request according to the binding contract.

98

Figure 6.2: Valid negative functional test

6.2.2. Load Testing

As a web service gains popularity and more users opt for it compared to other services out there,

the load on the web service and consequently on the host web service server machines increases.

It therefore becomes imperative that load testing be conducted to know the carrying capacity of

the web service. Load testing is performed by increasing the load on the web service to observe

how the system behaves as the load increases. During the load test, performance metrics like

response times, server memory usage and web service throughput can be measured.

6.2.3. Average response times

The response time tells a story of how long it takes after a request is submitted for it to be processed

and for an appropriate response to be received by the web service requestor. The average response

time is therefore calculated from the collection of response times and subsequently mathematically

dividing the total time by the number of times the time has been collected/added. This average

response time is not a functional requirement on a service but is classified under non-functional

99

requirements and is used as a quality of service metric. The industry standard of acceptable

response time for a fast service is 200ms (Levy, 2014).

6.2.4. Scalability

Scalability Testing is very much like Load Testing. Scalability Testing is more about testing the

elasticity of the web service to see how much the web service can accommodate varying volumes

of traffic. For a scalability test, the size of a request or the complexity thereof may be increased,

as opposed to increasing the number of requests. This may involve sending nestled requests, larger

attachments, or larger requests.

6.3. Experimental Results and Analysis

6.3.1. Average response time

Using the original version of the StockQuote (StockQuote 1.0), the TestCase was repeated to

establish a base case. The experiment was repeated up to 50 times and the response times,

measured in milliseconds, were recorded in Table 6.2. The experimentation was repeated in order

to minimise the effects of possible anomalies that may occur in the system during experimentation.

Anomalies such as a spike in memory usage by other running programs may cause slower response

times in the experimental results, hence the repetition helps in establishing a more reliable average

response time.

Table 6.2 shows the results of a TestCase for StockQuote version 1.0 which were obtained when

a service request was issued to StockQuote 1.0. The response time is the time it took for the service

to process the service request and send the appropriate response upon receiving a service request,

in this case without the proxy implementation.

100

Table 6.2: Response times for StockQuote 1.0 TestCase

18 15 13 10 11 9 11 14 11 12

10 12 11 12 18 11 10 10 11 11

11 15 11 10 9 12 12 12 10 11

9 10 10 13 11 13 14 12 10 11

9 13 11 9 10 12 13 10 10 11

The response time is not the same in all instances because the host system is also processing other

jobs outside of just running/hosting the StockQuote web service, which then makes it ideal for us

to repeat the experiment to compute an average response time that will serve as the base response

time for the web services on the particular host.

Average Response time = Total of the recorded times / Number of times observed

Average Response Time = 574/50

 = 11.48ms

The Average Response Time rounded off to the nearest whole number becomes 11ms, which is

the Base Response Time that was used as the benchmark for the other web service version tests.

Given that the average response times are all well below 200ms, which is the industry benchmark

for a fast service (Levy, 2014), this research concludes that the proxy model does not degrade the

quality of service in terms of response time.

During the establishment of the base response time, a snapshot of the TestCase of the service

transaction was captured and is presented in Figure 6.3. Figure 6.3 shows the base TestCase where

the SoapUI test suite was used to test the web service StockQuote v1.0 and to collect all the

101

necessary information. In the TestCase presented in Figure 6.3, we have labelled items from 1

through to 7 that we wish to draw the reader’s attention to.

1) Item 1 is the local address of the host of the StockQuote web service which is defined in

the web service contract file. http://localhost:8080/StockQuote1.0/services/sq_v1.0/ also

describes the endpoint of the web service

2) Item 2 is the SOAP service request message that is sent to invoke the StockQuote v1.0 web

service. It contains the one parameter that is required by the web service in order to invoke

the web service, the <stockSymbol>

3) Upon receiving the SOAP request, the web service validates the request based on the

restriction imposed in the web service contract, and if valid, is passed onto the web service

for processing. The web service returns the appropriate SOAP response containing the

<price> as per the StockQuote of the day. This is received and displayed by the client, in

this case SoapUI

4) In this TestCase, the correct parameters were submitted to the StockQuote v1.0 web

service, evaluated to match the conditions specified in the web service contract and the

appropriate SOAP response was successfully sent back to the client, hence the TestCase

passed and SoapUI generated no errors and hence the green colour against the TestCase to

imply success

5) Item 5 shows the number of assertions that are tested during the web service execution. In

this TestCase, the StockQuote return a valid SOAP response, whose Schema is valid

according to the contract that is in effect between the consumer and the provider. Since the

web service functioned correctly and did not return a fault message, the assertion to test for

faults returns a valid “not SOAP Fault” status

102

6) SOAP Request and Response pairs have a processing time between them. The time it takes

from when the web service receives a SOAP response to the time it sends back the

appropriate SOAP response is a measure of the response time of the web service

7) The SOAP response in Item 3 has a size, and this size is the total file size that is sent across

the wire from the web service to the client/consumer. Therefore in this instance it takes an

average of 11ms for the StockQuote web service to respond to a SOAP Request

Figure 6.3: Test case for StockQuotev1.0

103

6.3.2. Load Tests

As noted earlier in Section 6.2, the purpose for executing load tests on the StockQuote web service

is to monitor how the web service behaves under an increasing load. The load tests will show the

effect of including the proxy as proposed in the model for web service evolution management and

help establish if it is a disservice to have the proxy in place.

There is no prescribed standard for the load testing of web services. As a result, experiments were

carried out to establish the test ranges and test scales that were to be used as the basis for the load

tests that were carried out on the model. Figure 6.4 shows a load test being performed on the

StockQuote version 1.0 web service, and we have labelled the items that we describe as 1 to 6

below.

1) When a web service is published, a consumer is constructed to utilise the web service. In

binding to the web service the consumer creates what is represented in SoapUI as a

“thread”. The thread generates the requests/calls to the web service, but this should not be

mistaken to imply that a thread is equivalent to one consumer. The thread can represent

any number of consumers depending on the nature of the web service and the request

criteria being employed

2) SoapUI can mock different strategies of performing load testing. For the purposes of this

work, the simple strategy was employed throughout in an effort to remain as close to a real-

life-scenario as possible

3) The test delay control regulates how much time a request should wait after a previous

request. In the experimental part of this work, the test delay was set to 0, to allow for

complete random testing without any artificially induced wait periods

104

4) Item 4, the Random control, regulates how randomly the thread can send a web service

request/test. The random value ranges from 0 to 1 where 1 signifies a degree of complete

randomness

5) Item 5 is the limit to how long the load test should run. After repeatedly experimenting to

find what amount of time would be significant for this research, it was determined to keep

the Limit of each test to a maximum of 60 seconds. 60 seconds in theory, implies that a

single thread will generate up to 60 executions of the TestCase. assuming that the

StockQuote service is only requested once by any consumer, this would theoretically imply

that the web service is serving up to 60 consumers per minute

6) Item 6 in Figure 6.4 shows how much memory has been dynamically allocated to executing

the test cases and how much is actually in use when the test case is in execution

Figure 6.4: Load testing for each service version.

105

Figure 6.5 shows the execution of the load tests for all the evolved StockQuote versions as they

are run simultaneously with the aid of the proxy. Without the proxy this would not have been a

possibility as all the StockQuote service versions would have been independent and thus could not

have yielded meaningful results as they would have even possibly been implemented on different

hosts with different specifics.

Figure 6.5: Load testing for all services through the Proxy.

6.3.3. The Average Throughput

After performing a series of workload tests on service version 1.0, both with and without the proxy,

the data gathered was used to design the test-cases and the workloads to apply during the tests.

This was done in order to determine the characteristics and specifications that would be needed to

106

configure the workloads in order to collect the data across all versions. No historical data was

found on how to design these performance tests hence the design was based on the initial

experimentation in the current custom test environment as suggested by Weyuker and Vokolos

(2000). The goal was to determine the scales by which the workload would be increased to

determine whether there was likely to be a hardware performance limitation or that the system or

setup would fail while the load was increased. This was a “stress-test” test performance in an

attempt to determine the elasticity and the breaking point of the setup. The workload in this case

was the number of requests generated by the threads (Figure 6.4: item 1). Figure 6.6 shows the

relation between the number of threads and the virtual users.

Given that the StockQuote web service, implemented here as StockQuote version 1.0 through to

version 1.2, is invoked only once per transaction by exactly 1 user, then each thread is a group of

users generating one request and receiving their response in an estimate time of 11ms. The graph

in Figure 6.6 approximates a relation in which the number of requests is directly proportional to

the group of users (threads), meaning that each thread contains roughly 500 users each invoking

the service only once at random time per minute. So the StockQuote web service is expected to

service up to and beyond 20x500 requests per minute in the implementation where an ESB and a

proxy have not been included. The throughput in SoapUI is calculated as transactions per second

(TPS), which in the experimentation was calculated on the basis of the actual time passed and was

obtained using the simple formula

TPS = Count (cnt)/ Seconds passed.

That is, a test-case that runs for 60 seconds and having handled 510 requests will have a TPS of

8.5.

107

Figure 6.6: Relation between the thread-count and the number of requests.

Figure 6.7, Figure 6.8, and Figure 6.9 show the throughput of the StockQuote service versions 1.0,

1.1, and 1.2 respectively as the workload was increased, in what was designed as the first set of

tests. The throughput was observed to be higher across all service versions in the case where the

workload was applied directly between the virtual clients as simulated through SoapUI and the

service version implementation in the eclipse experimental environment. The setup as depicted in

Figure 4.2 was taken as the ideal setup where the service client and the service provider are both

residing on the same machine. Hence, there are no network delays experienced, and no domain

name lookup and host resolutions required.

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

er
 o

f
re

q
u

es
ts

Number of Threads

Service Invocactions: (cnt)

Count

108

Figure 6.7: Throughput for service version 1.0

Figure 6.8: Throughput for service version 1.1

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

u
gh

p
u

t:
 T

P
S

Number of threads

StockQuote V1.0: Service throughput

NoProxy

ThruProxy

ESBOnly

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

u
gh

p
u

t
: T

P
S

Number of threads

StockQuote V1.1: Service Throughput

NoProxy

ThruProxy

ESBOnly

109

Figure 6.9: Throughput for service version 1.2

In the second set of tests, the service client and the service provider are implemented on different

hosts, unlike in the direct request of the experimental setup of Figure 4.2. Like the setup in Figure

4.3, an ESB was implemented in order to try and mimic as closely as possible a real-world setup.

Across all service version tests there is a drop in the throughput as the workload increases. The

drop or loss in throughput is expected and inevitable due to the processing of requests as they pass

through the ESB. The ESB receives the service request on one port, has to read it and interpret the

destination of the request and route it to the appropriate endpoint. Likewise, the service response

goes through similar processing and is routed in the ESB back to the requesting service client. The

ESB processing was treated as a black-box because this research is not concerned about the details

of this processing as the ESB forms part of the architecture in a real SOA implementation.

The third test set was performed on the solution model implementation as demonstrated in Figure

4.4 and Figure 5.1. A further loss in throughput was experienced as, inevitably, more processing

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

u
gh

p
u

t:
 T

P
S

Number of threads

StockQuote V1.2: Service throughput

NoProxy

ThruProxy

ESBOnly

110

overheads are encountered since not only does the ESB perform its default routing functions but

the implementation of the service transformation proxy relying on the service contract to know

what to transform also adds to its processing time. The proxy receives an incoming request, checks

which contract that request matches, compares with the current implemented service version,

transforms the request to comply with the expected request for the implemented service version

(typically the latest version), sends the request to the service endpoint, and waits for a response.

Upon receiving the response the proxy transforms the response to match the contract version that

had been identified as the requesting client implementation version, and routes it appropriately to

the calling client. This contributes to the delays in processing of requests and results in a lower

throughput than in the ideal scenario depicted by Figure 4.2.

Another factor affecting the throughput is the response time, and the response time is affected by

the file size of the SOAP request and response being transmitted. The SOAP request/response in

the StockQuote example increases in size as the extensions to support evolution from version 1.0

through 1.1 to 1.2 are implemented as described in the Dataset Amendment pattern for evolving

web services (Daigneau, 2011). So, throughput loss is due not only to the processing overheads

introduced by the proxy but also to the size of the resultant SOAP messages being exchanged by

the systems in question.

It was observed that there is a loss in throughput due to the introduction of the proxy as proposed

in the model. Hence, understanding to what extent this loss in throughput actually affects

productivity is required, as is whether or not it is significant enough to conclude that the

introduction of the proxy is a disservice or a benefit to productivity. Take, as an example, a taxation

scenario: it would be unfair to state that a fixed-tax of R500 will be charged on everyone’s salary.

Having the fixed amount would mean that a person being paid a salary of say R2000 will be

111

charged R500 tax and a person receiving a salary of R10000 will also receive a tax of R500. What

would however be considered a fair taxation setup is where a percentage of tax is charged on the

income, say for instance a tax of 15%. This would mean that everyone pays 15% of what they get,

as opposed to some being overtaxed and others being undertaxed in a fixed-amount tax scenario.

Similarly, this work expresses the throughput loss as a percentage of the expected throughput in

order to understand the impact the proxy has. This is expressed using Equation 6.1:

Percentage loss = ((A-B)/A)*100

Equation 6.1: Calculating percentage loss in throughput

Where A = the expected number of requests, B = actual number of requests.

Percentage loss in the first case where requests and responses pass through the transport media

only, i.e. through the network and ESB without a proxy implementation is calculated as:

Percentage loss1 = ((Num. requests NoProxy – Num. Requests ESB) / Num. requests

NoProxy)*100

 = 3.48%

Percentage loss in the second case where the proxy was implemented is shown as:

Percentage loss2 = ((Num. requests NoProxy – Num. Requests Proxy) / Num. requests

NoProxy)*100

 = 13.84%

The effective throughput loss due to the proxy is expressed and the difference between the

throughput loss in the first case without a proxy implementation and the second case with the proxy

running was expressed using Equation 6.2.

112

Effective loss = loss2 –loss1

Equation 6.2: Calculating effective loss in throughput.

The result of the effective loss from this equation is equal to 10.36%. Therefore, the proxy used

here in this work as an instantiation of this model causes roughly a 10% loss in throughput as some

requests are queued up waiting for service. It is at this juncture that one may raise the question, “Is

10% not too much of a loss?” To answer this question, let us firstly look at the goal of this work

which was to:

 Formulate a contract-based model for managing evolution of shared services in order to

minimise disruptions to service consumers when a service changes.

The priority of evolution through Amendment of the Data Structures of a web service is

minimising the probability of breaking consumer support. The goal of this work is to maintain web

service functionality and web service evolution transparency to the consumers through the

implementation of a contracts-based proxy while the service undergoes continual change and

improvement to meet changing consumer and platform requirements. The proxy in the model

described in this work maintains but is not limited to the operation of at least three web service

versions concurrently, with the only downtime expected being maintenance-time or upgrade-time.

The proxy eliminates the need for more resources that would otherwise be required to maintain

the same three web service versions running in separate instances at the same time; the proxy can

be regarded as a “1 for 3 or more solution”.

Secondly, judging from Figure 6.7, Figure 6.8 and Figure 6.9, while there is an evident drop in the

number of transactions serviced as the load is increased the difference in the trends of the graphs

is small. For fewer requests the throughput is almost the same for the ideal situation where the

proxy is not implemented versus when the proxy in implemented, and that loss only increases to a

113

calculated maximum of roughly 10% when the system is under a heavy workload. This research

argues however that, in reality, the requests will not be at peak traffic continually but will subside

and vary depending on consumer usage and times, even that latency will cause requests to arrive

on the service at different times as opposed to the simulation in this work. Hence, the loss in

throughput will generally be less than the maximum calculated. This work reiterates at this point

that the throughput loss does not mean loss of service but just a slower response time from the web

service while it processes queued up requests. Consequently, this research concludes that the

benefits associated with the implementation of this contracts-based proxy outweigh the possible

throughput loss.

6.4. Economic and Industrial Implications

A discussion of the web service performance metrics cannot be conclusive and complete without

us visiting software economics. Software cost estimation is a large topic, the discussion of which

in this section alone would not do justice. This section will present an overview and tie in software

cost estimation with the benefits associated with the contracts-based proxy model for managing

evolution of web services. Software costs may include but are not limited to travel and training

costs, hardware and software costs. Software productivity is viewed as the rate at which the

software is produced by the developers, including the documentation of that software. The number

of lines of code can be used as one of the bases for the measurement of software productivity. The

other measure that can be used is the function points of the software being developed. However,

there are challenges, such as how does one estimate the function points of software yet to be

developed and how does one estimate the total time that will be required for the project? Lines of

code, as a measurement, was first proposed when programs were typed as instructions on cards

where each card had one line of code. However, today’s programming languages allow for multiple

114

statements to be written in one line or spread across several lines. A line of code nowadays refers

to a line of code that is hand-written, not machine generated, and also not a blank line. The line of

code is referred to as Source Lines of Code (SLOC). KSLOC is derived from SLOC where the K

stands for kilo (a factor of 1000, i.e., SLOCx1000), for example, 8 KSLOC = 8x1000 SLOC

therefore, is equal to 8000SLOC.

There are several software cost estimation techniques and these include but are not limited to: The

Algorithmic Model, Expert Judgement, Analogy, and Parkinson’s Principle (Boehm, 1981; Bryant

and Kirkham, 1983). Table 6.3 presents a summary of some of the cost estimation techniques.

Table 6.3: Summary of cost estimation techniques (Sommerville, 1982)

Estimation technique Description

Algorithmic cost modelling A model based on historical cost information that relates some

software metric (usually its size) to the project cost. An estimate

is made of that metric and the model predicts the effort required.

Expert judgement Several experts on the proposed software development

techniques and the application domain are consulted. They each

estimate the project cost. Their estimates are compared and

discussed. The estimation process iterates until an agreed

estimate is reached.

Estimation by analogy This technique is applicable when other projects in the same

application domain have been completed. The cost of a new

project is estimated by analogy with these completed projects.

115

Parkinson’s law Parkinson’s Law states that work expands to fill the time

available. The cost is determined by available resources rather

than by objective assessment. If the software has to be delivered

in 12 months and 5 people are available, the effort required is

estimated to be 60 person-months.

Pricing to win The software cost is estimated to be whatever the customer has

available to spend on the project. The estimated effort depends

on the customer’s budget and not on the software functionality.

Each estimation method has its strengths and weaknesses and Table 6.4 summarises these.

Table 6.4: Strengths and weaknesses of software cost-estimation methods. (Boehm, 1981)

Method Strengths Weaknesses

Algorithmic

model

• Objective, repeatable, analysable

formula

• Efficient, good for sensitivity analysis

• Objectivity calibrated to experience

• Subjective inputs

• Assessment of exceptional

circumstances

• Calibrated to past, not future

Expert

judgment

• Assessment of representativeness,

interactions, exceptional circumstances

• No better than participants

• Biases, incomplete recall

Analogy • Based on representative experience • Representativeness of experience

Parkinson • Correlates with some experience • Reinforces poor practice

Price to win • Often gets the contract • Generally produces large overruns

116

The COnstractive Cost Model (COCOMO) is perhaps the most well-documented and well-known

software effort estimation method (Roetzheim, 2000). COCOMO popularised the SLOC as an

estimation metric and is used to calculate the Effort for a software project in months. The simplest

relationship between the Effort and the SLOC is expressed as the product of the productivity and

the KSLOC. Over the years researchers have found some common values for the Productivity and

Table 6.5 provides a list of these.

Table 6.5: Linear productivity factors for software development (Cost Expert group, www)

Project Type Linear Productivity Factor

COCOMO II Default 3.13

Embedded development 3.60

E-Commerce development 3.08

Web development 2.51

Military development 3.97

With the KSLOC and the productivity factors in Table 6.5, an example of how the Effort would

be derived is given by Equation 6.3:

Effort = Productivity * KSLOC

Equation 6.3: Calculating effort in man-months (MM) (Cost Expert group, www)

Hence: Effort = 3.13 * 8 = 25.04 Man-Months, where 3.13 is the Linear productivity factor

obtained from Table 6.5 and 8 “Kilo” is the example number of lines of code.

117

Productivity does vary with project size and how verbose or concise the developers are. Hence, an

exponential penalty is introduced to penalise large projects for reduced productivity. However, the

calculation of Effort on the basis of Equation 6.3 will suffice for small projects (Roetzheim, 2000).

In the development of the StockQuote web service the developer is expected to write the contract

and the source code for the implementation of the StockQuote service. The estimates of the amount

of time for the development of the StockQuote web service versions 1.0 through to 1.2 are given

in

Table 6.6. This work classified the web service as development of an E-Commerce platform, hence

the use of the 3.08 value of the Linear Productivity Factor in this work’s estimations. The estimated

Effort in

Table 6.6, working with only the human hand-written code, was obtained using Equation 6.3.

Table 6.6: Estimate effort for the development of the StockQuote web service and the proxy

Description Contract

SLOC

Impl. SLOC Total SLOC Effort @

LPF of 3.08

No. of days

(Effort)

WS-StockQuote v1.0 63 45 0.108 0.33 10

WS-StockQuote v1.1 100 61 0.161 0.50 15

WS-StockQuote v1.2 119 66 0.185 0.57 17

Contracts-based

Proxy

52 62 0.114 0.35 10

Now, what does this all mean when the contracts-based proxy web service has been implemented?

At the beginning, development and implementation of the proxy will take approximately 10 days

118

plus the implementation of version 1.0 of the StockQuote, which is approximately 4 days

(considering only the 0.045 KSLOC for the version 1.0 implementation). This comes down to an

estimate total of 14 days development time at the beginning of the StockQuote web service’s

lifetime.

At the next stage, the StockQuote web service is evolved to version 1.1. At this stage, only an

update to the proxy implementation is observed while the contract is maintained to support the

version 1.0 consumers. The additional lines of code for the update to the proxy implementation

were 13 lines of code in upgrading the proxy implementation without repeating code. This

translates to an estimated 3 hours of development time as opposed to implementation of a complete

new StockQuote version 1.1, which would take an estimated 10 days according to the results in

Table 6.6. Similarly, at the last stage of the StockQuote the web service was upgraded to version

1.2. The proxy updates required an additional 27 lines of code in the implementation of the proxy

in order to support all StockQuote web service versions 1.0 through to 1.2 concurrently. This

upgrade comes at an estimated two days development and implementation cost, as opposed to the

tabulated 17 days to implement a completely new StockQuote version 1.2 web service.

Take for example, the VirtualBox API. The VirtualBox API is a SOAP based API allowing

deployment of virtual machines, whose implementation was found to be an approximate 54

KSLOC and has had up to 10 major and minor version releases which ALL contain breaking

changes (Espinha et al., 2015). All backward compatibility for clients was disregarded and thus

costing development time, effort and unplanned expenses to developers in re-implementing

systems that were relying on VirtualBox; like the phpVirtualBox client. VirtualBox is a SOAP

based API thus has only a single point of integration with its clients (the technical Contract),

however this means that clients are tightly coupled to that Contract. Should the provider issue a

119

breaking change, it is inevitable that all phpVirtualBox clients will fail. This can be remedied by

the implementation of the solution proposed in this work, the contracts-aware proxy to manage

that backward compatibility allowing for client developers to gracefully evolve their systems over

a period of time.

Working with the assumption that each web service is hosted on a single machine, implementation

of the StockQuote web service plus the proxy to manage the web service and its evolution would

require only two host machines - one host for the proxy and the other for the web service

implementation. However, without the proxy implementation, each web service version will be

hosted on its own host machine. This would prove uneconomical in terms of the resources that a

service provider would need. On one hand, as more versions are introduced more host machines

would need to be provided. On the other hand, the contracts-based proxy approach maintains two

host machines as new versions are introduced. The maintenance, not only of the web service

evolution processes, but even of the infrastructure required when the contracts-based proxy

approach is used, becomes easier and cost effective to the service provider. Managing as little as

two host machines is easier compared to maintaining multiple concurrently running versions of

the web service, multiple software environments, multiple operating systems and multiple

hardware platforms hosting the services.

It is of key importance to note that the application of the contracts-based proxy model results in

the ability of a service provider to service both old and new consumers concurrently with no need

for additional hardware and most importantly without requiring any consumer to forcibly upgrade

to the new service version. With the implementation of the contracts-based proxy there is only

minimal disturbance to the already existing consumers when the system is administratively taken

down for scheduled maintenance and updates.

120

6.5. Summary

This chapter discussed the evaluations performed on the proposed model through the

implementation of a contracts-based proxy that was applied to a StockQuote web service and its

derivatives in order to investigate the model’s validity and applicability in a real world scenario.

In the next chapter, the conclusion and future work is presented. The success of the model was

demonstrated by the fact that this work implemented a proxy that was able to handle the incoming

requests from different versions of consumers and successfully serviced the requests consistently.

With the aid of a standard and common tool for testing web services, performance and compliance

tests were conducted on the model.

Web service development comes at a cost. It was found that there was extra processing time

required in the proxy, as would be anticipated in any case where additional processing is

implemented between a consumer and a service being provided. The increased processing time

results in lowered throughput of the service. In this implementation of the model, there is a small

drop of only 10% in the achieved average throughput. Although there is this estimated drop in

throughput, the main advantage of the model presented in this work is that the proxy would be

handling all incoming requests for all the running StockQuote versions simultaneously, without

service disruptions to consumers.

The minimal implementation of the contract-based proxy model, having taken the assumption of

one host per web service into consideration, would entail maintaining only two hosts while the

web service is evolving during its lifespan. Maintaining service without the contracts-based proxy

would imply that the number of hosts required increases with each new version that is introduced

while trying to keep the old consumers serviced. This puts a financial strain on the service provider

121

in purchasing the required hosts and the technical administrative labor costs for maintaining the

infrastructure.

Using the COCOMO software estimation technique for small to medium projects, it was

established that it takes less time to upgrade the contracts-based proxy in order to support a new

web service version than to implement a new version while maintaining the old host to support

older consumers. This makes the implementation of a contracts-based proxy cost effective on the

part of the service providers and consumer friendly to the customers as it does not force the

customers to upgrade the consumers.

122

CHAPTER SEVEN

7. CONCLUSION AND FUTURE WORK

7.1. Summary of the research

Web services will always change to meet varying change-requests from all stakeholders in these

services. While SOC has increased the flexibility and agility of organisations in adapting to an

ever changing business operating environment and enabled easy composability of services to

achieve business tasks, it has also brought challenges in controlling the changes needed and

changes introduced by other parties in this shared environment. Changes or upgrades may have

unforeseen minor to devastating impacts on other unsuspecting consumers and may cause business

disruptions, costing large amounts of revenue to organisations dependent on these web services.

In order to mitigate the impact of these changes it is imperative that the evolution of web services

be undertaken in a controlled manner.

The goal of this work was to formulate a model for managing the evolution of shared services in

order to minimise disruptions to service consumers when a service changes. Hence, this work

presented a contracts-based proxy model for managing the evolution of web services. The model

presented in this work establishes control over the evolution of a web service on the basis of two

main aspects, the best practice of the design of web services by contract with evolution in mind,

and the introduction of a proxy relying on the designed contracts. This work, following the design

science research methodology, demonstrated the efficacy and the applicability of the model using

both a running scenario and consultations with professionals in the field of web services

management. This work followed the design science research methodology in order to come up

with sound findings. Hevner et al., (2004) provided guidelines for performing a design science

123

research which were followed throughout the course of this work and these are described in brief

below:

 Design as an artifact: this work produced a model which is the artifact that was used as

the basis for all investigations. The instantiation of the model is also another artifact that

was realised through this work. From this artifact, empirical data was collected and used

for analysis

 Problem relevance: this work has shown starting from chapter 1 that there are still

challenges in managing consistent and non-disruptive web service evolution. This work

focused on addressing SOAP based web service evolution in SOC because SOAP is still

dominant in commercial implementations of web services. Thus, the solution presented in

this work will contribute in alleviating the evolution problem in the web services industry

 Design evaluation: to demonstrate the applicability and utility of the proposed model, a

prototype was developed as one form of evaluation. Various experiments were then carried

out using this prototype to evaluate its efficacy

 Research contributions: According to Hevner et al.,(2004), the contribution of design

science research is design science knowledge. This knowledge can be in the form of

artifacts such as, constructs, models, frameworks, methods, design theories and

instantiations. This work produced a model and an instantiation which will enable graceful

evolution of web services. Thus benefitting developers while minimising inconveniences

to both service providers and service customers

 Research rigor: the model produced in this work was as a result of logical deductions

from sound literature sources. This model was instantiated into a prototype and various

kinds of assessments were then carried out to ensure the quality of the artifacts. Feedback

124

was also sort through conference publications and presentations. All this helped to shape

the model to be what it is now

 Design as a search process: the model presented in this work was developed and refined

through an iterative process of implementation, consultation and revisiting literature to

verify its applicability in an ever-changing web service environment

 Communication of research: This guideline relates to how the research is communicated

or shared with others. To share the work with others, this work resulted in 2 IEEE

conference proceedings. Another manuscript is expected from this work and will be

published in an academic journal for further investigation. The dissertation itself will be

made publicly available through the University of Zululand library

7.2. Research Questions Review

In the introductory section of this work, the main research question was defined, around which the

rest of the work was centered. How can service contracts be used to incorporate and manage

service evolution? This was further broken down into four sub-questions. This work provides the

responses to the research question and sub-questions.

Research sub-question 1: What is the state of the art of service evolution in SOC and what other

fields can we take lessons from?

In Chapter 2, Section 2.5, the state of the art in web service evolution was presented in which this

research discovered that the trends in computing are now in Services and Cloud computing. It was

also noted that less of the research effort over the years has been concerned with the management

and control of the evolution of web services. The first research objective was achieved in

determining, through literature, how the WSDL file can be leveraged upon in managing the

125

evolution of a web service. More research effort is needed in addressing service evolution

challenges that have been highlighted since the beginning of SOC. Lessons can be drawn from

other fields, for instance, Information System, where there are mature works on evolution

management, evolution life-cycles and Laws governing software management. From an

engineering perspective, processes to support the evolution of service oriented systems are a

challenge. Conventional development methodologies such as Object Oriented Analysis and

Design (OOAD), Component-Based Development (CBD) and business process modelling,

notwithstanding their usefulness, do not address the key elements of SOC. It was discovered that

one key component which can be used in controlling web service evolution is the contract, as it is

the one attribute that contains all the necessary information a consumer needs to know. As services

evolve to meet new knowledge acquired in their domain (the context in which they are used), they

also need to be maintained such that their previous state of consistency is restored but with the

necessary additional essential features. Service evolution becomes a critical issue because even the

smallest of changes, if incompatible, can affect a huge number of clients and consumer

applications. At the same time, customers do not necessarily need totally new systems to address

their new set of requirements, but they do need the familiar environment that they are already used

to, but with additional features or functionality.

Research sub-question 2: How can we design a model to ensure that there will be no major

disruptions to business functions after a service is upgraded or changed?

The state of the art-analysis was instrumental in helping us to learn more about the problem area

of web service evolution management. The investigation led to the realisation that there is a need

to control how services are evolved without forcing customers to rebuild their consumer

applications. One of the main technologies that consumers rely on is the WSDL file which is

126

known as the Technical Contract of a web service. Having control over how the Contract is

designed ultimately means having control over how the web service is managed. It was established

through a literature search that control over Contract design is achieved through DbC, hence this

work also followed this approach in developing the service versions. Versioning of these contracts,

however, can be done on the basis of established techniques of the organisation in question.

When an upgrade is made and a new web service version is implemented, the mechanism in place

to ensure seamless transition of the web service and continuous service to older consumers relying

on the old version is a contracts-aware proxy. This research identified that there was a lack of use

of DbC and knowledge of the advantages DbC offers in managing the evolution of the web service.

Consequently, this work coupled the DbC approach with contracts to develop a contract-based

proxy model that transforms requests and responses according to the understanding between the

service provider and the service consumer. The model ensures that old consumers remain

functional for as long as needed while supporting the newer consumers with added functionality

as required. Although, there is a small loss in web service throughput due to additional processing

by the proxy implementation this research has succeeded in demonstrating that the evolution of

web services can be managed without unnecessary disruptions to consumers and without forcing

corporate or individual customers to rebuild their software or consumer applications, while at the

same time reducing the amount of resources the service provider has to use and maintain.

Research sub-question 3: How can we identify the service version that is being requested by a

consumer?

The SOA model brings with it a major challenge for service providers, and the nature of services

in SOC does little to assist. Although there are no concrete web service versioning techniques, the

contract can be used to identify the consumer. The 2nd research objective was achieved through

127

designing a proxy that could read the contract and compare the incoming requests before

processing. The proxy receives the incoming SOAP request and searches for a Contract with

matching attributes in order to determine the version implementation of the consumer requesting

the service, since the Contracts are versioned. Only after the consumer’s version identification

process has been completed can the client be serviced with the compatible transformation to the

running web service. The general practice used in versioning web services is creating an entirely

new web service with its own namespace, which unfortunately entails the rebuilding of all

consumers of that service. Other approaches were to version the contract, service and endpoint

separately. However, the challenge lies in identifying who the set of users are of a particular web

service offering. Looking at SOAP web services, the Contract stands as a binding agreement

between a web service provider and the consumer willing to use the web service offering. Hence,

understanding the contents of the Contracts enables the identification of consumers through

matching the service requests to the requirements in the Contract.

Research sub-question 4: How can the proposed model be validated and what mechanisms or

procedures can be used to evaluate the efficacy and utility of the proposed solution?

Seeing that this work was undertaken following the design science research methodology, it is

only befitting that the model designed following design science be evaluated and validated

following the same. The last research objective enabled us to develop the model and respond to

the 4th research sub-question. Design science involves design for some artifact that aims at

changing some phenomenon which is of some human necessity. Thus there is a need to evaluate

the artifact to see if it does indeed address the problem.

The validation criteria of design science concern mainly the success of the artifact and its

generality.

128

Success of the Artifact:

The success of the artifact can be measured in terms of its usefulness, where “useful” is the degree

to which the artifact contributes to the achievement of a result. None of the results presented in

this work were obtained outside the development of the design science research artifact. Thus the

contracts-based proxy model was instrumental in achieving the workings of the instantiation of

the artifact and consequently the results and conclusions which were drawn from the artifact. We

can safely conclude that the artifact was very useful in contributing to the achievement of results

presented in Chapter 6 of this work.

Success is also measured as the degree to which the artifact achieves the desired result, its efficacy.

The model presented in Chapter 4 of this work was intended to manage the evolution process of a

web service. This research demonstrated this management while applying it to the running scenario

of the StockQuote web service described in Chapter 3. The theory around the designing of the web

service is implementable and used in the industry to develop standards-based corporate web

services today and this work successfully implemented an instantiation of the model (the artifact),

and simulated the evolution of the web service from one version to the next while still supporting

old consumers and reusing the same resources. The implementation of the model does not

drastically affect the quality of service that is offered to consumers as all response times observed

are well within acceptable industry standards. Therefore, the model successfully enables the

evolution of SOAP Web Services with disrupting or degrading the service to consumers.

Generality:

Though this model has been applied in a particular scenario, that of the StockQuote web service,

the model itself was developed to address evolution management challenges in web services.

129

Generalisation means that the applicability of the model is suited not only for the StockQuote web

service used in this work’s illustrations, but is expected to be universal. This work presented a

model that is generally applicable to all SOAP based web services. In Chapter 2, this research

identified that SOAP web services are classified under the E-type systems, which exhibit

generality as one their characteristics.

130

7.3. Future work

One area that would need further exploration is in implementation of a buffer in the proxy to

accommodate more traffic. During the experimentation, the errors that came in SoapUI were as a

result of access-to-service denials. This was owing to the fact that the ESB was accepting a

workload that was more than the individual services could handle synchronously. There is a need

to eliminate the denial-of-service errors due to services being too busy to handle incoming

requests. Queueing requests may be a possible solution; hence a possible extension of this work

could be in researching which best queuing mechanisms can be implemented. Queuing may

increase response times but that may be a more desirable outcome than a failed service request.

Automation of proxy-contract acquisition from the local or remote registry is another area that

needs to be explored. Instead of the current approach where configuration of the proxy is done

manually in the event of a new version and availability of a new contract the proxy should be able

to reconfigure itself and accommodate a new service version and automatically support both

existing and new consumers. Another area of research lies in conducting an impact analysis study

or developing a mechanism for performing impact analysis investigations to determine how a

change will affect the service clients.

7.4. Contributions to knowledge

From the commencement of this work the goal was to come up with a contract-based model for

managing the evolution of shared services. This work provides a solution that minimises

disruptions to service consumers when a service changes by enabling continued support for older

service versions in a single contract-based proxy while newer versions are implemented. Other

solutions that have been put forward relatively increase the complexity of managing multiple

131

versioned services, and also need more resources to support the multiple versions running

concurrently.

This work also presents a way of expressing the throughput loss as a percentage. This was given

by Equation 6.1 in Chapter 6. This equation was derived from a similar notion around which

income tax is charged on an individual’s earnings. Contracts have been identified as a key

component in web services, allowing for controlled development of web services. Other

researchers have reasoned around the compatibility theories of web services using contracts. This

work contributes the notion of actually using the contract in the process of managing the evolution

of web services. This was demonstrated through the implementation of a proxy service that relied

on these contracts to transform and serve consumers that requested for service from an older

version that had otherwise been updated to a new version.

132

REFERENCES

Afshar, M., Cincinatus, M., Hynes, D., Clugage, K., Patwardhan, V., 2007. SOA governance:

Framework and best practices. White Pap. Oracle Corp. May.

Airbnb [WWW Document], n.d. URL https://www.airbnb.com/about/about-us (accessed 10.7.15).

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A., Verma, K., 2005.

Web Service Semantics-WSDL-S.

Alonso, G., Casati, F., Kuno, H., Machiraju, V., 2004. Web services. Springer.

Andrade, A., Luiz, J., 2000. Evolution by Contract, in: Proceeding of the ACM Conference on

Object-Oriented Programming, Systems, Languages, and Applications. Presented at the

ACM Conference on Object-Oriented Programming, Systems, Languages, and

Applications, Minneapolis, Minnesota USA.

Andrikopoulos, V., Benbernou, S., Papazoglou, M.P., 2012. On the evolution of services. Softw.

Eng. IEEE Trans. On 38, 609–628.

Bellahsène, Z., Léonard, M., 2008. Advanced Information Systems Engineering: 20th

International Conference, CAiSE 2008 Montpellier, France, June 18-20, 2008,

Proceedings. Springer.

Berners-Lee, T., 2009. Web Services overview - Design Issues [WWW Document]. URL

http://www.w3.org/DesignIssues/WebServices.html (accessed 1.17.15).

Bernhardt, J., Seese, D., 2009. A Conceptual Framework for the Governance of Service-Oriented

Architectures, in: Feuerlicht, G., Lamersdorf, W. (Eds.), Service-Oriented Computing –

ICSOC 2008 Workshops, Lecture Notes in Computer Science. Springer Berlin Heidelberg,

pp. 327–338.

Bhuvaneswari, N.S., Sujatha, S., 2011. Integrating Soa and Web Services. River Publishers.

Bianco, P., Lewis, G.A., Merson, P., 2008. Service level agreements in service-oriented

architecture environments [WWW Document]. URL

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA52875

1 (accessed 4.14.14).

Bloomberg, J., 2015. Service-Oriented Architecture: Enabler of the Digital World - Forbes [WWW

Document]. URL http://www.forbes.com/sites/jasonbloomberg/2015/02/09/service-

oriented-architecture-enabler-of-the-digital-world/ (accessed 9.27.15).

Boehm, B., W., 1981. Software engineering economics. Englewood Cliffs NJ Prentice-Hall 197.

133

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D., 2004.

Web Services Architecture [WWW Document]. Web Serv. Archit. URL

http://www.w3.org/TR/ws-arch/ (accessed 12.11.15).

Bordeaux, L., Salaün, G., Berardi, D., Mecella, M., 2005. When are Two Web Services

Compatible?, in: Shan, M.-C., Dayal, U., Hsu, M. (Eds.), Technologies for E-Services,

Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 15–28.

Brown, W.A., Moore, G., Tegan, W., 2006. SOA Governance-IBM’s approach. Somers NY.

Bryant, A., Kirkham, J.A., 1983. B. W. Boehm Software Engineering Economics: A Review

Essay. SIGSOFT Softw Eng Notes 8, 44–60. doi:10.1145/1010891.1010897

Chiponga, K., Tarwireyi, P., Adigun, M.O., 2014a. A version-based transformation proxy for

service evolution, in: 6th IEEE International Conference on Adaptive Science and

Technology (ICAST) 2014. Presented at the ICAST 2014, Ota, Nigeria.

Chiponga, K., Tarwireyi, P., Adigun, M.O., 2014b. Contract-based Web Service Evolution Model.

Presented at the SATNAC, Port Elizabeth, Eastern Cape.

Crocker, D., 2004. Safe object-oriented software: the verified design-by-contract paradigm, in:

Practical Elements of Safety. Springer, pp. 19–41.

Daigneau, R., 2011. Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL

and RESTful Web Services, 1 edition. ed. Addison-Wesley.

Dlamini, S.W., Tarwireyi, P., Adigun, M.O., 2013. A Model-Driven Approach for Managing

Variability in Service-Oriented Environments. Int. J. Inf. Technol. Amp Comput. Sci.

IJITCS 012013 891-97 8, 91–97.

Erl, T., Karmarkar, A., Walmsley, P., Haas, H., Yalcinalp, L.U., Liu, K., Orchard, D., Tost, A.,

Pasley, J., more, & 6, 2008. Web Service Contract Design and Versioning for SOA, 1

edition. ed. Prentice Hall, Upper Saddle River, NJ.

Espinha, T., Chen, C., Zaidman, A., Gross, H.-G., 2012. Maintenance Research in SOA - Towards

a Standard Case Study, in: 2012 16th European Conference on Software Maintenance and

Reengineering (CSMR). Presented at the 2012 16th European Conference on Software

Maintenance and Reengineering (CSMR), pp. 391–396. doi:10.1109/CSMR.2012.49

Espinha, T., Zaidman, A., Gross, H.-G., 2015. Web API growing pains: Loosely coupled yet

strongly tied. J. Syst. Softw. 100, 27–43. doi:10.1016/j.jss.2014.10.014

Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A., 2011. An Empirical Study on Web

Service Evolution, in: 2011 IEEE International Conference on Web Services (ICWS).

Presented at the 2011 IEEE International Conference on Web Services (ICWS), pp. 49–56.

doi:10.1109/ICWS.2011.114

134

Fokaefs, M., Stroulia, E., 2012. WSDarwin: automatic web service client adaptation, in: Jacobsen,

H.-A., Zou, Y., Chen, J. (Eds.), Center for Advanced Studies on Collaborative Research,

CASCON ’12, Toronto, ON, Canada, November 5-7, 2012. IBM / ACM, pp. 176–191.

Frank, D., Lam, L., Fong, L., Fang, R., Khangaonkar, M., 2008. Using an Interface Proxy to Host

Versioned Web Services, in: IEEE International Conference on Services Computing, 2008.

SCC ’08. Presented at the IEEE International Conference on Services Computing, 2008.

SCC ’08, pp. 325–332. doi:10.1109/SCC.2008.84

Göbel, H., Cronholm, S., 2012. Design science research in action - experiences from a process

perspective.

González-Barahona, J.M., Robles, G., Herraiz Tabernero, I., Ortega, F., 2014. Studying the laws

of software evolution in a long-lived FLOSS project. J. Softw. Evol. Process.

Gorinsek, J., Van Baelen, S., Berbers, Y., De Vlaminck, K., 2003. Managing quality of service

during evolution using component contracts, in: Proc. 2nd International Workshop on

Unanticipated Software Evolution, Warsaw, Poland. pp. 57–62.

Govardhan, S., Feuerlicht, J., 2009. SOA: Trends and Directions, in: Proceedings of the 17th

International Conference on Systems Integration 2009. Presented at the 17th International

Conference on Systems Integration, Prague, Czech Republic, pp. 149–154.

Guindon, C., n.d. Eclipse.org - Juno Simultaneous Release [WWW Document]. URL

https://eclipse.org/juno/ (accessed 4.8.16).

Guo, S., Bai, F., Hu, X., 2011. Simulation software as a service and Service-Oriented simulation

experiment, in: 2011 IEEE International Conference on Information Reuse and Integration

(IRI). Presented at the 2011 IEEE International Conference on Information Reuse and

Integration (IRI), pp. 113–116. doi:10.1109/IRI.2011.6009531

Gu, Q., Lago, P., 2011. Guiding the selection of service-oriented software engineering

methodologies. Serv. Oriented Comput. Appl. 5, 203–223. doi:10.1007/s11761-011-0080-

0

Hägg, S., Ygge, F., Gustavsson, R., Ottosson, H., 1996. DA-SoC: A testbed for modelling

distribution automation applications using agent-oriented programming, in: Distributed

Software Agents and Applications. Springer, pp. 63–76.

Haynes, S.R., Carroll, J.M., 2007. Theoretical Design Science in Human–Computer Interaction:

A Practical Concern? Artifact 1, 159–171.

Hevner, A., Chatterjee, S., 2010. Design Research in Information Systems: Theory and Practice.

Springer.

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design Science in Information Systems

Research. MIS Q. 28, 75–105.

135

Hollunder, B., Herrmann, M., Hulzenbecher, A., 2012. Design by Contract for Web Services:

Architecture, Guidelines, and Mappings. Iaria J. 5.

Jepsen, T., 2001. SOAP cleans up interoperability problems on the Web. IT Prof. 3, 52–55.

doi:10.1109/6294.939937

Kajko-Mattsson, M., Lewis, G.A., Smith, D.B., 2007. A framework for roles for development,

evolution and maintenance of soa-based systems, in: Proceedings of the International

Workshop on Systems Development in SOA Environments. IEEE Computer Society, p. 7.

Kajko-Mattsson, M., Lewis, G.., Smith, D.B., 2008. Evolution and Maintenance of SOA-Based

Systems at SAS, in: Hawaii International Conference on System Sciences, Proceedings of

the 41st Annual. Presented at the Hawaii International Conference on System Sciences,

Proceedings of the 41st Annual, pp. 119–119. doi:10.1109/HICSS.2008.154

Kaminski, P., Müller, H., Litoiu, M., 2006. A design for adaptive web service evolution, in:

Proceedings of the 2006 International Workshop on Self-Adaptation and Self-Managing

Systems. ACM, pp. 86–92.

Karus, S., 2007. Forward Compatible Design of Web Services Presentation Layer. Masters Thesis,

Faculty of Mathematics & Computer Science, University of Tartu, Estonia, 2007.

http://www. cyber. ee/dokumendid/Karus. pdf.

Kern, H., 2003. How to measure system availability targets [WWW Document]. TechRepublic.

URL http://www.techrepublic.com/article/how-to-measure-system-availability-targets/

(accessed 9.1.15).

Khadka, R., Saeidi, A., Jansen, S., Hage, J., 2013. A structured legacy to SOA migration process

and its evaluation in practice, in: Maintenance and Evolution of Service-Oriented and

Cloud-Based Systems (MESOCA), 2013 IEEE 7th International Symposium on the. IEEE,

pp. 2–11.

Khan, M.W., Abbasi, E., 2015. Differentiating Parameters for Selecting Simple Object Access

Protocol (SOAP) vs. Representational State Transfer (REST) Based Architecture. J. Adv.

Comput. Netw. 3.

Kijas, S., Zalewski, A., 2013. Towards Evolution Methodology for Service-Oriented Systems, in:

Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (Eds.), New

Results in Dependability and Computer Systems, Advances in Intelligent Systems and

Computing. Springer International Publishing, pp. 255–273.

Kontogiannis, K., Lewis, G.A., Smith, D.B., 2008. A Research Agenda for Service-oriented

Architecture, in: Proceedings of the 2Nd International Workshop on Systems Development

in SOA Environments, SDSOA ’08. ACM, New York, NY, USA, pp. 1–6.

doi:10.1145/1370916.1370917

Krai, J., Zemlicka, M., 2007. The Most Important Service-Oriented Antipatterns, in: International

Conference on Software Engineering Advances, 2007. ICSEA 2007. Presented at the

136

International Conference on Software Engineering Advances, 2007. ICSEA 2007, pp. 29–

29. doi:10.1109/ICSEA.2007.74

Lehman, M.M., 1980. Programs, life cycles, and laws of software evolution. Proc. IEEE 68, 1060–

1076.

Levy, A., 2014. 200ms: The Magical Number for Faster Response Times [WWW Document].

Crittercism. URL http://www.crittercism.com/2014/03/200ms-the-magical-number-for-

faster-response-times/ (accessed 11.24.15).

Lewis, G.A., Smith, D.B., 2013. Research Challenges in the Maintenance and Evolution of

Service-Oriented Systems. Migrating Leg. Appl. Chall. Serv. Oriented Archit. Cloud

Comput. Environ. 13–39. doi:10.4018/978-1-4666-2488-7.ch002

Lewis, G., Morris, E., Smith, D., 2005. Service-oriented migration and reuse technique (smart),

in: Software Technology and Engineering Practice, 2005. 13th IEEE International

Workshop on. IEEE, pp. 222–229.

Lewis, G., Smith, D., Kontogiannis, K., 2010. A Research Agenda for Service-Oriented

Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems. Softw. Eng.

Inst.

Lippert, S.K., Govindarajulu, C., 2015. Technological, organizational, and environmental

antecedents to web services adoption. Commun. IIMA 6, 14.

Load Testing Overview | Load Testing [WWW Document], n.d. URL http://www.soapui.org/load-

testing/concept.html (accessed 7.13.15).

Malik, Z., Medjahed, B., 2010. Trust Assessment for Web Services under Uncertainty, in: Maglio,

P.P., Weske, M., Yang, J., Fantinato, M. (Eds.), Service-Oriented Computing, Lecture

Notes in Computer Science. Springer Berlin Heidelberg, pp. 471–485.

Mallayya, D., Ramachandran, B., Viswanathan, S., 2015. An Automatic Web Service Composition

Framework Using QoS-Based Web Service Ranking Algorithm. Sci. World J. 2015.

Mingyan, Z., Yanzhang, W., Xiaodong, C., Kai, X., 2008. Service-Oriented Dynamic Evolution

Model, in: International Symposium on Computational Intelligence and Design, 2008.

ISCID ’08. Presented at the International Symposium on Computational Intelligence and

Design, 2008. ISCID ’08, pp. 322–326. doi:10.1109/ISCID.2008.147

Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry, B., Jézéquel, J.-M.,

2012. Specification and detection of SOA antipatterns, in: Service-Oriented Computing.

Springer, pp. 1–16.

Mosser, S., Blay-Fornarino, M., 2013. “Adore”, a logical meta-model supporting business process

evolution. Sci. Comput. Program. 78, 1035–1054.

137

Mulligan, G., Gracanin, D., 2009. A comparison of SOAP and REST implementations of a service

based interaction independence middleware framework, in: Simulation Conference

(WSC), Proceedings of the 2009 Winter. Presented at the Simulation Conference (WSC),

Proceedings of the 2009 Winter, pp. 1423–1432. doi:10.1109/WSC.2009.5429290

Murugesupillai, E., Mohabbati, B., Gašević, D., 2011. A Preliminary Mapping Study of

Approaches Bridging Software Product Lines and Service-oriented Architectures, in:

Proceedings of the 15th International Software Product Line Conference, Volume 2, SPLC

’11. ACM, New York, NY, USA, pp. 11:1–11:8. doi:10.1145/2019136.2019149

Olivier, M.S., 2009. Information technology research: a practical guide for computer science and

informatics, 3rd ed. Van Schaik.

Papazoglou, M.P., 2008a. Web Services: Principles and Technology. Pearson Prentice Hall.

Papazoglou, M.P., 2008b. The Challenges of Service Evolution, in: Bellahsène, Z., Léonard, M.

(Eds.), Advanced Information Systems Engineering, Lecture Notes in Computer Science.

Springer Berlin Heidelberg, pp. 1–15.

Perez, S., 2015. Facebook Wins “Worst API” in Developer Survey [WWW Document].

TechCrunch. URL http://social.techcrunch.com/2011/08/11/facebook-wins-worst-api-in-

developer-survey/ (accessed 10.19.15).

Ren, M., Lyytinen, K.J., 2008. Building enterprise architecture agility and sustenance with SOA.

Commun. Assoc. Inf. Syst. 22, 4.

Robak, S., Franczyk, B., 2003. Modeling Web Services Variability with Feature Diagrams, in:

Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (Eds.), Web, Web-Services, and

Database Systems, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp.

120–128.

Roetzheim, W.H., 2000. Estimating Software Costs. Softw. Dev.-San Franc.- 810 8, 66–68.

Ruz, C., Baude, F., 2010. Enabling SLA monitoring for component-based SOA applications, in:

36th Euromicro Conf. on Software Engineering and Advanced Applications. Presented at

the 36th Euromicro Conf. on Software Engineering and Advanced Applications, Lille,

France.

Schepers, T.G.J., Iacob, M.E., Van Eck, P.A.T., 2008. A Lifecycle Approach to SOA Governance,

in: Proceedings of the 2008 ACM Symposium on Applied Computing, SAC ’08. ACM,

New York, NY, USA, pp. 1055–1061. doi:10.1145/1363686.1363932

Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J., 2004. Covamof: A framework for modeling

variability in software product families, in: Software Product Lines. Springer, pp. 197–213.

Sommerville, I., 1982. Software Engineering, 8th ed.

138

Sun, C., Rossing, R., Sinnema, M., Bulanov, P., Aiello, M., 2010. Modeling and managing the

variability of Web service-based systems. J. Syst. Softw. 83, 502–516.

doi:10.1016/j.jss.2009.10.011

Tiago Espinha, C.C., 2012. Spicy stonehenge: Proposing a SOA case study 57–58.

doi:10.1109/PESOS.2012.6225940

Treiber, M., Truong, H.-L., Dustdar, S., 2008. SEMF - Service Evolution Management

Framework, in: Software Engineering and Advanced Applications, 2008. SEAA ’08. 34th

Euromicro Conference. Presented at the Software Engineering and Advanced

Applications, 2008. SEAA ’08. 34th Euromicro Conference, pp. 329–336.

doi:10.1109/SEAA.2008.44

Tsai, W.T., Paul, R., Song, W., Cao, Z., 2002. Coyote: an XML-based framework for Web services

testing, in: 7th IEEE International Symposium on High Assurance Systems Engineering,

2002. Proceedings. Presented at the 7th IEEE International Symposium on High Assurance

Systems Engineering, 2002. Proceedings, pp. 173–174. doi:10.1109/HASE.2002.1173120

Tsalgatidou, A., Pilioura, T., 2002. An Overview of Standards and Related Technology in Web

Services. Distrib. Parallel Databases 12, 135–162. doi:10.1023/A:1016599017660

Vara, J.M., Andrikopoulos, V., Papazoglou, M.P., Marcos, E., 2012. Towards Model-Driven

Engineering Support for Service Evolution. J UCS 18, 2364–2382.

Wagh, K., Thool, R., 2012. A Comparative Study of SOAP Vs REST Web Services Provisioning

Techniques for Mobile Host. J. Inf. Eng. Appl. 2, 12–16.

Wala, T., Sharma, A., K., 2014. A Comparative Study of Web Service Testing Tools 4, 257–261.

Web Services Architecture [WWW Document], n.d. URL http://www.w3.org/TR/2002/WD-ws-

arch-20021114/ (accessed 8.7.15).

Weyuker, E.J., Vokolos, F.I., 2000. Experience with performance testing of software systems:

issues, an approach, and case study. IEEE Trans. Softw. Eng. 26, 1147–1156.

doi:10.1109/32.888628

What is soapUI? | About SoapUI [WWW Document], n.d. URL http://www.soapui.org/about-

soapui/what-is-soapui-.html (accessed 3.9.15).

Wilde, E., 2004. Semantically extensible schemas for web service evolution, in: Web Services.

Springer, pp. 30–45.

Wilde, N., Coffey, J., Reichherzer, T., White, L., 2012. Open SOALab: Case study artifacts for

SOA research and education. IEEE, pp. 59–60. doi:10.1109/PESOS.2012.6225941

Witte, A.G., 2013. SOA Governance in the Low Countries.

139

Zuo, W., Benharkat, A.N., Amghar, Y., 2014a. Change-centric Model for Web Service Evolution,

in: 2014 IEEE International Conference on Web Services (ICWS). Presented at the 2014

IEEE International Conference on Web Services (ICWS), pp. 712–713.

doi:10.1109/ICWS.2014.111

Zuo, W., Nabila, A., Benharkat, Y., 2014b. Holistic and Change-centric Model for Web Service

Evolution, in: Fourth International Workshop on the Future of Software Engineering For/in

the Cloud. Presented at the Dans 2014, Alaska. doi:10.1109/SERVICES.2014.51

