
MODELLING TRUST
MANAGEMENT IN AGENT

TO-AGENT SECURITY
SCENARIO

Mzomuhle Thuthuka Nkosi

(20011359)

A dissertation submitted in fulfilment of the requirements for the
degree of

Master of Science in Computer Science

Department of Computer Science, Faculty of Science and
Agriculture, University of Zululand

2006

UNIVERSIT"f 01' ZULUi.,r.:__

LIBIAlty

I"- NO•._ _ ••..•.•....................................

: Access;"" ,... .Q.Q.9.....3..~~.7.... I

Declaration

This dissertation represents author's own research work and has not been submitted in

any form to other institution of tertiary education for another degree or diploma. All the

material used as source of information has been acknowledged in the text.

Signature

11

Dedication

I dedicate this dissertation to my family which has always been behind me especially my

mother. Her encouraging words have kept me going through difficult times. I also

dedicate this work to my wife, who has been on my side continuously and has given me

freak hope for success.

III

Acknowledgement

I would like to acknowledge my appreciation to all the staff members of the Department

of Computer Science of the University of Zululand. I would also like to express my

sincere gratitude to my supervisor, Prof. M.O Adigun, for his support and commitment to

make this work a reality. To my fellow research students of the Department, I would like

to thank them for their help. I would also like to thank all the sponsors for their fmancial

contribution in conducting this research.

To God, the pillar of my strength, who always gives me a way through where it seems to

be no way out, I am most grateful to Him.

IV

Table of Contents

Declaration ii

Dedication iii

Dedication iii

Acknowledgement iv

Abstract xii

CHAPTER ONE 1

1. Introduction 1

1.1 Overview 1

1.2 Statement of the Problem 5

1.3 Research Goal 5

1.4 Objectives 6

1.5 Rationale of the Study 6

1.6 Research Methodology 6

A. Establishing the Background 6

B. Fonnulation of a Trust Management Framework 7

C. Proof of Concept Approach 7

1.7 Organisation ofthe Dissertation 8

CHAPTER nvo 9

2. Background Concepts and Literature Review 9

2.1 Introduction 9

v

Trust Evaluation Mechanisms 13

Trust Management in Open Multi-Agent Systems 10

Reputation-based Security Schemes 13

Centralised Reputation Mechanisms 13

Decentralised Reputation Mechanisms 16

Policy-based Security Schemes 21

REWERSE 21

Agent Security Systems 22

Trust Management Design Challenges 24

The Proposed Trust ModeL 25

2.2

2.3

2.3.1

2.3.1.1

2.3.1.2

2.3.2

2.3.2.1

2.3.3

2.4

2.5

CHAPTER THREE 28

3. Methodology and Model Development 28

3.1 Introduction 28

3.2 Trust Management Design Principles 29

3.2.1 End-to-end Security 29

3.2.2 Fair Trustworthiness Evaluation 30

3.2.3 Robustness and Scalability 30

3.2.4 System Visibility 31

3.3 Agent-based Trust Management ModeL 31

3.4 Communication Framework for the Agent-based Trust Management Model

34

3.4.1 Decision Agent (DA) 35

VI

3.4.2 Status Control Agent 36

3.4.3 Master Agent (MA) 36

3.4.4 Foreign Decision Agent (FDA) 38

3.4.5 Local Reputation Database (LR-DB) 38

3.4.6 Foreign Node 38

3.5 Authentication and Authorization Frameworks for the agent-based Trust

Management Model 39

3.5.1 Authentication Framework 39

3.5.2 Authorization Framework 41

3.6 Reputation Computation 45

CHAPTER FOUR 47

4. Design and Implementation 47

4.1 Introduction 47

4.2 Development ofAgent-to Agent Trust Management System 47

4.2.1 Overview of the System 48

4.2.2 Processes for each request 49

4.2.3 Digital Signature Algorithms 53

4.2.4 Trustworthiness Evaluation 54

4.3 Implementation Environment 56

4.3.1 System User Interface 56

4.4 Performance Experiments 60

4.4.1 Experimental Results 61

vu

4.4.2 Performance Evaluation 61

CHAPTER FIVE 65

5. Conclusion 65

5.1 Introduction 65

5.2 Conclusion 65

5.3 Future Work 67

APPENDIX A 69

APPENDIX B 73

APPENDIX C 74

REFERENCES 95

Vlll

List of Figures

Figure 1. 1: The Context-Aware Component Interfacing Pattern (Zurna and Adigun,

2006) 2

Figure 3. 1: Agent-based Trust Management Model 32

Figure 3. 2: Components of Decision Agent 35

Figure 3.3: Components ofMaster Agent... 37

Figure 3. 4: Component Diagram oftbe Authentication Framework 40

Figure 3. 5: Authorization Framework 42

Figure 3. 6: Control Structure for Trust Evaluation of Agents Requesting for a Service. 43

Figure 3. 7: Class Diagram for Agent-based Trust Management ModeL 44

Figure 4. 1: A Use Case diagram for agent-to-agent trust management 48

Figure 4.2: A sequence diagram for authentication 49

Figure 4.3: A Sequence Diagram for Authorization process 50

Figure 4.4: A sequence diagram for Collection ofreputation 51

Figure 4. 5: Activity diagram which shows how agents are authenticated and authorized

... 52

Figure 4.6: Pseudo code for signing the Service_doe 53

Figure 4.7: Pseudo code for digital signature verification 54

Figure 4. 8: Trust evaluation algorithm. TNOA - total number of actions, NOBA -

number ofbad actions, NOGA - number of good actions, RepV - reputation value

... 55

Figure 4. 9: Typical User Interface showing Nodes to be secured 57

IX

Figure 4. 10: Machine Configuration Interface 58

Figure 4. 11: A local Reputation Based Authentication Session 59

Figure 4. 12: A Foreign Reputation Based Decision Session 59

Figure 4. 13: Bad agents Identification based on their reputation 63

Figure 4. 14: Reputation Evaluation 64

Figure A. 1: User interface showing nodes participating in the network 69

Figure A. 2: Machine configuration interface 70

Figure A. 3: User Interface displaying messages 71

Figure A. 4: Key Generator Code 72

Figure B. 1: UML Class Diagram 73

x

List of Tables

Table 2. 1: Description of Existing Schemes and the Proposed Trust Model 27

Table 4.1: The experimental results to find the optimal value 61

Table 4. 2: The results of the performance analysis 62

Xl

Abstract

Over the previous years, researchers have given much attention to explore the effective

use of distributed systems to search, retrieve, and share information. Mobile agent

technology has had a great impact in providing solutions in different dimensions of

distributed systems. This research work presents the development and implementation of

trust maoagement model that ensures agents communicating in a Context-Aware

Component Interfacing Pattern (CACIP) based Service Oriented Distributed

Environment.

The Agent-to-Agent Trust Management model is proposed to ensure security of agents

that want to access services from the CACIP. The developed model uses a reputation

based approach to evaluate trustworthiness of each agent. Each agent must be

authenticated and authorized in order to get an access to services in CACIP. The trust

rnaoagement model ensures trustworthiness of each agent participating in a CACIP based

environment. Mobile agent security requirements were considered in developing the

model.

The developed model was implemented to demonstrate how requesting agents are

authenticated and authorized before accessing services. Simulation of the model was also

conducted to assess the performance to the model. The results show the efficiency of the

model when agents simultaneously make requests over a given amount of time. The

performance of the model shows scalability when number of requests increases.

The use of both foreign and local reputation to evaluate trust of agents guarantees that all

agents that access services, are trustworthy.

Xll
•

CHAPTER ONE

1. Introduction

1.1 Overview

The advent of agent technology has provided improvements in communication of

application users. Agent technology has been applied in several computer systems to

enhance their performance. This technology has brought some distinctive changes in

distributed and client-server computer systems. Agents are defmed as computer programs

that act in a computer network on behalf of human user or application. Agents are

designed with specific goals to achieve. Autonomous agents have the capability of

moving from one machine to the other and perform their duties without their owner's

intervention, i.e. the owner of an agent sends the agent to go and perform a duty in

another remote host according to the itinerary given to it. Agents communicate among

themselves, to achieve their design goals, without the intervention of their owners.

Agents with the capability of moving from one machine to the other are called mobile

agents. Mobile agent technology has been efficiently used to improve users' performance

in different contexts.

The need of agents to communicate with other agents in order to achieve their goals has

resulted in the emergence of multi-agent systems. Multi-agent system is composed of

several agents that are capable of mutual interaction. These agents interact to share

information and services. Some agents act as service providers while others are service

1

consumers during their interaction.

Regarding the efficient utilization of mobile agent technology, there are some limitations,

primarily in the area of security. Security in mobile agent technology has raised concerns

about practical utilization of mobile agents. As the agent moves from one node to the

other, it is open to many attacks which may destroy it or interrupt its execution. The issue

of security in application of mobile agent is never easy to be ignored when successful

operation is to be achieved. One dimension that impacts security of mobile agents is

communication or interaction style when they serve their purpose. Therefore, appropriate

interaction framework architecture is essential in order to establish proper security

mechanism among agents. Context-Aware Component Interfacing Pattern (CAClP)

architecture proposed in (Zurna and Adigun, 2006) provides the communication pattern

for agents in multi-agent system to share services.

Information Bus

Figure 1. 1: The Context-Aware Component Interfacing Pattern (Zuma and Adigun, 2006)

The architecture is as shown in figure 1.1. The CACIP architecture manages inter-

component communication through the information bus. Therefore, it prevents direct

component-to-component communication; instead component interaction is managed by

2

the information bus. This architecture allows all participating components to register with

the information bus, specifying types ofmessages they are interested in.

The components' registration ensures that every time a new message is written into the

information bus, a component that is interested in it is notified. The way messages are

accessed in CACIP architecture opens some serious security challenges or threats that

have not yet been addressed.

Different approaches can be applied to provide a relevant security mechanism for mobile

agents that communicate in a CACIP based mobile environment. Among several

approaches that have been used by many researchers, trust has played a major role in

provisioning of different security schemes. We propose a trust-based approach to provide

security mechanism for mobile agents communicating in a CACIP based service oriented

mobile environment. Winsborough et al. (2000) defme trust as the degree of belief about

the behaviour of other entities upon which we depend for reliability, timeliness, and

integrity of message delivery to their intended next-hop. In this research, trust is defmed

as the degree of belief about the agent's behaviour upon which it is depended for

reliability and trustworthiness in service or message accessibility. There is a great need to

manage trust when trust-based approach is applied to security mechanism. We defme

frosf management as activity of collecting, codifYing, analysing and presenting security

relevant evidence with the purpose of making assessments and decisions regarding

service accessibility. The trust mechanism being proposed in this research would help to

ensure that all agents that access services in CACIP are trust-worthy.

3

·The concepts of trusted computing, trusted network, trusted communication, trusted

agents are related to security issues, security technology and security services. All topics

of security study and research are directed towards providing a secure and tamper free

environment, or network or communication. In this context, trust is synonymous with

secure, which is tied to security.

Open distributed systems can be modeled as open multi-agent systems (for example, the

CACIP architecture) that are composed of autonomous agents interacting with one

another via particular mechanisms and protocols. In this respect, interactions form the

core of multi-agent systems. Thus, the agent research community has developed a

number of models of interactions including coordination «Jennings, 1993), (Durfee,

1999)), collaboratil;>n «Pynadath and Tambe, 2002), (Cohen and Levesque, 1990)) and

negotiation «Rosenschein and Zlotkin, 1994), (Kraus, 2001), (Jennings et aI, 2001)).

However, their application in large-scale open distributed systems presents a number of

new challenges. First, the agents are likely to represent different stakeholders that each

has their own aims and objectives. This means the most reasonable design strategy for an

agent is to maximize its individual utility. Second, given that the system is open, agents

can join and leave at any time. This means that an agent could change its identity on re

entering and hence avoid punishment for any past wrong doing. Third, an open

distributed system allows agents with different characteristics (e.g. policies, abilities,

roles) to enter the system and interact with one another. Given this, agents are likely to be

faced with a number of possible interaction partners with varying properties. Fourth, an

open distributed system allows agents to trade products or services (e.g. various forms of

auctions or market mechanism), and collaborate (e.g. forming coalitions or virtual

4

organisations) in very many ways. Therefore, agent designers are faced with a selecting

from a number ofpotential interaction protocols that could help them achieve their design

objectives.

Autonomous mobile agents in an open distributed system that requrres a trust

management that would make sure that every agent in the system is trustworthy.

1.2 Statement of the Problem

Applications running in a typical 4th generation network will deploy mobile agents on an

itinerary which requires them to visit fixed and mobile nodes. This poses a serious trust

management challenge. In order to investigate and propose a security framework that

responds to this challenge, we adopt the Context-Aware Component Interfacing Pattern

(CAClP) architecture as the core of a rniddleware in which the security framework will

be contextualised. This study constructed a trust management model that ensures security

of agents communicating in a CAClP based Service Oriented Distributed Environment.

1.3 Research Goal

The goal of the study was to address the CAClP architecture's security when deployed in

distributed mobile systems by providing agent based security mechanism.

5

lA Objectives

To construct a trust management model with specialisation in authentication

and authorization capabilities;

To devise an agent-to-agent authentication and authorization mechanisms that

manage trust in mobile systems and

To show that the scheme or mechanism functions in a real environment by

evaluating its performance experimentally.

1.5 Rationale of the Study

The CACIP architecture constitutes the core of a mobile application middleware on

distributed systems. This raises many security concerns for agents that carry services

from one node to another node. Adequate trust management is required in order to

guarantee security of mobile services operating on a network. The results of this study

would provide a mechanism that supports administration based on authentication and

authorization scheme or framework for mobile agents in mobile application systems.

1.6 Research Methodology

A. Establishing the Background

• Literature search for existing security models designed for wireless networks

and mobile ad hoc networks with the purpose of understanding how

6

authentication, authorization and privacy are being provided in applications

running on those networks.

• Survey of relevant peer-to-peer agents' communication research in order to

understand how authentication process is handled. This will be followed by

subsequently by formulating an authentication scheme that draws on that

understanding.

B. Formulation of a Trust Management Framework

This encompasses:

• Identifying existing reputation-based schemes that are used in different wireless

applications to secure peers;

• Formulating of a model that ensures security based on trust among agents

communicating in the CACIP manner on infrastructure-less networks. This

entails considering appropriate trust establishing requirements and some

security mechanisms that enforce those requirements and

• Constructing a corresponding framework for mobile agents' applications.

C. ProofofConcept Approach

Ordinarily this approach consists of:

• Analysing, designing and implementing the prototype to prove plausibility of

the proposed model and

• Evaluation ofperformance of the prototype implementation.

7

1.7 Organisation of the Dissertation

The dissertation is organised as follows:

Chapter two presents background concepts that form the foundation of this research

work. The chapter starts with brief introduction on reputation-based and policy-based

trust management and security issues on mobile agents. Existing related works are

discussed pointing out the challenges associated with the design of trust models. The

chapter concludes with a brief overview of the proposed trust model.

In chapter three the description of the model development is presented. This chapter

begins with the introduction followed by solution approach to solve the problem. The

agent-based trust J!1llIlagement model is then presented with its full details. Reputation

mechanism comes as the conclusion of the chapter.

Chapter four is the description of design of the trust management system with the

implementation. The experiments, analysis and results are presented in this chapter. It

concludes with the performance evaluation of the model.

Chapter Five concludes the dissertation. The research conducted and described in the

dissertation is presented in this chapter. Finally, the recommendations for future work are

described.

8

CHAPTER TWO

2. Background Concepts and Literature Review

2.1 Introduction

The trust approach has been widely used by many researchers to tackle problem of

security in multi-agent systems. Ramchurn et al (2004) defined trust in multi-agent

systems as a belief an agent has that the other party will do what it says it will (i.e. being

honest and reliable) or reciprocate (i.e. being reciprocative for the common good ofboth),

given an opportunity to defect to get higher payoffs. Trust issues have generated active

research interests for many researchers in attempting to propose security mechanisms for

open distributed systems. Trust management has been an issue of much consideration for

effective utilization of trust approach in the research community. An appropriate trust

management to propose security scheme is essential because trust is evaluated on

individual basis for a specific aspect. For example, component A, B and C are interacting.

B may be trusted to purchase items but not trusted to download files from A. On the other

hand, C is trusted to download ftIes but not trusted to purchase items. Therefore, in order

for B to download files from A, trust evaluation must be done. And trust evaluation must

be conducted for C to purchase items from A. Thus, trust management must be

appropriate and relevant for such situations.

Reputation and policy have become the fundamental concepts in building trust among

interacting agents in multi-agent systems. Reputation is defined as an opinion or view of

9

someone about something (Sabater and Sierra, 2003). When reputation is used to propose

security scheme, it must be apparent how reputation is collected to evaluate

trustworthiness of agents. Policies to access resources must be well stated in order to

protect multi-agent systems.

A Lot of work has been done on securing multi-agent application systems using

reputation-based and policy-based approaches to manage trust among agents. This

chapter reviews some existing security architectures and trust models that relate to our

research. The chapter starts by discussing some background concepts of the research in

Section 2.2. Section 2.3 presents the framework analysis of the literature followed by

review of existing mechanism. Section 2.4 discusses trust-based security design

challenges and the·chapter concludes with the proposed scheme presented in section 2.5.

2.2 Trust Management in Open Multi-Agent Systems

Several researchers have broadly used trust approach to formulate security architectures

for multi-agent systems. Trust is a belief or expectation someone has that the other party

will behave according to its promises. Trust provides a form of social control in

environments in which agents are likely to interact with others whose intentions are not

known. It allows agents in that system to reason about the reliability of others. The trust

approach has raised the need for trust management (Blaze, et aI., 1996) when it is being

used to formulate security architectures. Thus, trust management has been the challenge

to many researchers in research community. Aspects of trust management problem

include formulating security policies and security credentials, determining whether

10

particular sets of credentials satisfy the relevant policies, and deferring trust to third

parties. As a result, quite a number of security schemes have been proposed around this

paradigm ((Huynh, et al., 2004), (Blaze, et al., 1996), (Alfalayleh and Brankovic, 1998».

A number of definitions for trust management have been suggested by different

researchers in diverse contexts ((Bonatti, et al., 2005), (Huynh, et al., 2004)). Bonatti et

als (2005) defmed trust management as the activity of collecting, encoding, analysing and

presenting evidence relating to competence, honesty, security or dependability with the

purpose of making assessments and decisions regarding trust relationships. Trust

management, regardless of its security challenges, has been mostly used in open multi

agent systems to develop effective security schemes. Multi-agent systems are composed

of autonomous agents that interact with another using a particular mechanisms and

protocols. These autonomous agents interact to achieve their design goals in uncertain

and dynamic environments. Interaction pattern in multi-agent system has an impact in

formatting the security architecture. Thus, the way agents interact determines the type of

security models that is required to protect them.

In Context-Aware Component Interfacing Pattern (CAClP) architecture (Zurna and

Adigun, 2006) allowed different components to indirectly interact in order to share

services. Furthermore they defined the information bus that is used by participating

components to communicate. Information bus carries the messages (both requests and

published messages) that have been attached by components. Service provider

components attach messages to the information bus in order to publish services they offer

and can detach their messages at any time. On the other hand, service consumer

components attach request messages to the information bus in order to request for

11

published services. If the requested message is not available at the time of request, a

component can leave the message in the information bus so that it can be notified once

that service is available. The interaction style defined in CACIP shows some

characteristics of multi-agent system by allowing components to share services without

intervention of a user. Thus, in this research, CACIP is modeled as the multi-agent

system. Agents communicate using the CACIP style of communication.

However, CACIP architecture opens some security challenges that need to be addressed

in order for agents to freely share services. Security challenges that are raised by CACIP

interaction style include masquerading, unauthorised access, annoyance attack,

eavesdropping, denial of services and alteration (Alfalayleh and Brankovic, 1998). As it

is briefly discussed above that participating provider components in CACIP put their

messages in the information bus to be accessed by other components, therefore, access

control is needed that would make sure that only trusted agents are permitted to access

the information bus. The access control would prevent malicious agents from interrupting

other agents' messages and make them useless. This is because it is possible that a

harmful agent accesses the information bus and starts to alter other agents' messages.

lbis suggests that an appropriate trust management is required to secure agents

communicating in CACIP based service oriented environment. Therefore, in this research

trust management model is formulated to secure agents communicating in CACIP based

systems.

12

2.3 Trust Evaluation Mechanisms

This section analyses existing research works in the literature based on the following

approaches to develop trust-based security schemes:

i) Reputation-based ~ utilization of previous behaviour information of an agent to

evaluate its trustworthiness and

ii) Policy-based - declared policies are used to specify access control conditions

that yield the requested resource either granted or denied.

2.3.1 Reputation-based Security Schemes

A reputation-based approach has been used in the context of online electronic commerce

systems, e.g. eBay. Reputation mechanisms are built using two different approaches:

centralized and decentralised approaches. Therefore, researchers formulate reputation

mechanisms using either of the two approaches.

2.3.1.1 Centralised Reputation Mechanisms

E-Bay Reputation Tl1lst Model

Since traditional security mechanisms cannot protect an agent from unreliable service

providers, novel models have been developed to model service provision trust, i.e. trust

that a service provider is competent and will provide a service in a reliable marmer

(Grandison, and Sloman, 2000). The main building block of these models is information

13

about an agent's past behaviours. This information is used to reduce the trustworthiness

of that agent in terms of its competency and reliability. Online reputation mechanisms

(e.g. eBay (eBay Site), (Resnick and Zeckhauser, 2002) and Amazon Auctions (Amazon

Site) are probably the most widely used of such models. They are implemented as

centralised rating system so that their users can report about the behaviour of one another

in past transactions via rating and leaving textual comments. In so doing, users in their

communities can learn about the past behaviour of a given user to decide whether it is

trustworthy to do business with. For example, an eBay user, after an interaction, can rate

its partner on the scale of -I, 0, or +I, which means positive, neutral and negative rating

respectively. The ratings are stored centrally and the reputation value is computed as the

sum of those ratings over six months. Thus, reputation in these models is a global single

value representing a user's overall trustworthiness.

However, this is too simple for applications in multi-agent systems since they only

consider the trustworthiness of an agent as one dimension. Since the ratings are

aggregated equally, the mechanism cannot adapt well to changes in a user's performance

(e.g. a user may cheat in a few interactions after obtaining a high reputation value, but

still retains a positive reputation).

In summary, the reputation values in these systems contain very little information,

and users of these systems need to look for textual comments providing more

information. Therefore, such mechanisms are not well suited to computational agents,

which must usually make decisions autonomously. In addition, since there is no central

authority that can control all the agents in open multi-agent system, an agent may well

question the credibility of those centralised reputation models and decide not to use them.

14

SPORAS Reputation Model

Zacharia and Maes (2000) have proposed SPORAS which extend the online reputation

models mentioned above by introducing a new method for rating aggregation.

Specifically, instead of storing all the ratings, each time a rating is received it updates the

reputation of the involved party using an algorithm that satisfies the following principles:

1. New users start with a minimum reputation value and they build up reputation

during their activity on the system;

2. The reputation value of a user never falls below the reputation of a new user;

3. After each transaction, the reputation values of the involved users are updated

according to the feedback provided by other parties, which reflect their

trustworthiness in the latest transaction;

4. Users with very high reputation values experience much smaller rating changes

after each update and

5. Ratings must be discounted over time so that the most recent ratings have more

weight in the evaluation of a user's reputation.

In general, SPORAS is a centralized reputation model with more sophisticated

characteristics to model the trust dynamics than other simple models. For example,

Principles 1 and 2 above are to prevent a user with a bad reputation leaving the

community and entering with a fresh reputation (since the reputation of a new user is the

lowest reputation possible). However, at the same time, this penalises newcomers and

may discourage them from participating in the community. In addition, SPORAS also

introduces a reliability measure based on the deviation of rating values. This is an

15

indication of the predictive power of SPORAS for that user's reputation. For instance, a

high deviation value can mean either that the user has not been active enough to be able

to generate a more accurate prediction for hislher reputation, or that the user's behaviour

has a high degree of variation. Hence, each user has a reputation value and a reliability

value globally available to other users. In SPORAS, the reputation value of a user and its

reliability are discounted over time as a new rating is received. Therefore, SPORAS can

adapt to changes in a user's behaviour according to the latest rating.

In summary, SPORAS provides a trust measure that has more desirable features than that

of similar online models such as eBay's, or Amazon's. However, its centralized design is

not suitable for applications in open multi-agent system, e.g. CACIP. Moreover,

SPORAS is very susceptible to rating noise resulted from agents' subjective views that

are commonplace in open multi-agent systems.

2.3.1.2 Decentralised Reputation Mechanisms

Incentives-oriented Reputation Mechanism

lurca and Faltings (2003a) introduce a reputation mechanism where agents are given

incentives to report truthfully about their interactions' results. They define a set of broker

agents (called R-agents) whose tasks are buying and aggregating reports from other

agents and selling back reputation information to them when they need it. All reports

about an agent are simply aggregated using the averaging method to produce the

reputation value for that agent. Although the R-agents are distributed in the system, each

of them collects and aggregates reputation reports centrally. Hence this approach still

16

possesses the inherent shortcoming of centralised models above (Le. the questionable

objectiveness of R-agents in open multi-agent systems). In order to incentivise agents to

share their reports truthfully, Jurca and Faltings propose a payment scheme for reputation

reports. This scheme guarantees that agents who report incorrectly will gradually lose

money (during the process of selling reports and buying reputation information), while

honest agents will not. Therefore, this mechanism makes it rational for an agent to report

its observations honestly and this is the main contribution of their work. However,

reputation reports are limited to the values 0 and I (0 for cheating agents and I for

cooperating agents in an iterated Prisoner's Dilemma environment (Conte and Paolucci,

2002), and the rational property may not hold if an application requires reports

represented by more than these particular values (e.g. 0.1, 0.75).

Regret Reputation Model

Another trust model that was reviewed is Regret. Regret (Sabater and Sierra, 2001),

(Sabater, 2003)) is a reputation model in which the trust evaluation process is completely

decentralized. Employing Regret, each agent is able to evaluate the reputation of others

by itself. In order to do so, each agent rates its partner's performance after every

interaction and records its ratings in a local database. The relevant ratings will be queried

from this database when trust evaluation is needed. The trust value derived from those

ratings is termed direct trust and is calculated as the weighed means of all ratings. Each

rating is weighed according to its recency. Intuitively, a more recent rating is deemed to

be more current and is weighted more than those that are less recent. However, the

method Regret uses to calculate the weights for each rating has a shortcoming regarding

17

time granularity control and does not actually reflect a rating's recency. Like SPORAS,

Regret also provides a reliability value for each trust value to represent its predictive

power. The reliability value is calculated from two reliability measures: the number of

ratings taken into account in producing the trust values and the deviation of these ratings.

In addition, agents are assumed to be willing to share their opinions about one another.

Based on this, Regret develops a witness reputation component along with a sophisticated

method for aggregating witness reports taking into account the possibility of dishonest

reports. The operation of this component depends on the social network built up by each

agent. In particular, Regret uses the social network to find witnesses, to decide which

witnesses will be consulted, and how to weight those witnesses' opinions. However,

Regret does not specifY how such social networks are to be built, and this means that

component is oflimited use.

Besides direct trust and witness reputation, Regret also introduces the concepts of

neighbourhood reputation and system reputation. The former is calculated from the

reputation of the target's neighbour agents based on fuzzy rules. However, this again

requires a social network to work. The system reputation is a mechanism to assign default

trust values to the target agent based on its social role in an interaction (e.g. buyer, seller).

However, this is only useful if additional domain-specific information is available.

In summary, the decentralising approach of Regret allows agents to evaluate trust by

themselves without relying on a centralised mechanism. It also takes various sources of

trust information into account and considers the possibility of disinformation. Therefore,

the approach Regret adopts is compatible with the requirements for a trust model in open

multi-agent system. However, apart from the direct trust component, the rest of the model

18

is not readily applicable. The main reason is that Regret does not show how each agent

can build the social network on which Regret heavily depends.

Referral-oriented System

In building a reputation system based on witness information, Yu and Singh (2002), (Yu

and Singh (2003) develop a mechanism to locate information sources (i.e. witnesses)

based on individual agents' knowledge and help (through each agent's contacts) without

relying on a centralised service. Hence, this approach is well suited for applications in

open multi-agent system which is distributed by nature. In particular, in this system,

agents cooperate by giving, pursuing, and evaluating referrals (a recommendation to

contact another agent). Each agent in the system maintains a list of acquaintances (other

agents that it knows) and their expertise. Thus, when looking for some information, an

agent can send the query to a number of its acquaintances who will try to answer the

query if possible or, if they cannot, they will send back referrals pointing to other agents

that they believe are likely to have the desired information (based on those agents'

expertise). Yu and Singh (2002) referral system uses a vector space model (VSM) (Salton

and McGill, 1983) to model agents' expertise. An agent's expertise is then used to

determine how likely it is to have interaction with or to know witnesses of the target

agent. This mechanism does not define how to make sure that referenced agents are

trusted to provide true behaviour information about the requester agent. And the

mechanism is not efficient because it may take much time to get responses from the

agents that were referenced to provide history record, consequently a system take too

long to execute evaluate one agent.

19

TRA vas Reputation Model

Teacy, et al (2005) proposed Trust and Reputation model for Agent-based Virtual

OrganisationS (TRAVOS), a trust model that is built upon probability theory and based

on observations of past interaction between agents. In this model, the outcome of an

interaction is simplified into a binary rating (i.e. 1 for a successful interaction, 0 for an

unsuccessful one). Using binary ratings allows TRAVOS to make use of the beta family

of probability density jUnctions (PDF) (DeGroot and Schervish, 2002) to model the

probability of having a successful inter action with a particular given agent. This

probability is then used as that agent's trust value. In addition, using PDFs, TRAvas

also calculates the confidence of its trust values given an acceptable level of error. If the

confidence level of a trust value is below a predetermined minimum level, TRAVOS will

seek witness information about the target agent's past performance. Witness information

is shared in the form of frequencies of successful and unsuccessful interactions that the

witness has had with the target agent. After interacting with the target agent itself, the

evaluator compares the received witness report with its own observations. By this means,

the evaluator calculates the probability that the witness's information supports the true

behaviour of the target agent within a reasonable margin of error, and uses this

probability to weight the impact of the witness' opinions on future decisions made be the

evaluator. However, TRAvas's simplified representation of interaction ratings is rather

limited and not suitable for a wide range of applications in open multi-agent system.

20

2.3.2 Policy-based Security Schemes

The policy-based approach has been proposed in the context of open and distributed

services architectures as a solution to the problem of authorization and access control in

open systems. In this approach, trust management mechanisms utilize different languages

and engines for specifying and reasoning on rules for trust establishment. The goal is to

determine whether or not an unknown user can be trusted, based on set of credentials and

a set ofpolicies. Policy-based trust relies on objective "strong security" mechanisms such

as signed certificates and trusted certification authorities (CA) in order to regulate the

access of users to services. Moreover, the access decision is usually based on mechanisms

with well defined semantics (e.g. logic progrannning) providing strong verification and

analysis support. The result of such a policy-based trust management approach usually

consists of a binary decision according to which the requester is trusted or not, and thus

the service (or resource) is allowed or denied.

2.3.2.1 REWERSE

Employing policies to protect services is a crucial aspect in security systems. Policies

benefit users to get full access to available services and also give necessary access control

to services so that only those that meet minimum access requirements can access

resources. The important thing about policies is that users must understand them in order

to enjoy benefits offered by a particular system. Policies play crucial roles in enhancing

security, privacy, and service usability. Policies are typically divided into different kinds

21

among which include: access control policies, privacy policies, and business rules. The

work in (Bonatti, et al., 2005) proposed the REasoning on the WEB with Rules and

SEmantics (REWERSE) which integrates these kinds of policies to a single framework.

Bonatti and others argue that integrating these kinds of policies to a coherent framework

can be effective in a way that (i) a common infrastructure can be used to support

interoperability and decision making, and (ii) the policies themselves can be harmonized

and synchronized. However, REWERSE the use of all these kinds of policies

simultaneously may be time consuming when decision is taken. This approach influences

our research with its provisional policies that it introduces. Provisional policies are used

in REWERSE if the system has to specify certain credentials that it needs in order to

authenticate the component.

2.3.3 Agent Security Systems

The review of the two architectures that impact our model is presented in the following

subsections. The strengths of these two architectures are combines to form our trust

model.

Maarofand Krishna

Maarof and Krishna (2003) proposed the trust management model for multi-agent system

trading society. It is argued in this model that, there is a need of a mechanism that gives

option to have different combinations of trust for different situation in multi-agent trust

management. The model has three components: objective trust-based agents, reputation

22

and the trust mechanism. These components are combined together to form the trust

opinion needed in decision making. Each of these components has the role to play at

different times in the overall life of a trading partnership. The reputation component is

used because of the fact that it can be beyond each individual's resources to evaluate all

aspects of a given situation when making a trust decision. However, the model does not

clearly define how recommenders are selected to provide required reputation.

Ping and Others

The system agent architecture proposed in (Ping, et al., 2004) typically desigoed to run in

ad hoc networks. The architecture is based on the framework of the immune system that

is capable of detecting and identifying an attack, elaborating a specialised response

measure to isolate the invader, and recover from the attack. Three important agents are

defined in this architecture: monitor agent, decision agent and killer agent. The

interesting part of this work is the delegation of these agents to perform different tasks.

Monitor agent monitors incoming agents that wants to participate in the network and

decision agent makes decision based on the information provided by monitor agent about

agents coming to join the network. Killer isolates invaders from the network. Although

this architecture is desigoed for ad hoc network but its approach of detecting agents and

decision making can be adopted to desigo security scheme for open multi-agent system

running in wireless networks. However, neither reputation-based approach nor policy

based approach is used in this scheme to make decision.

23

2.4 Trust Management Design Challenges

Managing trust in multi-agent system is modeled according to specifications and security

design principles. Trust-based security schemes analysed in section in 2.4 and 2.5

experience the following design challenges: i) Fairness, ii) End-to-end security, iii)

Robustness, iv) Scalability, and v) Visibility. Next section discusses each of these design

challenges.

2.4.1 Fairness

Decision making based on trust needs to be fair for every participants in a multi-agent

system. In general, there is no entity in a multi-agent system that can have a global view

of all agents that communicate in it. This suggests that, at times unfairness may occur

when trust is used to make decision about who is suppose to access resources. However, a

mechanism must be defmed to make sure that all participants are treated fairly.

2.4.2 End-to-end Security

An agent that makes request must be checked for security from the point of origin to the

destination before given an access to the system. The fact that the component has been

authenticated in a particular point does not necessary mean it has access to all parts of the

system, thus in each point the component must meet the requirements declared. If this is

not taken care of, cheating of component may increase.

24

2.4.3 Robustness

Some components may present invalid information in trying to falsely get access to the

system. The trust model should be able to resist such situation and be able to correctly

operate under such situation. lfthe system is not robust, it is subject to failure when quite

a number of malicious components attempt to get access into the system

2.4.4 Scalability

The increase in number of components that make request can be a challenge to a security

scheme ifscalability problem was not considered during designation. The trust model has

to evaluate a number of components requesting for services. The security mechanism that

is not scalable may cause the system to be inefficient in processing service requests

2.4.5 Visibility

Participating components should be able to know and understand security implication of

their actions. Each component must know its state so that it would decide how it should

behave in future actions in the system.

2.5 The Proposed Trust Model

The previous sections reviewed the trust models that have been proposed to manage trust

in diverse context of security requirements. However, these security schemes do not

provide a global solution for trust management in multi-agent system. The reviewed

schemes experience some challenges stated in section 2.6.

25

In this research, we propose an agent-to-agent trust management model. The proposed

trust model is constructed to provide security for agents communicating in CACIP based

system Our model combines reputation-based with policy-based approaches to manage

trust among agents that share services in CACIP based system. Agents that make requests

are authenticated based on their reputation and authorized based on declared policies to

access services in CACIP system. Behaviour information for each agent that has accessed

the system is stored in the local repository and is used to evaluate that agent when it

makes request nest time. It is possible for an agent to not have any historical record in the

local database. In that case, only foreign reputation is used to evaluate trustworthiness of

the agent. Foreign reputation is queried when the agent make request for the first time or

if the local reputation is not sufficient for trust evaluation.

The proposed model was constructed by integrating two security models defined in

(Maarof and Krishna, 2003) and (Ping, et al., 2004). The strengths of these two schemes

are used to construct our trust model. Table 2.1 shows the brief descriptions of the two

schemes which were used to construct the trust model that is also describe in the same

table.

26

Table 2. 1: Description of Existing Schemes aod the Proposed Trust Model

Modell Context Problem to be Solution
Architecture solved Mechanism

The previous interaction "Mobile agents cao be "Combining components
experience with a requesting unfairly isolated from a ofa trust based trading

Hybrid Trust agent is sometimes not network because a system relationship, reputation,

Management sufficient to make a fair does not have trust subjective trust aod

Model decision about that agent when mechanism that gives an objective trust to ensure
it waots to join the network. option to have different that the information to
Therefore, reputation from 3'" combination of trust from make a decision about
party recommenders cao be different situations and trustworthioess of ao agent
used to get the previous sources." is sufficient. Defining
behaviour infonnation about reputation component that
an agent that request a service is only enabled when trust

ratings based from
experience is not
sufficient, aod bring the
flexibility to permit the
reputation component to
be enabled or disabled."

Security architecture that is "An agent that waots to "'Develop an immune-
based on the framework ofthe participate in ad hoc based security architecture
immune system, that is network may be an invader, for mobile ad hoc
capable ofdetecting aod i.e. it would harm other networks that has the

System Agent identifying ao attack, agents in the network. mechaoism to detect aod
architectnre elaborating a specialized Therefore, identifying such isolate the invader agent.

response measure to isolate agent in open distributed Behaviour of ao agent
the invader, and recover from systems can be a participating on the
attack. It has the same learning challenge." network is monitored by
aod adaptive capability of the the monitor agent which
human immune system, and so resides on each node"
it is able to react to unknown
attacks aod to improve to
response under subsequent
exposures to the same attack
Mobile nodes are interacting Mobile agents Evaluating trust based on
in a mobile network; communicating in a CACIP reputation (local or

(proposed) trustworthiness ofeach node is based service environment foreign) aod policies, i.e.

Agent-based evaluated based on trust. are open to some security each agent is authenticated

Trust Mobile agent technology is challenges. Some of according to its previous

Management adopted to establish trust security challenges are behaviour information and
management among agents unauthorized access, authorized based on access

Model that are communicating in a eavesdropping, annoyance policies that are set in the
CACIP based service oriented attack, masquerading, information bus.
mobile environment Trust is alteration aod denial of
built based on reputation of service. A security
each agent aod access to mechanism is required to
services is given to agents that ensure protection of agents
meet access requirements as when they share services.
stated policy in the
information bus

27

CHAPTER THREE

3. Methodology and Model Development

3.1 Introduction

The previous chapter presents the analysis of existing trust-based security schemes that

have been proposed for multi-agent systems. However, these proposed security schemes

have their shortcomings without support for complete fair mechanisms for agents' trust

evaluation.

We propose agent-to-agent trust management model to address some of these limitations:

fairness, end-to-end security, and scalability. Our formulated trust model intends to offer

end-to-end security examination of agents making requests. It is crucial in trust models

that all agents are fairly treated in open multi-agent system. Therefore, the formulated

trust model would ensure fairness in trustworthiness evaluation of agents.

This chapter presents development of agent-to-agent trust management model and the

detailed components that constitute this modeL Section 3.2 discusses the design

principles; agent-based trust management model is described in section 3.3. Section 3.4

discusses the communication framework for our formulated model followed by

authentication and authorization frameworks discussed in section 3.5. Section 3.6

describes the reputation mechanism used to evaluate trustworthiness of agents.

28

3.2 Trust Management Design Principles

The existing trust models have attempted to solve the problem of trust management in

open multi-agent systems. However, there has been no global solution to the problem;

instead some of the proposed schemes, discussed in section 2.4 and 2.5 of chapter two,

provide solutions with some limitations. The limitations recognized from the reviewed

schemes make them unfit to secure the CACIP. We, therefore, propose own trust-based

security scheme to secure CACIP architecture. The design principles for our scheme are

categorized as follows:

i) End-to-end security;

ii) Fair trustworthiness evaluation;

iii) Robustness and scalability support and

iv) Provision ofsystem visibility.

Each of these design principles is briefly described below.

3.2.1 End-to-end Security

A security scheme should handle end-to-end security checking of components that wants

to access resources. In each point leading to a particular resource, an agent must be

checked for security in order to make sure that only risk-free agents get an access. In a

multi-agent system, end-to-end security examination can be achieved by assigning some

agents or components to perform security checking at each point on the itinerary of the

agent until it reaches the resource. This suggests that different mechanisms may be used

at each point and different access requirements set for each requester agent has to meet in

29

order to be granted the access to resources. The requester agent should present sufficient

requested requirements in each point to pass to another point.

3.2.2 Fair Trustworthiness Evaluation

Trust decision sometimes can be dependent on different entities of a security system. This

poses a challenge of making sure that agents are given same opportunities during trust

decision. We define fairness as the ability to make judgment free from discrimination or

dishonesty. Decision making in multi-agent system must be fair to all agents that make

request. To achieve this, various sources of behavior information must be used to make

decision in the case whereby behaviour information is not found from the local

repository.

3.2.3 Robustness and Scalability

An increase in number of agents making requests may cause the system to malfunction if

it is not robust and scalable. In trust model, neighbouring agents may provide invalid

information about the agent being evaluated for trustworthiness. Thus, the system must

be able to accurately and constantly deal with erroneous data sent to it. A multi-agent

system should be able to correctly and continuously evaluate all agents making requests

in spite of how huge the number of requests is. Thus, the system is scalable if it does not

get confused with executing the huge number of requests.

30

3.2.4 System Visibility

In a multi-agent agent system that uses trust-based security mechanism, every action of

the agent would impact its future trust evaluation. Therefore, a security mechanism

should enable participating agents to know and nnderstand security implications of their

actions.

3.3 Agent-based Trust Management Model

The proposed trust model aims at providing a security mechanism for multi-agent system

that ensures fairness in evaluating agents making request for resources. The model was

constructed by integrating the strengths of two schemes: An hybrid trust management and

system agent architecture, both discussed in section 2.6 of the previous chapter.

The hybrid trust management model (Maarof and Krishna, 2003) defines trust mechanism

that is used to make decision about an agent that requests for a service. This model

reveals that, it can be beyond individual's resources to evaluate all aspects of a given

situation when making trust decision; hence, agents must rely on other sources of

information to get the reputation of an entity. Reputation is provided by 3cd party

recornmenders in the network, and recommenders' component of the model is enabled if

the direct previous interaction behaviour information with the agent is not sufficient to

make a decision. However, this model does not define a mechanism to deal with

malicious agents once they have been identified based on their reputation. This limitation

is addressed in (Ping, et al., 2004). Ping et al (2003) proposed system agent architecture

that defmes how malicious agents are detected and identified. The Monitor agent resides

in each node and monitors behaviour of the neighbouring node.

31

Foreign Node

FR-DB

SD

SAMA •,,,,
•-----------------

Interface

---------------~-----------------------------, •j
•j
••,,
•,
j,,,

---------------------.,
••••,
j,

,
•,,
, f -----------------., . ,, , ,, , ,, . ,, , .
j LR-DB j
j ,, ,, ,, ., . .I t ~

~--~

2

1

n

Legend

~
LccaI

Reqle~ ,,",SUlgeS ~ ScW~ 1?epu1l:tion
SD Directo1}' LI:l1l2!:we

CO'mI1llItcation dlamQ

Decision [;] Master [;] ScW~

~
]7oreign

MA QF QgM
Rep,ltdion

agM LI:l1l2!:we

Figure 3. 1: Agent-based Trust Management Model

It then sends the behaviour information to the decision agent that makes decision whether

to give access or isolate the requester agent from the network. However, this architecture

does not ensure the end-to-end security as behaviour information is transferred from

32

monitor agent to decision agent.

The core of the developed agent-based trust management model, shown in figure 3.1, is

in the delegation of two agents: Decision Agent (DA) and Master Agent (MA), which are

at the interface of the information bus to authenticate and authorize every agent that

makes a request. This means every agent that wants to access services in the information

bus has to first interact with DA for evaluation of trustworthiness. S_R_A sends a request

message to a CACIP based system and DA receives the request. In order for DA to make

a decision about S_R_A, it checks from local reputation if there is a previous interaction

record (behaviour information) of the S_R_A. If previous interaction record of the agent

is not found from local reputation or is insufficient to make decision, DA broadcasts a

message, requesting for behaviour information, to foreign reputation (third party

recommenders). Neighbouring agents that has received the reputation request message

reply to DA with a reputation value of the S_R_A.

Local-reputation is formed from previous direct interaction experiences of the Decision

Agent with agents that has requested for services. On the other hand, foreign-reputation

refers to reputation obtained from other neighbouring nodes (recommenders), in the

network, which has the previous interaction records of the agent that request for service.

When the S_R_A has been authenticated by DA, it then interacts with the Master Agent

which holds access requirements (policies) that have to be met by the requesting agent in

order to get access to resources. Next, the description of the interaction of agents

communicating in CACIP based manner is presented in the following section.

33

3.4 Communication Framework for the Agent-based Trust

Management Model

Interaction style plays an important role in choosing an appropriate security mechanism

to secure mobile agents. This is because in an open distributed system, agents are able to

interact with one another to share services without intervention of their senders. CACIP

architecture proposed by (Zurna and Adigun, 2006) provides the indirect interaction of

components (refer to figure 1.1). This form of interaction style brings some security

weaknesses that open room for malicious agents to access resources in multi-agent

systems. Therefore, an access control is required to cover this gap. The agents at the

interface of inforniation bus in our developed trust management model control access to

services and by so doing they facilitate and monitor communication of participating

agents. Hence, Decision Agent performs authentication and Master Agent authorizes the

authenticated agents to access services. The Master Agent can perform its duty after

decision agent has authenticated the agent, i.e. Master Agent is dependent on Decision

Agent results to execute its task. Trustworthiness of agents is evaluated based on local or

foreign reputations when authentication process is performed. And some policies (access

requirements) are set in the Master Agent for authorization process. In case a requester

agent is found to be an invader, Decision Agent instructs the Status Control agent (SCA)

to set status (either suspended or permanently removed) in the database (LR-DB). To

clearly describe communication of agents, the components participating in the process are

individually defmed in details in the next sections.

34

3.4.1 Decision Agent (DA)

DA performs authentication of agents that make requests. It uses the communication

component to interact with other entities in the develop trust model.

The communication process entails the following sub-tasks:

Receive requests from service requester agents (S_R_A);

Send responses to service requester agents;

Broadcast reputation queries to 3rd party recommenders for behaviour information

(foreign reputation) of the requester agent and receive the computed trust value

from FDA when it responds and

Establish connection between bA and MA to transfer security control.

-; DA Communication
, t
,),

DA Authentication

,
'-i Generate_Document

Figure 3. 2: Components of Decision Agent

In order for the DA, shown in figure 3.2, to analyse and assess each service request it

receives, authentication component plays the role of security coordinator by first

watching out for requests from communication component. Then it instructs the

35

communication component to broadcast reputation queries if it is necessary. The same

authentication component is charged with deciding what to do with a request. Only when

a requester agent IS trustworthy that authentication component instructs

Generate_Document component to produce the service document (service_doe) to be

presented to the Master agent.

The Generate_Document component constructs a service doe and sends it to the

Communication component. The generated service_doe is then supplied by the DA

before it is sent to the Master agent.

3.4.2 Status Control Agent

Status Control Agent (SCA) administers the records in the LR-DB. The status of a

requester agent can either be active, suspended, or permanently removed from the

database.

Active state - means the agent can be possibly trusted based on its records.

Suspended status - means the agent is in the state whereby it would be considered later

because ofwrong actions it had performed.

Permanently removed status - means the agent will never be given access because it has

history ofbad behaviour.

3.4.3 Master Agent (MA)

The communication component in Master agent, shown in figure 3.3, receives the

service_doe that was generated by Decision agent. It then sends it to Authorization

36

component for authorization process.

The Authorization process entails the following sub-tasks:

Verify the digital signature on the service_doc;

Reads the service description on the service doc and

Check the access requirements from the Access Policy component when each

service is requested.

The Access Policy component carries access requirements that each requester agent has

to meet in order to get access to the information bus. To give access to services that are in

the information bus, Master Agent authorizes agents after they have been authenticated

by the Decision Agent.

~).

MA Communication

"
,

MA Authorization

" ~

;

Access Policy

Figure 3. 3: Components of Master Agent

Master Agent holds set of rules (access requirements), for each service in the information

bus, that are being used in authorizing agents. Master Agent knows the encrypted digital

signature of the Decision agent on the service_doc it is receiving. It then verifies that

signature to determine that a requester agent has been authenticated by the assigned

Decision Agent. Master agent uses the shared secret key (Kritzinger, et al, 2003) to

37

decrypt the signature to confinn that the requester agent has been authenticated.

3.4.4 Foreign Decision Agent (FDA)

When DA broadcast reputation query, it communicate with foreign decision (FDA) in

foreign CACIP oriented nodes. The FDA performs the same tasks as the DA. It replies to

the reputation query from DA by sending the computed trust value of the requester agent

if it is available from its LR-DB.

3.4.5 Local Reputation Database (LR-DB)

During direct interaction of Decision Agent with requester agents in the network,

behaviour information of each agent is stored to build history record (reputation). This

reputation is called local reputation and is used to make decision during trust evaluation.

3.4.6 Foreign Node

Decision agent cannot depend only on local reputation to make fair decisions, but it needs

other external but reliable sources (which in the context of this model are neighbouring or

foreign nodes) to obtain previous behaviour information of agents that request for

services. Reputation from those external sources is called foreign reputation.

38

3.5 Authentication and Authorization Frameworks for the agent

based Trust Management Model

When an agent requests for service from information bus, its motive and intention are not

known until an evaluation is performed In order to perform complete trust verification,

each agent sends its request message coupled with credentials (WinsboTOugb, et ai, 2002)

to decision agent. Decision Agent either verifies the message and decides whether to

certify the agent and give the service_doe to be checked for authorization or denies the

request based on its reputation. Authentication is done by decision agent and

authorization is the task of Master agent. In the following sections, authentication and

authorization frameworks are discussed.

3.5.1 Authentication Framework

In order to ensure safe communication among agents, all agents that want to participate in

the network must be authenticated. Reputation from different sources is the major entity

that is used during authentication if the local reputation is not sufficient or there is no

record in the requester agent. The decision agent authenticates requester agents based on

their behaviour information as discussed in section 3.4.1.

Service requester agent sends request message to decision agent to verify its identity and

do some assessments. Decision agent first checks if previous behaviour information of

that agent is available from its local reputation database. If information in local reputation

is sufficient to make the decision, the decision would be made based on that information.

39

lSer~1

Figure 3. 4: Component Diagram ofthe Authentication Framework

But in a case where behaviour information in local reputation is insufficient to make

decision, decision agent request for reputation from 3n1 party recommendeTS. It does this

by broadcasting the request to the neighbouring nodes. Those neighbours that have the

requested behaviour information reply to the request. And when Decision agent has

received the responses from recommenders, it then takes decision based on that

recommendation combined with local reputation if available. Third party

recommendation agents that provide behaviour information are not all known by the

Decision agent; hence they are divided into three types. Figure 3.4 shows the framework

to authenticate agents and its three main components, namely Known Agents, Referred

Agents and Unknown Agents.

• The Known Agents are known by the service requester agent (including trusted and

un-trusted agents). They are non-anonymous or pseudo-anonymous agents;

• The Referred Agents are not known to the Service Requester Agent itself but

through references provided by known agents. They are non-anonymous agents and

40

• The Unknown Agents - agents with no referral or direct interaction with the Service

Requester Agent. They are anonymous agents.

When it is found that the Service Requester Agent is an invader, the decision agent

triggers the SeA to perform its task:, as discussed in section 3.4.1. But when the Service

Requester Agent is trusted, decision agent generates a service document (service_doc)

and gives it to the Service Requester Agent. The service_doc contains the following

information:

• The Agent ID is the unique identity munber of the Service Requester agent;

• Service Description refers to the list of items that the Service Requester agent is

asking the information bus to provide and

• The Agent's signature is the token appended to the service_doc for verification

by Master Agent.

3.5.2 Authorization Framework

An agent that request for a service can be granted the access to available services based

on some policies that are set in the Master agent. When the agent requesting a service has

been authenticated by the Decision Agent, it obtains the service_doc which would be

presented to Master Agent for authorization, as shown in figure 3.5. The Master Agent

receives the service_doc from Service Requester Agent and verifies three things. Firstly,

it decrypts the signature on the service_doc to COnIlITll that it was really signed by the

Decision agent.

41

Oocision Agent

~~nlt<$

~rvi<:;*,","d<x;

Service
Requoster

Agent

Pt~t

5;~tvi(',...,_ d.p.c

Master Agent

Figure 3. 5: Authorization Frnmework

The signature on the service_doc indicates that the agent has been authenticated.

Secondly, it checks if the required service, described in service_doc, is available in the

information bus.

Thirdly, it is possible that the required service is available in the information bus but the

requester is not allowed to access it, possibly because it does not meet the access

requirement stated in the stipulated policy. Therefore, when the service is available and

the requester is authorized to get it, it is then given the access to that service.

On the other hand, if the required service is not available or the requester IS not

authorized to access any service ill the bus, the Master Agent sends appropriate

notification message to the Service Requester Agent.

42

Authentication All!:orithm Authorization Alg:orithm

if (localJeputation is sufficient) if (service available)
if (signature is correct)

Use reputation
Permit entry

Else
if (foreign_reputation is sufficient) Else

Isolate on network
Use reputation

End if
Else

Detach from network Else
Detach from network

End!f
End if End!f

Figure 3. 6: Control Structure for Trust Evaluation ofAgents Requesting for a Service

Table 3.1 gives aI\ overview of the control structure for identifying agents that wants to

participate in a network, and the algorithm to allow or deny an agent from accessing

services in the information bus. The identities for the Service Requester Agent are

checked by Decision agent during authentication. During the authentication, the

availability of the requested service is not confirmed until the requester presents the

service_doc to Master Agent for authorization process.

Model entities and their relationships can be illustrated by using a class diagram. Figure

3.6 shows the class diagram of agent-based trust management model. The following is the

description of each class:

a. Service Requester Agent Any mobile agents that request for a service in a

network are represented by this class;

b. Agent: This is the abstract class that defines shared attributes and methods;

43

Agent

agentID: int
agentName: String

+ makeRequestO
+ sendRespanseO
+TeceiveRespanceO

1
I I I

MasterAgent ServiceRequester StatusControl DecisionAgent
Agent Agent

- generate: GenerateSig- verifier: VerifySig
- request: Request

- response: Response - status: String -
+ authariseAgentO + authenticateAgentO

+ setAgentStatusO
~:> ~>

VerirySig Response GenerateSig Request

- responseID: int I~ - requestID: int
- contentResp: String - contentReq: String

+ confirmSigO + createSigO
f+- getRespanseIDO + getRequestIDO
f+- getCantentRespO + getCantentReqO

Figure 3. 7: Class Diagram for Agent-based Trust Management Model

c. Decision Agent. This is the class that represents an agent which determines

whether a requester agent can participate or not in the network or it must be

denied it request;

d. Master Agent. This class represents the agent that authorizes other agents to

access services in the information bus;

e. Statns Control Agent. This class represents the agent that sets status, based on

computed reputation, ofeach agent that has interacted with DA.

f. VerifySig. This class verifies the information in the service-doc and

g. GenerateSig. This class is used to generate and sign service_doc

44

3.6 Reputation Computation

The reputation of an agent is computed based on the behaviour information from either

local reputation (direct previous interaction) or foreign reputation (from 3'd party

recommenders). Decision agent determines the trustworthiness of each requester agent

based on its reputation. The equation below computes the reputation (which is the trust

value) for an agent that request for a service.

Rv=Tv+ (GA - BA)/ TA * 100 (I)

The reputation value is calculated in percentage.

• Rv - a reputation value for each agent that determines its trustworthiness;

• GA - number of good behaviour instances of an agent when it was accessing

resources;

• BA - number of instances of bad behaviour of an agent when it was accessing

resources;

• TA _ total number of actions an agent has done and

• Tv- a reputation value from 3'd party recommenders.

The reputation policy adopted states that an agent that has the trust value of at least 50%

is trusted. Therefore, an agent is deemed malicious if its trust score is below 50% and it is

then denied an access. An agent can improve on its trust value by simply increasing the

number of instances good actions. The computation is performed by the DA every time

agent requests for a service. Initially, Tvis set to 0 for all agents requesting for services. It

is dependent on using Tv parameter to make decision in our model, since it is possible for

45

the DA to have sufficient reputation from its local reputation database. For instance, let

the requester agent A with GA=70, BA=15 then the total nmnber of actions (TA=85). In

this case, the DA does not need to request for reputation from neighbouring nodes to

authenticate agent A. Therefore, Tv remains zero for agent A when its Rv is computed.

The Rv would be (GA~ BA)/TA * 100, (70 - 15)/85 * 100, so agent A scores 65% which

means it is trusted.

Each DA maintains a local reputation repository in a tuple of the form:

[Agent_id, total number ofactions, number ofbad actions, number ofgood actions]

The reputation repository stores the updated behaviour information of all agents that has

accessed the information bus. The information in the in repository is used by DA to take

decision when agents make requests for services. Each history record in the repository

has the indication of its status. The SeA controls the status of all agents that has

interacted with the DA; therefore it determines whether the status of an agent should be

activated, suspended or permanently removed from the repository based on the behaviour

information.

46

CHAPTER FOUR

4. Design and Implementation

4.1 Introduction

The previous chapter presented the proposed trust management model with full details of

how it intends to achieve the goal of this research. The model has shown that trust-based

approach can be used to establish security in multi-agent application system when agents

communicate in CACIP based service oriented environment. In the developed model,

multi-agent system paradigm is applied as the foundation for securing services or

messages that are shared by mobile nodes on mobile wireless network. Requester agents

are judged by decision agent (DA) based on their trust scores after computation. Trust

level of each requester agent is measured based on its reputation. An agent's trust score

must reach a minimum trust level in order to be granted a full access to available services.

Hence, this chapter presents the implementation of the proposed model, performance

analysis and results of the research.

4.2 Development ofAgent-to Agent Trust Management System

The implementation of the agent-to-agent trust management system intends to show how

agents are used to secure information bus (from CACIP architecture). Agents in this

multi-agent system play different roles.

47

4.2.1 Overview of the System

A multi-agent system (MAS) is a system composed of several agents, capable of mutual

interaction. The interaction can be in the form of message passing or producing changes

in their common environment. The agents can be autonomous entities, such as software

agents or robots. Our developed multi-agent system is comprised by software mobile and

static agents. Requester agents are mobile agents (they move from one node to the other

to get the required service). Before getting an access to resource, they have to meet the

stipulated access requirement. Therefore, authentication and authorization process must

be performed in order to ensure that only trusted agents can access resources.

Authenticate
Agent

Authorize Agent

Monitor Agent's
Status

Decision
Agent

Fote1gn Decision
Agent

Status Control Agen1

Figure 4.1: A Use Case diagram for ageot-to-ageot trust managemeot

Master
Agent

Authentication and authorization processes are separate tasks performed m different

48

points of security. They are carried out by static agents (Decision agent (DA), Master

agent (MA), and Status Control agent (SCA)) residing in each node that has CACIP.

Figure 4.1 presents the use case diagram that depicts functionalities and actors of our

system.

4.2.2 Processes for each request

Requester agents (S_R_A) send request messages to nodes that have CACIP; each

message sent by requester agent has to be evaluated in order to ensure trustworthiness of

that agent. Authentication occurs between two interacting agents: S_R_A and MA.

SetVice_Requester
Agent

••••••••••••lE

make s request

issue service_dee:

Decision Agent

·••,

J
:
: verifyRequest(l
: mueDecision()

•••

Figure 4. 2: A sequence diagram for authenticatiou

The requester agent interacts with the Decision agent that deals with authentication of all

agents that make request. Upon receipt of request, Decision agent performs trust

evaluation based on previous behaviour information in the LR-DB. The reputation value

is computed for each agent that is making a request. The computed reputation value

49

determines the trust level of the requester agent. In figure 4.2, it is illustrated the

authentication process for each agent that reqnests for service from the system.

Authorization of agents is dependent on the results of authentication process. When an

agent has been authenticated, it is being transferred to MA for authorization. Figure 4.3

depicts authorization process that takes place after authentication has been completed for

each requesting mobile agent (refers to section 3.4.2).

Service_Requester
Agent

presents service_doe

notify the agent

Master
Agent

I
o
I
o
•o
o
o..
o

D
o checl<ServDoc()
: makeDecisionO
o

•o
o
o
o

Figure 4. 3: A Sequence Diagram for Authorization process

A fair reputation-based trust decision about an agent sometimes demands that a decider

must ask for help form other entities that might know better about the requester;

otherwise negative decisions would be made. Thus, sometimes there is the need of

collecting reputation from other agents to make decision if the decider (Decision agent)

does not have sufficient behaviour information. Figure 4.4 shows the collection of

reputation sequence diagram.

50

Service_Requester
Agent

Decision
Agent

Foreign Decision
Agent

,

ocheck_RepulalionO

,,Trust value

Request for repulalion

•I
••I,
••••lE

,ocheck_ReputationO

,
•;

,

build_Repul8Iion 0 e:
maKe_DecisionO ;

•,
••••,

•••••••••••••,
•••,
••••••,
•••••,,,·•,
•·•

makes request

Figure 4. 4: A sequence diagram for Collection of reputation

The DA broadcast the request for reputation if it is necessary to do so. The trusted nodes

that have the behaviour information of the requester agent respond with trust values.

Figore 4.5 is the activity diagram showing actions taken during trust evaluation and

assessment for each mobile agent.

51

R.eq1lest for fureign
repullllion j----il(

No

Yes Autbentic'lle the
~eregent

based on trust

Yes

AullJorizethe egeht
to aetesS the

edS&rYice

0._ Yes
selVico doe and
givetre~.r

No

Agent is
tI1lSlful?

No

Reset_ ofthe
egent mIre mal

reposito'7

Figure 4. S: Activity diagram which shows how agents are authenticated and authorized

52

4.2.3 Digital Signature Algorithms

There is the need of ensuring trust between DA and MA when they are exchanging

control during trust evaluation. DA signs the service document with its digital signature

and Master agent verifies the digital signature on the service_doe. Figure 4.7 depicts the

pseudo code of the algorithm that was nsed to digitally sign the service_doe. The

algorithm generates the private and public keys by using the key-pair generator. The

private key is needed in order to create a digital signature, and its corresponding public

key will be needed in order to verify the authenticity of the signature. The algorithm uses

the SHAIPRNG pseudo-random-number generation algorithm, as provided by the built

in SUN provider. .

gerteratekeys to sign the service_doe

deny the request

ENDlF

Requester agent is notified

Figure 4. 6: Pseudo code for signing the Service_doe

When the Master agent (MA) receives the service_doe generated by the DA, it must

verity the signature on it before authorizing the requester agent to access services. This is

53

to ensure that all requester agents have passed through DA for authentication. Therefore,

MA uses the signature to ensure trust between itself and the DA. Figure 4.8 shows the

digital signature algorithm to verify the signature on the service_doc.

is notified

Figure 4. 7: Pseudo code for digital signature verification

The requester agent presents the service_doc to Master Agent and the signature on the

document is verified using the algorithm above.

4.2.4 Trustworthiness Evaluation

The trust evaluation of each requester agent is performed based on reputation as it is

discussed in section 3.3. Trust evaluation is the core of our model, the basic algorithm to

54

evaluate trust is used in our simulation in order to authenticate requester agents. The trust

evaluation algorithm is illustrated in figure 4.9. In this algorithm, three condition are

checked for each agent that request for a service. Firstly, it is assumed that agents are not

allowed to perform (make transactions) actions that are more than a specified number. An

agent that exceeds the maximum number of actions is regarded as the selfish agent, and it

is then denied the access to services when it is making a request. Secondly, a maximum

number of bad actions is set in order to evaluate trust. If number of bad actions reaches

the maximum, the agent is considered to be untrusted and malicious; hence it is denied

the access. Thirdly, the total number of actions of the requester agent must reach the

minimum number in order for the reputation value to be computed.

I:f (TNOA
{

I:t (mOA
{

I:f (NOllA
{

RepV = NOGA -NoBAlmOA 100;

I
ElSE

The agent is Ul'itrusted>andmalicicu3

Else
Insufficient Reputation; . .ask ·far :foreign.·reputation

I
Else

The TotaL number o:f actions 1s more than maximum

Post-condition: accept/deny request

Figure 4. 8: Trust evaluation algorithm. TNOA - total number of actions, NOBA - number ofbad actions,
NOGA - number of good actions, RepV - reputation value

55

This is based on the assumption that, an agent cannot be fairly determined to be either

trusted or untrusted from small number of actions it has previously performed. Therefore,

the reputation value (trust value) can be calculated when these conditions are met by the

requester agent.

4.3 Implementation Environment

The model was implemented usmg JBuilder5 IDE (Integrated Development

Environment) for Java programs development. Java client/server socket programming

was used to implement agents. Microsoft Access was used as a repository, for both local

and foreign reputations, to store behaviour information (history records) of requester

agents. The simulation results statistics was stored in a text fIle. Two desktop machines

were used to run the system One machine was running client agents and server (with

DA), and the other machine was acting as the neighbour node that provides foreign

reputation (trust) values when requested by the DA. The ServiceRequesterAgent class

sends requests to DecisionAgent class which evaluates trust based on reputation. The

DecisionAgent class can also make request to the other machine that runs the duplicate of

Decision agent class which we regard as foreign decision agent (FDA).

4.3.1 System User Interface

To show the execution results of the algorithms, we designed interfaces that allow users

to run the system. Next, user interfaces are shown with their descriptions.

56

~ Agent2Agent Security r- IIQJrxl
flit~ ..

Agent2Agerrt r£lick to select iI node•••

liCompscipc13

TRUST unizu~bheki

compscipc
MANAGER Johnson

(Client) t -

I ~" I
Agent 15 going tll: OCompscipc13

Figure 4. 9: Typical User Interface showing Nodes to be secured

Figure 10, depicts the client agents that make requests to Decision agent. To run the

system, the user must select the name of the machine from the list that is displayed on the

intemce and click the button send to enable the agent to move to the server where it

would execute its task.

57

~ Agent2Agent Trust Management GJ[Q)f8)

Tl!is Machina IcompSCiPCl 3

---;:======~-

MachineUSt
<:ompsclpc:13
uniZul-lItIekl
conlPSCiPC
.Johnson

I JWresllUst

Add I Remove Machitm

I=====;-;:::====.'I Add H~I

Figure 4. 10: Machine Configuration Interface

Figure 4.11 shows the configuration internce that is used to set the machine that sends

the service requester agent. It is also used to add or remove machines to the database.

When the agent has moved to the server to make a request., the messages are displayed in

a message panel window.

58

~Aeent7Aeent Trust Management (Server) ~!rc;~--Server Agent Started...•
waitIng for client connection....
Accept a connection:Socketf.addr=compscipC1 311 O.56.200.4.port=1 474.localpOri=
7555]
Call1ng Decision Agent for Autnentication...

Creating and signing service document..

Transfering control to Master Agent fOr Authortzation...

Master agent checks the signature of Decision agent from service documenl..

SaMee Authorized. Aoent now access CAC1P...

base_

Figure 4. ll: A local Reputation Based Authentication Session

Figure 4.12 shows the message panel with messages of authentication and authorization

processes when the local reputation has been used to evaluate trustworthiness of an agent.

~ Agcnt2Agcnt Trust MdncIgcmcnt (Server) ~1§r?5l--Server Agent started...•
waiting for client connection....
Accept a connection:Socket(addr=compscipc1311 O.56.200.••Port=1509.localport=
7555]
CaJllng Decision Agent for Authentication.._

Reputation insumcient

The Deceision agent has broadcasted the query for reputation

Received trust value ofagsnt 65 is 44

Figure 4. U: A Foreign Reputation Based Decision Session

59

Figure 4.13 shows the messages of authentication and authorization processes when

foreign reputation (from FDA) has been used to judge an agent.

4.4 Performance Experiment

In order to test the performance of our system, there was a need of determining a value

that optimizes the system. Therefore, we conducted an experiment to get the optimal

value which was to be used to do performance evaluation of the system. The optimal

value would be used to determine the trust level of agents when the developed model is

applied. Initially, each agent can be either good or bad agent based on the number of

good action and bad actions.

The experiment was conducted as follows:

a) Parameters to get the optimal value from a single test

i) Number of service requester agents and the

ii) Number ofbad agents.

We had 10 runs with a constant number of agents, i.e. 200 agents; we varied the number

ofbad agents in each run. We used constant estimated values (65, 68, 70, 72, 74, 75, 76,

78, 80, and 82) in each run. In each run we wanted to observe a value that optimizes the

effectiveness of the framework with respect to percentage ofbad agents that are identified

as bad and percentage of agents (both good and bad) that are correctly identified. We

observed an optimal value from the estimated values. Optimal value is the value that

increases the percentage of number of bad agents that were identified as bad and the

60

percentage of agents that were correctly identified. We then calculated the average of the

optimal values of each run. The average optimal value would be used to determine the

trust value of each requester agent when performance analysis is done.

4.4.1 Experimental Results

Table 4.1: The experimental results to find the optimal value

Runs # of agents # of agents # of agents % ofbad % ofagents Optimal
with found to be correctly agents correctly value

originally bad by using identified correctly identified
bad actions our model identified

I 172 172 188 100% 96% 74.5
2 159 156 191 100% 95% 74.5
3 165 161 190 100% 95% 74.5
4 170 170 190 100% 96% 73
5 168 168 184 100% 92% 75
6 173 173 187 100% 96% 75
7 166 166 182 100% 96% 74.5
8 160 160 173 100% 92% 74.5
9 174 174 183 100% 97% 73
10 162 162 171 100% 97% 74.5

Average 74.3

Table 4.1 illustrates the results of the experiment we conducted to get the optimal value

to be used to judge service requester agents. It was observed that 74.3 is the optimal value

that would be used to compute reputation ofagents.

4.4.2 Performance Analysis

In our experiments, we examined the effectiveness of the system in terms of identif'ying

malicious agents as they make requests. We also examined the scalability of the system

61

as the number of requests increases.

In order to evaluate the perfonrumce of our system, for 5 times we kept constant the

number of agents that make requests and vary the number of bad agents. We took the

average percentage of agents that were sent with bad actions and were found untrusted

and malicious by using the model. We also took the average percentage of agents (both

bad and good) that were correctly identified with their status. Table 4.2 illustrates the

results of the experiment we conducted.

Table 4. 2: The results ofthe perfoIlllJl1lce analysis

Number of agents % of bad agents % of agents correctly
sent requests identified as bad identified
100 100.00 94.34

200 99.17 93.12

300 99.50 93.61

400 99.67 94.25

500 99.50 94.10

600 99.53 93.83

700 99.36 93.50

800 99.67 93.42

900 99.54 93.79

1000 99.62 94.07

i). Identification of Bad Agents

Agents that make requests can either be trusted or untrusted agents. Trusted agents are

those agents with good reputation, and untrusted agents are those ones with bad

reputation. Agents make requests and they must be evaluated based on their status.

Therefore, the aim of this experiment was to verify that how many agents were identified

62

as bad agents out of a number ofbad agents that were sent to make requests. This would

indicate the effectiveness in authenticating agents that make request. Figure 4.14 plot the

identification ofmalicious agents that the system had evaluated in different runs.

To conduct this experiment, two parameters were varied:

• Total number ofagents and the

• Number ofbad agents make request.

From this experiment, we observed that the increase of number agents that make request

does not affect the performance or effectiveness of the system.

400 aD ffD 700

TaaJ rurberdIgeRs

1CQ

J!1100
s::
III 93
C)
I'll
'C ill
I'll
..c- 9'l0

~0 92

00.

100 aD

Figure 4. 13: Bad agents Identification based on their reputation

63

ii). Correctness of Reputation Evaluation

The aim of this experiment was to measure the correctness of the system in evaluating

agents based on their reputation. In this experiment we looked at how many percent of

agents were correctly identified out of the number of agents that has made requests.

Figure 4.15 illustrate a plot of system correctness.

B)) lID 700 800 9Xl 100)300 400

"C
CIl

;;:::
;;
t:
CIl
"C

>
.. 93 +----'
(,)

e
L-

o
(,)

.e
t:
CIl
g' 91
....o
";fe. 00 -I---,.--'--,-'---,..----,---,---,---.,..------l

100 200

Total nurriler ofagents

Figure 4. 14: Reputation Evaluation

From the plot, we observed that very few agents were incorrectly identified when they

make requests. We also observed that the system is consistent in its performance.

64

CHAPTER FIVE

5. Conclusion

5.1 Introduction

Security in distributed system is the major challenge that needs to be considered in order

to claim success on a system. This research revealed the need ofsecurity among agents as

they interact to share services. The security challenges that were highlighted in this

dissertation brought up the needs for trust management among interacting agents.

Reputation-based trust approach in establishing security has been used by many

researchers to achieve several goals. We have used reputation of agents to judge them to

access available services. Agent technology has been a successful technology to

implement systems to search for information and share services over the Internet. The

CACIP architecture is the core middIeware for agents communicating to share services.

Due to the openness of CACIP architecture when agents are interacting, there has been a

need of a security scheme that would secure services that are shared in a CACIP based

system.

5.2 Conclusion

The openness of CACIP architecture has raised the need of a serious trust management

scheme that would ensure security among agents communicating. The agent based trust

65

management model has been proposed to provide necessary trustworthiness evaluation.

The fIrst objective was to construct a trust management model with specialisation in

authentication and authorization capabilities. All agents that want to access services in the

information bus must undergo a security check before getting the access to services.

Therefore, a proper authentication mechanism is essential to ensure that only trusted

agents are permitted to access services. In order to ensure an efficient trust management,

authentication and authorization processes are conducted separately. Maintaining

reputation and accurately use it has been a challenge. Thus, in our trust model we assign

SCA to administer reputation repository. To achieve this objective Agent-to-agent Trust

Management Model was established based on various sources of security design

principles from existing security schemes. Existing design principles were adopted and

reused to solve problem of security in the context of CACIP. Our trust model has some

limitations. There is no mechanism that provides privacy on messages that are being

transferred from one point to the other as trustworthiness evaluation is in progress.

The second objective was to devise an agent-to-agent authentication and authorization

mechanisms that manage trust in mobile systems. Agents that make requests are

authenticated based on their reputation. Reputation is obtained either from local

reputation repository or from foreign node on the network. This objective was achieved

by proposing a reputation-based authentication of agents that make requests. In this

mechanism, all agents are authenticated before accessing available services. The

authentication process was assigned to one agent that checks all agents that make

requests. Both authentication and authorization processes use digital signatures to ensure

66

trustworthiness between each other. Thus, one agent that does authentication signs the

message and sends it to the other agent for authorization. The signature must be verified

before the message is perceive to be a valid request message.

The third objective was to show that the scheme or mechanism functions in a real

environment by evaluating its performance experimentally. The simulation of the

proposed mechanism was conducted to realise this objective. The aim of this experiment

was to test if the model would be able to correctly identify agents based on their

reputation. The results of the experiment showed that agent based trust management

model can correctly and accurately identify agents according to their status. The agents

that had bad reputation were correctly identified as bad agents after sending their

requests. The model also showed to be consistent in evaluating trustworthiness because

the increase ofrequests was not affecting the accuracy of the system.

5.3 Future Work

Experiments that were conducted showed that the proposed trust model could make a

difference in Intemet based application systems, for instance e-Bay systems, to

authenticate consumers and auctioneers. The issue of privacy is essential in agent-based

systems; requests/response messages that are passed from one point to the other during

trustworthiness evaluation needs to be secured. Therefore, an issue for investigation in

future is how the issue of privacy can be brought into proposed model. The security

principles, i.e. robustness, end-to-end security, fairness and scalability are still need to be

considered for experiment in future to enhance the proposed model.

67

The proposed security model could be tested for future generation (ad hoc) based

application systems. The identification of an incoming node can be a challenging task as

an appropriate mechanism is not in place. Therefore, as the future work ofthis study, the

agents that do authentication and authorization can be suitable in controlling participation

of nodes in an ad hoc network.

68

APPENDIX A
USER MANUAL

This section of the thesis presents the steps that a user needs to follow in order to use the

trust management system.

~ Agent2Agent Security r- lfi5lrxl
RIB CoIlfilp1I HelP

.-
Agel7t2Agerrl: i ,cficll to select a node_.

~ompscipC13

TRUST unizu~bheki

, compscipc

MANAGER Johnson

(CHent)

I ~1lIj I
~ is going to: OCompsMpc13

Figure A. 1: User interface showing nodes participating in the network

Our trust management system is a client/server application, therefore it runs using at least

two machines. Figure C.l is the user interface on the client side of the application. The

list (computer names) of nodes or machines participating in the running of the system is

shown on the interface. A user must select, from the list, a machine to which a request is

to be sent. Once the machine has been selected, click Send button to send the agent's

request to the selected machine. The Configure item on the main menu is used to set

machines that are going to participate in the running of the system. When configure is

69

clicked, figure A.2 is shown allowing the user to add or remove machines on the network

and to set the machine from which the requester agent would be sent.

~ Agent2Agent Trust Mdna.gement r:-![QJrE)

This MacIline IcornpSCiPC13

'---;=======;-~

,.'actllal8 Ust
CGmpsc/pC13
unlZuI-tIheld
COlllPsQpc

.JofInson
I I
I=Add~II;::=R8I==l-='1

Figure A. 2: Machine configuration interface

Figure A.2 is used to configure machines that are participating to run the system. The

This Machine text field is used to type the name of the client machine that is going to sent

requests to the machine that runs trust evaluation algorithms. When the machine name

has been correctly typed on the text field, Save Name button is clicked to save the name

of the machine. The list box, Machine List, displays names of machines that can

participate to run the system. In order to add or remove the machine, a user type the name

of the machine in the AddlRemove Machine text field and click either Add or Remove

buttons. The Refresh button is used to refresh the machine list after adding or removing a

70

machine. The Close Window button is used to close the window once configuration has

been completed.

~Agent7Aecnt Trust Man~C!;ment (ScrVC!:r) r:;]ILliPX'l

. -.- -,
Server AQent started....
waiting for client connection....
Accept a connection:Socketladdr=compscipc13J1 O.56.200.4,por1=1 474,localpor1=:
7555)
Calling Decision Agent for Authentication...

Creating and signing saMee document..

Transferlng control to Master Agent for Authortzation...

Master agent checks the signahJre of Decision agent from service document.

SaMes AuthoriZed. Agent now access CACIP...

J -

Figure A. 3: User Interface displaying messages

Figure A3 shows the server side of the system. The server side is equipped with our trust

evaluation algorithms that evaluate trustworthiness of requester agents. The messages that

are genemted when system is running are shown on this interface.

Figure A4 shows the Java algorithm that generates keys to sign the service document in

DA The code generates the private and public keys by using the key-pair generator. The

private key is needed in order to create a digital signature, and its corresponding public

key will be needed in order to verifY the authenticity of the signature. The algorithm uses

the SHAIPRNG pseudo-random-number generation algorithm, as provided by the built-

in SUN provider.

71

KeyPairGenerator keyGen= KeyPairGenErator.getlnstanc:e("DSA"/ "SUN");
Sec:ureRandom random = Sec:ureRandom. getlnstanc:e ("SHA1PRNG" /"SUN") ;

keyGen.initialize(1024, random);

KeyPair pair = kEyGen. generateKeyPair ()
PrivateKey priv = pair.getPrivate ();
Public:Key pub pair. getPublic: () ;

Signaturedsa= Signature. getlnstanc:e ("SHAhrithDSA", "SUN");

dsa. initSign (priv) ;

Figure A. 4: Key Generator Code

Figure A.5 shows the code to verify the signature on the service_doc that has been signed

by DA using the key generated in figure AA.

XS09EncodedKeySpecpubKeySpec: = new X509Enc:odedKeySpec:(encKey);

KeyFac:torYkeyFac:tory = KeyFac:tory.getlnstanc:e ("DSA"/ "SUN");
Public:KeypubKey = keyFac:tory.generatePublic(pubKeySpec);

FUelnputStream sigfis =new FilelnputStreem(args[l]);
byte[] sigToVerify = new byte[sigfis.available()];
sigfis .read (sigToVerify);

Signature sig = Signature.getlnstanc:e("SHAlwithDSA", "SUN");
sig.initVerify(pubKey);

Figure A. 5: Signature Verifier Code

72

APPENDIXB

UML DESIGN DOCUMENTATION

Trust Management Classes I

1.,.* I Status Control
S.mceRequesietAgent Agent

-agentN&1lle: String -agentName: String
-egentID: int -egentID: int
-repVal: int

+makeRequest()
+setAgenlSWus()

+teceiveResponceQ: <>
~ .. I

I

j MesietAgent
DecisionAgent

I -egen!Neme: String
-egen!Neme: String -egentID: int
-~entlD; int

+mekeRequest() .A- I I +authorizeRequestezO
+euthenl.ico1eReques1e>Q V +SendResponceQ
+genereteSerciceDocQ
+sendResponceQ .::::~

'::::;:0, I

I
L.•

L • VerifySi?,nature

GenereleSignature
-publicKey: lot

-priveteKey: lot
-pubhcKey: lot +confirmSi?,nel.1.ueQ

+creeteSignel.1.ueQ

Figure B. 1: UML Class Diagram

73

APPENDIXC

CODE

Main Server Class

package agent2agenttrust;

import java.awt.BorderLayouti
import java.awt.Color;
import java.awt.Dimensiolli
import java.awt.Rectangle;
import java.awt.event.ActionEventi
import java.awt.event.ActionListener;
import javax.swing.BorderFactoryi
import javax.swing.JButtolli
import javax.swing.JFramei
import javax.swing.JLabel;
import javax.swing.JMenu;
import javax.swing.JMenuBar;
import javax.swing.JMenultem;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JTextArea;

public class FrmMainServer extends JFrame

private BorderLayout layolltMain = new BorderLayout(};
private JPanel panelCenter = new JPanel{);
private JMenuBar menuBar = new JMenuBar();
private JMenu menuFile := new JMenu () i

private JMenultem menuFileExit := new JMenultem() i

private JMenu menuHelp := new JMenu();
private JMenultem menuHelpAbout = new JMenultem();
private JLabel statusBar = new JLabel{}i
private JTextArea jTextAreal = new JTextArea();
private JButton jButtonl = new JButton{) i

String msgi

public FrmMainServer ()
try {

jblnit() i

} catch (Exception e) {
e.printStackTrace{);

}

private void jblnit() throws Exception {
this. setJMenuBar { menuBar J i

this.getContentPane(} .setLayout(layoutMain) i

paneICenter.setLayout(null);
this.setSize(new Dimension(481, 401})i
this.setTitle("Agent2Agent Trust Management (Server)") i

menuFile.setText (nFile") i

menuFileExit. setText { "Exit") i

menuFileExit.addActionListener(new ActionListener() { public void
actionPerformed(ActionEvent ae) {fileExit_ActiooPerfOrmed(ae)i}}) i
menuHelp. setText ("Help");
menuHelpAbout.setText("About") i

74

System.exit{O) ;

menuHelpAbout.adQ~ctionListener(new ActionListener() { public void
actionPerformed(ActionEvent ae J {helpAbout_ActionPerformed(ae) ;}});
statusBar.setText{ "");
jTextAreal.setBounds(new Rectangle{lO, 10, 445, 275»;
jTextAreal.setEditable(false);
jButtonl.setText ("Close App");
jButtonl.setBounds(new Rectangle(285, 290, 125, 25) J;

jButtonl.addActionListener(new ActionListener(} {
public void actionPerformed{ActionEvent e)

jButtonl_actionPerformed{e);

) ;

menuFile.add(menuFileExit);
menuBar.add(menuFile);
menuHelp. add (menuHelpAbout);
menuBar. add (menuHe I p);
this.getContentPane() .add(statusBar, BorderLayout.SOUTH);
this.getContentPane() .add(panelCenter, BorderLayout.CENTER);
paneICenter.add{jButtonl, null);
paneICenter.add{jTextAreal, null);
jTextAreal.setText (nil) ;
jTextAreal.setLineWrap(true);

)

void fileExit_ActionPerformed(ActionEvent e)
{

}

FrmMainServer_AboutBoxpanell() ,

void
{

}

helpAbout_ActionPerformed{ActionEvent e)

"About" ,

System. exit (0);

private
{

}

void jButtonl_actionPerformed{ActionEvent e)

jTextAreal.append{info +"\n");

public
{

}

void setMessage(String info)

Agent Class

package agent2agenttrust;

import java.net.*;
import java.util.*;
import java.io.*;
import java.net.URL;
import java.awt.*;

public class Agent implements Serializable
{

private boolean haveMove = false;
private String whereTo = 1111;

private final int agent ID = 65;

75

frame = new FrmMainServer() ;

FrmMainServer frame;

public Agent ()
{

}
public void run ()
(

if (!haveMove)
(

haveMove=true i

monitor() ;

go() ;

}
else

{

}

/ /move to the next machine

return agentID i

public
{

}

iot getAgentID()

System.out.println(UIO Exception ") ie.printStac::kTrace ();

public void go{)
{

try
(

InetAddress add = InetAddress.getByName(whereTo);
Socket client = new Soc::ket {add, 75551 ;
ObjectOutputStream output =
new ObjectOutputStream{client.getOutputStream{));
ObjectlnputStream input = new
ObjectlnputStream(client.getlnputStream() i

//serialize agent

output.writeObject{this);
output. flush{) ;
client. close () ;

catch(IOException e)
{

}
catch(Exception el
(

System.out.println("Some unidentified flying exception!");
e.printStackTrace() ;

private void monitor()
{

frame. setMessage ("Mobile agent is now accessing service ... ") i

public void setNextMachine(String node)

76

{

}
whereTo node;

Decision Agent Class

package agent2agenttrust;

import java.io_*;
import java.util.*;
import java.security.*;

public class DecisionAgent
{

gen = new GenSig();

GenSig
public
{

}

gen; If the signature class for digital signature ...
DecisionAgent ()

public boolean reputationChecker(int repVall
{

if (repVal ::> 5)
{

//if reputation is sUfficient

//create a service document for Master Agent to use
try
(

FileOutputStream out =' new FileOutputStream{TlServicedocument.txt");
String agentName = nAgent2" +"\n";
String serviceType ==- "Weather Calculator" +"\n";
String timeRequired = "10" +"\n";
out.write(agentName.getBytes(» ;
out.write(serviceType.getBytes(» ;
out.write(timeRequired.getBytes{));
Qut.close{) ;

return false;

ie.printStackTrace();

gen.createSig();
return true;

}

}catch(IOException
{

}

}
else
{

}

ie)

Master Agent Class

package agent2agenttrust;

import java.io.*;
import java.util.*;

77

verifier = new VerSig() i

public class MasterAgent
(

private String agentNamei
VerSig verifieri
public MasterAgent()
{

}

public boolean authorizeServicelint polReq)
(

if (polReq >= 8)
{

try
(

BufferedReader inbr = new BufferedReader(new FileReader{new
File{"Servicedocurnent.txt"»)i

String agentNamei
String serviceTypei
String timeRequired;

agentName = inbr.readLine{)i
serviceType = inbr.readLine()i
timeRequired = inbr.readLine();

System'.out.println (IIAgentName: + agentName);
System.out.println ("Time is: " + timeRequired);

inbr.close{);

verifier.confirmSig()i
return true i

e.printStackTrace();

return falsei

}
catch(Exception e)

{

}

}else
{

}

Generate Signature Class

package agent2agenttrusti

import java.io.*;
import java.security.*;

class GenSig
(

GenSig() {}

pub1ic void createSig ()
{

/* Generate a DSA signature */

78

try {
/* Generate a key pair */

KeyPairGenerator keyGen = KeyPairGenerator .getlnstance ("DSA", "SUN") i

SecureRandom random = SecureRandom.getlnstance("SHAlPRNG", "SUN");

keyGen.initialize(1024, random);

KeyPair pair = keyGen.generateKeyPair{);
PrivateKey priv = pair.getPrivate() i

PublicKey pub = pair.getPublic();

/* Create a Signature object and initialize it with the
private key */

Signature dsa = Signature _getlnstance ("SHAlwithDSA" I "SUNtI);

dsa.initSign(priv);

/* Update and sign the data * /

FilelnputStream fis = new FilelnputStream{"Servicedocument.txt");
BufferedlnputStream bufin = new BufferedlnputStream(fis) ;
byte[] buffer = new byte[1024];
int leo;
while (bufio.available() != 0)
(

leo = bufin. read (buffer) i

dsa.update{buffer, 0, len)i
} ;

bufin.close() i

/* Now that all the data to be signed has been read in,
generate a signature for it */

byte[] realSig = dsa.sign()i

/* Save the signature in a file */
FileOutputStream sigfos = new FileOutputStream(lT sig") i

sigfos.write{realSig)i

sigfos. close () i

/* Save the public key in a file */
byte[] key = pub.getEncoded()i
FileOutputStream keyfos = new FileOutputStream (" suepk")
keyfos.write(key) i

keyfos.close() i

} catch (Exception e) {
System.err.println("Caught exception 11 + e.toString(») i

}

} ;

79

Verify Signature Class

package agent2agenttrustj

import java.io.*;
import java.security.*;
import java.security.spec.*;

class VerBig {

VerSig(I {}

public void confirrnSig{) {

/*Verify a DSA signature*/

try{

/*import encoded public key*/

FilelnputStream keyfis "" new FilelnputStream("suepk");
byte[] encKey = new byte [keyfis.available()] ;
keyfis.read{encKey);

keyfis.closeO;

X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encKey);

KeyFactory keyFactory "" KeyFactory. getlnstance ("DSA", "SUN");
publicKey pubKey "" keyFactory.generatePublic(pubKeySpec);

/* input the signature bytes */
FilelnputStream 8igfis "" new FilelnputStream{ "sig");
byte[] sigToVerify"" new byte[sigfis.available{)];
sigfis.read(sigToVerify) ;

sigfis .close () ;

/*create a Signature object and initialize it with the
public key*/
Signature sig "" Signature .getlnstance ("SHA1withDSA", "SUN") j

sig.initVerifyCpubKey);

/* Update and verify the data */

FilelnputStream datafis = new
FilelnputStream (" servicedocument. txt ") ;
BufferedlnputStream bufin = new BufferedlnputStream(datafis) ;

byte[] buffer"" new byte [1024] ;
int len;
while Cbufin.available{) != 0) {

len "" bufin.read(buffer);
sig.update{buffer, 0, len);
} ;

bufin. close 0 ;

boolean verifies sig.verify(sigToVerify) ;

80

//System.out.println{"signature verifies; It + verifies);

} catch (Exception e) {
System.err.println("Caught exception" + e.toString();

} ;

Security Application Class

package agent2agenttrust;

import java.awt.*;
import javax.swing.*;
import java.lang.*j

public class SecurityApp
(

public SecurityApp()
(

JFrame frame = new FrmMain{)j
Dimension screenSize = Toolkit.getDefaultToolkit() .getScreenSize();
Dimension"frameSize = frame.getSize();
if (frameSize.height > screenSize.height)

frameSize.height = screenSize.height;
}
if (frameSize.width >

£rameSize.width
screenSize.width)
screenSize.width;

{

e.printStackTrace();

}
frame. setLocation ((screenSize.width - frameSize.width) / 2~

screenSize.height - £rameSize.height) /2);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible{true);

public static void main{String[] args)
{

try
(

UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName();
}
catch (Exception e)

{

}
new SecurityApp{) ;

Security Application Server Class

package agent2agenttrust;

import java.awt.Dirnension;
import java.awt.Toolkit;

81

import javax.swing.JFrame;
import javax.swing.UIManager;
import java.io.*;
import java.net.*;
import java.util.*;
import java.net.URL;
import java.awt.*;

public class SecurityAppServer extends Thread
{

//public String myName;
boolean reputationSufficient;
boolean serviceAllowed;

public static final int PORT 7555;

FrmMainServer frame;

public SecurityAppServer{}
{

screenSize.height;

screenSize.width;

frameSize.height

frameSize.width

frame = new FrmMainServer{);
Dimension screenSize = Toolkit.getDefaultToolkit() .getScreenSize();
Dimension frameSize = frame.getSize{);
if (frameSize.height > screenSize.height)
{

}
if (frameSize.width > screenSize.width)
{

}
frame.setLocation((screenSize.width - frameSize.width) I 2,
screenSize.height - frameSize.height) I 2);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible{true);

reputationSufficient = false;
serviceAllowed = false;

frame. setMessage ("Server Agent Started... , 11 +"\0" +"wai ting for
client connection t1) ;

public void rune)
{

while (true)
{

try
{

ServerSocket server = new ServerSocket(PORT)i
Socket soc = server.accept();

//receiveBroadCast{soc);
I/System.out.println(JlAccept a connection: "+soc) ;
frame.setMessage{"Accept a connection:"+ sac) i

//Need a code to save all clients that are connected

ObjectOutputStream output = new
ObjectOutputStream(soc.getOutputStream());
ObjectlnputStream input = new

82

ObjectInputStream{soc.getInputStream()) ;
Agent agent = (Agent) input.readObject{);
System. out .println("Agent ID; "+ agent .getAgentID()) ;
soc. close () ;
server.close();

Ilcreating the other agents

DecisionAgent dAgent = new DecisionAgent();
MasterAgent mAgent = new MasterAgent();

frame.setMessage("Calling Decision Agent for
Authentication ... \n") ;
int repV = (int) (1 + Math.random{) * 20);
System. out .println("Reputation value is 11 + repV);
reputationSufficient dAgent. reputationChecker (4) ;llrepV);

int polReq = (int) (2 + Math.random() *15) ;
System.out .println("Number of policy requirements received is "+
polReq) ;

if (reputationSufficient)
(

frame.setMessage("Creating and signing service
document ... \n") ;

Thread.sleep(5000);

frame.setMessage(IITransfering control to Master Agent for
Authorization... \n") ;

serviceAllowed = mAgent.authorizeService(polReq);

Thread. sleep (5000) ;

frame. setMessage ("Master agent checks the signature of
Decision
agent from service document ... \n");

Thread.sleep«long) (Math.random{) *5000)) ;

if (serviceAllowed)
{

II agent can now run when service is allowed ...

frame. setMessage ("Service Authorized, Agent now access
CACIP ... \n") ;

agent. run () ;

}
else

{

frame. setMessage ("Service is not allowed, call killer
agent
to terminate ... \n") ;
frame.setMessage ("The agent "+ agent .getAgentID () +" has
been isolated");

83

}

{
else

frame.setMessage ("Reputation insufficient\n\n The
Deceision
agent has broadcasted the query for reputation\n ll

) i

InetAddress [] addresses =

{rnetAddress. getByName ("10.56.200.237") } ;
int [] ports = {a600};
int [l trustValues =

broadCastAgent(agent.getAgentID() ,addresses ,ports) ;
evaluateTrust(trustValues);

}catch{IOException ip)
{

System.out.println("IO Exception here"} i

ip.printStackTrace() ;

catch(InterruptedException inexcl
{

System. out .println("There is a problem with the sleeping
thread") i

}
catch(ClassNotFoundException el

System.out.println("Class not found exception here") i

}
public intr] broadCastAgent(int agentID,InetAddress [l address,int [J
ports) throws IOException
{

ArrayList
for{int i
{

arr = new ArrayList () ;
0; i < address.length;i++)

Socket s = new Socket(address[i] .getHostAddressO ,ports[i});
PrintWriter out = new PrintWriter(s.getOutputStream(),true);
out.println("AgentID"+ agentID);
out.flush{) ;

BufferedReader r = new BufferedReader(new
InputStrearnReader(s.getlnputStream(») ;

String in

while ((in
{

null;

r.readLine(» != null)

if (in.startsWith (UTrustValue"))
{

int trustValue =

Integer.parselnt{in.trim() .substring(ll,in.length()};
arr.addCnew Integer(trustValue»;
frame .setMessage ("Received trust value of agent "+agentID+ "
is "+ trustValue) ;

arr.trimToSize();

84

trustValues[i] = «Integer)arr.get{i» .intValue();

int []
for (int i
{

}

trustValues = new int[arr.size()];
=O;i < trustValues.length;i++)

return trustValues;

public void evaluateTrust(int [J trustValues)
(

for(int i = 0; i < trustValues.length; i++)
(

if(trustValues[iJ < 50)
(

System. out .println{ liThe agent " + trustValues [i] + 11 is
untrustedTI) ;

}
else

(
System.out.println(nAgent authenticated through the use of
foreign reputation ll);

public void receiveBroadCast(Socket soc)
(

try
(

BufferedReader r = new BUfferedReader(new
InputStreamReader(soc.getInputStream{») ;
PrintWriter writer = new PrintWriter(soc.getOutputStream(),true);
String s null;
while ({s = r.readLine()) != null)
(

int trustValue = (int) (Math.random() *100) ;
if (s. trim() . startsWith ("AgentID"»
(

int agent ID =
Integer.parseInt(s.trim() .substring(7,s.length(}»;
System.out.println("Agent ID: u+ agentIDl;
//Does checking
System.out.println("Trust value for 11 + agent ID + " is n+
trustValue) ;
writer.println("TrustValue u+ trustValue};
writer.flushO;

}
}
catch{IOException ioe)
(

System.out.println("There was a problem in receiving broadcast");

public static void main(String[] args)
(

try

UIManager.setLookAndFeel

85

(UIManager.getCrossPlatformLookAndFeelClassName(»;

e.printStackTrace();

catch (Exception e)
{

}
SecurityAppServer sec

sec.start() ;

Main Interface Form Class

package agent2agenttrust;

import java.awt.*;
import java.awt.event.*;
import java.awt.event.ActionEvent;
import javax.swing.*;
import java.net.URL;
import java.sql.*;

new SecurityAppServer();

public class FrmMain extends JFrame {
private BorderLayout layoutMain = new BorderLayout();
private JPanel panelCenter = new JPanel();
private JMenuBar menuBar = new JMenuBar();
private JMenu menuFile = new JMenu();
private JMenultem menuFileExit = new JMenultem{) ;
private JMenu menuConfig = new JMenu();
private JMenultem menuConfigSettings = new JMenultem();
private JMenu menuHelp = new JMenu();
private JMenultem menuHelpAbout = new JMenultem();
private JLabel statusBar = new JLabel();
private JPanel jPanell new JPanel();
private JLabel jLabell new JLabel();
private JLabel jLabe12 new JLabel();
private JLabel jLabe13 new JLabel();
private JLabel jLabe14 new JLabel();
private JPanel jPane12 new JPanel{);
private JList jListl;

Agent agent = new Agent();

private JButton btnSend = new JButton{);

DefaultListModel listModel;

FrmConfigure config;

public FrmMain() {
try {

jblnit();
} catch (Exception el {

e.printStackTrace{);
}

private void jblnit{) throws Exception
(

listModel new DefaultListModel();

86

Connection dbConn

try
{

null

Driver d = {Driver)Class.forName
("sun. jdbc.odbc . JdbcOdbcDriver") . newInstance () ;
String URL "'" "jdbc :odbc:" + "MyDbs2 11

;

dbConn = DriverManager. getConnect ion { URL, t1 nouser","nopassword tl
);

Statement stmt;
ResultSet rs;
stmt ~ dbConn.createStatement();

rs = stmt.executeQuery ("SELECT * FROM MachineList n);

while (rs.next(»
listModel.addElement (rs .getString ("MachineName");
dbConn.close{) ;

}
catch (Exception e)
{

JOptionPane. showMessageDialog (this, "Canl t Open Node Database",
"Program error",JOptionPane.ERROR_MESSAGE);
e.printStackTrace(};
}

Ilend database

jListl "'" new JList(listModel);
IljListl.setVisibleRowCount{-l) ;

JScrollPane listScroller = new JScrollPane(jList1);
listScroller.setAutoscrolls(true) ;
IllistScroller.setPreferredSize(new Dimension(2S0, BD)};

this.setJMenuBar(menuBar);
this.getContentPane{) . setLayout (layoutMain);
panelCenter.setLayout(null);
this.setSize(new Dimension (43B, 370»;
this.setTitle("Agent2Agent Security");
menuFile.setText("File");
menuFileExit.setText("Exit");
menuFileExit.addActionListener(new ActionListener() {public
void actionPerformed(ActionEvent ae J {
fileExit_ActionPerformed(ae); } });

menuConfig.setText("Configure");
menuConfigSettings.setText("Settings");
menuConfigSettings.addActionListener(new ActionListener()
public void actionPerformed(ActionEvent ae)
configSettings_ActionPerformed(ae); } });

menuHelp.setText ("Help");
menuHelpAbout.setText("About");
menuHelpAbout.addActionListener(new ActionListener() { pUblic
void actionPerformed(ActionEvent ae) {
he lpAbout_ActionPerformed { ae); } }) i

statusBar.setText("Application Started... ");
jPanell.setBounds(new Rectangle(S, 2S, 200, 160»;
jPanell.setLayout(null);
jPanell.setBorder (BorderFactory. createEmptyBorder (0, 0,0, 0»;

87

jPanell.setBackground(new Color(255, 239, 214») i

jLabell. setText ("Agent2Agent") ;
jLabell.setTooITipText("null l1

);

jLabel1.setFont (new Font ("Tempus Sans ITC", 1, 22) i

jLabel1.setForeground(new Color(16, 16, 16» i

jLabell.setBounds(new Rectangle(20, 5, 150, 30»;
jLabe12. setText ("TRUST") i

jLabe12 .setToolTipText ("null" l i

jLabe12 .setFont {new Font (tlTrebuchet MS", I, 21»;
jLabe12.setBounds(new Rectangle (50, 50, 90, 25)) i

jLabe13. setText ("MANAGER") i

jLabe13.setTooITipText{"null");
jLabe13 .setFont (new Font ("Trebuchet MS", I, 21» i

jLabeI3.setBounds(new Rectangle (45, 75, 95, 25»;
jLabe14.setText{" (Client)") i

jLabe14. setToolTipText ("null") ;
jLabe14.setFont(new Font ("Times New Roman", 1, 20»i
jLabe14.setForeground(new Color(231, a, OJ J i

jLabeI4.setBounds(new Rectangle{55, 130, 65, 25»);
jListl. setBounds (new Rectangle (210, 30, 210, 155))i
jListl.setSelectionMode(ListSelectionModel.SINGLE SELECTION) i

jList1.setBorder{BorderFactory.createTitledBorder
(" Click to select a node ... ") i

jList1.setValueIsAdjusting(true) i

btnSend. setText (" Send") i

btnSend.setBounds(new Rectangle (215, 210, 210, 35» i

btnSend.addActionListener(new ActionListener{) {
public void actionPerformed(ActionEvent e) {

btnSend actionPerformed(e)i
- }

) ;

menuFile.add(menuFileExit)i

menuBar.add{ menuFile);
menuConfig.add(menuConfigSettings) i

menuBar.add(menuConfig) i

menuHelp.add(menuHelpAbout)i
menuBar.add(menuHelp) i

this.getContentPane() .add(statusBar, BorderLayout.SOUTH) i

this.getContentPane() . add (panelCenter , BorderLayout.CENTER);
jPanel1.add(jLabe14) i

jPanel1.add(jLabeI3) i

jPanell.add(jLabeI2)i
jPanell.add(jLabell)i
panelCenter.add{btnSend, null)i
panelCenter.add(jListl, nullJi
panelCenter.add(jPanell, null);
this.getContentPane() .add(jPane12, BorderLayout.NORTH)i
corrfig = new FrmConfigure();

int size = listModel.getSize()i

if (size == 0) lINo Machine, disable send button.
btnSend.setEnabled(falseJi

void fileExit_ActionPerformed(ActionEvent e) {
System.exit (0) i

void configSettings_ActionPerformed(ActionEvent e) {

88

statusBar. setText (" Setting Configuration");
config.setVisible(true);

private void btnSend_actionPerformed{ActionEvent e)
(

String node;
String thisMachine;

node = (String}jListl.getSelectedValue();
statusBar.setText("Agent is going to: "+ " \t" + node);

thisMachine = FrmConfigure.myMachine;

agent.setNextMachine(node) ;

agent.run() ;

Machine Configuration class

package agent2agenttrust;

import java.net.UR£;
import java.sql.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FrmConfigure extends JFrame
[

BorderLayout borderLayoutl = new BorderLayout();
JPanel jPanell = new JPanel();
JLabel jLabell = new JLabel{);
JTextField txtThisMachine = new JTextField{);
JButton btnSave = new JButton{);
JSeparator jSeparatorl = new JSeparator{);
JTextArea jTextAreal = new JTextArea();
JLabel jLabe12 = new JLabel(};
JLabel jLabe13 = new JLabel{);
JTextField txtAddRemove = new JTextField();
JButton btnAdd = new JButton() ;
JButton btnRemove = new JButton() ;
JButton btnBackMain = new JButton{) ;
JButton btnRefresh = new JButton{);

public static String myMachine =" ";
public static String myMachineName;

public FrmConfigure() {
super (11 Configure panel");

try {
jbInit () ;

}
catch (Exception e) {

e.printStackTrace{) ;
}

89

Connection dbConn

try
{

null

Driver d = (Driver)Class.forName
("sun.jdbc.odbc . JdbcOdbcDriver") .newlnstance () ;

String URL = "jdbc:odbc:" + TlMyDbs2";

dbConn = DriverManager.getConnection(URL,"nouser",ll n opassword");

Statement stmt;

Statement stmt2;

ResultSet rs;
ResultSet rs2;

stmt = dbConn.createStatement{);

stmt2 = dbConn.createStatement{);

rs = stmt.executeQuery ("SELECT * FROM MachineList");

rs2 = stmt2.executeQuery(TlSELECT thisMachine FROM LocaIMachine");

while (rs.next(»
jTextArea1.append(rs.getString (IIMachineName") + "\n");

while (rs2.next{»
txtThisMachine. setText (rs2 .getstring (11 thisMachine")) ;

dbCoun.close() ;

}
catch (Exception e)
{

JOptionPane. showMessageDialog (this, "Problem during database
operation, program exits", "Program
error". JOptionPane.ERROR_MESSAGE);
e.printStackTrace();
System.exit{O) ;

)

private void jblnit() throws Exception {
this.getContentPane() .setLayout(borderLayoutl);
this.setSize(new Dimension{400, 441»;
jLabell. setText ("This Machine") ;
jLabell. setBounds (new Rectangle (24, 25, 86. 25»;
txtThisMachine.setBoundslnew Rectanglel115, 20. 217, 35»;
btnSave _setText ("btnSave") ;
btnSave. setLabel (" Save Name");
btnSave. setBounds (new Rectangle {148, 64, 125, 35»);
btnSave.addActionListener(new ActiOnListener()

public void actionPerformed{ActionEvent e) {
btnSave_actionPerformed{e);

90

}) ;

jSeparatorl.setBounds(new Rectangle{25, 108, 341, 18»;
jTextAreal.setEditable(false};
j TextAreal. setFont (new Font ("Dialog", 1, 12) l ;
jTextAreal.setBounds(new Rectangle{22, 152, 103, 179»;
jLabe12. setText ("Machine List") ;
jLabe12. setBounds (new Rectangle (25, 133, 85, 17»;
jLabe13. setText ("Add / Remove Machine") i

jLabe13.setBounds(new Rectangle(188, 154, 161, 25»;
txtAddRemove.setBounds{new Rectangle(l?3, 179, 159, 28»,
btnAdd.setText(lfbtnAdd") ;
btnAdd.setLabel ("Add");
btnAdd.setBounds(new Rectangle (165, 218, 87, 31»;
btnAdd.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
btnAdd_actionperformed(e);

)
}) ;

btnRemove. setText ("Remove") ;
btnRemove.setBounds{new Rectangle {257, 216, 82, 33»);
btnRemove.addActionListener(new ActionListener(}

public void actionPerformed(ActionEvent e) {
btnRemove_actionPerformed(e) ;

}
}) ;

btnBackMain.setText("Close Window fl
);

btnBackMain.setBounds{new Rectangle (225. 285, 123, 37»);
btnBackMain.addActionListener{new ActionListener() {

public void actionPerformed{ActionEvent e) {
btnBackMain_actionPerformed(e);

}
}) ;

btnRefresh.setText (IIRefresh") ;
btnRefresh.setLabel ("Refresh List") ;
btnRefresh.setBounds(new Rectangle(20, 339, 117, 31)
btnRefresh.addActionListener(new ActionListener(}

public void actionPerformed(ActionEvent e) {
btnRefresh_actionPerformed(e) ;

}
}) ;

jPanell. setLayout (null) ;
this.setTitle ("Agent2Agent Trust Management");
this.getContentPane{) .add(jPanell, BorderLayout.CENTER);
jPanel1.add{jLabell, null};
jPanell.add{txtThisMachine. null);
jPanell.add(btnSave, null);
jPanell.add(jSeparatorl. null);
jPanell.add(jTextAreal, null);
jPanell.add(jLabeI2, null);
jPanell. add (j Label 3 , null);
jPanell.add(txtAddRemove, null);
jPaneI1.add(btnAdd, null);
jPanell.add(btnRemove, null);
jPanell_add(btnBackMain, null);
jPanel1.add{btnRefresh, null);

void btnSave_actionperformed(ActionEvent e) {

91

myMachineName = txtThisMachine.getText{);

connection dbConn = null ;

try
{

Driver d =

(Driver) Class. forName (lI s un .jdbc .odbc .JdbcOdbcDriver") .newlnstance () ;

StringURL = "jdbc:odbc:" + "MyDbs2";

dbConn = DriverManager.getConnection(URL, "nollser", "nopassword");

Stat ement stmt;

stmt = dbConn.createStatement();

stmt. executeUpda te ("UPDATE LocalMachine SET thisMachine ,,, +
myMachineName +" Ill);

String myMsg;
myMsg = "This Machine Name updated"

JOptionPane.showMessageDialog(this,
myMsg, 11 Informtionll , JOptionPane.INFORMATION_MESSAGE) ;

dbConn.close() ;
}
catch (Exception ix)
{

JOptionPane. showMessageDialog (this, "Error Encountered, the program will
close", "Program error". JOptionPane.ERROR_MESSAGE);

ix.printStackTrace{);
System.exit(D};

}
myMachineName

void btnAdd_actionPerformed{ActionEvent e) {

String myMachine;

myMachine = txtAddRemove.getTexte);

Connection dbConn = null ;

try
{

Driver d = (Driver) Class. forName
(" sun.jdbc. odbc.JdbcOdbcDriver") .newlnstance () ;

String URL = "jdbc:odbc: tl + "MyDbs2";

dbConn = DriverManager.getConnection{ URL, "nouser", "nopassword");

Statement stmt;

stmt = dbConn.createStatement();

92

}

stmt. executeUpdate ("INSERT INTO MachineList (MachineName) VALUES ('" +
myMachine+ "')");

String myMsg;
myMsg = myMachine + " added" ;
JOptionPane.showMessageDialog(this,
myMsg, "Informtion n r JOptionPane. INFORMATION_MESSAGE) ;

dbConn. close () ;

}
catch (Exception ix)
{

JOptionPane. showMessageDialog (this, "Error Encountered, the program
will close". "Program error", JOptionPane.ERROR_MESSAGE);

ix.printStackTrace();
System. exi t (0) ;

Ilend database

void btnRemove_actionPerformed(ActionEvent e) {

String myMachine;

myMachine = txtAddRemove.getText();

Connection dbConn = null ;

try
{

Driver d = (Driver)Class.forName
("sun.jdbc.odbc.JdbcOdbcDriver") .newInstance () ;

String URL = "jdbc :odbc: 11 + "MyDbs2";

dbConn = DriverManager _getConnection(URL, IInouser" , "nopassword") ;

Statement stmt;
stmt = dbConn.createStatement();

stmt.executeUpdate ("DELETE FROM MachineList WHERE MachineName= ,It +
myMachine +"'");

String myMsg;

myMsg = myMachine + n removed" ;

JOptionPane. showMessageDialog (this, myMs9. 11 Information" •
JOptionPane.INFORMATION_MESSAGE) ;
dbConn. close () ;

}
catch (Exception ix)

93

JOptionPane. showMessageDialog{this,IlUnspecified Error Encountered,
program terrninates ll

, "Error ll
, JOptionPane . ERROR_MESSAGE) j

ix_printStackTrace(}j

System.exit(Q) j

}
Ilend database

void btnRefresh_actionPerforrned(ActionEvent e) {

jTextAreal.setText(" ");

I I database

connection dbConn

try
(

null

Driver d =

(Driver) Class .forName (l1sun .jdbc.odbc.JdbcOdbcDriver") .newlnstance () ;

String URL = "jdbc:odbc:" + "MyDbs2";

dbConn = DriverManager.getConnection(URL, "nouser", "nopassword"} j

Statement stmtj
ResultSet rs;

stmt = dbConn.createStatement();
rs = stmt.executeQuery (lISELECT * FROM MachineList") j

while (rs.next()
j TextAreal . append (rs . getS tring ("MachineName") + "\n");

dbConn.close(}j

}
catch (Exception px)
{

JOptionPane. showMessageDialog (this, "Unspecified Error Encountered,
program terminates ","Error" , JOpt ionPane . ERROR_MESSAGE) ;
px.printStackTrace();
System. exit (0) ;

Ilend database

void btnBackMain_actionPerformed(ActionEvent e) {
this.setVisible(false) ;

94

REFERENCES

1. Alfalayleh, M. and Brankovic, L. (1998). An Overview of Security Issues and
Techniques in Mobile Agents, In 8th IFIP TC-6 TC-ll Conference on
Communications and Multimedia Security, The Beech Hill Hotel, England.

2. Amazon Site. (http://www.amazon.com) World Wide Web. May 13, 2006

3. Blaze, M. Feigenbaum, J. and Lacy, J. (1996). Decentralized Trust Management,
Proceedings of the 1996 IEEE Symposium on Security and Privacy, Washington, DC,
USA, Page: 164, ISBN:0-8186-7417-2

4. Bonatti, P. Duma, C. Olmedilla, D. and Shahmehri, N. (2005). An integration of
Reputation-based and Policy-based Trust Management. In Semantic Web Policy
Workshop in Conjunction with 4th International Semantic Web Conference, Galway,
Ireland, Nov

5. Cohen, P.R. and Levesque, H.J. (1990). Intention IS choice with conunitrnent.
Artificial Intelligence, 42(2-3): 213-261

6. Conte, R. and Paolucci, M. (2002). Reputation in artificial societies. Kluwer
Academic Publishers.

7. DeGroot, M. H. and Schervish, M. J. (2002). Probability and statistics. Place:
Addison-Wesley.

8. Durfee, E.H. (1999). Practically coordinating. AI Magazine, 20. (1) 99-116.

9. eBay Site. (http://www.ebay.com) World Wide Web. June 9, 2006

10. Grandison, T. and Sloman, M. (2000). A survey of trust in internet applications. IEEE
Communications Surveys & Tutorials, 3(4).

11. Huynh, T.D. JemIings, N.R. and Shadbolt, N.R. (2004). FIRE: An integrated Trust
and Reputation Model for Open Multi-Agent Systems, Proceedings of the 16th

European Conference of Artificial Intelligence(ECAl) Volume 13, Issue 2, Pages:
119 - 154, Hingham, MA, USA

12. Jennings, N.R. (1993). Communications and conventions: The foundation of
coordination in multi-agent systems. The knowledge Engineering Review, 8(3): 223
250

95

13. Jennings, N.R. Faratin, P. Lomuscio, A.R. Parsons, S. Sierra, C. and Wooldridge, M.
(200I). Automated negotiation: prospects, methods and challenges. International
Journal ofGroup Decision and Negotiation, 10 (2), pages: 199-215

14. Jurca, R. and Faltings, B. (2003a). An Incentive Compatible Reputation Mechanism.
In Proceedings of IEEE Conference on E-Commerce, Newport Beach, CA, USA

IS. Jurca, R. and Faltings, B. (2003b). Towards incentive-eompatible reputation
management. In R. Falcone, S. Barber, L. Korba, and M. Singh, (Eds.), Trust,
reputation and security: theories and practice. Vo!. 2631 of Lecture Notes in Al (pp.
138~147). Springer-Verlag, Berlin, Heidelberg.

16. Kraus, S. (2001). Strategic Negotiation in Multi-Agent Environments. Cambridge,
MA: MlT Press.

17. Kritzinger, F. Truter, D. and McGregor, K. (2003). A secure End-to-End System for
M-Commerce, Technical Report CS03-24-00, Department of Computer Science,
University of Cape Town, October 12.

18. Maarof, MA. and Krishna, K. (2002). "An Hybrid Trust Management Model For
MAS Based Trading Society", 3rd International Symposium on Multi-Agent
Systems, Large Complex Systems, and E-Businesses (MALCEB'2002),
ErfurtlThuringia, Germany, 8-10 October 2002.

19. Ping, Y. Yan, H. Yafei, H. Yiping, Z. and Shiyong, Z. (2004) Securing ad hoc
networks through mobile agent, Proceedings of the 3'd International Conference on
Information Security, ACM International Conference Proceeding Series; vo!.85,
Shanghai, China, pages: 125-129.

20. Pynadath, D. and Tambe, M. (2002). Multiagent Teamwork: Analysing key
teamwork theories and models. In C. Castelfranchi and L. Johnson, Editors,
Proceedings of the first International Joint Conference on Autonomous Agents and
Multi-Agent Systems, Volume 2, pages 873-880.

21. Ramchum, S.D. Huynh, D. and Jennings, N.R. (2004). Trust in Multi-Agent Systems.
In Knowledge Engineering Review, 19(1) pp.1-25

22. Resnick, P. and Zeckhauser, R. (2002). Trust among strangers in internet transactions:
Empirical analysis of eBay's reputation system. InM. R. Baye, (Ed.), The economics
of the internet and e-commerce. Vo!. 11 of Advances in Applied Microeconomics.
Elsevier Science.

23. Rosenschein, J. and Zlotkin, G. (1994). Rules of Encounter: Designing Conventions
for Automated Negotiation among Computers.Cambridge MA: MlT Press.

96

24. Sabater, J. (2003). Trust and Reputation for Agent Societies. PhD thesis, Universitat
Autonoma de Barcelona.
Avilable: http://www.iiia.csic.es/-jsabaterlDocuments/Thesis.pdf

25. Sabater, J. and Sierra, C. (2001).REGRET: A reputation model for gregarious
societies. In Proceedings of the fifth international conference on Autonomous agents
(pp. 194 - 195). Montreal, Quebec, Canada. ACM Press

26. Salton, G. and McGill, M. (1983). An introduction to modern information retrieval.
New York: McGraw-Hill.

27. Teacy, W.T.L. Patel, J. Jennings, N. R. and Luck, M. (2005). Coping with inaccurate
reputation sources: Experimental analysis of a probabilistic trust model. In
proceedings of fourth international joint conference on autonomous agents and
multiagent systems, Netherlands: Utrecht, pp. 997-100.

28. Winsborough, W. Seamons, K. and Jones, V. (2002). Automated Trust Negotiation.
In DARPA lnfonnation Survivability Conference and Exposition, Hilton Head, SC,
January

29. Yu, B. and Singh, M. P. (2003). Searching social networks. In Proceedings of the
second international joint conference on autonomous agents and MultiAgent systems
(AAMAS) (pp. 65-72). ACM Press.

30. Yu, B. and Singh, M.P. (2002). An evidential model of distributed reputation
management. In Proceedings offirst international joint conference on autonomous
agents and multi-agent systems. Vol. 1. (pp. 294-301). ACM Press.

31. Zacharia, G. and Maes, P. (2000). Trust management through reputation mechanisms.
AppliedArtificial Intelligence, 14(9), 881-908.

32. Zuma, S. M. and Adiguo, M.O. (2006). CAC1P: a pattern for interfacing components
in a context-aware mobile environment, International Association Of Science And
Technology For Development, Proceedings of the 17th lASTED international
conference on Modelling and simulation, Montreal, QC , Canada, Pages: 416 - 423 ,
ISBN - ISSN:1021-8181 ,0-88986-592-2, May.

97

	Declaration
	Dedication
	Acknowledgement
	Table of contents
	Abstract
	Chapter 1: Introduction
	Chapter 2: Background concepts and literature review
	Chapter 3: Methodology and model development
	Chapter 4: Design and implementation
	Chapter 5: Conclusion
	Appendix A
	Appendix B
	Appendix C
	References

