MODELLING TRUST
MANAGEMENT IN AGENT-
TO-AGENT SECURITY
SCENARIO

Mzomuhle Thuthuka Nkosi

(20011359)

A dissertation submitted in fulfilment of the requirements for the
degree of

Master of Science in Computer Science

Department of Computer Science, Faculty of Science and
Agriculture, University of Zululand

UNIVERSITY OF ZULUL. ..
LIBRARY

et 4 e b mt bt r b b me g vara s aen g

2006 E.Aeeessieﬂ Pbogdg!z.%7.. ’

Declaration

This dissertation represents author’s own research work and has not been submmtted in
any form to other institution of tertiary education for another degree or diploma. All the

material used as source of mmformation has been acknowledged in the text.

Signature

i

Dedication

I dedicate this dissertation to my family which has always been behind me especially my
mother. Her encouraging words have kept me going through difficult times. I also
dedicate this work to my wife, who has been on my side continuously and has given me

freak hope for success.

1ii

Acknowledgement

I would like to acknowledge my appreciation to all the staff members of the Department
of Computer Science of the University of Zululand. I would also like to express my
sincere gratitude to my supervisor, Prof. M.O Adigun, for his support and commitment to
make this work a reality. To my fellow research students of the Department, I would like
to thank them for their help. I would also like to thank all the sponsors for their financial
contribution in conducting this research. |

To God, the pillar of my strength, who always gives me a way through where it seems to

be no way out, [am most grateful to Him.

v

Table of Contents

DIECIATALION ...ttt s et et sae e s e s e e br e hesse e ne s saesa e s b et na e s b e onesessunnsress ii
| T LT T) o OO il
Dedication......... eteeteestesiesssessiesessresessiestsestsrssssciserstrstesssissesstisesacsararisteeestenresseesersnresenesaren il
ACKNOWICAZEITIENTeeeeeeeeereerirecrnr s s reeeca s saesat s s sstsa s s saes e sassas s s s ensesans s s sanesassrs s anens v
ADSITACE .. ooeietiitie et e stres s am sens et e seae e seesasseesersesssnasn e s st ses e s s s e e senem e nesmaameeaneannneeen xil
CHAPTER ONEcoooooeeeoee oo seesseessressssoesssrssseesseessneee e i
L. INEPOQUCHON. ... oo rcciesesteses et ere st sa s e e s es e s ebessnesbsens 1
1.1 OVEIVIEW .ot ere e s et eresemetmsrsere s s teasaesesssesssesessteas s se st s esenmmresessesmananens 1

1.2 Statement of the Problem. ... e 5

1.3 ReSarch GOlooveeeeieieeeete ettt ettt et st 5

O S 1= v -SSR 6

1.5 Rationale of the STUAY....ccccceevmrercerirrec v e rerseenesseeeseesnesssaseranes 6

1.6 Research MethodOlOZY ...ooceeevereeeceriiereerieerseertceretniee s e e enee e e e e s srneress s 6

A. Establishing the Background ..o 6

B. Formulation of a Trust Management Framework.........cccoveevrevvicinirccennnnees 7

C. Proof of Concept Approach ...ttt 7

1.7 Organisation of the DISSErtationcoeevvieeinecreiicic et 8
CHAPTER TWO ...t eeeest et autesasteseasas st setasssessebaste s sseserasesseasseassssssscesennnsnees 9
2. Background Concepts and Literature REVIEWcccocivivevoniieccer e reereeraenns 9
2.1 INTrOAUCHON. ..ttt et er e st s st st s s ierene e 9

2.2 Trust Management in Open Multi-Agent Systems ..o 10

2.3 Trust Evaluation MechaniSms.........ccceircieererreereneseste e s s enneas 13
231 Reputation-based Security SChemescccovvnceieriercrinicicnieenecnenns 13
2.3.1.1 Centralised Reputation MechaniSms.......c.ceeevvereverevsrerereneescverereraensns 13

2.3.1.2 Decentralised Reputation MechaniSms........cccocevvcerecrnnirrcnerceneee. 16

232 Policy-based Security SChemesccccerereereneercree e 21
2.3.2.1 REWERSE. ...ttt sse s s se s sas s m s 21

233 Agent Security SYSIEMS ... incnisnin e s 22

2.4 Trust Management Design Challenges.......cccvecevervvvnironennne 24
2.5 The Proposed Trust Model......oormmmeoee e 25
CHAPTER THREE ...ttt seese e nessen e e s s ess e st e snanans 28
3. Methodology and Model Development ...t 28
3.1 IIHTOAUCHON. coeeeeee v e ee s st e ie st seeseses s et erasssss s asasssesaasb et antramsrnansanns 28
3.2 Trust Management Design Principles.....oceereeerrneenensececnn e cveraenn, 29
3.2.1 EnNd-t0-6nd SECUMLY c.eereieeeceeieeireieseirreecveetesesesaeraeesereseesressessssas e erone 29
322 Fair Trustworthiness Evaluation.......c.ccvceevnnrnesrcecenseneeccceiee e, 30
3.2.3 Robustness and Scalabilityc..ooeeveeereerrcrereeeceieee v, 30
324 Systemn VISIDIHEY...ooov oottt 31

3.3 Agent-based Trust Management Model.......cc.oiiiiiiiirccrecenne 31

3.4 Communication Framework for the Agent-based Trust Management Model
34

341 DeCiSION AENt (DA ceorveceomeeeeereerosesseeeeresesesseseseeeeseseesesseesseesesaseneees 35

vi

342 Status Control AZENt.........cccveeeceieree e teteee i reresre s e sas e s saesveesaneas 36

343 Master Agent (MA).......o ettt 36
344 Foreign Decision Agent (FDA) .ccoveervvmieccrre et eceenerernna s 38
3.4.5 Local Reputation Database (LR-DB)......covvreecreeinieiveieeeennerneenenenes 38
34.6 Foreignn NOAe .ot 38

3.5 Authentication and Authorization Frameworks for the agent-based Trust

Management Model ...ttt ettt er s 39
351 Authentication Frameworkccccooeeecceniicnieesenesesecert e csrerenian 39
352 Authorization Framework 41

3.6 Reputation COmpuation.........c.ooceerrcimiieninicsiieesse e ceneseeresecesesessesansenssanens 45

C CHAPTER FOURL.........oe ettt sn s s st et s sa e saa b s aeseca st es s arasasassanns 47
4. Design and IMplementationc.coceeerriierereinisiscsieiires e resecseseceee e eese s ensnsseeees 47

4.1 TOIOQUCHOTL. ..c.ueetreenceereneacinaererercrteses e sascsee e e atessanessrssassrasessassesssetaseessesnnsnens 47

4.2 Development of Agent-to Agent Trust Management System...........c.uc.u...... 47
4.2.1 Overview of the SyStem........veciieeceeirr et 48
4.2.2 Processes for each Tequest ..o 49
42.3 Digital Signature AlgOTithImsc.ovveveiereecee e, 33
424 Trustworthiness Evaluationc.eceeeeeveeeeccinceceieceeee e 54

4.3 Implementation ENVITONIMENLocoooiiieerreee et 56

4.3.1 Systermn User Interface......o.coeeveeveeeeeeeeveeee e, 56
4.4 Performance EXPerimMENtS.......coocceeerermereeeieteneeicceeiete e veessi s e e 60

441 Experimental ReSUlts ...t 61

4472 Performance Evaltustion ... eee e eeevee e s aessaeenns 61

CHAPTER FIVE ...ttt tse s e sss st s bbbt an st s en e e mranensenes 65
5. CONCIUSION ..ottt ettt e es s s e et st e aen e eren 65
5.1 INETOAUCHION. .. e st cte st st et en e s e e smeese e sn e s e e maes st esssnans 65

5.2 CONCIUSION c.ueeeereerreceeectcrierseesse e e se s ee e s sesarasensassasaarsesssrasnsesessesssnaneneens 65

5.3 FUBUIE WOrK ettt sr e e e s e 67
APPENDIX A 69
APPENDIX B oot e e e ae e s et ee s e e s sns sma e e saseraase s st e snaennamtarasanteesanrnnresrs os 73
APPENDIX C oo eeerecerceecrereseeesar s st e rseassessesssssonasensesess Sasnsssessssssanasansasasesnsssnessssesammmens 74
REFERENCGES ...ttt st e e e n s e e s et n e n e 95

viil

List of Figures

Figure 1. 1: The Context-Aware Component Interfacing Pattern (Zuma and Adigun,
ZO06) et e ettt bbb s R e e e bbb e b e ae e e s e s bbbt 2
Figure 3. 1: Agent-based Trust Management Model........ooveceerrecreeceeervncrce e irerceeeenene 32
Figure 3. 2: Components of DeciSion AZentccccovvrincercncicmeererecsierinsarecneesennes 35
Figure 3. 3: Components of Master AGent........oovveemeoeeoeiiieeeeeereee e 37
Figure 3. 4: Component Diagram of the Authentication Framework.........cccoooenicecenenceee 40
Figure 3. 5: Authorization Framework ...t e 42
Figure 3. 6: Control Structure for Trust Evaluation of Agents Requesting for a Service. 43
Figure 3. 7: Class Diagram for Agent-based Trust Management Model........................ 44
Figure 4. 1: A Use Case diagram for agent-to-agent trust management..........ccecvceeenue. 48
Figure 4. 2: A sequence diagram for authentication........ouvceccvinenemricrevesicsnncree s 49
Figure 4. 3: A Sequence Diagram for Authorization Process.......ccomiieieinmrrerrerceereces 50
Figure 4. 4: A sequence diagram for Collection of reputationcoeeveccrnvceniercvcrnennenn. 51
Figure 4. 5: Activity diagram which shows how agents are authenticated and authorized
... 52
Figure 4. 6: Pseudo code for signing the Service_doc......uwoiiiiciinininirccceree e, 53
Figure 4. 7: Pseudo code for digital signature verification.......c.oceceveecieiciinccccrnneennnnnn. 54
Figure 4. 8: Trust evaluation algorithm. TNOA — total number of actions, NOBA —

number of bad actions, NOGA — number of good actions, RepV — reputation value

Figure 4. 10: Machine Configuration Interfaceccocevmmerrererevrccciccncrnncierarevnnenees 58

Figure 4. 11: A local Reputation Based Authentication Session........ccccoevimevrveeececnecns 59
Figure 4. 12: A Foreign Reputation Based Decision Session........coveeererrvevorenenicnenens 59
Figure 4. 13: Bad agents Identification based on their reputationoccoceeviereccerceennne. 63
Figure 4. 14: Reputation EValuationcoeiervivenvne s rtnesesseesecvorsnesemaessssessssenne 64
Figure A. 1: User interface showing nodes participating in the networkccceeueenee. 69
Figure A. 2: Machine configuration interface.........cceivirvcenncccnccnccnnieics e 70
Figure A. 3: User Interface displaying messages......ccverermrrecemientinnsissensesessnecnceerssenens 71
Figure A. 4: Key Generator Code ..ot en e 72
Figure B. 1: UML Class DIagraml......ccoceiiicciinnni e e ssssress s eesesrascssssssssseas 73

List of Tables

Table 2. 1: Description of Existing Schemes and the Proposed Trust Model

Table 4. 1: The experimental results to find the optimal valuecc.coccciiinenenns

Table 4. 2: The results of the performance analysis

xi

Abstract

Over the previous years, researchers have given much attention to exploré the effective
use of distributed systems to search, retrieve, and share information. Mobile agent
technology has had a great impact in providing solutions in different dimensions of
distributed systems. This research work presents the development and implementation of
trust management model that ensures agents commumicating in a Context-Aware
Component Interfacing Pattern (CACIP) based Service Onented Distributed
Environment.

The Agent-to-Agent Trust Management model is proposed to ensure security of agents
that want to access‘ services from the CACIP. The developed model uses a reputation-
Based approach to evaluate trustworthiness of each agent. Each agent must be
authenticated and authorized in order to get an access to services in CACIP. The trust
management model ensures trustworthiness of each agent participating in a CACIP based
environment. Mobile agent security requirements were considered in developing the
model.

The developed model was implemented to demonstrate how requesting agents are
authenticated and authorized before accessing services. Simulation of the model was also
conducted to assess the performance to the model. The results show the efficiency of the
model when agents simultaneously make requests over a given amount of time. The
performance of the model shows scalability when number of requests increases.

The use of both foreign and local reputation to evaluate trust of agents guarantees that all

agents that access services, are trustworthy.

Xii

CHAPTER ONE

1. Introduction

1.1 OQverview

The advent of agent technology has provided improvements in communication of
application users. Agent technology has been applied in several computer systems to
enhance their performance. This technology has brbught some distinctive changes in
distributed and client-server computer systems. Agents are defined as computer programs
that act in a computer network on behalf of human user or application. Agents are
designed with specific goals to achieve. Autonomous agents have the capability of
moving from one machine to the other and perform their duties without their owner’s
intervention, i.c. the owner of an agent sends the\ agent to go and perform a duty in
another remote host according to the itinerary given to it. Agents conununicate among
themselves, to achieve their design goals, without the intervention of their owners.
Agents with the capability of moving from one machine to the other are called mobile
agents. Mobile agent technology has been efficiently used to improve users’ performance

in different contexts.

The need of agents to communicate with other agents in order to achieve their goals has
resulted in the emergence of multi-agent systems. Multi-agent system is composed of
several agents that are capable of mutual interaction. These agents interact to share

information and services. Some agents act as service providers while others are service

consumers during their interaction.

Regarding the efficient utilization of mobile agent technology, there are some limitations,
primarily in the area of securtty. Security in mobile agent technology has raised concerns
about practical utilization of mobile agents. As the agent moves from one node to the
other, it is open to many attacks which may destroy it or interrupt its execution. The issue
of security in application of mobile agent is never easy to be ignored when successful
operation is to be achieved. One dimension that impacts security of mobile agents is
communication or interaction style when they serve their purpose. Therefore, appropriate
mteraction framework architecture is essential in order to establish proper security
mechanistn among agents. Context-Aware Component Interfacing Pattem (CACIP)
architecture proposed in (Zuma and Adigun, 2006) provides the communication pattern

for agents in multi-agent system to share services.

Cordext e
pher
Sensor Sexvices dda

Fy F Y

k 4 L 4

Information Bus O

]
3 ' I
Userpwofie & Third Pasty
prefererces Cotrporent

Figure 1. 1: The Context-Aware Component Interfacing Pattern (Zuma and Adigun, 2006)

The architecture is as shown in figure 1.1. The CACIP architecture manages inter-
component communication through the information bus. Therefore, it prevents direct

component-to-component communication; instead component interaction is managed by

the information bus. This architecture allows all participating components to register with
the information bus, specifying types of messages they are interested in.

The components’ registration ensures that every time a new message is written into the
information bus, a component that is interested in it is notified. The way messages are
accessed in CACIP architecture opens some serious security challenges or threats that

have not yet been addressed.

Different approaches can be applied to provide a relevant security mechanism for mobile
agents that communicate in a CACIP based mobile environment. Among several
approaches that have been used by many researchers, trust has played a major role in
provisioning of diftferent security schemes. We propose a trust-based approach to provide
security mechanism for mobile agents communicating in a CACIP based service oriented
mobile environment. Winsborough et al. (2000) define trust as the degree of belief about
the behaviour of other entities upon which we depend for reliability, timeliness, and
integrity of message delivery to their intended next-hop. In this research, trust is defined
as the degree of belief about the agent’s behaviour upon which it is depended for
reliability and trustworthiness in service or message accessibility. There is a great need to
manage trust when trust-based approach is applied to security mechanism. We define
trust management as activity of collecting, codifying, analysing and presenting security
relevant evidence with the purpose of making assessments and decisions regarding
service accessibility. The trust mechanism being proposed in this research would help to

ensure that all agents that access services in CACIP are trust-worthy.

-The concepts of trusted computing, trusted network, trusted communication, trusted
agents are related to security issues, security technology and security services. All topics
of security study and research are directed towards providing a secure and tamper free
environment, or network or commumication. In this context, trust is Synonymous with
secure, which is tied to security.

Open distributed systems can be modeled as open multi-agent systems (for example, the
CACIP architecture) that are composed of autonomous agents interacting with one
another via particular mechanisms and protocols. In this respect, interactions form the
core of multi-agent systems. Thus, the agent research community has developed a
number of models of interactions including coordination ((Jennings, 1993), (Durfee,
1999)), collaboration ((Pynadath and Tambe, 2002), (Cohen and Levesque, 1990)) and
negotiation ((Rosenschein and Zlotkin, 1994), (Kraus, 2001), (Jennings et al, 2001)).
However, their application in large-scale open distributed systems presents a number of
new challenges. First, the agents are likely to represent different stakeholders that each
has their own aims and objectives. This means the most reasonable design strategy for an
agent is to maximize its individual utility. Second, given that the system is open, agents
can join and leave at any time. This means that an agent could change its identity on re-
entering and hence avoid punishment for any past wrong doing. Third, an open
distributed system allows agents with different characteristics (e.g. policies, abilities,
roles) to enter the system and interact with one another. Given this, agents are likely to be
faced with a number of possible interaction partners with varying properties. Fourth, an
open distributed system allows agents to trade products or services {e.g. various forms of

auctions or market mechanism), and collaborate (e.g. forming coalitions or virtual

organisations) in very many ways. Therefore, agent designers are faced with a selecting
from a number of potential interaction protocols that could help them achieve their design
objectives.

Autonomous mobile agents in an open distributed system that requires a trust

management that would make sure that every agent in the system is trustworthy.

1.2 Statement of the Problem

Applications running in a typical 4" generation network will deploy mobilé agents on an
itinerary which requires them to visit fixed and mobile nodes. This poses a serious trust
management challenge. In order to investigate and propose a security framework that
responds to this challenge, we adopt the Context-Aware Component Interfacing Pattern
(CACIP) architecture as the core of a middleware in which the security framework will
be contextualised. This study constructed a trust management model that ensures security

of agents communicating in a CACIP based Service Oriented Distributed Environment.

1.3 Research Goal

The goal of the study was to address the CACIP architecture’s security when deployed in

distributed mobile systems by providing agent based security mechanism.

1.4 Objectives

- To construct a trust management model with specialisation in authentication
and authorization capabilities;

- To devise an agent-to-agent authentication and authorization mechanisms that
manage trust in mobile systems and

- To show that the scheme or mechanism functions in a real environment by

cvaluating its performance experimentally.

1.5 Rationale of the Study

The CACIP architecture constitutes the core of a mobile application middleware on
distributed systems. This raises many security concemns for agents that carry services
from one node to another node. Adequate trust management is required in order to
guarantee security of mobile services operating on a network. The results. of this study
would provide a mechanism that supports administration based on authentication and

authorization scheme or framework for mobile agents in mobile application systems.

1.6 Research Methodology

A. Establishing the Background

e Literature search for existing security models designed for wireless networks

and mobile ad hoc networks with the purpose of understanding how

authentication, authorization and privacy are being provided in applications
running on those networks.

e Survey of relevant peer-to-peer agents’ communication research in order to
understand how authentication process is handled. This will be followed by
subsequently by formulating an authentication scheme that draws on that

understanding.

B. Formulation of a Trust Management Framework

This encompasses:

¢ Identifying existing reputation-based schemes that are used in different wireless
applicatioﬁs to secure peers;

s Formulating of a model that ensures security based on trust among agents
communicating in the CACIP manner on infrastructure-less networks. This
entails considering appropriate trust establishing requirements and some
security mechanisms that enforce those requirements and

e Constructing a corresponding framework for mobile agents’ applications.

C. Proof of Concept Approach

Ordinarily this approach consists of:
e Analysing, designing and implementing the prototype to prove plausibility of
the proposed model and

e Evaluation of performance of the prototype implementation.

1.7 Organisation of the Dissertation

The dissertation is organised as follows:

Chapter two presents background concepts that form the foundation of this research
work. The chapter starts with brief introduction on reputation-based and policy-based
frust management and security issues on mobile agents. Existing related works are
discussed pointing out the challenges associated with the design of trust models. The
chapter concludes with a brief overview of the proposed trust model.

In chapter three the description of the model development is presented. This chapter
begins with the introduction followed by solution approach to solve the problem. The
agent-based trust management model is then presented with its full details. Reputation
mechanism comes as the conclusion of the chapter.

Chapter four is the description of design of the trust management system with the
implementation. The experiments, analysis and results are presented in this chapter. It
concludes with the performance evaluation of the model.

Chapter Five concludes the dissertation. The research conducted and described in the
dissertation is presented in this chapter. Finally, the recommendations for future work are

described.

CHAPTER TWO

2. Background Concepts and Literature Review

2.1 Introduction

The trust approach has been widely used by many researchers to tackle problem of
security in muiti-agent systems. Ramchurn et al (2004) defined trust in multi-agent
systems as a belief an agent has that the other party will do what it says it will (i.e. being
honest and reliable) or reciprocate (i.e. being reciprocative for the common good of both),
given an opportunity to defect to get higher payoffs. Trust issues have generated active
research interests for many researchers in attempting fo propose security mechanisms for
open distributed systems. Trust management has been an issue of much consideration for
effective utilization of trust approach in the research community. An appropriate trust
management to propose security scheme is essential because trust is evaluated on
individual basis for a specific aspect. For example, component A, B and C are interacting.
B may be trusted to purchase items but not trusted to download files from A. On the other
hand, C is trusted to download files but not trusted to purchase items. Therefore, in order
for B to download files from A, trust evaluation must be done. And trust evaluation must
be conducted for C to purchase items from A. Thus, trust management must be
appropriate and relevant for such situations.

Reputation and policy have become the fuindamental concepts in building trust among

interacting agents in multi-agent systerns. Reputation is defined as an opinion or view of

someone about something (Sabater and Sierra, 2003). When reputation is used to propose
security scheme, it must be apparent how reputation is collected to evaluate
trustworthiness of agents. Policies to access resources must be well stated in order to

protect multi-agent systems.

A Lot of work has been done on securing multi-agent application systems using
reputation-based and policy-based approaches to manage trust among agents. This
chapter reviews some existing security architectures and trust models that relate to our
research. The chapter starts by discussing some background concepts of the research in
Section 2.2. Section 2.3 presents the framework analysis of the literature followed by
review of existing mechanism. Section 2.4 discusses trust-based seéurity design

challenges and the chapter concludes with the proposed scheme presented in section 2.5.

2.2 Trust Management in Open Multi-A gent Systems

Several researchers have broadly used trust approach to formulate security architectures
for multi-agent systems. Trust is a belief or expectation someone has that the other party
will behave according to its promises. Trust provides a form of social control in
environments in which agents are likely to interact with others whose intentions are not
known. It allows agents in that system to reason about the reliability of others. The trust
approach has raised the need for trust management (Blaze, et al., 1996} when it is being
used to formulate security architectures. Thus, trust management has been the challenge
to many researchers in research community. Aspects of trust management problem

include formulating security policies and security credentials, determining whether

10

particular sets of credentials satisfy the relevant policies, and deferring trust to third
parties. As a result, quite a number of security schemes have been proposed around this
paradigm ((Huynh, et al., 2004), (Blaze, et al., 1996), (Alfalayleh and Brankovic, 1998)).
A number of definitions for trust management have been suggested by different
researchers in diverse contexts ((Bonatti, et al., 2005), (Huynh, et al., 2004)). Bonatti et
als (2005) defined trust management as the activity of collecting, encoding, analysing and
presenting evidence relating to competence, honesty, security or dependability with the
purpose of making assessments and decisions regarding trust relationships. Trust
management, regardless of its security challenges, has been mostly used in open multi-
agent systems to develop effective security schemes. Multi-agent systems are composed
of autonomous agents that interact with another using a particular mechanisms and
protocols. These autonomous agents interact to achieve their design goals in uncertain
and dynamic environments. Interaction pattern in multi-agent system has an impact in
formatting the security architecture. Thus, the way agents interact deterrmnes the type of
security models that is required to protect them.

In Context-Aware Component Interfacing Pattern (CACIP) architecture (Zuma and
Adigun, 2006) allowed different components to indirect'ly interact in order to share
services. Furthermore they defined the information bus that is used by participating
components to communicate. Information bus carries the messages (both requests and
published messages) that have been attached by components. Service provider
components attach messages to the information bus in order to publish services they offer
and can detach their messages at any time. On the other hand, service consumer

components attach request messages to the information bus in order to request for

11

published services. If the requested message is not available at the time of request, a
component can leave the message in the information bus so that it can be notified once
that service i1s availlable. The interaction style defined in CACIP shows some
characteristics of multi-agent system by allowing components to share sgrvices without
intervention of a user. Thus, in this research, CACIP is modeled as the multi-agent

system. Agents communicate using the CACIP style of communication.

However, CACIP architecture opens some security challenges that need to be addressed
in order for agents to freely share services. Security challenges that are raised by CACIP
interaction style include masquerading, unauthorised access, amnoyance attack,
eavesdropping, denial of services and alteration (Alfalayleh and Brankovic, 1998). As it
is briefly discussed above that participating provider components in CACIP put their
messages in the information bus to be accessed by other components, therefore, access
control is needed that would make sure that only trusted agents are permitted to access
the information bus. The access control would prevent malicious agents from interrupting
other agents’ messages and make them useless. This is because it is possible that a
harmful agent accesses the information bus and starts to alter other agents’ messages.
This suggests that an appropriate trust management is required to secure agents
communicating in CACIP based service oriented environment. Therefore, in this research
trust management model is formulated to secure agents communicating in CACIP based

systems.

12

2.3 Trust Evaluation Mechanisms

This section analyses existing research works in the literature based on the following

approaches to develop trust-based security schemes:

i) Reputation-based — utilization of previous behaviour information of an agent to
evaluate its trustworthiness and
ii) Policy-based — declared policies are used to specify access control conditions

that yield the requested resource either granted or denied.

2.3.1 Reputation-based Security Schemes

A reputation-based approach has been used in the context of online electronic commerce
systems, e.g. eBay. Reputation mechanisms are built using two different approaches:
centralized and decentralised approaches. Therefore, researchers formulate reputation

mechanisms using either of the two approaches.

2.3.1.1 Centralised Reputation Mechanisms

E-Bay Reputation Trust Model

Since traditional security mechanisms cannot protect an agent from unreliable service
providers, novel models have been developed to model service provision trust, i.e. trust
that a service provider is competent and will provide a service in a reliable manner

(Grandison, and Sloman, 2000). The main building block of these models is information

13

about an agent’s past behaviours. This information is used to reduce the trustworthiness
of that agent in terms of its competency and reliability. Online reputation mechanisms
(e.g. eBay (eBay Site), (Resnick and Zeckhauser, 2002) and Amazon Auctions (Amazon
Site) are probably the most widely used of such models. They are implemented as
centralised rating system so that their users can report about the behaviour of one another
in past transactions via rating and leaving textual comments. In so doing, users in their
communities can learn about the past behaviour of a given user to decide whether it is
trustworthy to do business with. For example, an eBay user, after an interaction, can rate
its partner on the scale of —1, 0, or +1, which means positive, neutral and negative rating
respectively. The ratings are stored centrally and the reputation value is computed as the
sum of those ratings over six months. Thus, reputation in these models is a global single

value representing a user’s overall trustworthiness.

However, this is too simple for applications in multi-agent systems since they only
consider the trustworthiness of an agent as one dimension. Since the ratings are
aggregated equally, the mechanism cannot adapt well to changes in a user’s performance
(e.g. a user may cheat in a few interactions aﬁer obtaining a high reputation value, but
still retains a positive reputation).

In summary, the reputation values in these systems contain very little information,
and users of these systems need to look for textual comments providing more
information. Therefore, such mechanisms are not well suited to computational agents,
which must usuaily make decisions autonomously. In addition, since there is no central
authority that can control all the agents in open multi-agent system, an agent may well

question the credibility of those centralised reputation models and decide not to use them.

14

SPORAS Reputation Model

Zacharia and Maes (2000) have proposed SPORAS which extend the online reputation
models mentioned above by introducing a new method for rating aggregation.
Specifically, instead of storing all the ratings, each time a rating is received it updates the

reputation of the involved party using an algorithm that satisfies the following principles:

1. New users start with a minimum reputation value and they build up reputation
during their activity on the system;

2. The reputation value of a user never falls below the reputation of a new user;

3. After each transaction, the reputation values of the involved users are updated
according to the feedback provided by other parties, which reflect their
trustworthiness in the latest tr_ansaction;

4. Users with very high reputation values experience much smaller rating changes
after each update and

5. Ratings must be discounted over time so that the most recent ratings have more

weight in the evaluation of a user’s reputation.

In general, SPORAS is a centralized reputation model with more sophisticated
characteristics to model the trust dynamics than other simple models. For example,
Principles 1 and 2 above are to prevent a user with a bad reputation leaving the
community and entering with a fresh reputation (since the reputation of a new user is the
lowest reputation possible). However, at the same time, this penalises newcomers and
may discourage them from participating in the community. In addition, SPORAS also

introduces a reliability measure based on the deviation of rating values. This is an

15

indication of the predictive power of SPORAS for that user’s reputation. For instance, a
high deviation value can mean either that the user has not been active enough to be able
to generate a more accurate prediction for histher reputation, or that the user’s behaviour
has a high degree of variation. Hence, each user has a reputation value and a reliability
value globally available to other users. In SPORAS, the reputation value of a user and its
reliability are discounted over time as a new rating is received. Therefore, SPORAS can
adapt to changes in a user’s behaviour according to the latest rating.

In summary, SPORAS provides a trust measure that has more desirable features than that
of similar online models such as ¢Bay’s, or Amazon’s. However, its centralized design is
not suitable for applications in open multi-agent system, e.g. CACIP. Moreover,
SPORAS is very susceptible to rating noise resulted from agents’ subjective views that

are commonplace in open multi-agent systems.

2.3.1.2 Decentralised Reputation Mechanisms

Incentives-oriented Reputation Mechanism

Jurca and Faltings (2003a) introduce a reputation mechanism where agents are given
incentives to report truthfully about their interactions’ results. They define a set of broker
agents (called R-agents) whose tasks are buying and aggregating reports from other
agents and selling back reputation information to them when they need it. All reports
about an agent are simply aggregated using the averaging method to produce the
reputation value for that agent. Although the R-agents are distributed in the system, each

of them collects and aggregates reputation reports centrally. Hence this approach stiil

16

possesses the inherent shortcoming of centralised models above (i.e. the questionable
objectiveness of R-agents 1n open multi-agent systems). In order to incentivise agents to
share their reports truthfully, Jurca and Faltings propose a payment scheme for reputation
reports. This scheme guarantees that agents who report incorrectly will gradually lose
money (during the process of selling reports and buying reputation information), while
honest agents will not. Therefore, this mechanism makes it rational for an agent to report
its observations honestly and this is the main contribution of their work. However,
reputation reports are limited to the values 0 and 1 (0 for cheating agents and I for
cooperating agents in an iterated Prisoner’s Dilemma environment (Conte and Paolucci,
2002), and the rational property may not hold if an application requires reports

represented by more than these particular values (e.g. 0.1, 0.75).

Regret Reputation Model

Another trust model that was reviewed is Regret. Regret (Sabater and Sierra, 2001),
(Sabater, 2003)) is a reputation model in which the trust evaluation process is completely
decentralized. Employing Regret, each agent is able to evaluate the reputation of others
by itself. In order to do so, each agent rates its partner’s performance after every
interaction and records its ratings in a local database. The relevant ratings will be queried
from this database when trust evaluation is needed. The trust value derived from those
ratings is termed direct trust and is calculated as the weighed means of all ratings. Each
rating is weighed according to its recency. Intuitively, a more recent rating. is deemed to
be more current and is weighted more than those that are less recent. However, the

method Regret uses to calculate the weights for each rating has a shortcoming regarding

17

time granularity control and does not actually reflect a rating’s recency. Like SPORAS,
Regret also provides a reliability value for each trust value to represent its predictive
power. The reliability value is calculated from two reliability measures: the number of
ratings taken into account in producing the trust values and the deviation of these ratings.
In addition, agents are assumed to be willing to share their opinions about one another.
Based on this, Regret develops a witness reputation component along with a sophisticated
method for aggregating witness reports taking into account the possibility of dishonest
reports. The operation of this component depends on the social network built up by each
agent. In particular, Regret uses the social network to find witnesses, to decide which
witnesses will be consulted, and how to weight those witnesses” opinions. However,
Regret does not specify how such social networks are to be built, and this means that
component is of limited use.

Besides direct trust and witness reputation, Regret also introduces the concepts of
neighbourhood reputation and system reputation. The former is calculated from the
reputation of the target’s neighbour agents based on fuzzy rules. However, this again
requires a- social network to work. The system reputation is a mechanism to assign default
trust values to the target agent based on its social role in an interaction (e.g. buyer, seller).
However, this is only useful if additional domain-specific information is available.

In summary, the decentralising approach of Regret allows agents to evaluate trust by
themselves without relying on a centralised mechanism. It also takes various sources of
trust information into account and considers the possibility of disinformation. Therefore,
the approach Regret adopts is compatible with the requirements for a trust model in open

multi-agent system. However, apart from the direct trust component, the rest of the model

18

is not readily applicable. The main reason is that Regret does not show how each agent

can build the social network on which Regret heavily depends.

Referral-oriented System

In building a reputation system based on witness information, Yu and Singh (2002), (Yu
and Singh (2003) develop a mechanism to locate information sources (i.e. witnesses)
based on individual agents’ knowledge and help (through each agent’s contacts) without
relying on a centralised service. Hence, this approach is well suited for applications in
open multi-agent system which is distributed by nature. In particular, in this system,
agents cooperate by giving, pursuing, and evaluating referrals (a recommendation to
contact another agerit). Each agent in the system maintains a list of acquaintances (other
agents that it knows) and their expertise. Thus, when looking for some information, an
agent can send the query to a number of its écquaintances who will try to answer the
query if possible or, if they cannot, they will send back referrals pointing to other agents
that they believe are likely to have the desired information (based on those agents’
expertise). Yu and Singh (2002) referral system uses a vector space model (VSM) (Salton
and McGill, 1983) to model agents’ expertise. An agent’s expertise is then used to
determine how likely it is to have interaction with or to know witnesses of the target
agent. This mechanism does not define how to make sure that referenced agents are
trusted to provide true behaviour information about the requester agent. And the
mechanism is not efficient because it may take much time to get responses from the
agents that were referenced to provide history record, consequently a system take too

long to execute evaluate one agent.

19

TRAVOS Reputation Model

Teacy, et al (2005) proposed Trust and Reputation model for Agent-based Virtual
OrganisationS (TRAVOS), a trust model that is built upon probability theory and based
on observations of past interaction between agents. In this model, the outcome of an
interaction is simplified into a binary rating (i.e. 1 for a successful interaction, 0 for an
unsuccessful one). Using binary ratings allows TRAVOS to make use of the beta family
of probability density functions (PDF) (DeGroot and Schervish, 2002} to model the
probability of having a successful inter action with a particular given agent. This
probability is then used as that agent’s trust value. In addition, using PDFs, TRAVOS
also calculates the confidence of its trust values given an acceptable level of error. If the
confidence level of ;1 trust value is below a predetermined minimum level, TRAVOS will
seek witness information about the target agent’s past performance. Witness information
is shared in the form of frequencies of successful and unsuccessful interactions that the
witness has had with the target agent. After interacting with the target agent itself, the
evaluator compares the received witness report with its own observations. By this means,
the evaluator calculates the probability that the witness’s information supports the true
behaviour of the target agent within a reasonable margin of error, and uses this
probability to weight the impact of the witness’ oﬁinions on future decisions made be the
evaluator. However, TRAVOS’s simplified representation of interaction ratings is rather

limited and not suitable for a wide range of applications in open multi-agent system.

20

2.3.2 Policy-based Security Schemes

The policy-based approach has been proposed in the context of open and distributed
services architectures as a solution fo the problem of authorization and access control in
open systems. In this approach, trust management mechanisms utilize different languages
and engines for specifying and reasoning on rnles for trust establishment. The goal is to
determine whether or not an unknown user can be trusted, based on set of credentials and
a set of policies. Policy-based trust relies on objective “strong security” mechanisms such
as signed certificates and trusted certification authorities (CA) in order to regulate the
access of users to services. Moreover, the access decision is ﬁsua]ly based on mechanisms
with well defined semantics {e.g. logic programming) providing strong verification and
analysis support. The result of such a policy-based trust management approach usually
consists of a binary decision according to which the requester is trusted or not, and thus

the service (or resource) is allowed or denied.

2.3.2.1 REWERSE

Employing pelicies to protect services is a crucial aspect in security systems. Policies
benefit users to get full access to available services and also give necessary access control
to services so that only those that meet minimum access requirements can access
resources. The important thing about policies is that users must understand them in order
to enjoy benefits offered by a particular system. Policies play crucial roles in enhancing

security, privacy, and service usability. Policies are typically divided into different kinds

21

among which include: access control policies, privacy policies, and business rules. The
work in (Bonatti, et al., 2005) proposed the REasoning on the WEB with Rules and
SEmantics (REWERSE) which integrates these kinds of policies to a single framework.
Bonatti and others argue that integrating these kinds of policies to a coherent framework
can be effective in a way that (i) a common infrastructure can be used to support
interoperability and decision making, and (i1) the policies themselves can be harmonized
and synchronized. However, REWERSE the use of all these kinds of policies
simultaneously may be time consuming when decision is taken. This approach influences
our research with its provisional policies that it introduces. Provisional policies are used
in REWERSE if the system has to specify certain credentials that it needs in order to

authenticate the component.

2.3.3 Agent Security Systems

The review of the two architectures that impact our model is presented in the following
subsections. The strengths of these two architectures are combines to form our trust

model.

Maarof and Krishna

Maarof and Krishna (2003) proposed the trust management model for multi-agent system
trading society. It is argued in this model that, there is a need of a mechanism that gives
option to have different combinations of trust for different situation in multi-agent trust

management. The model has three components: objective trust-based agents, reputation

22

and the trust mechanism. These components are combined together to form the trust
opinion neéded in decision making. Each of these components has the role to play at
different times in the overall life of a trading partmership. The reputation component is
used because of the fact that it can be beyond each individual’s resources to evaluate all
aspects of a given situation when making a trust decision. However, the model does not

clearly define how recommenders are selected to provide required reputation.

Ping and Others

The system agent architecture proposed in (Ping, et al., 2004) typically designed to run in
ad hoc networks. The architecture is based on the framework of the immune system that
is capable of detecﬁng and identifying an attack, elaborating a specialised response
measure to isolate the invader, and recover from the attack. Three important agents are
defined in this architecture: monitor agent, decision agent and killer agent. The
interesting part of this work is the delegation of these agents to perform different tasks.
Monitor agent monitors incoming agents that wanis to participate in the network and
decision agent makes decision based on the information provided by menitor agent about
agents coming to join the network. Killer isolates invaders from the network. Although
this architecture is designed for ad hoc network but its approach of detecting agents and
decision making can be adopted to design security scheme for open multi-agent system
running in wireless networks. However, neither reputation-based approach nor policy-

based approach is used in this scheme to make decision.

23

2.4 Trust Management Design Challenges

Managing trust in multi-agent system is modeled according to specifications and security
design principles. Trust-based security schemes analysed in section in 24 and 2.5
experience the following design challenges: i) Fairness, ii) End-to-end security, iii)
Robustness, tv) Scalability, and v) Visibility. Next section discusses each of these design

challenges.
2.4.1 Fairness

Decision making based on trust needs to be fair for every participants in a multi-agent
system. In general, there is no entity in a multi-agent system that can have a global view
of all agents that communicate in it. This suggests that, at times unfaimess may occur
when trust is used to make decision about who is suppose to access resources. However, a

mechanism must be defined to make sure that all participants are treated fairly.

2.4.2 End-to-end Security

An agent that makes request must be checked for security from the pomt of origin to the
destination before given an access to the system. The fact that the component has been
authenticated in a particular point does not necessary mean it has access to all parts of the
system, thus in each point the component must meet the requirements declared. If this is

not taken care of, cheating of component may increase.

24

2.4.3 Robustness

Some components may present invalid information in trying to falsely get access to the
system. The trust model should be able to resist such situation and be able to correctly
operate under such situation. If the system is not robust, it is subject to failure when quite

a number of malicious components attempt to get access into the system
2.4.4 Scalability

The increase in number of components that make request can be a challenge to a security
scheme if scalability problem was not considered during designation. The trust model has
to evaluate a number of components requesting for services. The security mechanism that

is not scalable may cause the system to be inefficient in processing service requests
2.4.5 Visibility

Participating components should be able to know and understand security implication of
their actions. Each component must know its state so that it would decide how it should

behave in future actions in the system.

2.5 The Proposed Trust Model

The previous sections reviewed the trust models that have been proposed to manage trust
in diverse context of security requirements. However, these security schemes do not
provide a global solution for trust management in multi-agent system. The reviewed

schemes experience some challenges stated in section 2.6.

25

In this research, we propose an agent-to-agent trust management model. The proposed
trust model is constructed to provide security for agents communicating in CACIP based
system, Our model combines reputation-based with policy-based approaches to manage
trust aﬁong agents that share services in CACIP based system. Agents that make requests
are authenticated based on their reputation and authorized based on declared policies to
access services in CACIP system. Behaviour information for each agent that has accessed
the system is stored in the local repository and is used to evaluate that agent when it
makes request nest time. It is possible for an agent to not have any historical record in the
local database. In that case, only foreign reputation is used to evaluate trustworthiness of
the agent. Foreign reputation is queried when the agent make request for the first time or
if the local reputation is not sufficient for trust evaluation.

The proposed model was constructed by integrating two security models defined in
(Maarof and Krishna, 2003) and (Ping, et al., 2004). The strengths of these two schemes
are used to consfruct our trust model. Table 2.1 shows the brief descriptions of the two
schemes which were used to construct the trust model that is also describe in the same

table.

26

Table 2. 1: Description of Existing Schemes and the Proposed Trust Model

Model/ Context Problem to be Solution
Architecture solved Mechanism
The previous interaction “Mobile agents can be “Combining components
experience with a requesting unfairly isolated from a of a trust based trading
Hybrid Trust | agent is sometimes not network because a system | relationship, reputation,
Management | sufficient to make a fair does not have trust subjective trust and
Model decision about that agent when | mechanism that gives an objective trust to ensure
it wants to join the network. option to have different that the information to
Therefore, reputation from 3 | combination of trust from make a decision about
party recommenders can be different sitnations and trustworthiness of an agent
used to get the previous sources.” is sufficient. Defining
behaviour information about reputation component that
an agent that request a service is only enabled when trust
ratings based from
experience is not
sufficient, and bring the
flexibility to permit the
reputation component to
be enabled or disabled.”
Security architecture that is “An agent that wants to “Develop an immune-
based on the framework of the | participate in ad hoc based security architecture
Immune system, that is network may be an invader, | for mobile ad hoc
capable of detecting and i.e. it would harm other networks that has the
System Agent | jdentifying an attack, agents in the network. mechanism to detect and
architecture elaborating a specialized Therefore, identifying such | isolate the invader agent.
response measure to isolate agent in open distributed Behaviour of an agent
the invader, and recover from | systems can be a participating on the
attack. It has the same learning | challenge.” network is monitored by
and adaptive capability of the the monitor agent which
human immune system, and so resides on each node”
it is able to react to unknown
attacks and to improve to
response under subsequent
exposures to the same attack
Mobile nodes are interacting Mobile agents Evaluating trust based on
in a mobile network; cormmunicating in a CACIP | reputation (local or
(Proposed) trustworthiness of each node is | based service environment | foreign) and policies, i.e.
Agent-based | evaluated based on trust. are open to some security each agent is authenticated
Trust Mobile agent tec!mology is challgnges. Some of according to its previous
Mana t adopted to establish trust security challenges are behaviour information and
gémen managemett among agents unauthorized access, authorized based on access
Model that are commumnicating in a

CACIP based service oriented
mobile environment. Trust is
built based on reputation of
each agent and access to
services is given to agents that
meet access requirements as
stated policy in the
information bus

eavesdropping, annoyance
attack, masquerading,
alteration and denial of
service. A security
mechanism is required to
ensure protection of agents
when they share services.

policies that are set in the
mformation bus.

27

CHAPTER THREE

3. Methodology and Model Development

3.1 Introduction

The previous chapter presents the analysis of existing trust-based security schemes that
have been proposed for multi-agent systems. However, these proposed security schemes
have their shoricomings without support for complete fair mechanisms for agents’ trust

evaluation.

We propose agent-to-agent trust management model to address some of these limitations:
fairness, end-to-end security, and scalability. Our formulated trust model intends to offer
end-to-end security examination of agents making requests. It is crucial in trust models
that all agents are fairly treated in open multi-agent system. Therefore, the formulated

trust model would ensure fairness in trustworthiness evaluation of agents.

This chapter presents development of agent-to-agent trust management model and the
detailed components that constitute this model. Section 3.2 discusses the design
principles; agent-based trust management model is described in section 3.3. Section 3.4
discusses the communication framework for our formulated model followed by
authentication and authorization frameworks discussed in section 3.5. Section 3.6

describes the reputation mechanism used to evaluate trustworthiness of agents.

28

3.2 Trust Management Design Principles

The existing trust models have attempted to solve the problem of trust management in
open multi-agent systems. However, there has been no global solution to the problem;
instead some of the proposed schemes, discussed in section 2.4 and 2.5 of chapter two,
provide solutions with some limitations. The limitations recognized from the reviewed
schemes make them unfit to secure the CACIP. We, therefore, propose own trust-based
security scheme to secure CACIP architecture. The design principles for our scheme are
categorized as follows:

i) End-to-end security;

1) Fair trustworthiness evaluation;

- iif} Robustness and scalability support and
iv) Provision of system visibility.

Each of these design principles is briefly described below.

3.2.1 End-to-end Security

A security scheme should handle end-to-end security checking of components that wants
to access resources. In each point leading to a particular resource, an agent must be
checked for security in order to make sure that only risk-free agents get an access. In a
multi-agent system, end-to-end security examination can be achieved by assigning some
agents or components to perform security checking at each point on the itinerary of the
agent until it reaches the resource. This suggests that different mechanisms may be nsed

at each point and different access requirements set for each requester agent has to meet in

29

order to be granted the access to resources. The requester agent should present sufficient

requested requirements in each point to pass to another point.

3.2.2 Fair Trustworthiness Evaluation

Trust decision sometimes can be dependent on different entities of a security system. This
poses a challenge of making sure that agents are given same opportunities during trust
decision. We define fairness as the ability to make judgment free from discriminatton or
dishonesty. Decision making in multi-agent system must be fair to all agents that make
request. To achieve this, various sources of behavior information must be used to make

decision in the case whereby behaviour information is not found from the local

repository.

3.2.3 Robustness and Scalability

An increase in mmmber of agents making requests may cause the system to malfunction if
it is not robust and scalable. In trust model, neighbouring agents may provide invalid
information about the agent being evaluated for trustworthiness. Thus, the system must
be able to accurately and constantly deal with erroneous data sent to it. A multi-agent
system should be able to correctly and continuously evaluate all agents making requests
in spite of how huge the number of requests is. Thus, the system is scalable if it does not

get confused with executing the huge number of requests.

30

3.2.4 System Visibility

In a multi-agent agent system that uses trust-based security mechanism, every action of
the agent would impact its future trust evaluation. Therefore, a security mechanism
should enable participating agents to know and understand security implications of their

actions.

3.3 Agent-based Trust Management Model

The proposed trust medel aims at providing a security mechanism for multi-agent system
that ensures fairness in evaluating agents making request for resources. The model was
constructed by integrating the strengths of two schemes: An hybrid trust management and
system agent architecture, both discussed in section 2.6 of the previous chapter.

The hybrid trust management model (Maarof and Krishna, 2003) defines trust mechanism
that is used to make decision about an agent that requests for a service. This model
reveals that, it can be beyond individual’s resources to evaluate all aspects of a given
situation when making trust decision; hence, agents must rely on other sources of
information to get the reputation of an entity. Reputation is provided by 3™ party
recommenders in the network, and recommenders’ component of the model is enabled if
the direct previous interaction behaviour information with the agent is not sufficient to
make a decision. However, this model does not define a mechanism to deal with
malicious agents once they have been identified based on their reputation. This limitation
is addressed in (Ping, et al., 2004). Ping et al (2003) proposed system agent architecture
that defines how malicious agents are detected and identified. The Monitor agent resides

in each node and monitors behaviour of the neighbouring node.

31

Foreign Node

P o Ly A e - B

S5A

-
h

Legend
s 3 Local
e Request/Response mEsIages | Service IRDB | Reputtion
e Directory) Database
—————LCommpy cation chomd -
Fordgn
Decison Master Service ’
DA | peon MA | s | SA | agnt FRDB | Beputarion
Statas
Foraign sca | Contrd SRA Service Requester
FDA | Decison aget agert - agert

Figure 3. 1: Agent-based Trust Management Model

It then sends the behaviour information to the decision agent that makes decision whether
to give access or isolate the requester agent from the network. However, this architecture

does not ensure the end-to-end security as behaviour information is transferred from

32

monitor agent to decision agent.

The core of the developed agent-based trust management model, shown in. figure 3.1, is
in the delegation of two agents: Decision Agent (DA) and Master Agent (MA), which are
at the interface of the information bus to authenticate and authorize every agent that
makes a request. This means every agent that wants to access services in the information
bus has to first interact with DA for evaluation of trustworthiness. S R_A sends a request
message to a CACIP based system and DA receives the request. In order for DA to make
a decision about S R_A, it checks from local reputation if there is a previous interaction
record (behaviour information) of the S R_A. If previous interaction record of the agent
is not found from local reputation or is insufficient to make decision, DA broadcasts a
message, requesﬁﬁg for behaviour information, to foreign reputation (third party
recommenders). Neighbouring agents that has received the reputation request message
reply to DA with a reputation value ofthe S_R_A.

Local-reputation is formed from previous direct interaction experiences of the Decision
Agent with agents that has requested for services. On the other hand, foreign-reputation
refers to reputation obtained from other neighbouring nodes (recommenders), in the
network, which has the previous interaction records of the agent that request for service.
When the S_R_A has been authenticated by DA, it then interacts with the Master Agent
which holds access requirements (policies) that have to be met by the requesting agent in
order to get access to resources. Next, the description of the inferaction of agents

communicating in CACIP based manner is presented in the following section.

33

3.4 Communication Framework for the Agent-based Trust

Management Model

Interaction style plays an important role in choosing an appropriate security mechanism
to secure mobile agents. This is because in an open distributed system, agents are able to
interact with one another to share services without intervention of their senders. CACIP
architecture proposed by (Zuma and Adigun, 2006) provides the indirect interaction of
components (refer to figure 1.1). This form of interaction style brings some security
weaknesses that open room for malicious agents to access resources in multi-agent
systems. Therefore, an access control is required to cover this gap. The agents at the
interface of information bus in our developed trust management model control access to
services and by so doing they facilitate and monitor communication of participating
agents. Hence, Decision Agent performs authentication and Master Agent authorizes the
authenticated agents to access services. The Master Agent can perform its duty after
decision agent has authenticated the agent, 1.e. Master Agent 1s dependent on Decision
Agent results to execute its task. Trustworthiness of agents is evaluated based on local or
foreign reputations when authentication process is performed. And some policies (access
requirements) are set in the Master Agent for authorization process. In case a requester
agent is found to be an invader, Decision Agent instructs the Status Control agent (SCA)
to set status (either suspended or permanently removed) in the database (LR-DB). To
clearly describe communication of agents, the components participating in the process are

individually defined in details in the next sections.

34

34.1 Decision Agent (DA)

DA performs authentication of agents that make requests. It uses the communication
component to interact with other entities in the develop trust model.

The communication process entails the following sub-tasks:

Receive requests from service requester agents (S R A);

- Send responses to service requester agents;

- Broadeast reputation queries to 3" party recommenders for behaviour information
(foreign reputation) of the requester agent and receive the computed trust value
from FDA when it responds and

- Establish connection between DA and MA to transfer security control.

"{ DA Communication K—/->

f

DA Authentication

!

o)

Generate_Document

Figure 3. 2;: Components of Decision Agent

In order for the DA, shown in figure 3.2, to analyse and assess each service request it
receives, authentication component plays the role of security coordinator by first

watching out for requests from communication component. Then it instructs the

35

communication component to broadcast reputation queries if it is necessary. The same
authentication component is charged with deciding what to do with a request. Only when
a requester agent 1is trustworthy that authentication component instructs
Generate_Document component to produce the service document (service_doc) to be
presented to the Master agent.

The Generate_Document component constructs a service doc and sends it to the
Communication component. The generated service_doc is then supplied by the DA

before it is sent to the Master agent.

3.4.2 Status Control Agent

Status Control Agent (SCA) administers the records in the LR-DB. The status of a
requester agent can either be active, suspended, or permanently removed from the
database.

Active state — means the agent can be possibly trusted based on its records.

Suspended status — means the agent is. in the state whereby it would be considered later
because of wrong actions it had performed.

Permanently removed status — means the agent will never be given access because it has

history of bad behaviour.

3.4.3 Master Agent (MA)

The communication component in Master agent, shown in figure 3.3, receives the

service_doc that was generated by Decision agent. It then sends it to Authorization

36

component for authorization process.
The Authorization process entails the following sub-tasks:

- Venfy the digital signature on the service_doc;

- Reads the service description on the service doc and

- Check the access requirements from the Access Policy component When each

service is requested.

The Access Policy component catries access requirements that each requester agent has
to meet in order to get access to the information bus. To give access to services that are in
the information bus, Master Agent authorizes agents afer they have been authenticated

by the Decision Agent.
P4

MA Communication

I

MA Authorization

I

Access Policy }

Figure 3. 3: Components of Master Agent

Master Agent holds set of rles (access requirements), for each service in the information
bus, that are being used in authonzing agents. Master Agent knows the encrypted digital
signature of the Decision agent on the service doc it is receiving. It then verifies that
signature to determine that a requester agent has been authenticated by the assigned

Decision Agent. Master agent uses the shared secret key (Kritzinger, et al, 2003) to

37

decrypt the signature to confirm that the requester agent has been authenticated.

3.4.4 Foreign Decision Agent (FDA)

When DA broadcast reputation query, it communicate with foreign decision (FDA) in
foreign CACIP oriented nodes. The FDA performs the same tasks as the DA, It replies to
the reputation query from DA by sending the computed trust value of the requester agent

if it is available from its LR-DB.

3.4.5 Local Reputation Database (LR-DB)

During direct interaction of Decision Agent with requester agents in the network,
behaviour information of each agent is stored to build history record (reputation). This

reputation is called local reputation and is used to make decision during trust evaluation.

3.4.6 Foreign Node

Decision agent cannot depend only on local reputation to make fair decisions, but it needs
other external but reliable sources (which in the context of this model are neighbouring or
foreign nodes) to obtain previous behaviour information of agents that request for

services. Reputation from those external sources 1s called foreign reputation.

38

3.5 Authentication and Authorization Frameworks for the agent-

based Trust Management Model

When an agent requests for service from information bus, its motive and intention are not
known until an evaluation is performed. In order to perform complete trust verification,
each agent sends its request message coupled with credentials (Winsborough, et al, 2002)
to decision agent. Decision Agent either verifies the message and decides whether to
certify the agent and give the service doc to be checked for authorization or denies the
request based on its reputation. Authentication is done by decision agent and
authorization is the task of Master agent. In the following sections, authentication and

authorization frameworks are discussed.

3.5.1 Authentication Framework

In order to ensure safe communication among agents, all agents that want to participate in
the network must be authenticated. Reputation from different sources is the major entity
that is used during authentication if the local reputation is not sufficient or there is no
record in the requester agent. The decision agent authenticates requester agents based on
their behaviour information as discussed in section 3.4.1.

Service requester agent sends request message to decision agent to verify its identity and
do some assessments. Decision agent first checks if previous behaviour information of
that agent is available from its local reputation database. If information in local reputation

is sufficient to make the decision, the decision would be made based on that information.

39

Senice fequeser ;

age * Knoan agent]

i Repuwaton Query
Master gt 1 Decision agert ‘

3*pary
Parpeasinn Deanares 1 Reepmmendition agent

“ N

it}nm.nagen: ! { Relerred agent %

Kier ageerd

agert

Figure 3. 4: Component Diagram of the Authentication Framework

But in a case where behaviour information in local reputation is insufficient to make
decision, decision agent request for reputation from 3™ party recommenders. It does this
by broadcasting the request to the neighbouring nodes. Those neighbours that have the
requested behaviour information reply to the request. And when Decision agent has
received the responses from recommenders, it then takes decision based on that
recommendation combined with local reputation if available. Third party
recomﬁlendation agents that provide behaviour information are not all known by the
Decision agent; hence they are divided into three types. Figure 3.4 shows the framework
to authenticate agents and its three main cbmponents, namely Known Agents, Referred

Agents and Unknown Agents.

e The Known Agents are known by the service requester agent (including trusted and
un-trusted agents). They are non-anonymous or pseudo-anonymous agents;
o The Referred Agents are not known to the Service Requester Agent itself but

through references provided by known agents. They are non-anonymous agents and

40

» The Unknown Agents — agents with no referral or direct interaction with the Service

Requester Agent. They are anonymeous agents.

When it is found that the Service Requester Agent is an invader, the decision agent
triggers the SCA to perform its task, as discussed in section 3.4.1. But when the Service
Requester Agent is trusted, decision agent generates a service document (service doc)
and gives it to the Service Requester Agent. The service doc contains the following

information:

s The Agent ID is the unique identity number of the Service Requester agent;

s Service Description refers to the list of items that the Service Requester agent is
asking the information bus to provide and

e The Agent’s signature is the token appended to the service_doc for verification

by Master Agent.

3.5.2 Authorization Framework

An agent that request for a service can be granted the access to available services based
on some policies that are set in the Master agent. When the agent requesting a service has
been authenticated by the Decision Agent, it obtains the service doc which would be
presented to Master Agent for authorization, as shown in figure 3.5. The Master Agent
receives the service_doc from Service Requester Agent and verifies three things. Firstly,
it decrypts the signature on the service_doc to confirm that it was really signed by the

Decision agent.

41

Decision Agent

A vEsd atex
et IR, UG

k4

Service
Requester
Agent
iyt
setruitey_ o
Dstify
Aot 3
y Mastler Agent

Basrvice

AL LErsn SOV

Figure 3. 5; Authonzation Framework

The signature on the service doc indicates that the agent has been authenticated.
Secondly, it checks if the required service, described in service_doc, is available in the
information bus.

Thirdly, it is possible that the required service is available in the information bus but the
requester is not allowed to access it, possibly because it does not meet the access
requirement stated in the stipulated policy. Therefore, when the service is available and
the requester is authorized to get it, 1t is then given the access to that service.

On the other hand, if the required service is not available or the requester is not
authorized to access any service in the bus, the Master Agent sends appropriate

notification message to the Service Requester Agent.

42

Authentication Algorithm

Authorization Algorithm

if (local_reputation is sufficient)
Use reputation

Else
if (foreign_reputation 1s sufficient)

Use reputation

Else
Detach from network

End if
Endif

if (service available)
if (signature is correct)

Permit entry

Else
Isolate on network

End if

Else
Detach from network

Endif

Figure 3. 6: Conirol Structure for Trust Evaluation of Agents Requesting for a Service

Table 3.1 gives an overview of the control structure for identifying agents that wants to
participate in a network, and the algorithm to allow or deny an agent from accessing
services in the information bus. The identities for the Service Requester Agent are
checked by Decision agent during authentication. During the authentication, the

availability of the requested service is not confirmed until the requester presents the

service_doc to Master Agent for authorization process.

Model entities and their relationships can be illustrated by using a class diagram. Figure

3.6 shows the class diagram of agent-based trust management model. The following is the

description of each class:

a. Service Requester Agent. Any mobile agents that request for a service in a

network are represented by this class;

b. Agent: This is the abstract class that defines shared attributes and methods;

43

Agent

agentID: int
agentName: String

+ makeRequest()
+ sendResponse()
+receiveResponce()

MasterAgent ServiceRequester

Agent

StatusControl
Agent

- verifier: VerifySig

- response: Response

- status: String

DecisionAgent

- generate: GenerateSig|
- request: Request

+ authenticate Agent()

T

ReQuest

- requestid; int
- contentReq: String

+ authoriseAgent()
+ setAgentStatus()
v |
VerifySig Response GenerateSig
- responselD: int
- contentResp: String
+ confirmSig() [aetResponselD]) + createSig()
H getContentResp()

Figure 3. 7: Class Diagram for Agent-based Trust Management Model

+ getRequestID()
+ getContentReq()

c. Decision Agent. This is the class that represents an agent which determines

‘whether a requester agent can participate or not in the network or it must be

denied it request;

d. Master Agent. This class represents the agent that authorizes other agents to

access services in the information bus;

e. Status Control Agent. This class represents the agent that sets status, based on

computed reputation, of each agent that has interacted with DA.
f. VerifySig. This class verifies the information in the service-doc and

g. GenerateSig. This class is used to generate and sign service_doc

3.6 Reputation Computation

The reputation of an agent is computed based on the behaviour information from either
local reputation (direct previous interaction) or foreign reputation (from 3™ party
recommenders). Decision agent determines the trustworthiness of eaéh requester agent
based on its reputation. The equation below computes the reputation (which is the trust
value) for an agent that request for a service.

Ry=Ty+t(Gu-Ba) Ta® 100 ..o e e 1

The reputation value is calculated in percentage.
e R, —arepuiation value for each agent that determines its trustworthiness;
e G, — number of good behaviour instances of an agent when it was accessing
TESOLICES;
¢ B, — number of instances of bad behaviour of an agent when it was accessing
resources;
e T,_total number of actions an agent has done and

e T,— areputation value from 3" party recommenders.

The reputation policy adopted states that an agent that has the trust value of at least 50%
is trusted. Therefore, an agent is deemed malicious 1f its trust score is below 50% and it is
then denied an access. An agent can improve on its trust value by simply increasing the
number of instances good actions. The computation is performed by the DA every time
agent requests for a service. Initially, Ty is set to 0 for all agents requesting for services. It

is dependent on using Ty parameter to make decision in our model, since it is possible for

45

the DA to have sufficient reputation from its local reputation database. For instance, let
the requester agent A with G,=70, B,=~15 then the total number of actions (T,=85). In
this case, the DA does not need to request for reputation from neighbouring nodes to
authenticate agent A. Therefore, Ty remains zero for agent A when its Ry is computed.
The Ry would be (G4 — B4)T4 * 100, (70 - 15)/85 * 100, so agent A scores 65% which
means it is trusted.

Each DA maintains a local reputation repository in a tuple of the form:

[Agent id, total number of actions, number of bad actions, number of good actions]

The reputation repository stores the updated behaviour information of all agents that has
accessed the information bus. The information in the in repository is used by DA to take
decision when agénts make requests for services. Each history record in the repository
has the indication of its status. The SCA conirols the status of all agents that has
interacted with the DA; therefore it determines whether the status of an agent should be
activated, suspended or permanently removed from the repository based on the behaviour

information.

CHAPTER FOUR

4. Design and Implementation

4.1 Introduction

The previous chapter presented the proposed trust management modef with full details of
how it intends to achieve the goal of this research. The model has shown that trust-based
approach can be used to establish securify in multi-agent application system when agents
communicate in CACIP based service oriented environment. In the developed model,
multi-ageﬁt system paradigm is applied as the foundation for securing services or
messages that are shared by mobile nodes on mobile wireless network. Requester agents
are judged by decision agent (DA) based on their trust scores after computation. Trust
level of each requester agent is measured based on its reputation. An agent’s trust score
must rgach a minimum trust level in order to be granted a full access to available services.
Hence, this chapter presents the implementation of the proposed model, performance

analysis and results of the research.

4.2 Development of Agent-to Agent Trust Management System

The implementation of the agent-to-agent trust management system intends to show how
agents are used to secure information bus (from CACIP architecture). Agents in this

multi-agent system play different roles.

47

4.2.1 Overview of the System

A multi-agent system (MAS) is a system composed of several agents, capable of mutual
interaction. The interaction can be in the form of message passing or producing changes
in their common environment. The agents can be autonomous entities, such as software
agents or robots. Our developed multi-agent system is comprised by soﬁ“wafe mobile and
static agents. Requester agents are mobile agents (they move from one node to the other
to get the required service). Before getting an access to resource, they have to meet the
stipulated access requirement. Therefore, authentication and authorization process must

be performed in order to ensure that only trusted agents can access resources.

Authenticate

- 9
“f s
Decision
Servite _Requester Agent
Agent
Reputation S —\g}
Foretgn Decision
Authorize Agent Agent

. \ .

,kj R\M Monitor Agent’s ,‘X
Status

Master

Agent

Status Control Agent

Figure 4. 1: A Use Case diagram for agent-to-agent trust management

Authentication and authonization processes are separate tasks performed in different

43

points of security. They are carried out by static agents (Decision agent (DA), Master
agent {MA), and Status Control agent {(SCA)) residing in each node that has CACIP.
Figure 4.1 presents the use case diagram that depicts functionalities and actors of our

system.

4.2.2 Processes for each request

Requester agents (S_R A) send request messages to nodes that have CACIP; each
message sent by requester agent has to be evaluated in order to ensure trustworthiness of

that agent. Authentication occurs between two interacting agents: S_R_A and MA.

Service_Requester Decision Agent
Apgent

makes request

verifyRequest()
mekeDecision{)

issue service_doc

»-nunnf'-u-...«n.x.....-n-qu......,_.......

Figure 4. 2: A sequence diagram for authentication

The requester agent interacts with the Decision agent that deals with authentication of all
agents that make request. Upon receipt of request, Decision agent performs trust
evaluation based on previous behaviour information in the LR-DB. The reputation value

is computed for each agent that is making a request. The computed reputation value

49

determines the trust level of the requester agent. In figure 4.2, it is illustrated the
authentication process for each agent that requests for service from the system.

Authorization of agents is dependent on the results of authentication process. When an
agent has been authenticated, it is being transferred to MA for authorization. Figure 4.3
depicts anthorization process that takes place after authentication has been completed for

each requesting mobile agent (refers to section 3.4.2).

Service_Requester Master
Agent Agent

presents service_doc

checkServDoc()
makeDecision()

notify the agent

e e e ok A e A e e e e e e]
B N T L L L LT L Ay

Figure 4. 3: A Sequence Diagram for Authorization process

A fair reputation-based trust decision about an agent sometimes demands that a decider
must ask for help form other entities that might know better about the requester;
otherwise negative decisions would be made; Thus, sometimes there is the need of
_ collecting reputation from other agents to make decision if the decider (Decision agent)
does not have sufficient behaviour information. Figure 4.4 shows the collection of

reputation sequence diagram.

50

Service_Reguester Decision Foreign Decision
Agent Agent Agent

T

makes request

check Reputation ()

Request for reputation

check Reputation ()

Trust value

A R R L R R

build_Reputation
make_ Decision()

i i e e e e e - b

L AR G e A M e e e e e e e e R e e G e
- W e b

Figure 4. 4: A sequence diagram for Collection of reputation

The DA broadcast the request for reputation if it is necessary to do so. The trusted nodes
that have the behaviour information of the requester agent respond with trust values.
Figure 4.5 is the activity diagram showing actions taken during trust evaluation and

assessment for each mobile agent.

51

Requast for foreign Reputstion
{ - ' found?

reputation

Yes | Authenticate the

requester egent
based on trost

Cenerate Yes
service_doc and |
give the mauester |
Ko
Service Ho
Faildble? Peset stefus of the
agent in the local
Ves repostory
Authorize theagrd {Notify the requester
to access the agent
| requested service
k. 4
- k4 isconnect from the
Access zgquested - etwork
] Service

Figure 4. 5: Activity diagram which shows how agents are authenticated and authorized

52

4.2.3 Digital Signature Algorithms

There is the need of ensuring trust between DA and MA when they are exchanging
control during trust evaluation. DA signs the service document with its digital signature
and Master agent venfies the digital signature on the service doc. Figure 4.7 depicts the
pseudo code of the algorithm that was used to digitally sign the service doc. The
algorithm generates the private and public keys by using the key-pair generator. The
private key is needed in order to create a digital signature, and its corresponding public
key will be needed in order to verify the authenticity of the signature. The algorithm uses
the SHAIPRNG pseudo-random-number generation algorithm, as provided by the built-

in SUN provider.

DA receives request

generate keys to 51g:n the serv1ce doc i

:; '35.::ELSE
: ' deny the request
r-f-g__-ENDIF

i :_ Requester agent is nottﬁed

Figure 4. 6: Pseudo code for signing the Service_doc

When the Master agent (MA) receives the service_doc generated by the DA, it must

verity the signature on it before authorizing the requester agent to access services. This is

53

to ensure that all requester agents have passed through DA for authentication. Therefore,
MA uses the signature to ensure trust between itself and the DA. Figure 4.8 shows the

digital signature algorithm to verify the signature on the service_doc.

L MA recewes serv;ce doc

IF Servwe d()(: is SIgned THEN
VerlfY sxgnature | .; b
IF_Slgnature is vahd and servrce avatlable THEN_: S

grant access to mformatlon bus

| ELSE

Cdenyaccess

~.denyaccess’ oo

 Resersgeniomifed

Figure 4. 7: Pseudo code for digital signature verification

The requester agent presents the service_doc to Master Agent and the signature on the

document is verified using the algorithm above.

4.2.4 Trustworthiness Evaluation

The trust evahluation of each requester agent is performed based on reputation as it is

discussed in section 3.3. Trust evaluation is the core of our model, the basic algorithm to

54

evaluate trust is used in our simulation in order to authenticate requester agents. The trust
evaluation algorithm is illustrated in figure 4.9. In this algorithm, three condition are
checked for each agent that request for a service. Firstly, it is assumed that agents are not
allowed to perform (make transactions) actions that are more than a specified number. An
agent that exceeds the maximum number of actions is regarded as the selfish agent, and it
is then denied the access to services when it is making a request. Secondly, a maximum
number of bad actions is set in order to evaluate trust. If number of bad actions reaches
the maximum, the agent is considered to be untrusted and malicious; hence it is denied
the access. Thirdly, the total number of actions of the requester agent must reach the

minimum number in order for the reputation value to be computed.

_"Prr—}candltmn Trust Evaluatmn DemsonAgent c!ass.;;‘.
. g TNOA NDG;&+NOE!A

I ;'mm <= zm
€

IE ['I'NOA >—53f"' o
' If (NOEA < 31 L
e -Repv NQGA —NOBA:"INOL ¥ mn-

ElsE > >
T The agent 15 untrusted ﬁnd mallc1aus

ElSE I I ; :
. Insuffu:lent Reputatlun, ask for foreign reputation
_)' S . ' o :
ST 'I'he Tatal m:mber of a::r.zons J.s more than maeximum

Pss_t—candi_tinn::accepﬁdeny request -

Figure 4, 8: Trust evaluation algotithm. TNOA — total number of actions, NOBA —number of bad actions,
NOGA — number of good actions, RepV — reputation value

35

This is based on the assumption that, an agent cannot be fairly determined to be either
trusted or untrusted from small number of actions it has previously performed. Therefore,
the reputation value (trust value) can be calculated when these conditions are met by the

requester agent.

4.3 Implementation Environment

The model was implemented using JBuilder5 IDE (Integrated Development
Environment) for Java programs development. Java client/server socket programming
was used to implement agents. Microsoft Access was used as a repository, for both local
and foreign reputations, to store behaviour information (history records) of requester
agents. The simulation results statistics was stored in a text file. Two desktop machines
were used to run the system. One machine was running client agents and server (with
DA), and the other machine was acting as the neighbour node that provides foreign
reputation (trust) values when requested by the DA. The ServiceRequesterAgent class
sends requests to DecisionAgent class which evaluates trust based on reputation. The
DecisionAgent class can also make request to the other ®Me that runs the duplicate of

Decision agent class which we regard as foreign decision agent (FDA).

4.3.1 System User Interface

To show the execution results of the algorithms, we designed interfaces that allow users

to run the system. Next, user interfaces are shown with their descriptions.

56

&5 Agent ZAgent Security

AgerIEZAgent ifcrlciﬂoselfectanuue
TRUST | ‘i;l‘zzw—bheid

; }cump&cipc

MANAGER Johnson

{Client)

Figure 4. 9: Typical User Interface showing Nodes to be secured

Figure 10, depicts the client agents that make requests to Decision agent. To run the
system, the user must select the name of the machine from the list that is displayed on the
interface and click the button send to enable the agent to move to the server where it

would execute its task.

57

=% Agent ZAgent Trust Management

= 'ﬂnsmma F:ompscipc? 3

~ Compscipc13
~ COmpscipc

Figure 4. 10: Machme Configuration Interface

Figure 4.11 shows the configuration interface that is used to set the machine that sends
the service requester agent. It is also used to add or remove machines to the database.
When the agent has moved to the server to make a request, the messages are displayed in

a message panel window.

58

| == Agent 2Agent Trust Management (Server)
' Server Agent Started

waliting for client connection....

Accept a connection:Socketiaddr=compscipc13/10.56.200.4 pari=1474 localport=

7555]
Calling Decision Agent for Authentication...

Creating and signing service document. ..
Transfering control to Master Agent for Authorization...
Master agent checks the signature of Decision agent from service document...

Service Authorized, Agent now access CACIP...

Figure 4. 11: A local Reputation Based Authentication Session

Figure 4.12 shows the message panel with messages of authentication and authorization

processes when the local reputation has been used to evaluate trustworthiness of an agent.

r;; Ageni2Agent Trusi Management (Server)

File Help _ : =5
Server Agent Started.., '
waiting for client connection....
Accept a connection:Socketjfaddr=compscipc13/10.56.200.4, port=1508, localport=

755%5]
Calling Decision Agent for Authentication...

Reputation insufficient

The Deceision agent has broadcasted the query for reputation

Received trust value of agent 65 is 44

| Cwseapp |

Figure 4. 12: A Foreign Reputation Based Decision Session

59

Figure 4.13 shows the messages of authentication and authorization processes when

foreign reputation (from FDA) has been used to judge an agent.

4.4 Performance Experiment

In order to test the performance of our system, there was a need of determining a value
that optimizes the system. Therefore, we conducted an experiment to get the optimal
value which was to be used to do performance evaluation of the system. The optimal
value would be used to determine the trust level of agents when the developed model is
applied. Initially, each agent can be either good or bad agent based on the number of
good action and bad actions.

The experiment was conducted as follows:
a) Parameters to get the optimal value from a single test

i) Number of service requester agents and the

i) Number of bad agents.

We had 10 runs with a constant number of agents, i.e. 200 agents; we varied the number
of bad agents in each run. We used constant estimated values (65, 68, 70, 72, 74, 75, 76,
78, 80, and 82) in each run. In each run we wanted to observe a value that optimizes the
effectiveness of the framework with respect to percentage of bad agents that are identified
as bad and percentage of agents (both good and bad) that are correctly identified. We
observed an optimal value from the estimated values. Optimal value is the value that

increases the percentage of number of bad agents that were identified as bad and the

60

percentage of agents that were correctly identified. We then calculated the average of the
optimal values of each run. The average optimal value would be used to determine the

trust value of each requester agent when performance analysis is done.

4.4.1 Experimental Results

Table 4. 1: The experimental results to find the optimal value

Runs | # of agents # of agents #ofagents | %ofbad | % ofagents | Optimal
with found to be correctly agents correctly value
originally bad by using identified correctly identified
bad actions our model identified
1 172 172 188 100% 96% 74.5
2 159 156 191 100% 95% 74.5
3 165 161 190 100% 95% 74.5
4 170 170 190 100% 96% 73
5 168 168 184 100% 92% 75
6 173 173 187 100% 96% 75
7 166 166 182 100% 96% 74.5
8 160 160 173 100% 92% 74.5
9 174 174 183 100% 97% 73
10 162 162 171 100% 97% 74.5
Average 74.3

Table 4.1 illustrates the results of the experiment we conducted to get the optimal value
to be used to judge service requester agents. It was observed that 74.3 is the optimal value

that would be used to compute reputation of agents.

4.4.2 Performance Analysis

In our experiments, we examined the effectiveness of the system in terms of identifying

malicious agents as they make requests. We also examined the scalability of the system

61

as the number of requests increases.

In order to evaluate the performance of our system, for 5 times we kepf constant the
number of agents that make requests and vary the number of bad agents. We took the
average percentage of agents that were sent with bad actions and were found untrusted
and malicious by using the model. We also took the average percentage of agents (both
bad and good) that were correctly identified with their status. Table 4.2 illustrates the

results of the experiment we conducted.

Table 4. 2: The results of the performance analysis

Number of agents|% of bad agents| % of agents correctly
sent requests identified as bad identified
100 100.00 94.34
200 : 99.17 93.12
300 99.50 93.61
400 99.67 94.25
500 99.50 94.10
600 99.53 93.83
700 99.36 93.50
800 99.67 93.42
900 99.54 19379
1000 99.62 94.07

i). Identification of Bad Agents

Agents that make requests can either be trusted or untrusted agents. Trusted agents are
those agents with good reputation, and untrusted agents are those omes with bad
reputation.” Agents make requests and they must be evaluated based on their status.

Therefore, the aim of this expertment was to verify that how many agents were identified

62

as bad agents out of a number of bad agents that were sent to make requests. This would
indicate the effectiveness in anthenticating agents that make request. Figure 4.14 plot the
identiﬁcation of malicious agents that the system had evaluated in different runs.
To conduct this experiment, two parameters were varied:

» Total number of agents and the

» Number of bad agents make request,
From this experiment, we observed that the increase of number agents that make request

does not affect the performance or effectiveness of the system.

Identification of bad agents

8 B

% of bad agents

S8 288

100 20 30 40 &0 60 700 80 900 100
Total number of Agents

Figure 4. 13: Bad agcﬁts Identification based on their reputation

63

if). Correctness of Reputation Evaluation

The aim of this experiment was to measure the correctness of the system in evaluating
agents based on their reputation. In this experiment we looked at how many percent of
agents were correctly identified out of the number of agents that has made requests.

Figure 4.15 illustrate a plot of system correctness.

&

R

8

S

K

% of agents correctly identified

!
1002003004005006007008009001000]
|

Total number of agents

Figure 4. 14: Reputation Evaluation

From the plot, we observed that very few agents were incorrectly identified when they

make requests. We also observed that the system is consistent in its performance.

CHAPTER FIVE

5. Conclusion

5.1 Introduction

Securty in distributed system is the major challenge that needs to be considered in order
to claim success on 2 system. This research revealed the need of security among agents as
they interact to share services. The security challenges that were highlighted in this
dissertation brought up the needs for trust management among inferacting agents.
Reputation-based trust approach in establishing security has been used by many
researchers to achieve several goals. We have used reputation of agents to judge them to
access available services. Agent technology has been a successful technology to
implement systems to search for information and share services over the Internet. The
CAC[P architecture is the core middleware for agents communicating to share services.
Due to the openness of CACIP architecture when agents are interacting, there has been a

need of a security scheme that would secure services that are shared in a CACIP based

system.

5.2 Conclusion

The openness of CACIP architecture has raised the need of a serious trust management

scheme that would ensure security among agents commumicating. The agent based trust

65

management model has been proposed to provide necessary trustworthiness evaluation.

The first objective was to construct a trust management model with specialisation in
authentication and authorization capabilities. All agents that want to access services in the
information bus must undergo a security check before getting the access to services.
Therefore, a proper authentication mechanism is essential to ensure that only trusted
agents are permitted to access services. In order to ensure an efficient trust management,
authentication and authorization processes are conducted separately. Maintaining
reputation and accurately use it has been a challenge. Thus, in our trust medel we assign
SCA to administer reputation repository. To achieve this objective Agent-to-agent Trust
Management Model was established based on various sources of security design
principles from existing security schemes. Existing design principles were adopted and
reused to solve problem of security in the context of CACIP. Our trust model has some
limitations. There is no mechanism that provides privacy on messages that are being

transferred from one point to the other as trustworthiness evaluation is in progress.

The second objective was to devise an agent-to-agent authentication and authorization
mechanisms that manage trust in mobile systems. Agents that make requests are
authenticated based on their reputation. Reputation is obtained either from local
reputation repository or from foreign node on the network. This objective was achieved
by proposing a reputation-based authentication of agents that make requests. In this
mechanism, all agents are authenticated before accessing available services. The
authentication process was assigned to one agent that checks all agents that make

requests. Both authentication and authorization processes use digital signatures to ensure

66

trustworthiness between each other. Thus, one agent that does authentication signs the
message and sends it to the other agent for authorization. The signature must be verified
before the message is perceive to be a valid request message.

The third objective was to show that the scheme or mechanism functions in a real
environment by evaluating its performance experimentally. The smlulation of the
proposed mechanism was conducted to realise this objective. The aim of this experiment
was to test if the model would be able to correctly identify agents based on their
reputation. The results of the experiment showed that agent based trust management
model can correctly and accurately identify agents according to their status. The agents
that had bad reputation were correctly identified as bad agents after sending their
requests. The model also showed to be consistent in evaluating trustworthiness because

the increase of requests was not affecting the accuracy of the system.

5.3 Future Work

Experiments that were conducted showed that the proposed trust model could make a
difference in Internet based application systems, for instance e-Bay systems, to
authenticate consumers and auctioneers. The issue of privacy is essential in agent-based
systems; requests/response messages that are passed from one point to the other during
trustworthiness evaluation needs to be secured. Therefore, an issue for investigation in
future is how the issue of privacy can be brought into proposed model. The security
principles, i.e. robustness, end-to-end security, fairness and scalability are still need to be

considered for experiment in future to enhance the proposed model.

67

The proposed security model could be tested for future generation (ad hoc) based
application systems. The identification of an incoming node can be a challenging task as
an appropriate mechanism is not in place. Therefore, as the future work of this study, the
agents that do authentication and authorization can be suitable in controlling participation

of nodes 1n an ad hoc network.

68

APPENDIX A
USER MANUAL

This section of the thesis presents the steps that a user needs to follow in order to use the

trust management system.

Agent2Agent Security

Agent2Agent
TRUST : um:b.l_;?hhem

: i tompscipc

MANAGER osimstn

|
{
(Client) |

Figure A. 1: User interface showing nodes participating in the network

Qur trust management system is a client/server application, therefore it runs using at least
two machines. Figure C.1 is the user interface on the client side of the application. The
list (computer names) of nodes or machines participating in the running of the system is
shown on the interface. A user must select, from the list, a machine to which a request is
to be sent. Once the machine has been selected, click Send button to send the agent’s
request to the selected machine. The Configure item on the main menu is used to set

machines that are going to participate in the running of the system. When configure 1s

69

clicked, figure A 2 is shown allowing the user to add or remove machines on the network

and to set the machine from which the requester agent would be sent.

=2 AgentZAgent Trust Management

ine {Compscipcl3

Figure A. 2: Machine configuration interface
Figure A2 is used to configure machines that are participating to run the system. The
This Machine text field is used to type the name of the client machine that is going to sent
requests to the machine that runs trust evaluation algorithms. When the machine name
has been correctly typed on the text field, Save Name button is clicked to save the name
of the machine. The list box, Machine List, displays names of machines that can
participate to run the system. In order to add or remove the machine, a user type the name
of the machine in the Add/Remove Machine text field and click either Add or Remove

buttons. The Refresh button is used to refresh the machine list after adding or removing a

70

machine. The Close Window button is used to close the window once configuration has

been completed.

- Server Agent Started...,
.~ waiting for client connection....

';_zﬁ.ccept a connection:Socketjaddr=compscipc13/M0.56.200.4,pori=1474 localport=
- 7555]

~ Calling Decision Agent for Authentication...

 Creating and signing service document...

"f-"Transfering control 1o Master Agent for Authorization...

:g'f_MashEr agent checks the signature of Decision agent from service document...

~ Service Authorized, Agent now access CACIP...

Figure A. 3: User Interface displaying messages
Figure A3 shows the server side of the system. The server side is equipped with our trust
evaluation algorithms that evaluate trustworthiness of requester agents. The messages that

are generated when system is running are shown on this interface.

Figure A.4 shows the Java algorithm that generates keys to sign the service document in
DA. The code generates the private and public keys by using the key-pair generator. The
private key is needed in order to create a digital signature, and its corresponding public
key will be needed in order to verify the authenticity of the signature. The algorithm uses
the SHA1PRNG pseudo-random-number generation algorithm, as provided by the built-

in SUN provider.

71

KeyPaereneratﬂr keyﬁen KeyPaereneratur getInstancet"DSA": FSUN")
SecurERandum randam SecurERandam getInstance("EHAlPRNG" "SUN"I'

kegGen 1n1t15112&(1024 randnm]

KE?PEII palr "'ké?GenjgeneratEKegPair{i"”

PrlvateKey prlv =.pair. gEtPrIvatet}
Publchey puh pazr getPuhllc(

Slgnature dsa Slgnature getInstance{"SHAIWlthDS&" "SUN"J:

“T 1ffdsa,initSi§ﬁ(ﬁr;¥1;fﬁj_3 ""m' i

Figure A. 4: Key Generator Code

Figure A.5 shows the code to verify the signature on the service doc that has been signed

by DA using the key generated in figure A 4.

XSBQEncudeﬁKeyﬁpec pubKeySpec e_'ne_u ;XSSQIEncude'dKeYspédEenéKevj:
KeyFaf:tnry keyFactury KEnye;i:tquy.'getIristance (_"BSA'", MSTNM

L . I-"l:d:rjllc:Keg.r pubF.’ey f.k&?Fai:tury.generatepublic'[puhKE?SpecJ,'

FlleInputStream gigfis # nev FileInputStream{args[1]):
“byte[]- sigTaVerify = nev byte[sigfis.available()]:
31gfls read{s:.g’l‘nVerlfy 132

Slgnature sug Elgnﬂture getInstance("SHMmthDSA“ "SUN");
' 51g 1n1t:Ver1fﬂpuhKey)

Figure A. 5: Signature Verifier Code

72

APPENDIX B
UML DESIGN DOCUMENTATION

Trust Manacement Classes l

1. 1 Status Control
ServiceRequesterAgent Agent
-agentName: String -agenttame: String
~agentlD: int ~agentlD: int
ep¥al int
+getA gentStatus()
+makeRequest(y
+receiveResponce()
1
1.*
1
T MasterAgent
DecisionAgent
- 1 ~agentMame: String
-agentiame: String -agentiD: mt
-agentlD); int
+makeRequest() A L H +authorzeRequester()
+authenticateRequesten) [N~ +sendResponce)
+generateSercice Do)
+sendResponce() P
FAN !
1
1.
_ ¥ erifySipnature
GenerateSign -pubkcKey: int
-priveteKey: int -
_publicKey: int +confirmSipneture(y
+createSignature(}

Figure B. 1: UML Class Diagram

73

APPENDIX C
CODE

Main Server (lass

package agent2agenttrust;

import java.awt.BorderLayocut;
import java.awt.Color;

import java.awt.Dimension;

import java.awt.Rectangle;

import java.awt.event.ActionEvent;
import java.awt.event.Actionlistener;
import javax.swing.BorderFactory;
import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;
import javax.swing.JMenultem;
import javax.swing.JOptionPane;
import javax.swing.JPanel;

import Jjavax.swing.JTexthArea;

public class FrmMainServer extends JFrame {

private BorderLayout layoutMain = new BorderLayout();
private JPanel panelCenter = new JPanel{};

private JMenuBar menuBar = new JMenuBar(};

private JMenu menuFile = new JMenuf{):

private JMenultem menuFileExit = new JMenultem() ;
private IMenu menuHelp = new JMenul(};

private JMenultem menuielpAbout = new JMenuItem(};
private JLabel statusBar = new JLabel{};

private JTextArea jTextAreal = new JlextAreal(};
private JButton jButtonl = new JButton{();:

string msg;

public FruMainServer() (
try {
jbInit () ;
} catch {Exception e) {
e.printStackTrace{);
}

}

private void jbInit() throws Exception {
this.setJMenuBar { menuBar) ;
this.getContentPane{} .setLayout (layoutMain }:
panelCenter.setLayout{ null);
this.setSize(new Dimension (481, 401)};
this.setTitle("Agent2Agent Trust Management (Server)" };
menuFile.setText { "File");
menuFileExit.setText{ "Exit® };
menuFileExit.addActiconListener{ new ActionListener(} { public veoid
actionPerformed{ ActionEvent ae){fileExit ActionPerformed(ae);}} };
menuHelp.setText { "Help") ;
menuHelpAbout .setText{ "About" });

74

menuHe IpAbout .addActionListener (new ActionListener () { public void
actionPerformed(ActionEvent ae) {helpAbout ActionPerformed(ae);}} J;
statusBar.setText("" };
jTextAreal.setBounds (new Rectangle{10, 10, 445, 275));
jTextAreal.setBditable(false)};
jButtaonl.setText ("Close App?);
jButtonl.setBounds (new Rectangle (285, 293¢, 125, 25});
jButtonl.addActionlistener (new ActionListener (} {
public void actionPerformed(ActionEvent e) {
jButtonl_actionPerformed(e);
) i

1
};

menuFile.add{ menuFileExit);

menuBar.add(menuFile });

menuHelp.add(menuHelpAbout) ;

menuBar.add(menuHelp };

this getContentPane () .add(statusBar, BorderLayout.SOUTH) ;
this.getContentPane (} .add(panelCenter, BorderLayout.CENTER};
panelCenter.add(jButtonl, null);

panellenter.add{jTextAreal, null);

jTextAreal.setText ("");

jTextAreal.setLineWrap (true);

}

void fileExit ActionPerformed(ActicnEvent e)
{ System.exit (0) ;

}

void helpabout ActionPerformed{ActionEvent e)
; FrmMa inServer AboutEoxPanell(), "About”,

private void jButtonl_ actionPerformed(ActionEvent e)

{
}

public void setMessage (String info)

{
}

System.exit {0} ;

jTextAreal.append(info +"\n");

Agent Class

package agent2agenttrust;

import java.net.*;
import java.util.=*;
import java.io.¥*;
import java.net.URL;
import java.awt.*;

public class Agent implements Serializable

{

private boolean haveMove = false;
private String whereTo = "*;
private final int agentID = &5;

75

FriMainServer frame;

public Agent()

{
}

public void run ()}

{

if {(!haveMove)

{

haveMove=true;

frame = new FrmMainServer();

gol); //move to the next machine

else

{
monitor() ;
!
1

public int getAgentID()

{

return agentID;

}

public void gof{}
{
try

{

InetAddress add = InetAddress.getByName(whereTo);
Socket client = new Socket (add, 7555) ;
ObjectOutputStream output =

new ObjectQutputStream{client.getOutputStream{))
ObjectInputStream input = new
ObjectInputStream(client .getInputStream()) ;

//serialize agent

output .writeOhject {this);
ocutput . flush{};
client.closel(};

catch (IOException e)

{
}

catch{Exception e)

{

System.out.println ("I0 Exception ");e.printStackTrace ();

System.out.println("Some unidentified flying exceptioni®};
e.print8tackTrace();
}
}

private void monitor{}

{

frame.setMessage ("Mobile agent is now accessing service..."};

}

public void setNextMachine{String node)

76

whereTo = node;

Decision Agent Class

package agentlagenttrust;

import java.io.*;
import java.util.*;
import java.security.*;

public class Decisionfgent

{

GenSig gen ; // the signature class for digital signature...
public Decisionagent ()

{
gen = new GenSig();
1
public boolean reputationChecker (int repval)
{
if ({(repval > 5} //1if reputation is sufficient
{)
//create a service document for Master Agent to use
try
{
FileQutputStream out = new FileOutputStream{"Servicedocument.txt"};
String agentName = "Agent2" +"\a”;
String serviceType = "Weather Calculator" +"\n";
String timeRequired = "1Q" +"\n";
out .write{agentName.getBytes ()];
out .write{serviceType.getBytes()) ;
out .write{timeRequired.getBytes({));
out .close() ;
Ycatch (IOException ie)
ie.printStackTracel();
gen.createSig();
return true;
1
else
{
return false;
1
}

}

Master Agent Class

package agentlagenttrust;

import java.ioc.*;
import java.util.*;

77

public class MasterAgent

{
private String agentName;
VerSig verifier;
public MasterAgent ()}

{

verifier = new VerSig();

}

public boolean authorizeService({int polReg)

{

if (polrReg >= 8)

try
{

BufferedReader inbr = new BufferedReader {new FileReader{new
File{"Servicedocument .txt"})};

String agentName;
String serviceType;
String timeRequired;

agentName = inbr.readLine{};
serviceType = inbr.readLine(};
timeRequired = inbr.readLine();

System.out.printin ("AgentName: " + agentNanme};
System.out.println ("Time is: " + timeRequired);

inbr.close();

}

catch(Exception e)

{
}

e.printStackTrace(};

verifier.confirmSig(};
return true;
}else

{
t

return false;

}

Generate Signature Class

package agent2agenttrust;

import java.io.*;
import java.security.*;

class GenSig
GenSig(}{}

public void createsig()

{

/* Generate a DSA signature */

78

try{
/* Generate a key pair */

KeyPairGenerator keyGen = KeyPalrGenerator.getInstance("DSA", "SUN");
SecureRandom random = SecureRandom.getInstance ("SHAIPRNG", "SUN");

keyGen.initialize (1024, random);

KeyPair pair = keyGen.generateKeyPair{);
PrivateKey priv = pair.getPrivate() ;
PublicKey pub = pair.getPublic();

/* Create a Signature object and initialize it with the
private key */

Signature dsa = Signature.getInstance ("SHAlwithDSA"™, "SUN"};
dsa.initSignipriv);
/* Update and sign the data */

FileInputStream fis = new FilelInputStream("Servicedocument.txt");
BufferedInputStream bufin = new BufferedInputStream(fis);

byte[l buffer = new bytel[l024];

int len;

while (bufin.available() != 0)

{

len = bufin.read(buffer);
dsa.update{buffer, 0, len});

}:
bufin.clasel);

/* Now that zll the data to be signed has been read in,
generate a signature for it */

byte!] realSig = dsa.sign{};

/* Save the sigmature in a file */

FileQutputStream sigfos = nsw FileOutputStream("sig");
sigfos.write(realsig};

sigfos.close();

/* Save the public key in a file #*/

byte[] key = pub.getEncoded(};

FileQutputStream keyfos = new FileCutputStream("suepk");
keytfos.write(key);

keyfos.close();

} catch (Exception e} {
System.err.println(”Caught exception " + e.toString(});
}

79

Verify Signature Class

package agent2agenttrust;

import java.io.*;
import java.security.*;
import java.security.spec.*;
class VerSig {
Versig(){}
public void confirmSig{) {

/*Verify a DSA signaturex/

try{
/*import enceded public key*/

FileInputStream keyfis = new FileInputStream("suepk"};
byte[] encKey = new bytelkeyfis.available()];
keyfis.read({encKey};

keyfis.close():
X509EncodedXeySpec pubKeySpec = new X509EncodedKeySpec (encKey);

" KeyFactory keyFactory = KeyFactory.getInstance("DSA", "SUN");
PublicKey pubKey = keyFactory.generatePublic(pubReySpec};

/* input the signature bytes */

FileInputStream sigfis = new FileInputStream("sig");
bytel[]l sigToVerify = new bytel[sigfis.available()];
sigfis.read(sigToVerify);

sigfis.close{};

/*create a Signature object and initialize it with the
public key#*/ _

Signature sig = Signature.getInstance ("SHAlwithDSA", "SUN"};
sig.initVerify (pubKey) ;

/* Update and verify the data */

FileInputStream datafis = new
FileInputStream(*servicedocument . .txt");
BufferedInputStream bufin = new BufferedInputStream(datafis);

bytefl buffer = new bytel[l024]};

int len;

while (bufin.available(} t= 0} {
len = bufin.read{buffer);
sig.update (buffer, ¢, lenj;

’

bufin.closel();

boolean verifies = sig.verify({sigToVerify);

80

//System.out.printla{"signature verifies: " + verifies);

} catch (Exception e) {
System.err.printlin("Caught exception " + e.toString())};
}i

Security Application Class

package agentl2agenttrust;

import java.awt.*;
import javax.swing.*;
import java.lang.*;

public class SecurityApp
{
public SecurityApp()
{
JFrame frame = new FrmMain{};
Dimensionkscreensize = Toolkit.getDefaultToolkit () .getScreenSize () ;
Dimension frameSize = frame.getSizel):
if {frameSize.height > screenSize.height) {
frameSize.height = screenSize.height;

if {frameSize.width » screenSize.width} {
frameSize.width = screenSize.width;
}

frame.setLocation((screenSize.width - frameSize.width) / 2, |

screenSize.height - frameSize. height } / 2 };
frame.setDefaultCloseOperation{ JFrame.EXIT ON_CLOSE)} ;
frame.setVisible(true);

}
public static veid main{Stringl[] args}
{

try

{

UIManager . setlookAndFeel (UIManager.getCrossPlat formLookAndFeelClassName ()) ;
!
catch (Exception e)
{
e.printStackTrace();
} .
new Securityapp{):

}

Security application Server Class

package agentlagenttrust;

import java.awt.Dimension;
import java.awt.Toolkit;

81

import
import
import
import
import
import
import

public
{

javax.swing.JFrame;
javax.swing.UIManager;
java.ia.*;

java.net,*;
java.util _*;

java.net .URL;
java.awt.¥*;

class SecurityAppServer extends Thread

//public String myName;
boolean reputationSufficient;
boolean serviceAllowed;

public static final int PORT = 7555;

FrmMainServer frame;

public SecurityippServer({)

{

}

frame = new FrmMainServer();

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSizel};
Dimension frameSize = frame.getSizel();

if (frameSize.height > screenSize.height)

{

frameSize.height = screenSize.height;

if (frameSize.width > screenSize.width)

{
}

frameSize.width = screenSize.width;

frame.setLocation{ { screenSize.width - frameSize.width } / 2, (
screenSize.height - frameSize.height) / 2);
frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
frame.setVigible ({true);

reputationSutficient = false;
serviceadllowed = false;

frame .setMessage ("Server Agent Started...," +"\n" +"waiting for
client connection...."};

public woid runf()

{

while (true)
{
try

{

ServerSocket server = new ServerSocket (PORT);
Socket soc = server.accept();

//receiveBroadCast {soc) ;

//System.cut.println ("Accept a connection:"+soc);
frame .setMessage ("Accept a connection:"+ soc) ;
//Need a code to save all c¢lients that are comnected
CbjectCutputStream output = new

CbhbjectOutputStream{soc.getOutputStream() };
ObjectInputStream input = new

82

ObjectInputStream{soc.get InputStream()) ;

Agent agent = (Agent) input.readCbject();

System.out .println("Agent ID: "+ agent.getAgentID(});
soc.close();

server.closel(};

//creating the other agents
DecisionaAgent dAgent = new DecisionAgent ();

MasterAgent mAgent = new MasterBgent();

frame .setMessage ("Calling Decision Agent for
Authentication...\n");

ink repVv = {int} (1 + Math.random{)* 20);

System.out .printin("Reputation value is " + repV);
reputationSufficient = dAgent.reputaticonChecker(4) ;//repV);

int polReq = (int} ({2 + Math.random(}*15);

System.out .printin("Rumber of policy regquirements received is "+
polReq) ;

if {(reputationSufficient)
frame.setMessage("Creating and signing service
document...\n"};
Thread.sleep(5GC0) ;

frame.setMessage ("Transfering contrel to Master Agent for
Authorization...\n");

serviceAllowed = mAgent.authorizeService(polReq);
Thread.sleep{5000) ;

frame.setMessage{"Master agent checks the signature of
Decision

agent from service document...\n")};

Thread.sleep({{long) {(Math.random() *5000)) ;

if {serviceAllowed)

{
// agent can now run when service is allowed...
frame.setMessage{"Service Authorized, Agent now access
CACIP...\n"};
agent.run(};
}
else
{
frame.setMessage{"Service is not allowed, call killer
agent

to terminate...\n"};
frame.setMessage ("The agent "+ agent.getAgentID(}+" has
been isolated");

83

}

else

{
frame.setMessage ("Reputation ingufficient\n\n The
Deceision
agent has broadcasted the query for reputation\n®);
InetAddress [] addresses =
{InetAddress.getByName("10.56.200.237")};
int [l ports = {8600};
int [l trustValues =
broadCastAgent(agent.getAgentID(),addresses,ports);
evaluateTrust (trustvValues);

}

}catch{IOException ip)

{

System.out.println("I0 Excepticn here”);
ip.printStackTrace () ;

catch({InterruptedException inexc)

{

System.out.printin{"There is a problem with the sleeping
thread") ;

catch (ClassNotFoundException e} .

{
System.out.println("Class not found exception here");
} -
}

}

public int[] broadCastAgent(int agentID,InetAddress [] address,int [l
ports) throws IOException

{

ArrayList arr = new ArrayList();:

for{int i = 0; i < address.length;i++)

{
Socket s = new Socket{address[i] .getHostAddress () ,portsii]);
PrintWriter out = new PrintWriter(s.getOutputStream(),true};
out.println("AgentID"+ agentlID);
out.flush{);

BufferedReader r = new BufferedReader{new
InputStreamReader (s.getInputStream()) };

String in = null;

while({(in r.readLine(})) != null}

{

if{in.startsWith ("TrustValue")}

{
int trustvalue =
Integer .parselnt(in.trim().substring(11,in_length(})};
arr.add {new Integer{trustValue)) ;
frame.setMessage ("Received trust value of agent "+agentID+ "
is "+ trustValue) ;

arr.trimToSizel();

84

int [] trustValues = new int[arr.size()];
for{int i =0;1i <« trustValues.length;i++)

{
trustvalues[i] = {({Integer}arr.get{i)).intvaluel();
}
return trustvValues;
public void evaluateTrust{int [] trustValues)
{
for{int i = 0; i < trustValues.length; i++}
{
if{trustvalues[i] < 50)
{
System.out.println{"The agent " + trustValues[i] + " is
untrusted") ;
}
else
{
System.out.println("Agent authenticated through the use of
foreign reputation”);
1
H
!
public void receiveBroadCast (Socket soc)
{
try
{
BufferedReader r = new BufferedReader (new
InputStreamReader (soc.getInputStream{}}) ;
PrintWriter writer = new PrintWriter(soc.getOutputStream(}, true) ;
String s = null;
while({(s = r.readLine(})}) != null)
{
int trustvalue = {int) (Math.random() *1C0} ;
if{s.trim{) -startsWith {("AgentID"})
{
int agentID =
Integer.parselnt (s.trim(}.substring(7,s.length{}));
System.out.printlin("Agent ID: "+ agentID);
//Does checking
System.out .println("Trust value for " + agentID + " is "4+
trustValue) ;
writer.println{”TrustValue "+ trustValue);
writer.flush() ;
}
}
}
catch{ICException ice)
{
System.out.println{"There was a problem in receiving broadcast");
H
}
public static void main{Stringll args)
{
try {

UIManager.setLookAndreel

85

(UIManager .getCrossPlatformLookAndFeelClassName ()} ;

}

catch (Exception e)

{
}

e.printStackTracel();
SecurityAppServer sec = new SecurityAppServer(};

sec.start();

Main Interface Form Class
package agentlagenttrust;

import java.awt.*;

import java.awt.event.*;

import java.awt.event.ActionEvent;
import javax.swing.*;

import java.net.URL;

import java.sqgl.*;

public class FrmMain extends JFrame {
private BorderLayout layoutMain = new BorderlLayout();
private JPanel panelCenter = new JPanel(};
private JMenuBar menuBar = new JMenuBar();
private JMenu menuFile = new IMenu();
private JMenultem menuFileExit = new JMenultem();
private JMenu menuConfig = new JMenu(} ;
private JMenultem menuConfigSettings = new JMenultem();
private JMenu menuHelp = new JMenu(};
private JMenultem menuHelpAbout = new JMenultem();
private Jlabel statusBar = new JLabel();
private JPanel jPanell = new JPanel(};
private Jlabel jLabell = new JLabel();
private JLabel jLabel2 = new JLabel{);
private JLabel jLabel3 = mew JLabel{);
private JLabel jLabel4 = new JLabel{):
private JPanel jPanel2 = new JPanel{);
private JList jListl;

Agent agent = new Agent();
private JButton btnSend = new JButton();
DefaultListModel listMedel:
FrmConfiqure config:;
public FrmMain{) {
try {
jbInit(};

} catch {Exception e} {
e.printStackTrace(};
}

}

private void jbInit{} throws Exception

{

listModel = new DefaultlListModel(};

86

Connection dbConn = null ;

try

{

}

Driver d = {Driver)Class.forName
("sun.jdbec.odbe.JdbcOdbeDriver®) . newInstance() ;

String URL = "jdbc:odbc:" + "MyDbs2';

dbConn = DriverManager.getConnection{ URL, "nouser", "nopassword") ;

Statement stmt;
ResultSet rs;
stmt = dbConn.createStatement () ;

rs = stmt.executeQuery ("SELECT * FROM MachineList");

while (rs.mext()}
listModel.addElement (rs.getString ("MachineName")) ;
dbConn.close(];

catch {Exception e)

{

JOptionPane .showMessageDialog(this, "Can't Open Node Database",
"Program error",JOptionPane.ERROR_MESSAGE) ;
e.printStackTrace();

}
//end database

jListl = new JList({listModel);
//ijlistl.setVisibleRowCount {-1);

JScrollPane listScroller = new JScrollPane (jListl);
listScreller.setAutoscrolls (true) ;
//listsScroller.setPreferredSize{new Dimension (250, 803} ;

this.setdMenuBar{ menuBar) ;

this.getContentPane () . setLayout{ layoutMain };
panelCenter.sethayocut (null };

this.setSize {new Dimension (438, 370}});

this.setTitle("Agent2Agent Security");

menuFile._setText{ "File" };

menuFileExit.setText{ "Exit" };
menuFileExit.addActionListener{ new ActionlListener() { public
void actionPerformed(ActionEvent ae |

fileExit ActionPerformed(ae); } });

menuConfig.setTexkt ("Configure”);
menuConfigSettings.setText("Settings™ };
menuConfigSettings.addActionlistener(new Actionbistener() {
public void actionPerformed{ ActionEvent ae) {
configSettings ActionPerformed{ ae }; } } J;

menuFelp.setText("Help" };

menuHel pihout .setText { "About") ;

menuHelpAbout .addActionListener{ new ActionListener(){ public
void actionPerformed(ActionEvent ae) {

helpAbout ActionPerformed{ ae); } });

statusBar.setText ("Application Started..." };

jPanell .setBounds (new Rectangle({5, 25, 200, 160)});
jPanell.setLayout (null};

jPanell .setBorder {BorderFactory.createEmptyBorder(0,0,0,0)};

87

jPanell .setBackground({new Color {255, 239, 214));
jl.abell.setText ("Agent2Agent”) ;
jLabell .setToolTipText ("null"};
jLabell .setFont(new Font("Tempus Sans ITC", 1, 22));
jLabell .setForeground (new Color{le, 16, 16}};
jLabell .setBounds (new Rectangle (20, 5, 150, 30)});
jLabel2.setText (" TRUST") ;
jLabel2.setToolTipText ("null™};
jLabell .setFont (new Font ("Trebuchet MS", 1, 21)
jLabel2 .setBounds (new Rectangle (50, 50, 90, 25)
jLabel3 .setText ("MANAGER") ;
jLabel3 .setToolTipText ("null®);
jLabel3.setFont{new Font("Trebuchet Ms", 1, 21}));
jLabel3 .setBounds (new Rectangle (45, 75, %5, 25));
jLabel4.setText{" {Client)"};
jLabel4.setToolTipText ("null");
jLabel4 .setFont (new Font{"Times New Roman", 1, 20)};
jLabel4 .setForeground(new Color {231, 0, 0jj};
jLabel4.setBounds (new Rectangle{55, 13G, 65, 25));
jListl.setBounds (rew Rectangle (210, 30, 210, 155));
jListl.setSelecticnMode (ListSelecticnMaodel .SINGLE SELECTICHN) ;
jListl.setBorder {BorderFactory.createTitledBorder
{"Click to select a node..."}};
jListl.setValueIsaidjusting(true};
btnSend.setText ("Send") ;
btnSend.setBounds (new Rectangle{215, 210, 210, 35});
btnSend.addActionlListener (new ActionListener() {

public void actionPerformed(ActionEvent e} {

- btnSend actionPerformed(e);

1
}
)i

mernuFile.add (menurileExit)i

menuBar.add({ menuFile };

menuConfig.add{ menuConfigSettings) ;

menuBar.add{ menuConfig };

menuHelp.add{ menuHelpAbout);

menuBar.add(menulelp };

this.getContentPane().add(statusBar, BorderLayout.SOUTH) ;
this.getContentPane(}.add(panelCenter, BorderLayout.CENTER};
jPanell.add(jLabeld) ;

jPanell.add(jLabell);

jPanell .add(jLabel2};

jPanell.add{jLabell};

panelCenter.add(btnsSend, null};

panelCenter.add(jListl, nullj;

panelCenter.add(jPanell, null);
this.getContentPane(}.add(jPanel2, BorderLayout.NORTH]) ;
config = new FrmConfigure(};

int gize = listModel.getSizel();

if (size == 0) //No Machine, disable send button
btnSend.setEnabled(false} ;

}

void fileExit ActionPerformed(ActionEvent e) {
System.exit (0) ;
}

void cenfigSettings_ ActionPerformed(ActionEvent e) {

88

statusBar .setText ("Setfing Configuration");
config.setVisible (true);

}

private void btnSend actionPerformed{ActionEvent e)

{

String node;
String thisMachine;

node = (String}jListl.getSelectedValue(};
statusBar.setText ("Agent is going to: "+ " \t" + node);

thisMachine = FrmConfigure.myMachine;
agent:. . setNextMachine (node) ;

agent.run({};

Machine Configuration Class

package agentlZagenttrust;

import java.net .URL;
import java.sqgl.¥;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FrmConfigure extends JF¥rame

{
BarderLayout borderLayoutl = new BorderLayout () ;
JPanel jPanell = new JPanell);
Jlabel jLabell = mew JLabel(]);
JTextField txtThisMachine = new JTextField();
JButton btnSave = new JButton{};
JSeparator jSeparatorl = new JSeparator();
JTextArea jTextAreal = new JTextAreal);
JLabel jLabel2 = new JbLabel(};
JLabel jLabel3 = new JhLabel(};
JTextField txtAddRemove = new JTextField();
JButton btnaAdd = new JButton{) ;
JButton btnRemove = new JButtonf();
JButton btnBackMain = new JButton() ;
JButton btaRefresh = new JButton{);

public static String myMachine ="";
public static String myMachineName;

public FrmConfigure(} {
super{ " Configure panel");

try {
ibInit{};

catch (Exception e} {
e.printStackTrace();

}

89

Connection dbConn = null ;

try

{
Driver 4 = (Driver)Class.forName
{("sun.jdbc.odbc.JdbeCdbeDriver”) .newInstance () ;
String URL = "jdbc:odbc:" + "MyDbsz";

dbConn = DriverManager.getConnection(URL, "nouser", "nopassword") ;
Statement stmt;
Statement stmt2;

ResultSet rs;
ResultSet rs2;

stmt = dbConn.createStatement();

stmt2 = dbConn.createStatement(};

rs = stmt.executeQuery ("SELECT * FROM MachineList");

rs2 = gtmt2.executeQuery|"SELECT thisMachine FROM LocalMachine"};

while (rs.next())
jTextAreal .append({rs.getString {"MachineName") + "\n");

while (rs2.next{})
txtThisMachine.setText{rs2.getString("thisMachine"});

dbCann.close();

}

catch (Exception e}

{
JOptionPane. showMessageDialog(this, "Problem during database
operation, program exits", "Program
error", JoptionPane.ERRCR_MESSAGE] ;
e.printStackTrace();
System.exit{Q);

i

private void jbInit() throws Exception {
this.getContentPane() .setlaycut (borderLayoutl} ;
this.setSize(new Dimension{400, 441));

jLabell.setText {"This Machine");

jLabell. setBounds (new Rectangle (24, 25, 86, 25));
txtThisMachine.setBounds (new Rectangle (115, 20, 217, 35));
btnSave.setText ("btnSave");

btnSave.setLabel ("Save Name");

btnSave.setBounds (new Rectangle {148, 64, 125, 35});
btnSave.addActionListener(new ActicnListener() {

public void actionPerformed(ActionEvent e) {
btnSave actionPerformed(e);
}

90

13K

jSeparatorl.setBounds (new Rectangle(25, 108, 341, 18});:
jTexthAreal getEditable(false};

jTextAreal.setFont {(new Fonkt("Dialog", 1, 121}};
jTexthAreal setBounds (new Rectangle(22, 152, 103, 179}};
jLabel2.setText ("Machine List");

jLabelZ2. setBounds (new Rectangle (25, 133, 85, 17));
jLabel3 . setText ("Add / Remove Machine");
jLabel3 . setBounds (new Rectangle (188, 154, 161, 25));
txtAddRemove. setBounds {new Rectangle{173, 179, 153, 28});
btnAdd.setText ("btnadd") ;

btnAdd.setlabel ("Add"};

btnAdd. setBeounds (new Rectangle({lss, 218, 87, 31));
btnAdd.addActionListener {new ActionListener(} {

public void actionPerformed(ActionEvent e) {
btnadd actionPerformed(e);
1

3

btnRemove.setText ("Remove") ;

btnRemove. setBounds (new Rectangle {257, 216, B2, 33});
brnRemove.addActiontistener {new ActionlListener(} {

public void actionPerformed(ActionEvent e} {
btnRemove actionPerformed(e);
1

BE

btnBackMain.setText {"Close Window");
btnBackMain.setBounds {new Rectangle (225, 285, 123, 37});
btnBackMain.addActionListener (new ActionlListener{) ({

public void actionPerformed(ActicnEvent e} {
btnBackMain actionPerformed(e};
1

i .

btnRefresh.setText {"Refresh") ;

btnRefresh.setlLabel {"Refresh List"):
btnRefresh.setBounds (new Rectangle (20, 33%, 117, 31));
btnRefresh.addActionListener {new ActionListener() {

public void actionPerformed(ActionEvent e} {
btnRefresh actionPerformed(e) ;

1
};
jPanell.setLayout {null) ;
this.setTitle ("Agent2Agent Trust Management”);
this.getContentPane () .add({jPanell, Borderlayout.CENTER};
jPanell.add(jLabell, null);
jPanell.add{txtThisMachine, null);
jPanell.add{btnSave, null};
jPanell.add(jSeparatorl, null);
jPanell.add(jTextAreal, null);
jPanell.add(jLabel2, null);
jPanell.add(jLabel3, null);
jPanell.add(txtAddRemove, null);
jPanell.add(btnadd, null};
jPanell.zadd{btnRemove, null);
jPanell.add{btnBackMain, null};
jParnell.add{btnRefresh, null};

}

void btnSave actionPerformed(ActionEvent e) {

91

myMachineName = txtThisMachine.getText ();
Connection ébComn = null ;

b

try

{

Driver 4 =
{Driver)Class. forName ("sun.jdbc.odbc.JdbcCdbeDriver”) -newlnstance () ;

String URL = "idbc:odbc:" + "MyDbs2";

dbConn = DriverManager.getConnection(URL, "nouser", "nopassword") ;

r

Statentent stmi;
stmt = dbConn.createStatement () ;

stmt .executelUpdate {"UPDATE LocalMachine SET thisMachine = '" +
myMachineName +"'"};

string myMsg;
myMsg = "This Machine Name updated® ;

JOptionPane.showMessageDialog (this,
myMsg, "Informtion", JOptionPane . INFORMATION MESSAGE) ;

dbConn.close() ;

}
catch (Exception 1ix)
{

JOpticnPane . showMessageDialeg (this, *Exror Encountered, the program will
close”, "Program error", JOptionPane.ERROR_MESSAGE) ;

ix.printStackTrace();
System.exitc (0};

myMachineName
}
void btnAdd actionPerformed(ActionEvent e) {
String myMachine;
myMachine = txtAddRemove.getText(];
Comnection dbConn = null ;

try

{

Driver d ={Driver}Class.forName
{"sun.jdbc. adbe.JdbeCdbchriver") .newlnstance (};

String URL = "jdbc:odbe:™ + "MyDbs2";
dbConn = DriverManager .getConnection{ URL, "nouser"®, "nopassword") ;
Statement stwmt;

stmt = dbConn.createStatement(};

92

stmt .executeUpdate ("INSERT INTO MachineList (MachineName)VALUES {'"+
myMachine+ ""}");

String myMsg;

myMsg = myMachine + " added" ;

JOpticnPane. showMessageDialog(this,

myMsg, "Informtion”,JCptionPane.INFORMATION MESSAGE) ;

dbConn.close {};

}

catch (Exception ix)

{

JOptionPane . showMessageDialceg(this, "Error Enccuntered, the program
will close", "Program error", JOptionPane.ERROR MESSAGE) ;

ix.printStackTrace(};

System.exit (0};

}

//end database

void btnRemove_actionPerformed (ActionEvent e) {
String myMachine;
myMachine = txtAddRemove.getText();
Connection dbConn = mull ;

try

{

Driver d = (Driver}Class.forName
{"sun.jdbec.odbc.JdbcCGdbcDriver") .newinstance () ;

String URL = "jdbc:odbc:" + "MyDbs2";
dhConn = DriverManager.getConnection(URL, "nouser", "nopassword") ;

Statement stmt;
stmt = dbConn.createStatement(};

stmt .executeUpdate ("DELETE FROM Machinelist WHERE MachineName= '" +
myMachine +"'" };

String myMsg;

tyMsg = myMachine + " removed” ;
JOptionPane.showMessageDialog{this, myMsg, "Information”,

JOptionPane.INFORMATION_MESSAGE);
dbConnt.closel() ;

}

catch (Exception ix)

93

}

b

JOptionPane. showMessageDialog{this, "Unspecified Error Encountered,
program terminates®,"Error", JOptionPane.ERROR_MESSAGE} ;
ix _printStackTrace({);

System.exit (0);

}

//end database

void btnRefresh acticnPerformed(ActionEvent e) {

}

iTextAreal .setText (" ") ;

/7

database

Connection dbConn = null ;

try

{

}

Driver d =
{(Driver)Class.forName {"sun.jdbc.odbec.JdbcOdbecDriver") .newlInstance {) ;

String URL = "jdbc:odbc:" + "MyDbs2";

dhConn = DriverManager.getConnection{ URL,"nouser", "ncopassword”);

Statement stmt;
ResultSet rs;

stmt = dbConn.createStatement () ;
rs = stmt.executeQuery ("SELECT * FROM MachineList") ;

while (rs.next())
jTextAreal .append{rs.getString ("MachineName"} + "\n");

dbConn.close{);

catch (Exception px)

{

JOptionPane.showMessageDialog({this, "Unspecified Error Encountered,
program terminates ","Error",JOpticonPane.ERROR_MESSAGE) ;

px.printStackTrace(};
System.exit (0);

//end database

void btnBackMain actionPerformed(ActionEvent e) {

}

this.setVigible{false};

94

10.

11.

12.

REFERENCES

. Alfalayleh, M. and Brankovic, L. (1998). An Overview of Security Issues and

Techniques in Mobile Agents, In 8" IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security, The Beech Hill Hotel, England.

Amazon Site. (hitp://www.amazon.com) World Wide Web. May 13, 2006

. Blaze, M. Feigenbaum, J. and Lacy, J. (1996). Decentralized Trust Management,

Proceedings of the 1996 IEEE Symposium on Security and Privacy, Washington, DC,
USA, Page: 164, ISBN:0-8186-7417-2

Bonatti, P. Duma, C. Olmedilla, D. and Shahmehri, N. (2005). An integration of
Reputation-based and Policy-based Trust Management. In Semantic Web Policy
Workshop in Conjunction with 4™ International Semantic Web Conference, Galway,
Ireland, Nov

Cohen, PR. and Levesque, H.J. (1990). Intention is choice with comnntment
Artificial Intelligence, 42(2-3): 213-261

Conte, R. and Paolucci, M. (2002). Reputation in artificial societies. Kluwer
Academic Publishers.

DeGroot, M. H. and Schervish, M. J. (2002). Probability and statistics. Place:
Addison-Wesley.

Durfee, E.H. (1999). Practically coordinating. AI Magazine, 20. (1) 99-116.
eBay Site. (http://www.ebay.com) World Wide Web. June 9, 2006

Grandison, T. and Sloman, M. (2000). A survey of trust in internet applications. IEEE
Communications Surveys & Tutorials, 3(4).

Huynh, T.D. Jennings, N.R. and Shadbolt, N.R. (2004). FIRE: An integrated Trust
and Reputation Model for Open Multi-Agent Systems, Proceedings of the 16™
European Conference of Artificial Intelligence(ECAI) Volume 13 , Issue 2, Pages:
119 - 154, Hingham, MA, USA

Jennings, N.R. (1993). Communications and conventions: The foundation of

coordination in multi-agent systems. The knowledge Engineering Review, 8(3): 223-
250

95

13. Jennings, N.R. Faratin, P. Lomuscio, A.R. Parsons, S. Sierra, C. and Wooldridge, M.
(2001). Automated negotiation: prospects, methods and challenges. International
Journal of Group Decision and Negotiation, 10 (2), pages: 199-215

14. Jurca, R. and Faltings, B. (2003a). An Incentive Compatible Reputation Mechanism.
In Proceedings of IEEE Conference on E-Commerce, Newport Beach, CA, USA

15. Jurca, R. and Faltings, B. (2003b). Towards incentive-compatible reputation
management. In R. Falcone, S. Barber, L. Korba, and M. Singh, (Eds.), Trust,
reputation and security: theories and practice. Vol. 2631 of Lecture Notes in Al (pp.
138-147). Springer-Verlag, Berlin, Heidelberg.

16. Kraus, S. (2001). Strategic Negotiation in Multi-Agent Environments. Cambridge,
MA; MIT Press.

17. Kritzinger, F. Truter, D. and McGregor, K. (2003). A secure End-to-End System for
M-Commerce, Technical Report (CS03-24-00, Department of Computer Science,
University of Cape Town, October 12.

18. Maarof, M.A. and Krishna, K. (2002). “An Hybrid Trust Management Model For
MAS Based Trading Society”, 3rd International Symposium on Multi-Agent
Systems, Large Complex Systems, and E-Businesses (MALCEB'2002),
Erfurt/Thuringia, Germany, 8-10 October 2002.

19. Ping, Y. Yan, H. Yafei, H. Yiping, Z. and Shiyong, Z. (2004) Securing ad hoc
networks through mobile agent, Proceedings of the 3™ International Conference on
Information Security, ACM International Conference Proceeding Series; vol.85,
Shanghai, China, pages: 125-129.

20. Pynadath, D. and Tambe, M. (2002). Multiagent Teamwork: Analysing key
teamwork theories and models. In C. Castelfranchi and L. Johnson, Editors,
Proceedings of the first International Joint Conference on Autonomous Agents and
Multi-Agent Systems, Volume 2, pages 873-880.

21. Ramchum, S.D. Huynh, D. and Jennings, N.R. (2004). Trust in Multi-Agent Systems.
In Knowledge Engineering Review, 19(1) pp.1-25

22. Resnick, P. and Zeckhauser, R. (2002). Trust among strangers in internet transactions:
Empirical analysis of eBay’s reputation system. InM. R. Baye, (Ed.), The economics
of the internet and e-commerce. Vol. 11 of Advances in Applied Microeconomics.
Elsevier Science.

23. Rosenschein, J. and Zlotkin, G. (1994). Rules of Encounter: Designing Conventions
for Automated Negotiation among Computers.Cambridge MA: MIT Press.

96

24. Sabater, J. (2003). Trust and Reputation for Agent Societies. PhD thesis, Universitat
Autdonoma de Barcelona.
Avilable: http://www.ilia.csic.es/~jsabater/Documents/Thesis.pdf

25. Sabater, J. and Sierra, C. (2001).REGRET: A reputation model for gregarious
societies. In Proceedings of the fifth international conference on Autonomous agents
(pp- 194 - 195). Montreal, Quebec, Canada. ACM Press

26. Salton, G. and McGill, M. (1983). An infroduction to modern information retrieval.
New York: McGraw-Hill.

27. Teacy, W.T.L. Patel, J. Jennings, N. R. and Luck, M. (2005). Coping with inaccurate
reputation sources: Experimental analysis of a probabilistic trust model. In
proceedings of fourth international joint conference on autonomous agents and
multiagent systems, Netherlands: Utrecht, pp. 997-100.

28. Winsborough, W. Seamons, K. and Jones, V. (2002). Automated Trust Negotiation.
In DARPA Information Survivability Conference and Exposition, Hilton Head, SC,
January

29. Yu, B. and Singh, M. P. (2003). Searching social networks. In Proceedings of the
second international joint conference on autonomous agents and MultiAgent systems
(AAMAS) (pp. 65-72). ACM Press.

30. Yu, B. and Singh, M.P. (2002). An evidential model of distributed reputation
management. In Proceedings of first international joint conference on autonomous
agents and multi-agent systems. Vol. 1. (pp. 294-301). ACM Press.

31. Zacharia, G. and Mags, P. (2000). Trust management through reputation mechanisms.
Applied Artificial Intelligence, 14(9), 881-908.

32. Zuma, S. M. and Adigun, M.O. (2006). CACIP: a pattern for interfacing components
in a context-aware mobile environment, International Association Of Science And
Technology For Development, Proceedings of the 17th IASTED international
conference on Modelling and simulation, Montreal, QC , Canada, Pages: 416 423,
ISBN ~ ISSN:1021-8181 , 0-88986-592-2, May.

97

	Declaration
	Dedication
	Acknowledgement
	Table of contents
	Abstract
	Chapter 1: Introduction
	Chapter 2: Background concepts and literature review
	Chapter 3: Methodology and model development
	Chapter 4: Design and implementation
	Chapter 5: Conclusion
	Appendix A
	Appendix B
	Appendix C
	References

