
i 

 

Declaration 
I, Siyabonga Sifiso Cebekhulu, declare that this dissertation presents my own research work 

and has not been submitted in any form to any other tertiary institution for another degree or 

diploma.  All the material used as source of information has been appropriately 

acknowledged in the text. 

 

 

……………………………………. 

SS Cebekhulu (Mr)  



ii 

 

Dedication 
 

I dedicate this work to my daughter, Siphesihle Sibongakonke Cebekhulu. 

  



iii 

 

Acknowledgements 
 

I would like to express my gratitude to my supervisor, Prof M.O. Adigun, for the guidance 

and support in making this work a reality.  I would also like to make special mention of Mr E. 

Jembere and Mr M.T. Nene for their continuous assistance in shaping up the presentation of 

this work and in the prototype implementation. I am very grateful to Telkom, THRIP and 

NRF, for giving me this opportunity to further my studies. A special thanks to my CAP 

cluster members, P.T. Cwele, N.M. Gumbi and T. Shezi, for the continuous assessment and 

support we have offered each another during the course of our studies. My thanks, also to the 

whole research family in our department for their support.  Last, but not least, I would like to 

express my gratitude to Mr V.E. Conco, for being the friend who has helped me throughout 

this study by providing  me  with mental support, when needed. 

  



iv 

 

Abstract 
 

Small, Micro and Medium Enterprises (SMMEs) play a huge role in improving the economic 

growth of a community.  In the area of Nongoma, where this study is concentrated, most 

SMMEs still use traditional methods, such as street vending, in order to penetrate the market.  

However, these fall short in exposing the business, compared to those using electronic 

business (e-business) technologies.  E-business can provide significant benefits such as cost 

savings, quick execution of business transactions, market for SMMEs collaboration and 

promoting globalisation of business activities.  This work introduces an e-business 

technology in the rural areas of Nongoma with the hope that it can provide many 

opportunities for the resource-constrained SMMEs of that region. One such resource is 

exposure to affordable and reliable Information and Communication Technology (ICT) 

infrastructures.  By introducing an ICT infrastructure to these SMMEs, the aim is to expose 

SMMEs‟ business activities to a much broader market of consumers.  This research was 

aimed at introducing a Grid-based Utility Infrastructure for SMMEs Enabling Technologies, 

(GUISET),  prototype for enabling SMMEs business activities without them actually owning 

the infrastructure. This is in the hope of giving them an opportunity to explore the global 

market. 

In this research, software development paradigms were compared based on the GUISET 

requirements. The requirements, formulated from the GUISET characteristics, are tailored 

towards an infrastructure for addressing service composition and dynamic service selection. 

These requirements were used to select a development paradigm deemed to be the most 

suitable development strategy for the GUISET infrastructure.  The emergence of open-source 

solutions have become a „hot‟ topic in software development and tool support in the last 

decade. 



v 

 

 Its application in different fields, including Service Oriented Computing (SOC), led to open 

source software being the natural choice for prototyping GUISET infrastructure and the 

Nongoma Online Stores, (NOS). The GUISET infrastructure supports the NOS application 

through the enablement of, (1): the assembly of components and (2): dynamic binding to 

services used by the defined assembly in (1), to achieve its business goal.  The completion of 

a business process by the NOS automatically validates the GUISET infrastructure as service 

composition and dynamicity have been achieved.  



vi 

 

Table of Contents 
Declaration............................................................................................................................. i 

Dedication ............................................................................................................................. ii 

Acknowledgements .............................................................................................................. iii 

Abstract ............................................................................................................................... iv 

Table of Contents ................................................................................................................. vi 

List of Acronyms ................................................................................................................. ix 

List of Figures ....................................................................................................................... x 

List of Tables ....................................................................................................................... xi 

Chapter 1: Introduction ......................................................................................................... 1 

1.1 Overview ..................................................................................................................... 1 

1.2 Nongoma: The Area of Study ...................................................................................... 4 

1.3 Indications of the Problem ........................................................................................... 7 

1.4 Statement of the Problem: .......................................................................................... 10 

1.5 Research Question(s): ................................................................................................ 10 

1.6 Rationale of the Study: .............................................................................................. 11 

1.7 Research Goal and Objectives: .................................................................................. 11 

1.8 Project Delineation: ................................................................................................... 12 

1.9 Research Methodology: ............................................................................................. 13 

1.9.1 Literature Survey: ............................................................................................... 13 

1.9.2 Prototyping: ........................................................................................................ 14 

1.9.4 Proof of Concept:................................................................................................ 14 

1.10 Organisation of the Thesis: ...................................................................................... 15 

1.11 Chapter Summary: ................................................................................................... 16 

Chapter 2: The GUISET Infrastructure ................................................................................ 18 

2.1 Introduction ............................................................................................................... 18 

2.2 GUISET: The Foundational Reference Technology: .................................................. 19 

2.2.1 Grid and Utility................................................................................................... 19 

2.2.2 The GUISET Architecture .................................................................................. 23 

2.2.3 Research Challenges in GUISET: ....................................................................... 26 

2.2.4 Gaps Left by the Reference Architecture: ............................................................ 29 

2.3 GUISET Related Initiatives: ...................................................................................... 30 

2.4 Motivating Scenario: ................................................................................................. 32 



vii 

 

2.5 Characteristics of the GUISET infrastructure: ............................................................ 35 

2.6 Chapter Summary: ..................................................................................................... 35 

Chapter 3: Software Development Paradigms ...................................................................... 37 

3.1 Introduction: .............................................................................................................. 37 

3.2 GUISET based Comparison Framework: ................................................................... 37 

3.3 Software Development Paradigms: ............................................................................ 39 

3.3.1 Aspect Oriented Programming (AOP): ................................................................ 40 

3.3.2 Component Based Software Engineering (CBSE): .............................................. 41 

3.3.3 Service Oriented Computing (SOC): ................................................................... 43 

3.3.4 Resource Oriented Computing (ROC): ................................................................ 45 

3.4 Comparison of Software Development Paradigms: .................................................... 46 

3.5 Software Development Paradigms: State of the Art ................................................... 53 

3.7Chapter Summary: ...................................................................................................... 55 

Chapter 4: Developing the GUISET infrastructure from Existing Open-Source Solutions.... 57 

4.1 Introduction ............................................................................................................... 57 

4.2 GUISET Service Composition and Dynamic Binding Architecture (GuSCaDA)........ 57 

4.2.1 GuSCaDA Architecture design requirements ...................................................... 58 

4.2.2 Design of the Architecture .................................................................................. 59 

4.2.3 Operational and Functional Description: ............................................................. 61 

4.3 Software Development and Evolution ........................................................................ 63 

4.3.1 Service Component Architecture: ....................................................................... 65 

4.3.2 OSGi: ................................................................................................................. 69 

4.4 Introduction to Open Source solutions: ...................................................................... 71 

4.4.1 SCA: Apache Tuscany: ....................................................................................... 71 

4.4.2 OSGi: Eclipse Equinox: ...................................................................................... 72 

4.5 State of the SCA and OSGi runtime environments: .................................................... 73 

4.6 Chapter Summary: ..................................................................................................... 74 

Chapter 5: Prototyping a GUISET SMME enabler .............................................................. 76 

5.1 Introduction: .............................................................................................................. 76 

5.2 Prototypes Assumptions: GUISET infrastructure and NOS Application: .................... 76 

5.3 Prototyping: ............................................................................................................... 77 

5.3.1 Prototyping Approaches:..................................................................................... 78 

5.3.2 Selected Approach: ............................................................................................. 79 



viii 

 

5.4 Prototyping the GUISET Infrastructure: .................................................................... 80 

5.5 Prototyping the NOS application: .............................................................................. 84 

5.6 Chapter Summary: ..................................................................................................... 93 

Chapter 6: Conclusions and Future Work ............................................................................ 94 

6.1 Introduction: .............................................................................................................. 94 

6.2 Conclusion: ............................................................................................................... 94 

6.3 Limitations and Future Work: .................................................................................... 95 

6.4 Chapter Summary: ..................................................................................................... 97 

References .......................................................................................................................... 98 

 

  



ix 

 

List of Acronyms 
AOP Aspect Oriented Programming 

CBD Component Based Development 

CBSE Component Based Software Engineering 

GUISET Grid-based Utility Infrastructure for Small, Micro and Medium 

Enterprises Enabling Technologies 

GuSCaDA GUISET Service Composition and Dynamic Binding Architecture 

ICT Information and Communication Technology 

IT Information Technology 

NOS Nongoma Online Stores 

NTAC Nongoma Tourism, Arts and Crafts 

OSGi Open Service Gateway initiative 

ROA Resource Oriented Architecture 

ROC Resource Oriented Computing 

SCA Service Component Architecture 

SMMEs Small, Micro and Medium Enterprises 

SOA Service Oriented Architecture 

SOC Service Oriented Computing 

WWW World Wide Web 

  



x 

 

List of Figures 
Figure 1.1: An Arial view of Nongoma Community. Insert: A Nongoma woman with her arts

 ............................................................................................................................................. 5 

Figure 1.2: A typical market for products (pictures from The Africa Image Library) ............. 7 

 

Figure 2.1: Grid-based Utility Infrastructure for Small, Micro and Medium Enterprises 

Enabling Technologies (GUISET) architecture [Adigun et al, (2006)] ................................. 23 

Figure 2.2: Reference Architecture for the Mobile Commerce Product Line [Adigun et al, 

(2006)] ................................................................................................................................ 26 

Figure 2.3: A Typical application using external services .................................................... 34 

 

Figure 3.1: The Application Layer - bridging business and technology [Cheesman and 

Ntinolazos (2004)] .............................................................................................................. 52 

 

Figure 4.1: GUISET Services Composition and Dynamic Binding Architecture (GuSCaDA)

 ........................................................................................................................................... 60 

Figure 4.2: Typical SCA diagram (Chapell, 2005) ............................................................... 67 

Figure 4.3: OSGI framework (Li et al, 2009)....................................................................... 69 

 

Figure 5.1: GUISET Middleware Interaction Architecture ................................................... 80 

Figure 5.2: GUISET Infrastructure Use Case Diagram ........................................................ 82 

Figure 5.3: GUISET infrastructure sequence diagram .......................................................... 83 

Figure 5.4: GUISET Infrastructure Activity Diagram .......................................................... 84 

Figure 5.5: Nongoma Online Store and Infrastructure SCA-based designs........................... 86 

Figure 5.6: Service interaction diagram ............................................................................... 87 

Figure 5.7: XML view of service interactions ........................ Error! Bookmark not defined. 

Figure 5.8: Administrator sequence diagram ....................................................................... 88 

Figure 5.9: SMME Client sequence diagram ....................................................................... 89 

Figure 5.10: Nongoma Online Store Solution ...................................................................... 90 

Figure 5.11: Example of a search for a product (Trendy and Trinket) .................................. 90 

Figure 5.12: Example of the returned product (Trendy Trinket) after search. ....................... 91 

Figure 5.13: Example of placing an order for an item .......................................................... 91 

Figure 5.14: Example of an order confirmation ................................................................... 92 

Figure 5.15: Example of the products catalogue .................................................................. 93 

 

  



xi 

 

List of Tables 

 

Table 3.1: Software Development paradigms comparisons .................................................. 51 

 

Table 5.1: Business processes and log files............................ Error! Bookmark not defined. 



1 

 

Chapter 1: Introduction 

1.1 Overview 

The importance of Small, Micro and Medium Enterprises (SMMEs) is vastly being 

recognized all over the world because of its contribution to economic development.  SMMEs 

constitute a significant portion of the business sector especially in developing countries. 

Some of these SMMEs trade in arts and crafts, traditional wear of local tribes, and even in 

providing accommodation for tourists (Migiro and Adigun, 2005; Adigun, 2007; Dalvit et al, 

2007; Njeje, 2008). Recognising the importance of SMMEs, countries around the world have 

established some initiatives to promote and to sustain SMMEs, especially in rural areas 

(Migiro and Adigun, 2005; Maswera et al, 2008; Modimogale and Kroeze, 2011).   

Promoting and maintaining of SMMEs remains one of the highest priorities of the South 

African government because of its potential benefits to the local economy (DTI; 2005).  The 

benefits derived from promoting SMMEs, especially in rural areas can include an increase in 

employment, improved market share and increased trading.  SMMEs have only been able to 

deliver most of these benefits through the traditional market arena, whereas established big 

enterprises also use Web technologies to perform the same business activities thereby 

speeding up the process of reaching the targeted customers.  The Web is one of the most 

revolutionary technologies today; it has been changing the business environment and has had 

a dramatic impact on the future of electronic business (e-business).  The ability to perform 

business activities online is, among other things, resulting in a huge increase in Internet 

usage, be it buying goods, making bookings, or accessing other services. 

The advent of the Internet and World Wide Web (WWW) back in the early 1990s also 

brought about the e-business paradigm which has since been considered as the modern and 

new way of conducting business.  Researchers such as: Dalvit et al, (2007), Akoumianakis 



2 

 

(2008), Sibiya et al, (2008), Njeje (2008), and Modimogale and Kroeze (2011) have 

identified the need for SMMEs to expose their business ventures to the e-business paradigm, 

thereby taking advantage of the global market. This is gained by conducting business 

activities online with possibly millions of Internet users as potential customers. E-business is 

no longer an alternative, it is an imperative.  By making Information and Communication 

Technologies (ICT) implementation one of the essential parts of their businesses, SMMEs 

can possibly compete with big businesses for the market share. This can in turn allow 

SMMEs to achieve their goal of survival and growth in the market.  E-business is fast gaining 

ground as an accepted business paradigm, through the usage of ICTs, as more and more 

businesses are implementing website functionality for performing their business activities 

over the Web (Njeje, 2008; Dyakalashe, 2009). In order for an e-business to be successful, 

there is a need for building and deploying an infrastructure supporting these business 

activities.  Unfortunately for decades, development of software applications has mainly been 

developing applications from scratch, which has seen huge amounts of budgets exhausted, 

longer time-to-market, and difficulties in extension of functionality.   

Software development efforts have seen an emergence of a culture focusing on integrating 

existing and new modules in the development of software applications (Breivold and 

Larsson; 2007). This approach of integrating modules achieves faster time-to-market, re-

using of modules and moving beyond the point of tightly coupled environments.  It allows 

accessing of functionality residing in geographically dispersed locations of any platform at 

the point of execution.  Over the years in the field of Software Engineering, several 

approaches have been attempted of putting together and/or developing and deploying an 

infrastructure capable of addressing users‟ requirements. Software development paradigms 

and technologies can be used in the same field to provide a systematic approach to the 

realisation of the intended software development project.  Among the different development 



3 

 

approaches in practice, none has been found to be superior to the other; rather, their 

application is based on project requirements. Project requirements are usually the optimal 

selection criterion for the software development paradigm applied in a development process.  

There are many software development paradigms available in the software engineering field. 

These software development paradigms have differences and similarities in some aspects 

based on features they provide in the development process.  In other words, some paradigms 

may differ in the approach they use in the realisation of a project or when comparison is 

done, based on how they perform when given a particular functionality.  How easy or 

difficult it is to apply the paradigm in the development process is usually based on the 

support the development paradigm provides.  There are software development paradigms that 

are well documented and have been applied repeatedly in the development processes, while 

there are also those that have been created in ad hoc situations to achieve a specific goal.   

Among the available paradigms, the selection of a paradigm for this work, concentrated on 

paradigms that offer substantial documentation and have had their share in application 

realising software development projects as candidate paradigms.  These paradigms include: 

Component Based Software Engineering (CBSE), Service Oriented Computing (SOC), 

Resource Oriented Computing (ROC), and Aspect Oriented Programming (AOP).  The 

evolution of development approaches, aims at applying a systematic and disciplined approach 

to development in addition to building infrastructures evolvable over time. This is ideal for 

developing an e-business infrastructure, enabling business activities where components are 

re-used among different business processes of more multiple users.  The business activities of 

a user, be it an SMME, are achievable through some combination of existing modules, giving 

a look and feel of ownership of an infrastructure rather than in the case of merely a virtual 

environment.    



4 

 

This work introduces a Grid-based Utility Infrastructure for SMMEs Enabling Technologies 

(GUISET) as an e-business solution for the Nongoma area.  The concept of GUISET is 

further elaborated in Chapter 2 as the building block for this work, furthermore, an 

examination of several software development paradigms and their supporting tools for 

developing an ICT infrastructure for enabling SMMEs is conducted. This is done to assist 

SMMEs to expose their business activities online.  Thus, the indications of the problem at 

hand are identified, which is how the infrastructure has been characterised.  This is then 

followed by the identification of the operational characteristics the infrastructure must 

exhibit, which is how the basis of comparison for software development paradigms applied 

has been formed.  Finally, the open-source solutions world is explored to deduce possible 

tools for the development of an e-business application serving as proof that the GUISET 

infrastructure has been realised. 

1.2 Nongoma: The Area of Study 

In most parts of the world there are regions deemed as underdeveloped, especially in 

developing countries in Africa and Latin America.  These regions have formed SMMEs that 

produce various products with the hope of selling them mostly to passing tourists.   SMMEs, 

especially in developing countries such as in Africa, Asia, and Latin America, lack 

infrastructural exposure to ICTs and operate using traditional tools (Adigun, 2007; Njeje, 

2008; Dalvit et al, 2007).  Various regions in South Africa organise local SMMEs into small 

cooperatives.  This study focuses on the Nongoma Tourism, Arts and Crafts (NTAC) which 

embody various SMMEs in Nongoma (See an aerial view of the Nongoma area in Figure 1.1 

below.) Several authors such as Migiro and Adigun (2005), Adigun et al, (2006), Dyakalashe 

(2009), Chiliya et al, (2011) state the adoption of ICT can give SMMEs the ability to be 

innovative and flexible, widen their market and extend their business hours.                         



5 

 

For SMMEs to succeed in using ICT as a competitive tool, they should align ICTs with the 

business goals and integrate it with their business processes. 

The Nongoma Tourism, Arts and Crafts (NTAC) SMMEs offer various products ranging 

from arts and crafts to traditional wear while others offer services such as accommodation for 

tourists.  Most of these formations operate in the traditional market using traditional methods 

such as vending tables, street vending and other means, including standing by the street and 

even walking between lanes, where a seller carries his products on a box or by hand for 

display.  These SMMEs lack the finance that is needed to own the ICT infrastructure, such as 

computing resources that are needed to operate an online store thereby taking opportunity of 

the e-business paradigm. Herselman (2003) stated that South Africa is developing in an 

uneven manner with the urban areas having the modern technologies, whilst rural areas are 

having little or no infrastructure needed for venturing into the e-business world at all.  Even 

though this might be a shortcoming to the inhabitants of rural areas, access to ICT can be 

leveraged through the usage of cell phones which most South Africans now own. Cellular 

phones are a good platform for delivering services. 

 

Figure1.1: An Arial view of Nongoma Community. Insert: A Nongoma woman with her arts 



6 

 

Over the recent years Nongoma has been increasingly becoming a tourist attraction 

destination mainly because of its housing of the royal palaces which belong to the current 

Zulu king, King Goodwill Zwelithini. There is also an annual event called “uMkhosi wo 

Mhlanga” (the reed dance) attracting thousands of tourists.  The popularity of the reed dance 

which is a Zulu tradition,  has so much attraction people of many races come to watch it.  The 

family members of the royal family, as a way of promoting interest in Nongoma, are often 

willing to speak to tourists about the Zulu Royal House and the traditions of its people.  They 

also allow tourists to visit their homes, (Zululand Tourism, 2009).  Dr Liz Nyholm of the 

Omnia Practice in Yardley Green Medical Centre, talks of her experiences at the reed dance 

in her blog and some comments posted on the blog are appealing to possible/future tourists 

yet to visit (Nyholm, 2010).  The growth in tourists visiting, in turn, provides opportunities 

for the SMMEs in trade to display their products.  This exposure of Nongoma makes it a 

noticeable place especially showcasing its traditional wear, the area strongly perceived to be 

the motherland of the Zulus.  During these events products are greatly exposed to tourists, but 

the drawback is that these products are available throughout the year while events are only 

held once in a year.   



7 

 

 

Figure1.2: A typical market for products (pictures from The Africa Image Library: 

http://www.africaimagelibrary.com/) 

 

Figure1.2 shows a typical example of how business is conducted in the traditional market 

where sellers (SMMEs) start trading anywhere, on the street, outside malls, standing by 

traffic lights. Most of these forms of trading are illegal. There is thus a need to develop an IT 

infrastructure to enable the NTAC to offer to its embodied SMMEs.  In this way, their 

products will be available to their national customers throughout the year.  At the time of 

conducting this research, there was no existing electronic enabling infrastructure for the 

SMMEs in the region of Nongoma.  Having an e-business enabling infrastructure gives 

greater advantage as Sun (2011) stated that one of the most popular activities conducted on 

the Internet is through online shopping.  As he clearly states: “it can be done in your leisure 

time, even in one‟s pyjamas”. 

1.3 Indications of the Problem 

In the early stages of this research, the focus was on studying the adoption of ICT among 

SMMEs in developing countries as an e-business enabler.  This effort revealed diverse 



8 

 

shortcomings hindering the growth in the usage of ICTs to conduct business activities.  Issues 

negatively affecting the growth of e-business adoption by SMMEs include: lack of 

Information Technology (IT) knowledge; cost of IT; lack of understanding of the benefits e-

business enabling technologies can provide; and how to measure those benefits (Management 

Services, 1997; Igbaria et al, 1997; Pollard and Hayne, 1998; Adigun et al, 2006; COFISA 

Project Plan, 2008; Cloete et al, 2002; Kshetri, 2007). Most SMMEs are still using the 

traditional methods to survive.  By traditional, reference is made to street vending and cluster 

of tables for selling at taxi/bus stations.  What they need is to take advantage of the power of 

ICT in order to be competitive whether small, big or global scale (Modimogale and Kroeze, 

2011).  

 GUISET aims to be a starting point for SMMEs wanting to join the supply chain linkage 

with large enterprises.  Opportunities such as employment, poverty alleviation, as well as 

social growth are likely to increase by the development of an infrastructure to support 

SMMEs in rural communities (Adigun et al, 2006, Warden and Motjolopane, 2007; Golding 

et al, 2008, Ekabua, 2010). 

In order to realise an infrastructure for enabling business activities to be conducted 

electronically, there is a need for collaboration among the necessary technological tools.  

Composition of services for creating environments supporting business-to-business process 

or enterprise application integration has attracted a lot of attention over the years 

(Bucchiarone and Gnesi, 2006).  Li and Parashar (2006) state having available services may 

not necessarily, in itself, address an application‟s requirements but rather several services 

need to be composed in an application-specific manner to construct the functionalities 

required.  Currently, the state of software applications shows that there is a lot of dynamicity 

involved.  The aim is building software applications that require less or no human 

intervention. Zhou and Niu (2010) emphasised how critical it is for an e-business 



9 

 

infrastructure to be dynamic and upgradable at runtime to increase flexibility. If there is an 

application that has to be developed it has to dynamically get what it is going to use in a 

given case to satisfy its business goal. 

Among the constraints hindering the adoption of ICT by SMMEs is the cost of owning the 

infrastructure.  This was the preliminary motivator for selecting open-solutions in the 

development of the infrastructure, which later prompted motivators such as availability, 

access to code and possibilities of extension to satisfy specific goals of the developer.  

Pastrana and Lopez (2009) state evolution has been gained by open-source solutions in the 

development of software also avoiding vendor lock-in, and together with Jarvensivu et al 

(2006) they state the possibilities of integrating several open-source solutions into one 

software application. Yan et al (2009) stated that finding a suitable approach of combining 

existing tools to realise an infrastructure has proven to be a challenge due to the diversity of 

business functions and accommodating legacy systems.   

Given the possibility that existing technologies could be used to compose an infrastructure 

for e-business support; a strategy is required that, (i), identifies the candidate technologies as 

well as, (ii), combining them to realise service composition and dynamic service binding.  

The Centre for Mobile E-services for Development at the University of Zululand is currently 

working on a research theme called GUISET (Grid-based Utility Infrastructure for SMMEs 

Enabling Technologies).  GUISET is an architecture targeted at providing IT services such as 

application software to SMMEs without actually owning them, (Sibiya et al, 2008; Ekabua, 

2009), to conduct business activities.   

GUISET proposes to be a technology enabler that fits into the service oriented arena by being 

both the service producer and service consumer.  Several research activities have been 

explored and reported at the centre addressing some aspect of GUISET and this work is also 



10 

 

one of them.  In the previous attempts to realising GUISET, none has concentrated on 

producing a prototype that mainly addresses issues concerned with SMMEs.  Since GUISET 

is a portal of services offered to SMMEs, this work specifically concentrates on finding a 

strategy for composing and dynamically binding services for its service consumers to achieve 

their business goal. 

1.4 Statement of the Problem: 

 

In the past software development depended on building solutions from scratch. Presently 

most enterprises are trying to move away from that approach towards the approach of 

building by integrating existing infrastructures.  Adigun et al, (2006) stated that there is an 

affordable technology for SMMEs, all that is needed is an appropriate strategy to make these 

technologies available using the utility approach to service delivery.  The GUISET reference 

model is yet to be realised in a concrete architecture.  In this work an argument is presented 

on how service composition is at the heart of GUISET.  Therefore putting together a 

combination of existing technologies in a GUISET-style prototype can be used to 

demonstrate GUISET enabling of basic e-business. 

1.5 Research Question(s): 

To address the issue of developing an ICT infrastructure that supports service composition 

and dynamic service binding the following question is addressed in response to the gaps 

defined in the GUISET reference model: 

1. Which mechanism can be used to demonstrate the GUISET Software Infrastructure? 

GUISET will be demonstrated by deploying an infrastructure aimed at assisting SMMEs in 

Nongoma to conduct their business activities online.  The proposed strategy addresses the 

following sub-questions to qualify as GUISET: 



11 

 

 How can service components be coordinated to realise a specific e-business goal? 

 How can dynamic integration of components be achieved? 

1.6 Rationale of the Study: 

 

The expected outcome of this study is a software infrastructure that is evolvable in with time 

to provide for additional functionalities to be performed.  By enabling service composition 

and dynamic service binding support for the infrastructure there are possibilities on cost 

savings in the development process of the infrastructure.  This, for the resource constrained 

SMMEs, is a benefit as an application is assembled on request with quick time to market.  A 

Nongoma Online Store is deployed to demonstrate addressing some aspects of the 

infrastructure. The prototype enables cooperatives to register and sell their products online.  

The infrastructure is aimed at having re-usable business services, allowing business activities 

to be realisable from a set of services with a service possibly being used in a number of 

activities at once. Software developers will gain foundational knowledge for selecting a 

suitable paradigm for deploying an e-business infrastructure using open source solutions.  

1.7 Research Goal and Objectives: 

 

Research Goal: 

The aim of this research is determine the minimum functionalities that configure the GUISET 

architecture reasonably. 

Objectives: 

To achieve the goal of this research, the following objectives are envisaged: 

i. To identify the basic functionalities of GUISET to be interfaced. 



12 

 

ii. Do a comparative analysis of candidate development approaches/paradigms to 

generate possible GUISET configuration alternatives. 

iii. Use the basic functionalities to identify candidate open-source tools guided by results 

of objective (ii) that can be used to craft GUISET. 

iv. Demonstrate at least one GUISET configuration. 

1.8 Project Delineation: 

 

The work covered in this research is limited to realising the first GUISET configuration that 

supports dynamic service binding.  The application of evolutionary prototyping was mainly 

for developing a prototype that can go through a number of iterations until it fully satisfies 

the GUISET requirements, easily extendable with additional functionality as the number of 

requirements increases.  For the purposes of this research only a single iteration of the chosen 

configuration was developed with the intentions of showing how using SOC technologies 

GUISET requirements can be met.  This work forms part of an on-going research by the 

Centre of Excellence for Mobile e-Service, Department of Computer Science, University of 

Zululand, South Africa, which aims at building an evolutionary infrastructure, the GUISET.  

The scope of the work reported in this document was limited to finding an architectural 

configuration together with its implementation tools that can be used to demonstrate that the 

GUISET infrastructure supports dynamic service binding, as the core requirements of 

GUISET are service composition and dynamic service binding.  Due to the configuration of 

GUISET requirements discussed, this then limited the study to involve no user evaluation.  

The exclusion of users is based on the fact that the issues of dynamic service binding are 

deemed to be technical issues that are not easily contributed to by basic users; the expectation 

is that they are limited to the development team.   



13 

 

The chosen configuration is an e-business infrastructure that holds and acquires services to be 

used by its member groups.  These services are then composed on demand to fulfil some 

business goal as expected by the group.  Therefore, the GUISET configuration under 

consideration, is only limited to achieving service composition and dynamic binding of 

services in a typical business process. The validation approach for the business process relied 

on completing one or two business transactions, which in this case involved searching the 

product catalogue and placing an order for the product of choice.  In this instance some of the 

services that are composed worth mentioning are the catalogue service, order service, 

warehouse service and the email notification service and these services dynamically bind to 

resources to ensure the right provider is chosen to satisfy the request. Upon the success of the 

mentioned validation approach which was executed using the Nongoma Online Stores (NOS) 

an e-business application, then the GUISET configuration requirements can be said to have 

been met.  Using the NOS, a number of services are composed to complete the business 

process of placing an order for a product.  The NOS itself is an approach that has been 

adopted for the purposes of evaluating the configuration. 

1.9 Research Methodology: 

In the process of conducting this research work, a number of research methods were applied.  

The research methods used are presented here to give a clear indication on how they have 

been applied in the process of conducting the research. 

1.9.1 Literature Survey: 

 

Literature was searched in the following knowledge areas: GUISET prototyping 

requirements; survey of the software development paradigms to match GUISET prototyping 

requirements; existing technologies – support for service composition and dynamic service 

binding.  The areas explored in literature involve understanding the nature of e-business 



14 

 

adoption in rural communities, both in South Africa and abroad, as a close relation since 

there is not much reported about the area of study.  Software development paradigms such as 

SOC, CBSE, etc., and their supporting tools, especially open-source solutions, were explored 

to select one as an approach to the deployment of the desired infrastructure. 

1.9.2 Prototyping: 

 

A prototype implementation was put together using the tools selected when the paradigms 

were compared based on the GUISET requirements.  The prototypes, the GUISET 

infrastructure realised through a combination of existing open-source tools and the Nongoma 

Online Stores serving the purpose of proving the GUISET infrastructure has been realised.  

Both these prototypes are implemented using the Java programming language particularly for 

the implementation of business logic and other tools such as Apache Tuscany, Eclipse 

Equinox and others.  The use of open source tools was deemed as an important endeavour 

when the prototypes were implemented with opportunities to swap and change between 

varieties of vendor-specific products with no costs involved.  The Nongoma Online Stores 

(NOS) aims to show how an e-business application can be deployed using Service 

Component Architecture (SCA) to enable the ease of using services implemented in any 

technology and also addressing some of the underlying issues in research such as in-service 

composition and dynamic binding to services to deploy the infrastructure using dynamic 

modules of the OSGi environment.  

1.9.4 Proof of Concept: 

 

To qualify the service-oriented application as a viable GUISET configuration, the NOS 

application demonstrates how the configuration assembles components and using services on 

the fly.  The NOS application configures a business process on behalf of an SMME through 

the assembly of business components at design time and in turn uses services on the fly to 



15 

 

satisfy the business goal of these business components.  A successful completion of the 

business process validates this configuration as the GUISET infrastructure.  This is what has 

been deemed sufficient for demonstrating that a typical GUISET configuration is proved 

feasible.  The NOS is just one typical configuration f GUISET showing what can be achieved 

from combining business services based on the intended requirements that must be fulfilled. 

1.10 Organisation of the Thesis: 

The rest of this dissertation is briefly organised as follows: 

Chapter 2: The GUISET Infrastructure:  The chapter seeks to lay out the background 

knowledge of the GUISET concept using both grid and utility computing as its building 

blocks. Then the existing research challenges in service composition and dynamic service 

binding presented show how GUISET can be a realisable software development artefact 

using the available technologies.   Then a motivating scenario and the infrastructural 

characteristics are presented to outline what support is provided by GUISET in the context of 

this work. 

Chapter 3: Software Development Paradigms: The chapter begins by presenting the 

GUISET based evaluation framework stating the requirements to be met for an infrastructure 

to qualify as GUISET. This is then followed by the introduction of the software development 

paradigms that were candidates for this project.  Lastly a comparison of these software 

development paradigms was conducted to find one paradigm that can be used to realise the 

GUISET infrastructure.   

Chapter 4: Open-Source Solutions in GUISET infrastructure:   

The chapter presents the conceptual architecture informing the implementation details of the 

infrastructure and the concept of software development and evolution together with the 

approaches that can achieve it. The chapter then presents the open-source solutions that have 



16 

 

been adopted for the development of the infrastructure to enable building applications 

evolvable over time. The open-source solutions selection is based on the approaches 

discussed in the software development and evolution section.  

Chapter 5:  GUISET Infrastructure Realisation: 

 The chapter started by presenting the assumptions made on the prototypes; the GUISET 

infrastructure and the NOS application.  This is then followed by the prototyping concepts 

acting as guidance for the type of prototyping conducted in this work.  Lastly, the prototype 

implementation of NOS, a typical application supported by the GUISET infrastructure, is 

presented as proof-of-concept that the GUISET infrastructure has been realised. 

Chapter 6: Conclusion and Future Work:  

The chapter started by giving a brief introduction to the aims of this work; furthermore, a 

summary of the activities performed conducting this research is given.  Then the limitations 

and future work are discussed, with the limitations outlining the intentions of this report and 

future work giving directions on the suggested future directions for extending this work. 

 

1.11 Chapter Summary: 

 

The chapter started by presenting foundational information on the research already that has 

been conducted with the aim of sustaining SMMEs in rural areas using Information and 

Communications Technologies (ICT), e-business development and the software development 

paradigms which this work is based upon, followed by some background on Nongoma which 

is the area being studied to clarify the significance of providing an e-business infrastructure in 

that region.  This is then followed by indicators of the problem in providing the GUISET 



17 

 

infrastructure.  The GUISET infrastructure is thoroughly explored in the next chapter as the 

building block for this work.  



18 

 

Chapter 2: The GUISET Infrastructure 

2.1 Introduction 

This chapter introduces the software development concept in web applications as an approach 

to realising the grid based GUISET infrastructure.  Grid is defined by Ekabua (2009) as a 

collaboration of geographically dispersed organisations with the intention of sharing 

physically distributed resources virtually as a single resource for its users.  Grid computing 

enables the provisioning, accessing, sharing and management of resources and services which 

can be application software, storage facilities, processing capabilities and databases.  The 

vision of grid computing is bringing together heterogeneous resources and allocating them 

efficiently to applications. 

GUISET was proposed by Adigun et al, (2006) to provide capabilities of both grid and utility 

computing in a single environment to SMMEs. The primary aim of GUISET is to provide a 

service market for SMMEs.  It offers a special intermediary for service discovery, selection, 

negotiation and guaranteed quality of service on a utility-based approach.  Access to GUISET 

is acquired through group memberships that acquire a minimum set of native services for use 

by its members.  Members of a group, among others, are SMMEs that have formed a 

cooperative relationship prior to joining or who gain membership by joining one of the 

existing groups.  All the GUISET native and acquired services are stored in a repository.  The 

utility approach is envisioned to provide an affordable access to Grid services deployed in the 

infrastructure.    An SMME is only charged by the group for business services composed 

together to complete a business process. The application of a pay-per-use charging model is 

meant to address the lack of financial stability constraint. This is for enabling SMMEs to 

operate swiftly in the e-business market as costs are varied towards usage. 



19 

 

2.2 GUISET: The Foundational Reference Technology: 

The GUISET architecture is based on the idea of putting together existing computing 

resources and/or technologies in the realisation of the GUISET infrastructure.  This section 

gives an overview of the concepts of Grid and Utility Computing as the foundation and 

motivating force behind the GUISET infrastructure.  This section has been organised as 

follows: Section 2.2.1 discusses the concepts of grid and utility computing as the main 

building blocks in the realisation of the infrastructure; Section 2.2.2 briefly outlines the 

GUISET architecture and gives an in-depth look at the different layers of the architecture and   

Section 2.2.3 discusses the research challenges to be met in the realisation of the GUISET 

infrastructure. 

2.2.1 Grid and Utility 

The purpose of Grid was to allow access to geographically-dispersed and underused 

computing resources to provide the required computing capability.  A “resource” in the 

context of grid computing refers to any entity that can be used to fulfil the requirements of 

users.  Foster et al (2001) states that sharing in grid computing goes beyond that of file 

sharing, but rather their main concern is on sharing resources.  In that way a resource can be a 

computing node, data storage and/or software applications.  Even though grid computing was 

introduced by research organisations to support computer-intensive scientific applications 

and share, at most, massive research databases, the latest developments in grid computing 

have seen the concept recognised as a foundation for flexible management of internal IT 

resources by all types of organisations (Srinivasan and Treadwell, 2005). The organisations 

that have adopted the usage of grid computing and closely related to what GUISET aims to 

achieve to mention just a few are SAS (http://www.sas.com/en_us/home.html), TIBCO 

Software Inc (http://www.tibco.com/), IBM (http://www.ibm.com/us/en/) and Hewlett 

Packard (www.hp.com/go/grid). The aforementioned enterprises have adopted the use of 

business grids they have developed to assist in providing needed platforms for addressing 

http://www.sas.com/en_us/home.html
http://www.tibco.com/
http://www.hp.com/go/grid


20 

 

business needs such as e-commerce platforms.  The intention of business grids is mainly to 

address the ever-changing needs of e-business technologies.  A perception of increased 

business value is enough for an organisation to adapt to using business grids.  Business grids 

middleware are responsible for enabling dynamic allocation of IT resources to business 

applications (Savva et al, 2004).  A distributed system aiming to dynamically aggregate and 

co-ordinate various resources across enterprises and improve their utilisation in a way that 

improves or increases the overall productivity that can be loosely defined as an enterprise 

grid (Nadiminti and Buyya, 2005).  Enterprise grids basically entail using grid computing 

within the context of a business or enterprise instead of using it in solving scientific 

problems.  Enterprise grid is a kind of grid computing approach that can make grid 

computing an attractive approach in the business setting. 

Grid computing aims to promote full utilisation of resources that have been deemed under-

utilised by offering them for usage, whenever in idle mode, to other users.  The main 

objective of Grid computing is resource sharing and coordinated problem solving in dynamic 

and multi-institutional virtual organisations (Foster et al, 2001).  A computer grid can be 

provisioned on demand to support a variety of enterprise applications and users in turn align 

their IT demand according to their business activities.  It is worth noting that grid computing 

technologies still need some improvements to match other computing technologies so as to 

truly achieve distributed resource sharing across heterogeneous and dynamic environments.  

True distributed resource sharing enables easy integration between several resources 

available for utilisation.  The computer grid can also be viewed as virtual organisations (VO), 

as they are mainly formed to solve ad hoc problems with their existence usually relying on 

the duration of the problem being addressed.  As Joseph et al (2004) stated, the success of 

grid computing clearly depends on integration and service orientation by creating these VO 

that use some combination of services to solve specific problems. 



21 

 

Grid computing lays the foundation for adaptive enterprises and the vision of utility 

computing by providing collaborative high-performance computing resources and data 

sharing.  In an adaptive enterprise, goods‟ or services‟ demand and supply are matched and 

synchronised at all times.  Such an organisation optimises the use of its resources, (including 

its information technology resources), always using only those it needs and paying only for 

what it uses, yet ensuring that the supply is adequate to meet demand. In order to achieve the 

goals of grid computing, the utility computing model has been suggested for deploying grids 

in an enterprise (Savva et al, 2004). Web services are the core mechanism for both grid and 

utility computing as they provide the functionality required. Web services enable ease of 

applying the utility model as they possess the capability of offering the necessary 

functionality without any additional ties such as owning the service. 

Utility Computing as a service provisioning model that enables a service provider to make 

available computing resources and infrastructure to service users on request.  This model 

takes the same mechanism as that of utilising electricity, where it encompasses the ideas of 

outsourcing and on-demand availability.  The key concept of utility computing is 

outsourcing.  In utility computing services offered charge on pay-as-you-go basis thereby 

enabling users to pay per use.  This model can have an added advantage towards minimizing 

initial costs or no costs at all in the acquisition of computing resources.  The service user has 

the ability to connect to services made available by several service providers at the time of 

execution.  Using the utility model these are the potential benefits an organisation might 

benefit from: reduced fixed costs, treating IT as a variable cost, unlimited access to 

computing resources and improved flexibility, thus  making the provision of services more 

agile and adaptive (Llorente et al, 2006).    In GUISET, a group, in addition to owning a set 

of services, can acquire additional services in the market based on the need; these services are 

then shared between the members SMMEs.   



22 

 

The application of the utility model billing can benefit SMMEs with greater flexibility in 

costs as paying will only be for the resources used.  SMMEs as stated by Adigun (2006) and 

Pastrana (2009) are too financially constrained to own a software infrastructure.  They need a 

reduced investment mechanism on software to expose their business activities using e-

business technologies.  The benefits of using utility computing can be described as the 

controlling of costs, the improvement of service quality and efficient business 

responsiveness. With utility computing in place SMMEs can concentrate on their core 

business activities.  The assumption is because SMMEs resources are limited, adoption of 

utility computing is a great benefit in that they only pay-per-use from the limited resources.  

This utility approach alleviates unnecessary costs incurred from a standardised fee. In fact 

idle grid resources can be made available to SMMEs in order to reduce costs.  This makes it 

possible for resources prices to be negotiable. 

The GUISET infrastructure aims to provide a one stop reservoir of services that can be 

accessed to address the issues of on-line presence for SMMEs.  Adigun et al, (2006) states 

that GUISET is based on the idea that there is an affordable technology for SMMEs.  All that 

is needed is an appropriate strategy to make these technologies available using the utility 

approach to service delivery.  This research investigates how technologies supporting 

SMMEs business activities can be made available for easy access.  An SMME is only 

exposed to a GUISET portal to perform its business activities and is not bothered by the 

technicalities involved in the successful execution of that business activity.  The approach 

taken relates to addressing SMMEs‟ IT enablement related issues such as: reducing operating 

overhead, transforming to an e-business as a priority and the capability of using e-business 

tools without owning them.   



23 

 

2.2.2 The GUISET Architecture 

The GUISET architecture, see Figure 2.1, is a layered architecture that is divided into three 

layers. A layered architecture gives an abstract view of the infrastructure and makes it 

possible all layers to be developed independently of others.  It also shows which layer 

influences or interacts with which layer.  The GUISET infrastructure layers are: (1) Multi-

Modal Interfaces, (2) Middleware Layer and (3) Grid Infrastructure Layer.  The architecture 

shows the relationship among the entities in the environment with each layer providing the 

necessary resources to be used by the layer above it in the realisation of the GUISET 

infrastructure.  A short description of each of the three layers illustrated in the architecture is 

given below: 

 

 

Figure 2. 1 Grid-based Utility Infrastructure for Small, Micro and Medium Enterprises 



24 

 

Enabling Technologies (GUISET) architecture [Adigun et al, (2006)] 

1. Multi-Modal Interface 

The Multi-Modal Interface provides mechanisms that enable the interaction of service 

consumers with the infrastructure. The GUISET portal is a gateway to the GUISET 

native services and services acquired from the market.  It establishes communication 

(by accepting requests and giving responses to users of the infrastructure) with the 

Middleware layer to fulfil its business goals.  The middleware layer is responsible for 

the combinations between technologies and the composing of services taking place to 

achieve any process.  

2. Middleware Layer 

The Middleware layer provides the business logic that is needed to support service 

provisioning by the Grid Infrastructure Layer.  This layer using infrastructure rules, 

supports the consumption of grid resources in one of the following ways, simple 

sharing of a grid resource with other consumers; re-using a service by becoming an 

additional consumer; or joining a queue of users waiting for a resource until such a 

time when the resource is cheap enough for the consumers.  The core of most research 

that has been conducted in an attempt to realise the GUISET concept has been 

focusing on this layer, among the dissertations or thesis worth mentioning are  

Sibiya;s masters dissetation, 2009; Iyilade‟s doctoral thesis, 2010; Mathonsi‟s 

master‟s dissertation, 2011 with their aims at improving the service provisioning 

capabilities. 

3. Grid Infrastructure Layer 



25 

 

The Grid Infrastructure layer is the storage for all the GUISET resources.  It is a 

repository for both the native services and the services that were acquired from the 

service market.  Grid resources are managed using grid middleware.  The resources 

provided by the GUISET infrastructure range from data storage, software 

applications, services and technologies in the assembly of a business process 

satisfying some user goal. These services are responsible for day-to-day business 

activities of the infrastructure. Request for a typical resource therefore simply invokes 

the relevant grid service. 

Most of the research on the GUISET concept has focused on the Middleware Layer.  This is 

where mechanisms for interaction with the Grid Infrastructure Layer are addressed. Iyilade et 

al, (2009) proposed MINDS a middleware infrastructure that aims to perform dynamic 

composition of services in a grid environment.  A middleware infrastructure based on 

software agents as proposed by MINDS is able to address composition issues where grid 

services possess the capability autonomy, heterogeneity, flexibility, and robustness.   The 

Grid Infrastructure Layer is a repository for services offered by the infrastructure. To realise 

the GUISET infrastructure focus has been on assembling tools based on the architecture in 

Figure 2.1.   

In light of the foregoing, the aim of this work is to prototype the GUISET infrastructure using 

available tools.  These tools should address specific issues, namely; service composition and 

dynamicity which GUISET supports.  In GUISET, as a distributed system, it is possible to 

deploy software applications as published services which consumers can subscribe to for 

performing their business activities.  The business activities are provided through a 

collaboration of both service providers and service consumers using some communication 

protocol.  The communication between the service provider and its service consumers is 

established via a network of brokers exchanging data.  A set of archetypes in Figure 2.2 were 



26 

 

crafted in order to simplify the architectural framework.  There are three archetypes of 

components in the GUISET architecture.  First, is the Technology archetype which refers to 

the set of service producers in the network. The Second archetype is called a Client, referring 

to the devices on which the services are deployed.  Third is Services produced for Clients to 

consume which could be of type Information Service, Transaction Service, or Third party 

Service.  

 

Figure 2.2: Reference Architecture for the Mobile Commerce Product Line [Adigun et al, (2006)] 

2.2.3 Research Challenges in GUISET: 

GUISET has a number of challenges that it aims to address.  For the purposes of realising the 

GUISET software infrastructure using available technologies, the following GUISET 

challenges were addressed:  

(1) Service Provisioning in a dynamic environment: 

The main goal of the reference model is facilitating a loosely coupled implementation of 

networked services in an event-driven architecture.  Services are of the pay-per-use type and 

are dispatched by a network of brokers to deal with context event notifications.   



27 

 

Services should be easily adaptable and scalable to satisfy the goals of the infrastructure.  The 

GUISET infrastructure, as proposed, intends supporting the assembly of business services 

and dynamic service binding for enabling applications running on it to successfully execute. 

The infrastructure defines the business process at design time using interfaces.  Services 

providing concrete implementation are discovered dynamically rather than being created by 

the consumer.  Distributed service provisioning requires methodologies allowing end users to 

construct composite applications based on basic operations such as discovery and 

interconnecting remote sources. Services supporting the basic operation of the infrastructure 

can be implemented in any technology. In an environment where services must be 

dynamically composed, performance usually becomes an issue which can lead to no 

guarantees in service provisioning.  A programming model that is technology agnostic will 

improve the performance of the infrastructure by establishing communication with a variety 

of services available to enable the completion of a business process.  The idea is to pull 

together services from different providers and combine them in an effort to complete the 

business process of the requestor, an agent acting on behalf of a client who is performing its 

business activities and only paying per use e.g. a number of services from different providers 

may be used in fulfilling one client request.  The implementation details and location should 

not matter but rather that these services are combined to achieve the goals of the consumer.  

(2) Service Composition: 

The GUISET infrastructure follows the notion that services are available; all that is needed is 

a mechanism that facilitates access to these services to satisfy some business activity.  As an 

already mentioned requirement, a dynamic environment is needed to facilitate the interaction 

of services with the ease of adoption and scalability of distributed services.  Some atomic 

services can be enough to build a software application.  Mostly in practice, though, the 

atomic services are composed to provide some desired holistic functionality.  Since services 



28 

 

are fast becoming the major building block for software functionality, it is essential that a 

service composition strategy that supports both services and legacy applications implemented 

in some technology is used. Services are distributed and so may be sourced internally or 

externally.  Typically, approaches to service composition can be data oriented, process 

oriented, transactional or a combination of these but none of these approaches are flexible 

enough to support all characteristics of service composition (Yang et al, 2002).  Several 

infrastructural requirements hinder the success of the service composition approaches.  To 

minimise the hindrances brought by the infrastructural requirements, this work looks at an 

approach that concentrates on the business logic as the main goal of the infrastructure.  This 

gives opportunity to addressing the functional requirements of the infrastructure.  For an 

infrastructure to qualify as having applied service composition, these are the steps that need 

to be exhibited:  

 Creation of a process model specifying control and the data flow among the activities; 

 Discovery of concrete services that complete the business process must be bound; 

 Potential clients must be granted access to composite services; and 

 On invocation of a composite service a coordinating entity may manage data flow on 

the basis of the associated process flow.     

Automation of the outlined steps has recently been receiving a lot of attention from 

researchers. Iyilade et al (2009) defined dynamic composition as a task of selecting atomic 

services in a process without the interference of the service requestor.  This is an ideal 

situation in e-business solutions as a dynamic environment is enabled. A dynamic 

environment facilitates the interaction of services to complete a process at execution time. 

 



29 

 

2.2.4 Gaps Left by the Reference Architecture: 

The information gathered from the reference model enables or builds an understanding of 

what needs to be put together as a family of applications with the intention of investigating 

dynamic composition.  The reference model does not provide a detailed model for service 

composition which in turn leaves a number of issues not addressed.  Among the problems 

that have not been addressed in previous attempts to realise GUISET is how the service 

components will be coordinated.  What communication protocol is going to be used for the 

services to communicate and the interfacing of services to guarantee that the quality of 

services is guaranteed?  While it is known that SOA and CBSE provide a general framework 

for creating product family members (Adigun et al, 2006, Sibiya et al, 2008, Ekabua 2009), 

definite answers to following questions are still needed: What sort of applications will the 

members be? Can composite applications be composed from other applications? How will 

sharing of applications be supported?  This research contributes in addressing these questions 

by realising the GUISET infrastructure.   

Some related works that have been conducted in order to address GUISET related problems 

include (Chani, 2008) and (Mathonsi, 2011).The work by Chani (2008) concentrated more on 

finding a solution that most satisfies the service consumers based on the defined service level 

objectives. To ensure the most optimal service is selected a flexible Service Level Agreement 

(SLA) is used. This flexible Service Level Agreement was called the Consumer-initiated 

SLA (C-SLA). Using C-SLA the consumer requirements are considered before the SLA 

template in formulated. This provides more customer satisfaction compared to the provider 

initiated approaches. The work by Mathonsi (2011) addressed the issue of service selection.  

It argues that using only the service functionality for service selection is not sufficient but 

rather using it in combination with its QoS can almost guarantee the most optimal service is 

selected. A g-broker was introduced to assist consumers in service selection based on the 



30 

 

requirements they have defined. The work also added support for providing QoS 

measurements to ensure no falsified QoS measurements are used in service selection. The 

main difference between the work by Mathonsi (2011)  and  the work reported here is that, in 

this work much  emphasis is put on  realising a collaborative environment for use by SMMEs 

in an attempt to providing assistance to develop new, innovative products and service 

offerings that meet the market needs and the other work assumes services are already 

available, all that is left is finding ways of using the most optimal services based on the 

measure of both the service functionality and the observed QoS measurements.  Through 

building upon some previous work on GUISET, the work reported in this dissertation is the 

first effort aimed at demonstrating a GUISET configuration using an e-business scenario, 

where services must be composed at runtime applying dynamic binding to the services to be 

composed.  The concentration was put on service composition and dynamic service binding 

to make sure service subscribers are only concerned with their business goal and not bothered 

with all the processes involved in achieving the business goal.  Service consumers are only 

concerned with their interaction with the GUISET portal and do not really want to know how 

GUISET processes their requests. This work created a prototype using open-source tools to 

implement a typical application that explores how GUISET could support service 

composition and dynamic service binding.  Our mode of service composition and dynamic 

service binding depicts an infrastructure that assembles components based on the desired 

business process and ensures that services used by the components are connected to on the 

fly.  The idea is to ensure that all the services are needed are available in the GUISET 

repository of services. 

2.3 GUISET Related Initiatives: 

GUISET infrastructure is still in its evolutionary stage, although it is clearly defined to 

distinguish it from existing infrastructures.  The main difference between GUISET and these 



31 

 

other infrastructures are the contextual reference which has seen GUISET mainly focusing on 

providing an environment for the SMME to enable their IT presence.  GUISET acts as a 

service market for SMMEs; these services are made available through a GUISET portal. A 

GUISET portal is the only point of access between its users, SMMEs and the services it 

offers.  All the processing it carries out is hidden from the eyes of the user.  The users access 

all the services that belong to the group they are members of or otherwise they can buy 

additional services from the service market.   

Among the GUISET infrastructure related initiatives examples like; the IT Department 

(www.theitdepartment.co.za) and ASG (www.asg.co.za), can be mentioned.  However, it is 

worth noting that no scientific evidence has been provided in these examples.  This makes 

comparing them with GUISET difficult, as no validated report is provided.  An autonomous 

home control system (Seinturier et al., 2012) and Akogrimo (http://www.mobilegrids.org/) on 

the other hand are other initiatives closely related to GUISET that provide evidence to 

research community.  The IT Department is said to support small businesses by outsourcing 

cost effective IT platforms to them, providing support agreements and the installation of 

servers.  Not much information is revealed as to how these platforms were implemented 

besides that Microsoft servers and networks were used in other services offered by the IT 

Department.  It is not easy to determine whether these platforms can be as reliable as the 

GUISET.   

The primary concern for ASG is offering IT support that is tailored to the needs of the 

business whilst ensuring data security is maintained.  ASG tries to understand the goals of the 

business and in turn offer support that is closely related to the business objectives. Both ASG 

and the IT Department aim to support the same set of users as the GUISET initiative.  The 

difference is that GUISET concentrates more to those that lack financial stability to subscribe 

in order to offer them access on a pay-per-use approach without having to own the  

http://www.theitdepartment.co.za/
http://www.mobilegrids.org/


32 

 

2.4 Motivating Scenario: 

The challenges posed by service composition in dynamic and open environments are best 

explained through the use of an example scenario (Iyilade, 2010).  A case study in the form 

of an e-commerce application supported by the GUISET infrastructure is introduced with the 

aim being on illustrating how a combination of tools is put together.  The combination of 

tools applying service composition and dynamic service binding in computing environments 

can be demonstrated as the GUISET infrastructure.  The scenario aims to give a description 

of a combination of components that are put together to define a business process and 

dynamically binding services that have been defined by the assembled components.   

An initiative to assist the community of Nongoma with an IT infrastructure called GUISET 

aims to give its subscribed SMMEs a collaborative infrastructure where they can conduct 

their business activities online.  GUISET provides the answer for NOS as one aspect of 

GUISET, which aims at giving SMMEs the look and feel of owning their own online stores 

where they can expose their products to their customers both local and abroad because of the 

capabilities the internet brings.   

A Sample GUISET Application 

Recently, Johnson, a resident of Empangeni, started a small business. The start-up capital has 

consumed all his investment outlay, he could neither afford to buy a R3 999 PC, nor pay the 

total cost of ownership (TCO), TCO for the PC. TCO is actually R10 000, being the price 

quoted by XYZ Computers in Richards Bay for Computer peripherals, office software and 

simple accounting tools.  However, 10K is just the initial investment; the business must pay 

R1000 monthly, being the maintenance cost. While Johnson B&B will like to be able to have 

access to the Internet, advertise online, and accept online customer bookings, the business 

cannot absorb the overhead required to use e-Commerce and eventually transform into an e-



33 

 

Business. The mortgage instalment on the building currently housing Johnson B&B is a 

commitment of another R1000.00. 

GUISET provides the answer for this business because a Cooperative Group of arts and craft 

sellers have been formed in Longoma, 100km away, operating their micro businesses based 

on the GUISET infrastructure. All that will be required is for Johnson to apply for the 

membership of Longoma Cooperative Group.  Basic membership subscription of R250 a 

month opens up the following opportunities for his business: 

1. a web presence for Johnson B&B; 

2. online booking for his customers; 

3. an SMS notification for every reservation completed by a customer; 

4. one monthly advert of special offers to promote his business; and 

5. a basic accounting and reporting service which entitles the business to one end-of-

month standard report; 

This scenario outlines how the user interacts with the application to perform a transaction 

giving a clearer view of the activities taken to complete the process.  Figure 2.3 depicts a 

typical infrastructure built from disparate components yet serving one business goal.  The 

intention was to show that different levels of the system are used in the process.  That is then, 

to complete the business process the portal, middleware and infrastructural levels coordinate, 

they cannot be used in isolation otherwise the system will fail.   



34 

 

 

Figure 2.3: A Typical application using external services 

The process taking place is deemed technical and is not visible to the eyes of the user.  The 

only interest of the user is achieving his intended business goal and not knowing the inner 

details like the components that interacting to achieve it. 

As illustrated in Figure 2.3, to process the customer‟s request, NOS web application will use 

both internal and external services collaboratively to complete the business process. To 

support the above scenario there is a need for an infrastructure that is built using tools that 

address service composition and enabling dynamic service binding.  The usage of a modular 

approach gives an opportunity to deploying an infrastructure and its supported applications 

that are evolvable with time.  Service composition is used for the assembly of components 

into a combination that interprets the flow of events completing a business process and 

dynamicity enables the coordination of these components to bind to services at runtime.  To 

realise the GUISET infrastructure, much attention was paid to its characteristics, service 

composition and dynamic service binding.  With the already mentioned characteristics, 

GUISET also aims to support software evolution.  The software development approaches that 



35 

 

have been selected for comparison in this work enable the application of a systematic 

approach when building software applications with possibilities of being evolvable over time. 

2.5 Characteristics of the GUISET infrastructure: 

The GUISET infrastructure is a multifunctional system that exhibits unique operational 

characteristics.  In the preliminary research a few operational characteristics that distinguish 

the GUISET from other systems were identified: 

 The underlying infrastructure configuration embodies a runtime environment in which 

components interact and their interaction is only limited to the information exchange; 

 Resource coordination, meaning the infrastructure should apply some coordination 

technique to assemble business components conforming to some business goal. 

 Dynamic runtime behaviour, meaning that the actual services used in components are 

not necessarily known until runtime, and the overall functionality of infrastructure 

emerges from assembling components; 

 A dynamically-defined control, meaning that control over the system functionality is 

not necessarily owned by a particular component, rather, control changes based on 

which function the system is performing; 

 An evolution of both the infrastructure and the application(s) running on it enables an 

infrastructure that is extended each time an additional functionality surfaces that it 

should support. 

2.6 Chapter Summary: 

This chapter concentrated on presenting GUISET as the foundation of this work, has started 

from a short introduction of grid and utility computing the core building blocks, then to the 

architecture.  This has been followed by the research issues that must be addressed in the 

context of GUISET.  A motivating scenario for an e-business application has been presented 

as a foundation of what an infrastructure should support to be regarded as a GUISET 



36 

 

infrastructure. Lastly, the characteristics of the GUISET infrastructure have been presented to 

build the foundation for the formulation of the GUISET-based evaluation framework. 

 

 

  



37 

 

Chapter 3: Software Development Paradigms 

3.1 Introduction: 

This chapter introduces a number of possible software development paradigms that can be 

used as a systematic process for the development of the GUISET infrastructure.  Since the 

inception of the software engineering field, many software development paradigms have 

evolved to be applied in one project or the other.  Among the many available software 

development paradigms available, this study only focused on the following paradigms: 

Aspect Oriented Programming (AOP), Component Based Software Engineering (CBSE), 

Service Oriented Computing (SOC) and Resource Oriented Computing (ROC) as possible 

candidates for realising the infrastructure. There was no criterion put in place for coming up 

with the candidate paradigms.  It was mainly based on the availability of supporting materials 

such as research publications and documentation.   

This chapter begins by presenting the requirements an infrastructure must successfully 

address to be regarded as a GUISET infrastructure in Section 3.2.  This is then followed by 

an overview of different paradigms shortlisted for the development of the GUISET 

infrastructure in Section 3.3, which is then followed by an analysis that leads to the selection 

of the methodology used in this work in Section 3.4.  The selection is made possible by using 

the GUISET-based framework. Lastly, in Section 3.5 the chapter presents the current state on 

software development paradigms. 

3.2 GUISET based Comparison Framework: 

In this section, a brief description of an evaluation framework based on the GUISET 

requirements that should be met for the software development paradigms to realise the 

infrastructure is presented.  Based on the GUISET infrastructural requirements a comparison 

is made among these software development paradigms: AOP, CBSE, SOC and ROC to find 

one paradigm that is closest to addressing the requirements.   



38 

 

The comparisons have been informed by general literature and its applicability in some 

reported work or tool observation. General literature in this work refers to knowledge that has 

been gathered from materials concentrating on laying the foundation on the paradigm.  The 

GUISET based framework was formulated to realise an infrastructure that supports both 

service composition and dynamicity.  For the framework to aid in the realisation of the 

GUISET infrastructure it needs to address the following criteria:  (1) modularisation, (2) 

assembly of business services, (3) technology agnostic service access, (4) flexible and 

dynamic environment, and (5) changes based on the availability of business services.  

1. Modularisation of business services:  the methodology should provide support for 

building individual modules.  Hence the infrastructure can be built from scratch by 

simply integrating different modules providing some functionality. 

2. The assembly of business services: the methodology should enable support for the 

assembly of business services to complete a business process of the users‟ consumer.  

Hence the infrastructure should be inter-operable to support configuration of services 

into a composite to complete the process. In this instance business services are not 

necessarily services, but rather resources that meet the business goal. 

3. Technology agnostic service access: the heterogeneity of protocols is diverse; to 

support services implemented using various languages and technologies, there is a 

need for accommodating a multiprotocol service discovery and access for the 

different communication paradigms.  Hence there is a need for the infrastructure to 

support multiple protocols for the discovery and accessing of services. 

4. A flexible and dynamic environment:  customisation and functionality of services at 

runtime is essential for an application to adapt to changes.  Hence configuration and 

dynamic adaptation are essential functionalities in the infrastructure. 



39 

 

5. The availability of tool support: As the user selects a particular product, several 

business services might be available to support such a transaction. Hence the 

infrastructure must be able to support changes in the services and reduce the impact of 

the changes in the user activities.    

The software development paradigm closest to addressing the requirements stands out to be a 

suitable candidate for the implementation of an infrastructure deemed to be a GUISET 

infrastructure. To give a fair and clear justification of the paradigms, some foundational 

background on the candidate paradigms is presented in the following section. The aim is to 

remind or build on understanding of each paradigm before proceeding to the comparisons. 

3.3 Software Development Paradigms: 

Software development paradigms have been around for a very long time and have always 

been the main focus in the software development lifecycle.  A methodology is generally a 

guideline for solving a problem using specific components in a given discipline. The 

evolution of new paradigms is usually caused by the existence of problems that have been 

perceived not to be solved by existing paradigms or to just broaden the research findings in 

the field of software engineering.  When it comes to the selection of a development paradigm 

there is no best paradigm among all, but they can be best classified in relation to the project 

they are applied in.  Hesari et al (2010) states that the influx of a variety of software 

processes and software development methodologies has made it difficult to select a 

methodology for a specific project or to construct the appropriate methodology through 

chunks of assembled methods, and that is why the evaluation of paradigms has become an 

essential task.  Dahiya (2010) stated that when software development was first initiated it was 

not as structured and well documented as it is today. 

The selection of the paradigms that affords this comparison is based on the availability of 

documentation that describes it and time span that the methodology has been developed.  



40 

 

Even though documentation does not guarantee software building success, it does make it 

easier for developers to quickly understand the use and support of the methodology. It also 

affords the developers the opportunity of defining documentation for systems they are 

building to be easily understood and possibly support changes with ease.  This documentation 

was mainly introduced to try and avoid any software development failure which is perceived 

to be the main cause, if no methodology had been applied.  The documentation lays the 

foundation for the approach taken when using the methodology even in different projects 

with ease.  Effective usage of a methodology is achieved by following its defined processes 

in an accurate and consistent manner across all projects. 

This section intends to build an understanding of each of the development paradigms that has 

been reviewed to make the selection by presenting its foundational background.  The aim is 

on establishing enough knowledge on each of the paradigms and how they are applied.  

3.3.1 Aspect Oriented Programming (AOP): 

Aspect-oriented Programming (AOP) compensates the shortcomings experienced with using 

Object-Oriented Programming (OOP).  An OOP application program is made up of a series 

of objects which are the basic modules of the application communicating together through the 

exchange of messages.  The basic techniques for building OOP applications are inheritance 

and polymorphism.   These are important attributes of an OOP application as they enable 

building of applications that exhibit reusability and extensibility capabilities.  Zhengyan 

(2011) states the problem with the OOP paradigm is trying to import some common actions 

into objects that do not necessarily need the inheritance relationship with each other.  This 

leads to overcrowding of code and limits re-usability of resources. 

AOP is a programming paradigm which deals directly with aspects of concern rather than 

modules of software code.  AOP separates its code in terms of the code that deals with the 

core business logic from that which spans across objects.  Kiczales and Mezini (2005) state 



41 

 

modules are available; all that is needed is for the composition of interfaces to be established 

that uses these available modules. In fact various techniques have emerged with AOP as 

required, namely that AOP is a mechanism proposed to enable modular implementation of 

crosscutting concerns. It, AOP, addresses the management of functionalities in the system by 

encapsulating dispersed functionality into well-defined modules in the configuration of a 

system.  Separation of concerns is a well-established principle in SE.  A concern is a part of a 

problem that is treated as a single conceptual unit.  Java provides perfect support for AOP 

that has led to AOP being supported and applied on different platforms.  AspectJ was 

developed using Java to conveniently develop AOP software (Sirbi and Kulkarni, 2010; 

Zhengyan, 2011).  AspectJ is based on both AOP and CBSE with each methodology applying 

its principles where concerned such as CBSE deals with modularisation and AOP deals with 

the separation of concerns.   

AOP forms the basis for Aspect-Oriented Software Development (AOSD).  AOSD was 

proposed as a technique aiming at improving the separation of concern when designing 

systems and support for an improved evolution and reusability.  Modules make it possible to 

make decisions on the use of the module by only looking at its implementation and its 

interface without worrying about the rest of the modules it will be used with. Deiters (2005) 

reports on the attention that AOP received from the Microsoft .Net development community 

where it shows how AOP has been used in web services illustrating some common problems 

that AOP can address. 

3.3.2 Component Based Software Engineering (CBSE): 

Component-based development (CBD) enables software systems to be built through the 

composing or assembling of software components.  CBSE is an established approach in 

building software systems in many domains such as distributed systems; web based systems, 

desktop applications and embedded systems amongst others (Breivold and Larsson, 2007; 



42 

 

Masek et al, 2009).  Component Based Software Engineering (CBSE) aims at accelerating 

software development and promoting software reusability and maintenance through the 

assembly of business components to meet certain business goals.  Components are the 

building blocks of building component-based software systems.  Many views have been 

provided on what a component is perceived to be, the common consensus regards a 

component as a black-box entity with defined interfaces and behaviour that can be reused in 

varying contexts and with no prior knowledge of its internal structure.  One of the benefits of 

using CBSE as development process is the ability to re-use readily available software 

components in the development process which means only developing components that are 

specifically exposing functionality of the intended project, if not all components are readily 

available. 

Although CBSE has worked in deploying re-usable components, it falls short of providing 

mechanisms for working with readily available software components.  The software 

components used in the CBSE development are built conforming to an architectural model.    

Much information is known of the service before it can be used, in essence it can be said 

CBSE is a technique for modelling and assembling a specific piece of software.  In a small 

scale application using readily available services can be optimal, but as the application grows 

more it becomes difficult as more and more services are needed, varying protocols and the 

various devices used.  Service orientation handles these issues not addressed by CBSE 

through the use of services made available in the service market.  SOA uses service exactly 

as they are regardless of their service implementation and technology used, allowing the 

usage of web services and legacy applications. 

Although component-based software engineering addresses some requirements of service-

orientation, it still does not address its key elements, such as accessing services 

geographically dispersed and assembling them according to some business process 



43 

 

(Papazoglou et al, 2006).  This is a drawback as the software development process is quickly 

moving the direction of using functionality that is provided through services located 

somewhere else. 

3.3.3 Service Oriented Computing (SOC): 

Service Oriented Computing (SOC) is a SE paradigm aiming to support the development of 

rapid, low-cost, and easy composition of distributed applications even in heterogeneous 

environments using services as its key abstraction though service composition (Papazoglou et 

al, 2006, Ramollari et al, 2007; Iyilade, 2009).  SOC is based on SOA which is an 

architectural style for building software applications that use available services on the web 

(Iyilade, 2009).  Service orientation is currently one of the most appraised paradigms in SE 

for building enterprise applications (Koskela et al, 2007).  The service orientation paradigm 

aims at performing business processes ranging from simple to very complex interactions 

between components to complete the process.  The activities performed to achieve an SOC 

infrastructure helps the organisation develop meaningful services, service compositions and 

techniques for managing these services.   

Current research in SOC among others has focused on service foundations, service 

compositions and service management and monitoring (Papazoglou et al, 2006).  SOC is an 

evolution of distributed computing which has been designed to achieve an interaction 

between software components using services across the network.  These services are 

assembled together to create new applications. By using the service composition mechanism 

the assembly of services follows some business logic to achieve the business goal of the 

newly created applications.  Most importantly, using SOA, a single service may be shared 

across a number of different applications achieving greater reuse of existing services.  In 

general, the application of SOA can be used internally and between Information Technology 

(IT) network equipment, services infrastructures across functional domains and geographies 



44 

 

for the extended enterprise, including B2B, with the maximum re-use of existing technologies 

where it makes sense (Papazoglou et al, 2006; Kryvinska et al, 2010).  Davis (2009) states a 

service just like a component is a self-contained unit of functionality.   

Blinco et al (2009) and Xiong-Yi show that SOA can be defined in different ways depending 

on the perspectives of the business owners.  These definitions can take the form of business 

aspects, technological aspects, and from the view of the IT management.  These perspectives 

show that the success of SOA is perceived differently depending on who views it.  

Papazoglou et al (2006) stated that SOA is a logical way to designing software systems to 

provide services to either end-user applications or to other services distributed across the 

network. SOA uses web services as its building block with the aim of enabling loose-

coupling; this in turn can make services reusable.  SOA is regarded as the substitute of the 

traditional architectures that are tightly-coupled, technology agnostic and object-oriented; it 

enables heterogeneous systems to share business logic and information with its business 

partners outside of their business domain (Xiong-Yi, 2009).  Managing loosely coupled 

services in SOA is the strongest requirement. It enables services to be built independently of 

its users.  Web services support the new generation of e-business application, as it can enable 

the building of applications that can communicate within themselves (Najdawi, 2009).  Open 

issues regarding service foundations, reports the need for an infrastructure supporting diverse 

service messaging models, consistent with SOA interfaces with the capabilities for 

transmitting and performing transactions necessary on the given information (Papazoglou et 

al, 2006). 

SOA is one of the most popular topics, which is an architecture building method used to 

describe, link and integrate reusable business services with clear boundaries and self-

contained functions.  Functions are described as well-defined services that can be used to 

compose working applications.  



45 

 

 Although there are many definitions coming with the acronym SOA, the World Wide Web 

(W3C) refers to it as “A set of components which can be invoked, and whose interface 

descriptions can be published and discovered”. 

One of the most important questions raised when implementing SOA, is related to the 

orchestration concept.  Orchestration involves a step by step approach for the invocation of 

several services and combining them.  The orchestration may be understood in more than one 

way. Firstly orchestration is related to Business Process Management (BPM): how can 

application logic be modelled and built for business applications requiring the invocation of 

several services in their core business functionality and secondly the meaning of orchestration 

is related to service composition.  Service composition is an aggregate of services assembled 

together to perform a particular task or business process. This is achieved through some 

mechanism that has been described in the SOC paradigm. Maigre (2010) states that since the 

introduction of web services research has focused on the use of services: creating service 

descriptions, finding services from a pool of services and building as well as executing 

compound services. 

3.3.4 Resource Oriented Computing (ROC): 

Resource Oriented Computing is a fundamental model for describing, designing and 

implementing software systems through the usage of resources. In the context of ROC a 

resource is defined as a set of information. Designing and implementing a large scale 

evolvable enterprise software system is a challenging task. Component-based and service-

oriented development techniques have become the key mechanisms for building such a 

software system in a timely and affordable manner.  Component based software engineering 

and service oriented computing as the two most dominant engineering paradigms in the 

current software community and industry are similar in some way in the approaches and 



46 

 

techniques they use in building software systems, which has led to some confusion in 

understanding and applying the concepts in a correct way  (Breivold and Larsson, 2007).   

Resource Oriented Architecture (ROA) is an architectural style which focuses on using 

resources as its building block.   ROA is typically implemented using RESTful services.  The 

essence of Representational State Transfer (REST) as an architectural style for developing 

distributed systems such as the Web is to focus on creating a services environment that is 

loosely coupled to enable reusability of services to be maintained (Guinard et al, 2010).  

REST is the core of the Web and uses URIs for identifying and encapsulating services 

available on the Web.  In ROA the request-response implements interaction is defined around 

the transfer of “representative” resources (Hu and Shan, 2010).  In ROA, a resource interface 

is a prerequisite for enabling access and state manipulation of a resource.  The HTTP 

operations are normally used for managing resources.  These operations are PUT: which is 

used to update the state or creating a resource, GET: used to retrieve the representation of a 

resource, POST: which creates a new resource, and DELETE: used to remove a resource.  

Overdick (2007) states that even though HTTP is dominant in ROA there is no strict 

adherence that must be maintained with HTTP applications with many applications violating 

the concepts of resource orientation. 

3.4 Comparison of Software Development Paradigms:  

Specifically the aim is deducing which development technique and its supporting techniques 

are suited in putting together an e-enabling infrastructure, be it an e-commerce, e-tourism, e-

booking, etc. using available technologies.  To make a justification for the selection of the 

paradigm and its supporting tool, literature was consulted to get a clear understanding of how 

it addresses some of the requirements, which are the GUISET-based evaluation criteria.  

GUISET, as one of the distributed applications in this scenario, is structured as application 

components and services interacting with each other.  Business services either local or remote 



47 

 

are used in the assembled components for achieving the business goal of each composite.  

There is a need to give some clarity between “services” and “components” to avoid some 

ambiguities in understanding these concepts especially as being addressed in this work.  The 

terms services and components are widely used in the field of software engineering, which 

means we need to make a clear distinction among them in terms of the aspects they seem to 

capture.  Although these concepts seem very much similar the favoured difference is that 

described by Bocchi et al, (2008), which takes a view from CBD, of a service as a way of 

orchestrating interactions among a subset of components in order to obtain some required 

functionality, which means the coordinated or assembled components use services to 

accomplish their specific tasks. 

For an infrastructure to be qualified as a GUISET infrastructure it must meet the 

characteristics as defined in chapter one.  The following discussion highlights how each 

paradigm addresses the requirements of the applications‟ supported by the GUISET 

infrastructure. 

1. Modularisation of business services: All the candidate paradigms are in support of 

modularisation; the difference is they have shown somewhat different concentration 

levels in terms of addressing it.  Papazoglou and Georgakopoulos (2003) and Bocchi 

et al (2008) stated SOA enables a flexible interconnection of autonomously developed 

and operated applications discovered according to the required levels of service.  Both 

CBSE and SOC enable full support as they strive for the re-using of available 

resources. The difference between the two is CBSE modules are tightly coupled to the 

environment with less or no reusability while SOC modules are loosely coupled with 

high re-usability.  In AOP business logic is broken down into distinct parts and these 

parts are called crosscutting concerns. Crosscutting concerns are meant to address 

some functionality with ease and manageability in software applications. AOP 



48 

 

achieves modularisation by adding an extra abstraction mechanism called Aspects on 

top of the existing modularisation mechanism.  Aspects can tackle the problems of 

scattering and tangling of code by reducing the spread of code belonging to a certain 

concern over different components. 

To best achieve modularisation in other implementations it has been reported AOP is 

combined with CBSE with the former addressing separation of crosscutting concerns 

and CBSE addressing the componentisation part of things.  Work such as that of 

Eichberg (2005) shows how AOP has been combined with CBSE to provide both the 

principles of crosscutting concerns and modularisation.  With ROC resources are 

available as logical units, but not much information is provided as to how 

modularisation is supported. The idea behind ROC is on providing resources when 

needed.   

2. The assembly of business services: Throughout the surveyed literature on the AOP 

paradigm no report on the assembly of services was encountered with ROC showing 

minimal support for the assembly.  On the other hand, both CBSE and SOC provide 

full support, components need to be designed in a manner facilitating the subsequent 

assembly process when components are assembled together to develop software 

systems. In CBSE, the selection of components that deliver services addressing some 

business goal is a design time activity (Bocchi et al, 2008) compared to SOC where it 

is done at both design and runtime (Iyilade, 2010), depending on where and how it is 

being applied. The only report depicted in this work where AOP is involved in the 

assembly of services, is when it is used in combination with CBSE with AOP 

addressing the separation of concerns in the assembly created using Component 

Based Software Engineering.  Beyond that, no other work could substantiate whether 

AOP does support the assembly of business services.  ROC‟s concerns go as far as 



49 

 

providing the necessary resources; it does not worry much about how those resources 

are going to be used whether in an assembly of other resources or as a single entity.  

In ROC it is strongly acknowledged that in the process of service selection, services 

up for selection might not have the necessary information to make the comparison 

necessary to select one service over the other.  ROC comes to the rescue by making 

every entity explicit not just as services.  Such an explicit entity is then called a 

resource.   

3. Technology agnostic service access: Only SOC reports full support for 

heterogeneous protocols, which makes it easier to use services implemented in any 

technology without tampering much with it, whereas with CBSE the component 

interaction is restricted to those implemented in similar technologies. The primary 

concern of the remaining paradigms ROC, CBSE and AOP only concentrates on 

providing the necessary functionality and they are mostly used in tightly coupled 

environments.  Overdick (2007) stated the evolution of ROA was due to the fact that 

not much details are always given of the service, so ROA solved this dilemma by 

making every entity explicit not only as just services and they use a universal 

interface to establish communication.  ROC with its capability of recognising 

“services”, “objects” and “data” as resources makes it technology agnostic. CBSE 

does address issues pertaining to the nature of technologies used in the 

implementation, it is mainly formulated through components and services 

implemented in the same technology.   

4. A flexible and dynamic environment:  Both ROC and SOC are flexible enough to 

provide a replacement for non-existent resources which previously existed.  

Cheesman and Ntilozalos (2004) and Papazoglou et al (2006) discuss flexibility as 

one of the core characteristics of an SOA application with its ability to support the 



50 

 

reconfiguration and updating of a business process based on the new requirements the 

business process should address.  This flexibility is achieved especially in loosely 

coupled environments where tampering with one component does not necessarily lead 

to more components being tampered with to meet the whole business goal which both 

AOP and CBSE do not address.  In CBSE, the resources in use are known at design 

time as they are tightly coupled to the environment, this causes failure to the system 

should they not be available when needed.  Flexibility of this nature is outside of the 

scope of AOP as there is nothing reported on it and understandably so the issues 

addressed by AOP are somewhat different.  

5. The availability of tool support: the support for loose coupling of services starts at 

such a low level as a development paradigm that has been applied supporting it.  Both 

SOC and ROC have extensive support for providing an environment where services 

are accessed only when needed due to its loosely coupled nature whereas with CBSE 

tight coupling is applied.  One can almost argue the tools supporting applications 

developed on the principles of SOC can also support ROC.  This comes from the 

knowledge that the major difference between ROC and SOC is that the former treats 

everything as a resource and the latter treats it as a service.  Work by Guo et al (2010) 

shows the similarities in the software development using ROA and SOA approaches. 

They both use Web services as their implementation strategy the only difference 

being in ROA where these Web services are wrapped around resources.  The extent of 

tool support in CBSE and AOP is sufficient with its tight coupling nature of 

development.  There is need for also supporting tools in any development.  In light of 

this it becomes difficult to conclude both CBSE and AOP address tool support as the 

reported work shows the tool support is only relevant to tools developed to validate 



51 

 

some phenomena rather than having tools readily available to be utilised based on the 

concept of the paradigm. 

The table below summarises how each paradigm is supported based on the framework.  The 

table is formulated based on the arguments from the comparisons made and some weights 

were given based on the perceived support each paradigm offers or does not offer as per 

requirement.  The legends are: 

“++”: excellent “+”: good “0”: satisfactory “-“: poor 

Table 3.1: Software Development paradigms comparisons 

 Modularisation Assembly Agnostic Flexibility Availability 

AOP ++ 0 0 - - 

CBSE ++ ++ 0 0 + 

SOC ++ ++ ++ ++ ++ 

ROC ++ + + ++ + 

 

Based on the reported work and observations of some tools applying some paradigm SOC has 

been found to provide full support. CBSE and ROC are the next closest in satisfying all the 

requirements with the SOC just edging them over as already mentioned. 

The table summary above shows SOC as the most optimal software development paradigm to 

use in deploying the GUISET infrastructure, it exhibited more support than the rest in the 

comparisons.  SOC is a paradigm or model which many enterprises have exploited for many 

years as a source of delivering business applications.  Interestingly enough, SOA is not a 

completely new approach but rather its firm foundations are built from CBD and Design by 

Contract (BbC).  DbC is an approach to software development based on defining formal, 

precise and verifiable interfaces for software components.  The only problem is they just fall 



52 

 

short of fully supporting SOA which is mainly based on addressing issues of loose coupling, 

runtime discovery, and technology independence.  In the realisation of SOA based 

applications the understanding of the business-application-technology stack plays a vital role 

(Figure 3.1).  The figure aims to depict the relationship among the different layers with the 

Business Layer automated by the Application Layer which applies the Technology Layer. 

 

Figure 3.1: The Application Layer - bridging business and technology [Cheesman and 

Ntinolazos (2004)] 

Software applications are the bridge between business decisions and the technology used.  

The existence of software applications aims at automating some part of or all the business 

processes with the intention of realising more efficient and effective processes.  The 

Application Layer has somewhat the most difficult job of acting as a bridge between the two 

layers, Business Layer and Technology Layer as they are continuously changing and at all 

times, it should address those changes.  For the Application layer to successfully work with 

the other layers it should possess the following characteristics: 

 Flexibility: the ability to update or reconfigure existing business processes to support 

additional functionalities as required by the business processes. 

 Technology-independence: business process implementations should avoid depending 

on some implementation technology.  This should include the ability to use legacy 



53 

 

systems, COTS and new services as well as accommodating multiple technology 

platforms.  

There have been several attempts to make the transition to SOA an enjoyable experience with 

a huge variety of tool support and some programming models.  In SOC a programming model 

is a collection of abstractions, models, techniques and supporting tools with the aim of 

assisting developers of SOA applications. These programming models simplify the 

modelling, assembly and deployment of SOA applications.  A programming model enables 

even developers with minimal programming skills by introducing well-defined component 

types that model common kinds of artefacts that developers produce and deploy into 

solutions.  To mention just two programming models applying the SOC principles as reported 

by Nigul et al, (2009) there is Service Component Architecture (SCA) and JBI (Java 

Business Integration).   

This work is not the first in making comparisons of available paradigms, but rather this work 

concentrates on making the comparison informed by the infrastructure requirements where it 

is applied.  The next section presents some of the work where comparisons are the main 

objectives of the work and possibly bring some light towards the evolution of these 

paradigms, the transition from one paradigm to the other if there is some relationship towards 

the different kinds of these paradigms.  

3.5 Software Development Paradigms: State of the Art 

The status quo of the software development paradigms gives an indication that the evolution 

of these paradigms is mainly based on addressing issues previously not addressed by existing 

ones or completely going another route all together.  Since the inception of software 

development paradigms more and more developments are now based on trying to achieve as 

much re-usability as possible rather than developing from new application from scratch. 



54 

 

There are relatively few complete experimental results comparing the effectiveness of 

software development paradigms.  This makes it hard to select a suitable paradigm for the 

right project.  This work assumes the effectiveness of each methodology can be found by 

studying how it has been applied in the reported.  The application of a methodology aims at 

improving the end product of the development process by developing better information 

systems (Avison and Fitzgerald, 2006).  Solving ad hoc problems has also led to some 

paradigms being combined to realise the software product. Combining paradigms has 

somewhat created some confusion when it comes to determining what exactly each 

methodology aims to achieve and not.  So as to make the evaluation fair, where paradigms 

are used in a combination, it is clearly identified what aspects each methodology covers.  

Works such as that of Eichberg (2005) is a good example, where Alice (Eichberg, 2005) is 

introduced applying the principles of both CBSE and AOP with the latter concerned with 

separation of concerns and the earlier deals with modularisation. This ensures each 

methodology stands out in terms of the features it provided in the development process. 

The current state of the development paradigms as presented in this section sees SOC gaining 

more ground in terms of its use in deployment of applications compared to other paradigms.  

Software development paradigms were introduced as a response to tackling the high 

complexities arising with the development process of software products.  These are just some 

of the few works analysed during the process of establishing the framework for this work. 

Guo et al, (2010) discuss the opportunities that can be achieved from developing a software 

application based on SOA and ROC.  The design of the application is on SOA but also 

follows ROA principles. Since ROA uses resources for the exchange of data, in this work the 

application architecture is built in which the resources and their operations are packaged to 

Web services. The implementation strategy applied which is based on Web services is 

deemed to be that of SOA.  Also ROA resources can use it through a defined wrapping.  



55 

 

Besides the usage of Web services for SOA and resources for ROA the development strategy 

is the same.   Data and its operations are published as Web services and can be shared among 

the enterprise software application fully and safely.  The idea behind using SOA and ROA 

combined has to do with gaining flexibility of using any resource either than the default 

support of web services by SOA.  

Hesari et al (2010) introduce an evaluation framework as an approach to deriving the 

contributions made by a methodology.  The framework can also act as a foundation for 

comparing paradigms to make an optimal selection based on the desired goals.  The desired 

goals always differ based on the stakeholders request even for software applications 

performing the same functionality.  The evaluation establishes a better understanding of the 

features, strengths and even weaknesses of the methodology. This understanding can 

influence the selection of a methodology as much detail would have been gained based on 

what to expect on each methodology given the project requirements it should fulfil. 

Palacio (2010) in the work aiming to understand and presenting the development process of a 

Data-driven Support Systems (DDSS) in an organisation adopted a framework for comparing 

paradigms introduced by Avison and Fizgerald (2006) of which by its authors is said to give a 

set of features that prove to be a reasonable guide in comparing paradigms for selection.  This 

framework applies seven elements to get a comprehensive description of the methodology 

being analysed, from a set of principles that underlie the methodology to tool support for 

specific techniques or complete paradigms.     

3.7Chapter Summary: 

This chapter started by presenting a framework for comparison, then the candidate software 

development paradigms that can be used to craft the GUISET infrastructure.  Then, SCA as a 

chosen programming model has also been presented.  The selection of a methodology to be 



56 

 

used was made possible through the GUISET based requirements and the open source 

solutions used.  



57 

 

Chapter 4: Developing the GUISET infrastructure from Existing 

Open-Source Solutions 

4.1 Introduction 

This chapter introduces the formulated conceptual architecture which intends to support 

service composition and dynamic service binding.  This architecture is based on the GUISET 

characterisation of Section 2.4 and from the outcome of the selected software development 

paradigm in Chapter 3.  This is done by first outlining the design requirements that informed 

the formulation of the architecture to support service composition and dynamic service.  

Then, the concepts of software development and evolution are also presented as a mechanism 

for the realisation of the GUISET infrastructure with the intentions of having an 

infrastructure evolvable over time to accept additional functionalities with minimal hassles. 

The chapter begins by presenting the GUISET Service Composition and Dynamic Binding 

Architecture outlining the building blocks and what the infrastructure intends to support in 

Section 4.2.  This is then followed by the software development and evolution concept and 

open source solutions to indicate the approaches used in the context of this work in Section 

4.3 and 4.4 respectively. Finally, Section 4.5 introduces the current state of concepts 

discussed in this chapter.        

4.2 GUISET Service Composition and Dynamic Binding Architecture 

(GuSCaDA) 

The GUISET infrastructure is envisioned to be an environment supporting collaboration of 

service components and dynamically binding services defined in the collaboration to realise 

the desired goals of the infrastructure to be supported.  The GUISET architecture as proposed 

by Adigun et al (2006) envisions an infrastructure formulated through a combination of 

services components to address some business goal.  The GUISET is based on a concept 

there is an affordable technology.  What is needed is an appropriate strategy to make these 

technologies available (Adigun et al, 2006).  The middleware layer as envisioned assembles 



58 

 

service components and in turn dynamically binds services defined in the assembly at 

runtime to complete the business process. GUISET follows the modular approach in the 

development to promote an evolvable infrastructure where additional modules can be added 

to provide additional functionality without disrupting the whole infrastructure.  This research 

is aimed at prototyping the GUISET architecture using available technologies.  Based on the 

research question outlined in Chapter One, Section 1.5, there is a need to create a GuSCaDA 

architecture showing the interaction of components in development of the GUISET 

infrastructure. This chapter, in Section 4.2.1, Section 4.2.2 and Section 4.2.3, introduces the 

GuSCaDA design requirements, the GuSCaDA architecture and the GuSCaDA operational 

and functional respectively.  

4.2.1 GuSCaDA Architecture design requirements 

The GUISET motivating scenario of Section 2.3 and together with the GUISET 

characteristics in Section 2.4 informed the design requirements leading to the formulation of 

GuSCaDA.  The GUISET infrastructure as ICT enabler considers the following design 

requirements: 

i. Composition of services 

In order to support applications running on the infrastructure, the service components 

need to interact with one another in a coordinated way to support the desired business 

process.  To enable a coordinated interaction of service components, an assembly of 

components needs to be formulated showing a flow of components interacting in the 

achievement of the business process.   

ii. Dynamic service binding 

The assembled components define the interfaces of services that need invocation at 

execution time to complete the business process.  For a flexible management of 

service, registration and discovery services need to be stored in some registry.  



59 

 

GUISET intends to manage a number of services providing some functionality. With 

that being the case, there is a need for a mechanism that dynamically binds services 

that have been defined in the assembly.  The approach taken by this work is binding 

services of any communication protocol without having to alter any configurations. 

iii. Evolution of both the infrastructure and its supported applications 

Both the infrastructure and the applications running on it should be subject to further 

developments without disrupting much of it configuring new functionality. The 

modular approach is applied in the development to ensure there are no dependencies 

among the interacting components and also affording reusability components. 

4.2.2 Design of the Architecture 

As already stated, the intention was to prototype a GUISET infrastructure supporting (i) 

service composition; and (ii) dynamic service binding of the composed components in (i).  

The infrastructure and its supported applications are evolvable to cater for additional 

functionalities without having to develop a new infrastructure from scratch which is now a 

common practice in software engineering and this work also builds upon that.  The optimal 

solution for achieving such an evolvable environment is the application of a modular 

approach in the development with each module satisfying some aspect of the infrastructure 

and can be added or removed without disrupting the whole infrastructure configuration.  

GuSCaDa follows a modular design approach which is composed of these four major 

components the (i) Assembly Manager component; (ii) Service Binding component; (iii) 

Dynamic Runtime Manager component and (iv) Service Registry component (see Figure 4.1).  

The role of each of the components is discussed as follows. 



60 

 

 

Figure 4.1. GUISET Services Composition and Dynamic Binding Architecture (GuSCaDA): 

The Assembly Manager is responsible for assembling business components based on the 

desired business process by i) extracting the business logic of the process, ii) defining service 

components used by the process through well-defined interfaces, iii) creating composites 

based on the process to achieve its business goal.  

The Service Registry is a repository for the storage of service descriptions registered by the 

service providers.  The assumption is all the services needed for providing the necessary 

functionality are all available. 

The Service Consumer can either be an application or another service that intends using 

services in the Service Registry for the purposes of executing, completing and achieving a 

particular task.  A combination of services is used to formulate the process needed to achieve 

some intended business goal of the infrastructure. 

The Service Provider registers its services in the service registry along with all other 

information about the service that is used for consideration in selecting the service. 



61 

 

Upon successful creation of a business process, the Binding Manager ensures the control of 

over the different services‟ technology implementations to ensure any service can be used by 

i) inspecting the defined composite to gather the necessary specifications of the services, ii) 

providing support for multiple protocols for flexibility among the choice of service 

implementations providing the required functionality; and iii) dynamically binding services   

Once the Assembly manager has created a composite defining some business process and the 

Service binding has handled the multiple protocols presented with the service 

implementations, Dynamicity manager ensures services are discovered at runtime by i) using 

local services or ii) accessing remote services. 

4.2.3 Operational and Functional Description: 

The following description is used to walkthrough a typical application for service 

composition and dynamic service binding. There is also a clarification as to why service 

composition and dynamic binding of services are treated separately.  We will assume a client 

of the GUISET infrastructure is an SMME needing an assembly of service components to 

meet its business goal as of the scenario of Section 2.3 and the client of an SMME uses the 

application supported by GUISET, the infrastructure.  The SMME client specifically wants to 

buy products online and the GUISET client wants to offer its products online.  To support 

both clients, GUISET client, an SMME exposes its business with the GUISET infrastructure 

which assembles service components based on the desired business process of the SMME 

and the SMME client, the customer, buys the intended products from an online store which 

executes the business process of the SMME in the GUISET infrastructure already defined.  It 

dynamically binds services to the defined composition of service components. 

An itemised list of the major interactions between the system actors and system itself during 

the creation of the process is described as follows. 



62 

 

1) The GUISET client registers its business activities with GUISET by outlining the 

intended business activity to be achieved;  

2) The GUISET system administrator establishes an assembly of service components 

based on the process needed to complete a transaction defined in 1.  It mainly 

concentrates on assembling the business logic by defining the interfaces and how they 

interact.  This in turn gives the SMME the feel of owning an online store;  

3) A customer buying products online through a store supported by the GUISET 

infrastructure triggers the registered business process of an SMME which is already 

assembled, in the process of executing the transaction the assembly dynamically binds 

services defined by the interfaces to complete the transaction; 

4) Assuming the previous step has been satisfied, the SMME is billed on the services 

used by the assembly in processing the transaction.  

To realise GuSCaDA, prototyping seemed as the viable approach as the intention was 

deploying an infrastructure that will undergo a series of iterations until the final product is 

achieved.   

In the previous chapter, when the comparisons had been completed it was stated SOC was the 

closest in addressing the requirements to be met for an infrastructure to be regarded as a 

GUISET infrastructure.  SOC as a concept is very broad and sometimes its application in 

development can be a daunting task. One of the ways of trying to simplify the application of 

SOA in development is through the usage of a programming model.  As already mentioned 

earlier it provides a systematic way of developing applications. SOC offers some 

programming models such as SCA and Java Business Integration to try and simplify the 

development process.  SCA and Open Service Gateway initiative (OSGi), the GUISET 

infrastructure solutions, are also presented as subheadings of Software Development and 

Evolution.   



63 

 

SCA and JBI are SOC development standards offering both commercial and open-source 

tools in their implementation.  The JBI specification as developed under the Java Community 

Process (JCP) is an approach to developing SOA application.  The JBI is built on the Web 

Services model providing a pluggable architecture for a container.  The main benefit of using 

SCA over the other approaches is it provides a technology-agnostic programming model that 

decouples the components implementation from their communication protocols, allowing 

reuse at a higher level.  Software applications developed following the principles of SCA 

should be deployable in different SCA vendor platforms, integration rules and deployment 

patterns without making any changes to it.   

The architecture presented in Section 2.6 and the paradigm selection in Section 3.5 gives way 

for the selection of the open-source solutions presented here enabling the building of an 

infrastructure and its supported applications that are evolvable in due time. The GUISET 

infrastructure should accept additional modules to extend its functionality without tampering 

with whole infrastructure, which should be the same for the applications running on the 

infrastructure. In this day and age the development of software applications strives for 

building from existing components rather than having to create applications from scratch (Al-

Jaroodi et al, 2010).  

4.3 Software Development and Evolution 

Software engineering research over the years has traditionally focused on methods, concepts 

and techniques generally applicable.  Extensive research has been conducted in the field of 

software engineering, among others; the focus here is in the area of software development 

research.  Software development is simply defined as a set of activities taken to build a 

software application.  Software applications are developed to serve diverse purposes.  Among 

the various reasons a software application can be developed, the most common ones are for 

personal use or to meet the needs of some potential users. Software applications have become 



64 

 

a vital component for a number of business enterprises as a means of strengthening their 

competitive advantage by exposing their business in the e-business arena.  The tasks that 

have been done manually before are now computerised gaining efficiency and accurate data 

being transmitted.  Typically, these software applications are built to automate business 

activities. In turn less time is consumed compared to using manual labour together with 

reduced costs especially that of labour. To minimise the errors in software development, there 

are processes that have been introduced to act as guidance throughout the entire project.  

According to Sommerville (2001) the generic activities in software processes that must be 

followed are: 

 Specification: defines the functionality of the system 

 Development: translates the specification into a system 

 Validation: ensures the system is as expected 

 Evolution: continuous changes with the changing needs 

Most often adhering to these processes can lead to a software production success.   It should 

be noted that the selection and use of each process depends on the software application that 

must be produced.  Nowadays software applications being produced must evolve over time.  

It should be able to adapt to changes of the user needs by allowing further developments.  It 

should also be able to integrate or find a mechanism of using any available legacy systems 

with ease should the need arise.  This makes software development one of the most 

complicated tasks performed by humans with the growing complexity of software 

applications being developed.  This has led to a lot of standards and frameworks being 

created to assist in decreasing the amount required in the development process and combating 

the complications that arises with complexity.   Various parameters including costs, training 

time, and future supports are the main considerations for companies to select development 



65 

 

tools and frameworks.  The approach taken by this work entails applying an approach to the 

development that the will enable the software application to further evolve with additional 

functionalities being introduced.  This section discusses the development approaches that 

have been applied in the development of a GUISET infrastructure that is evolvable over time 

namely SCA in Section 4.3.1 handling the assembly of business components at design time 

and OSGi in Section 4.3.2 addressing the issue of dynamically binding to the services defined 

by the assembled components. 

4.3.1 Service Component Architecture: 

SOA requires appropriate techniques and tools for the delivery, support, and management of 

distributed applications conforming to its principles (Seinturier et al, 2009).  SCA aims to 

fulfil that need with a specification for developing SOA applications that are technology 

agnostic.  Pieber and Spoerk (2008) state that SCA provides a programming model for 

building SOA-based applications and solution which can run on a number of machines.  The 

SCA programming model provides a technology-agnostic assembly capability for composing 

applications using available business services.  SCA as an approach to developing SOA based 

applications assembles software components that use services.  It is technology independent, 

and supports distributed configurations where remote components are interconnected by 

various means.  Several infrastructures have been developed that implement the SCA 

specifications such as Apache Tuscany (http://tuscany.apache.org/) and Fabric3 

(http://www.fabric3.org/) to be used as they are or customised to meet the developers‟ 

requirements. 

The greater benefit of using SCA is that it builds distributed applications using SOA whilst 

applying CBSE principles.  This makes it even easier to use by a novice in SOA with strong 

background in CBSE.  The SOC paradigm provides a way for exposing coarse-grained and 

loosely coupled services that can be accessible remotely.  CBSE provides the mechanism for 



66 

 

defining the assembly of components.  The shortcoming that SOC has is that it does not 

address the issues related to the real implementation of these services.  As stated by Laws et 

al, (2011) even though SOA in an interesting idea, putting it into action can be a daunting 

task as business environments typically contain many different technologies leading to what 

might be a complex task to integrate.  This then leaves SCA to address this shortcoming by 

defining a component model for these SOA applications. SCA gives developers an 

opportunity to focus on the business logic with no consideration of infrastructural details 

when building software applications.   

There are technologies that have embraced SOA at the edges of application domain such as 

Web Services and ESBs with their proven methods.  They have delivered key benefits in 

interoperability, governance and productivity.  SCA provides the means to explore the same 

benefits without introducing a full Web Services stack for each interaction.  Rather SCA uses 

SCA Bindings to isolate the specifics on how application components are both invoked and 

the way they communicate.  SCA entities are software components which may be providing 

interfaces called services, may be requiring interfaces called references and exposing 

properties (Seinturier et al, 2009).  It possesses well defined interfaces that define how some 

functionality can be provided.  In SCA an application is broken down into a set of well-

defined services to reduce the complexity and easing maintenance issues as isolated business 

functions are brought together.  The main focus of the SCA specifications is the 

implementation of components in the service oriented environment emphasising a correlation 

between the existing software infrastructures or components with the newly created ones 

(Seinturier et al, 2012).   



67 

 

 

Figure 4.2 Typical SCA diagram (Chapell, 2005) 

Figure 4.2 presents a typical SCA diagram with the relevant information on the resources that 

are combined to realise some composite.  The basic building blocks for SCA applications are 

components, used by the unit of deployment for SCA known as a composite; it holds services 

which can be accessed remotely.  A composite contains one or even more components 

containing the business function(s) provided by the modules.  The Assembly Model is the 

core of SCA as it provides a clear separation between the business logic and other 

infrastructural issues.  This assembly approach allows components implemented in some 

technology to be connected with components implemented in some other technology.  The 

good thing about SCA components is that they all have the same architecture without the 

knowledge of each other‟s implementation type; this makes it easier to integrate them into a 

composite application.  The idea is on having a component implementation, then using SCA 

bindings to expose the services it offers over multiple protocols.   

Seinturier et al, (2009) defined these four principles underlying design of an SCA 

application.  These principles are the building block for creating a service architecture that is 

as independent as possible from the implementation technologies in use. 



68 

 

 Independence from programming languages: SCA does not assume any programming 

language was used in implementing a component instead it supports several language 

mappings.  This allows SCA components to be implemented using any of these 

languages Java, C++, PHP, BPEL or COBOL. 

 Independence from interface definition languages:  SCA components use interfaces to 

provide its functionality.  SCA supports several interface definition languages (IDL) 

such as WSDL and Java interfaces.  This enables interfaces built from any type of 

technology to be used.   

 Independence from communication protocols: Even though web services are usually 

the preferred method of communication for SCA components, there is still a need for 

providing for other communication protocols where SCA components fall short.  

 Independence from non-functional properties: Non-functional properties of an SCA 

component do not affect its business logic.  A set of policies are declared to provide 

for the non-functional properties that a component depends on.  Security is regarded 

as a non-functional property of the service since a service can fully function without 

security being applied. 

These principles offer a broad scope of solutions for implementing SOA based applications 

using the SCA approach; in turn they form the basis for the deployment of the GUISET 

infrastructure as the most suitable approach.  The GUISET infrastructure is and should be a 

flexible and robust infrastructure that handles the challenges of heterogeneity, dynamism and 

openness inherent in grid systems (Iyilade et al, 2009). Modern SOA applications should 

adapt to changing environments, support online evolution and be deployed dynamically.  

SCA provides such an environment except for dynamic adaptation in changing environments 

(Li and Parashar, 2006; Sienturier et al, 2009) which is the biggest challenge facing SCA 



69 

 

specifications, basically defined as a lack of support for runtime management.  To make SCA 

exhibit that much needed dynamism, it is combined with OSGi.  

4.3.2 OSGi: 

In order to meet the dynamic challenge discussed above, the OSGi service platform is 

configured to work together with SCA.  OSGi is a dynamic modular system for Java enabling 

services used by the components to join and leave the environment on the fly without 

disrupting the functioning of the whole system.  In dynamic deployment only the re-deployed 

components are stopped whilst the target application continues to be executing without 

interruptions (Ketfi and Belkhathir, 2005).  The features that Java possesses enable support 

for products on many different platforms.  Originally OSGi was introduced to implement 

component systems in Java that can be easily deployed into a Java Virtual Machine (JVM).  

The OSGi technology provides the standardised primitives that allow applications to be 

constructed using small, reusable and collaborative components which can then be composed 

together to form an application and deployed.   

 

Figure 4.3: OSGI framework (Li et al, 2009) 

Figure 4.3 depicts the OSGi framework showing the components that interact in the dynamic 

management of services.  The service management component handles the introduction as 

well as the exiting of a service dynamically without disturbing other services that are not 



70 

 

affected.  With the growing success in large scale systems over the years it should still be 

acknowledged that OSGi was initially targeted for embedded applications such as smart 

appliances and mobile devices during its inception.  In OSGi, software can be broken down 

into different modules called bundles.  The core of the OSGi service platform is the 

framework or container responsible for creating a runtime environment for managing the 

deployment and lifecycle of bundles (Brada, 2008).  Module systems provide version support 

for distributed bundles where a bundle goes beyond just an OSGi bundle.  Modules subdivide 

a system into smaller parts that can be created and used independently in one or more systems 

to achieve some functionality. 

Bundles as explained by Wu et al (2007) are libraries or applications that can dynamically 

discover other services from the service directory or can be used by other bundles.  Simple 

Java classes can be regarded as bundles given that they are deployed to an OSGi runtime as 

JAR or WAR files to perform some functionality.  Basically the physical form of a bundle 

can be simply stated as a JAR archive with a manifest file that contains metadata defining the 

bundle and its features.  Eclipse Equinox is an implementation of the OSGi R4 Core 

Framework specifications.  It simplifies the process of developing and deploying modern 

software applications by providing a lightweight component-based method of building 

applications.  Earlier Equinox was used to simplify the integration and the development of 

developer-oriented tools before being used as a runtime for running applications from 

different platforms. 

Combining SCA and OSGi to realise an infrastructure theoretically is easy but in practice it 

somewhat brings some challenges; such as finding a binding that enable the use of services 

implemented in any technology.  Apache Tuscany comes packaged with the Jetty Server 

which at some instances fails in finding the deployed services.  The advantage is that Apache 

Tuscany gives opportunity to extend its capabilities through pluggable components.  The 



71 

 

OSGi runtime Apache Karaf becomes lightweight because of its opportunity to allow the 

developers to only implement the functionalities they need from it. 

4.4 Introduction to Open Source solutions: 

Over the years open-source software has been getting a lot of attention from both academics 

and the business world due to the successes it is getting in the market.  Open-source solutions 

are freely distributable; come packaged with the code to enable the extension of capabilities 

to meet the preferred requirements.  Just to mention a few open-source solutions that are 

currently widely used in the market and academic institutions include Linux, MySQL, 

Mozilla Firefox and Apache software products.  Even though open-source is freely 

distributable it is not necessarily free, meaning that one might have to pay to have rights to 

use it (Haapasalo, 2007; Maican, 2009). 

There are so many beliefs regarding the untrustworthiness of using open-software compared 

to proprietary software (Haapasalo, 2007).  The fears surrounding open-software are that it 

lacks quality, not enough documentation and above all there is the fear that open-source 

software lacks support and maintenance (Haapasalo, 2007).  All these fears have not stopped 

open-software from gaining the exposure needed to be used especially due to fewer 

limitations in vendor lock in and the cost of ownership.  Most developers use open-source 

solutions because it is extensively available in the sense that it is free compared to its 

commercial counterpart solutions. The next sub sections introduces the open source solutions 

applied in this work, in Section 4.4.1 SCA: Apache Tuscany is introduced and in Section 

4.4.2 OSGi: Eclipse Equinox is introduced 

4.4.1 SCA: Apache Tuscany: 

In the development of SOA application based on SCA specifications two platforms standout 

based on the literature that has been explored.  Those are Apache Tuscany and Fabric3.   

Apache Tuscany and Fabric3 are somewhat similar so due to the availability of supporting 



72 

 

documentation, user support and popularity of Apache projects the selection of Apache 

Tuscany became relevant for this project. Apache Tuscany is an open-source solution 

developed using the SCA specifications by the Apache Software Foundation.    The Tuscany 

runtime provides a modular and pluggable architecture for developers to pick and choose 

their intended functionality and discard what is not needed.  The Assembly Model of the SCA 

specifications simplifies the development of the application by separating infrastructure 

concerns from the business logic.  The following are the capabilities that Tuscany provides to 

address the complexity of SOA applications: 

 Choose the language used to implement components. 

 Assemble components implemented using different technologies into composite 

applications. 

 Configure communication protocols with no modification to component 

implementations. 

 Control non-functional application behaviour using policy configuration. 

These capabilities are achievable using existing technologies with the Assembly Model 

describing how these technologies will come together to form a working application.  

Tuscany can be embedded with other application containers such as Java EE or OSGi based 

containers to give you that flexibility to run your application in the environment of choice.  

As the shortcoming of SCA specifications was already stated lack of dynamism it‟s the same 

for Tuscany as the tool that implements SCA.  

4.4.2 OSGi: Eclipse Equinox:  

To develop software applications that dynamically use the services defined by the assemblies 

created through Apache Tuscany, there is a need to integrate Apache Tuscany with one 

possible OSGi runtime to maintain dynamism.  The possible candidate OSGi runtimes that 

were being considered in this were Apache Karaf, Eclipse Equinox and Apache Felix.  Based 



73 

 

on the reported work there is not much difference in the usage of any of these OSGi runtimes, 

they all come as standalones and can be plugged in to some other tool. The choice of using 

Eclipse Equinox in this instance was left to the developer who deemed its immediate ease to 

be plugged into the Eclipse IDE as the selection factor and also its capability of only picking 

and choosing the functionalities that are expected of it. The Eclipse Equinox is dynamic 

runtime implementation based on the OSGi R4 Core framework specification by the Eclipse 

community. The Eclipse Equinox implements all aspects of the OSGi specifications that is 

inclusive of the mobile, home and vehicles aspects. 

The discussed set of open-source solutions has complemented each other in the development 

of the GUISET infrastructure.  It should be noted that there is not strict adherence to the 

selected tools but rather the focus was on selecting the paradigm that is suitable and then the 

tools rely on that selection of the paradigm.  The next section looks at how both the concept 

of SCA and OSGi has been applied in the reported work. 

4.5 State of the SCA and OSGi runtime environments: 

This section presents the current state of the art and a justification for the adoption of SCA 

and OSGi framework runtime environment. Several works have been realised with each 

aiming to enable the assembly of business services dynamicity in computing environments 

and some special features based on the research agenda that was addressed.  For the purposes 

of this work, the selection of a suitable mechanism to address service composition and 

enablement of a dynamic runtime environment was based on the reported information on the 

capabilities of the each of these approaches and informed by the characteristics of GUISET.  

The assembled components must always find services to use at runtime.   

Huang et a, (2011) implemented an e-Tourism system based on SCA with the intention of 

providing full services for tourists and decision support for tourism managers.  The core of e-

Tourism functionalities is based on SOA and ESB, with SOA implemented using SCA 



74 

 

specification for providing business logic and ESB establishing communication. The e-

Tourism is developed using open-source solutions, with Mule ESB implementing the 

integration of services used with the Spring runtime framework handling the dynamicity of 

the system.   

Dorminger (2009) presents the design, implementation and deployment of a runtime 

environment based on the Eclipse Equinox OSGi framework.  This research work builds a 

process model called ProMoRTE using some existing components together with components 

built in-house.  ProMoRTE is simply defined as a general purpose runtime environment for 

executing computational algorithms based on Java and the OSGi framework.  The flexibility 

that Equinox brings in this project is its ability to dynamically manage components and their 

versioning support on the fly, and also a core requirement for the GUISET infrastructure as it 

has to manage the assembled components on the fly. 

Based on the work that has been reported here it has been realised that the Apache Tuscany 

which is based on SCA specifications and the Eclipse Equinox which is based on OSGi are 

the most optimal solutions for adoption in the development of the GUISET infrastructure.  

These two concepts complement each other in that the SCA specifications address the 

assembly of software components to address some business process.   

4.6 Chapter Summary: 

This chapter started by presenting GuSCaDA, the architecture that has been formulated to 

realise an infrastructure that supports both service composition and dynamic service binding.  

Then the concept of software development and evolution together with SOC concepts that 

achieve it for development of a GUISET infrastructure that is evolvable over time was 

presented.  This was then followed by the open-source solutions that have been applied in the 

realisation of the GUISET infrastructure.  Lastly, the state of the art of SCA and OSGi was 



75 

 

introduced to shed light on research activities that have been conducted and how far the study 

has been conducted. 

  



76 

 

Chapter 5: Prototyping a GUISET SMME enabler 
 

5.1 Introduction: 

This chapter presents the realisation of both the GUISET infrastructure and NOS application.  

The implementation of these two prototypes, the GUISET infrastructure and the NOS 

application was intended to show how (1) the infrastructure was realised using available tools 

and (2) validating the infrastructure by deploying an application it should support.  For 

purposes of this work only the first GUISET prototype was developed to act as infrastructure 

that can be used by NOS application to achieve its business goal.  Then the prototyping 

concept as an approach to the development of these prototypes is also presented with its 

different approaches and the justification of selecting the evolutionary approach to allow 

different iterations of the prototype to be produced to cater for the requirements of GUISET, 

both old and new.  Then, the UML diagrams are then presented to outline how both the 

infrastructure and the NOS application have been modelled. 

This chapter began by presenting the assumptions that have been made on each prototype to 

highlight what has been covered in the implementation of the prototype.  The intention is 

realizing the use cases in Section 5.2.  This is then followed by Section 5.3 introducing the 

prototyping concept and its various approaches in the realisation of a project including the 

approach selected for this work. Finally, in Section 5.4 and Section 5.5 the GUISET 

infrastructure and NOS application prototypes are presented respectively. 

5.2 Prototypes Assumptions: GUISET infrastructure and NOS 

Application: 

Both the GUISET infrastructure and the NOS application have been realised with the 

intentions of proving the work reported here.  This made the focus to deter from realising a 

full infrastructure and an e-business application with most of the regular functionalities.  In 

this work, the infrastructure using the open-source solutions were put together to realised an 



77 

 

infrastructure that supports both service composition and dynamic service. The NOS 

application only queried the catalogue and placed an order for a product.  The concentration 

was only on achieving service composition and dynamic service binding.  The infrastructure 

provides an environment for the NOS application that comes with a clearly defined assembly 

of components based on its application scenario as this remains static, dynamicity is then 

used for binding to services that closely addresses the business goal.   

 This enables the prototype to undergo a series of improvements towards meeting the 

intended requirements. Prototyping provides advantages such as early feedback in the 

development process, fast time to market, and these two were the most notable reasons for 

adoption in this work.  There are several prototyping approaches that can be applied and it is 

not easy to say which prototyping approach is best from face value without direction towards 

the project requirements where is it is applied.  The next section presents prototyping as a 

concept as its approaches.   

5.3 Prototyping: 

Prototyping or Software Prototyping refers to the rapid software or system development to 

validate requirements and is the process of utilising prototypes in software or system design 

(Sommerville, 2001).  The purpose of a prototype is to model a system, or specific aspect of 

the system (SQA FIVT 34, 2011) in an iterative manner to get a working prototype (Farrel, 

2007). Using the prototyping method a project is broken down into small prototypes that are 

implemented independently of the entire system.  This makes the development a lot easier as 

concentration is only delegated to that aspect being developed. 

Software prototyping enables the building of a software application through a set of 

prototypes. These prototypes are put together to realise the intended functionalities of the 

whole system. The principal use of prototypes is to help customers and developers understand 

the requirements of the system by enabling early feedback.  In turn it gives opportunity to 



78 

 

analyse and refine the systems intended requirements that must be met. Frequent prototypes 

are produced and analysed to enable the functionality of the system to be better understood 

until what is perceived to be the intended outcome is achieved.  In this form of development, 

ambiguities are eliminated from the system requirements as it entails more interaction 

between the developers and the users of the system and with each prototype being developed 

early feedback is provided to give direction as to how it performs in addressing the identified 

requirements.  

Prototyping as a methodology uses a number of methods which can be sequentially grouped 

according to their execution sequence.  Farrel (2007) states one advantage of prototyping as a 

method that provides a view into the product functionality and its usability early and 

throughout the production process with the view of the changes that occur.  Prototyping 

practices these three types of approaches namely; throw away, incremental and evolutionary 

prototyping all with their strengths and weaknesses.  The following section presents the clear 

distinguishing factors among these prototyping approaches.  The aim is to lay a platform for 

the selection of the most appropriate approach.  The system requirements are usually the 

main determining factor in the selection of the approach to be used rather than the preference 

for the approach by developers.   The following subsections, Section 5.3.1 and Section 5.3.2 

present the prototyping approaches and the selected approach respectively.  

5.3.1 Prototyping Approaches: 

Throw Away / Rapid Prototyping: throw away prototypes are used to merely gain 

knowledge and/or inform the system requirements. In the development of a software artefact 

throw away prototype usage goes as far as testing the validity of some aspect without 

featuring in the actual realisation.  This approach is also referred to as rapid prototyping due 

to its ability to quickly build something to get feedback or eliminating some ambiguity.  



79 

 

Incremental Prototyping: the building of the software artefact allows for the development 

of independent usable components. Components built satisfy some aspects of the system, and 

the mock up graphical user interface will generally expose some functions that have not been 

implemented.  This approach gives opportunity for integrating components that implement 

the previously unimplemented functions to the system without affecting the already existing 

components. 

Evolutionary Prototyping: the evolutionary approach aims to develop a mature system 

through a series of prototype iterations.  The prototype will undergo a series of refinements, 

and should eventually become the final solution or it can be better explained as more like 

developing different versions of the system with each version having addressed some 

drawbacks that have not been addressed in the previous versions. 

5.3.2 Selected Approach: 

GUISET aims to provide an infrastructure for SMMEs as an IT enabler.  The technical 

requirements can be summed up as an infrastructure that is evolvable over time to provide for 

users‟ future requirements. Since the future cannot be foretold, evolutionary prototyping is 

explored and applied in this work.  The primary aim of applying the evolutionary prototyping 

approach is to put together a series of prototypes to realise an infrastructure that can be 

continuously reviewed and updated, producing different versions that will be addressing 

some additional user requirements.  The work reported here though is limited to producing 

the first GUISET prototype.  The GUISET prototype produced here is only concentrating on 

addressing service composition and dynamic service binding.  Only future work will produce 

further iterations of the prototype that will be evaluated and improved to meet the GUISET 

infrastructural requirements. With GUISET envisioned to being a multipurpose 

infrastructure, only the e-business scenario is addressed in this work.  The use of the 

Nongoma Online Stores an online application was deemed as an evaluation strategy for this 



80 

 

work.  The completion of an order for a product using the NOS guarantees that the GUISET 

infrastructure is provided the intended support.  Later, other modules such as a health, 

booking and other modules are expected to be effected with no/not much disruption on the 

functionality of the infrastructure.   

5.4 Prototyping the GUISET Infrastructure: 

The implementation of the GUISET infrastructure is based on the proposed architecture of 

Figure 5.2 that presents a more technical view of infrastructure based on the technologies 

applicable.  This (Figure 5.2) is informed by the conceptual architecture of Figure 5.1 in the 

beginning of this chapter which gives a basic idea of the interacting components to realise the 

infrastructure.   

 

Figure 5.1: GUISET Middleware Interaction Architecture 

Figure 5.1 depicts a closer look at the middleware layer showing how a combination of 

computing resources and techniques has been applied in achieving the GUISET 

infrastructure.  In light of the GUISET infrastructure supporting service composition and 

dynamicity which are open research issues, this work does not address problems with regard 

to those open issues but rather the combination of tools that realises these research areas are 

adopted and used in this work.  This work, in the prototyping of the infrastructure, assumes 



81 

 

there are no current issues.  The tool selection is based on the characterisation of GUISET.  

As mentioned earlier an application that will successfully be supported by the infrastructure 

will give enough evidence to declare it as a GUISET infrastructure.  The success of the 

GUISET infrastructure is achievable through the combination of Apache CXF, OSGi 

Runtime and SCA Tuscany each addressing some aspect as described in the following:  

 SCA Tuscany: provides a comprehensive infrastructure for the development and 

management of SOA applications based on SCA specifications.  Apache Tuscany 

provides a lightweight runtime with a modular and pluggable architecture so users can 

choose the functionality that they need and discards all the rest.  To make Tuscany 

achieve our main goals it has been used as an Eclipse plugin to enable extensibility. 

 OSGi Runtime: was selected to handle the hot deployment of components and version 

support.  Its ability to be integrated with the Eclipse IDE makes this a more 

advantageous runtime to utilise. 

 Apache CXF: is an open source services wrapper it helps to build and develop 

services using frontend programming APIs, like JAX-WS and JAX-RS or even to be 

used as a binding to other platforms. These services can interact with a variety of 

protocols such as SOAP, XML/HTTP, RESTful HTTP, or CORBA and work over a 

variety of transports such as HTTP, JMS or JBI.   

To best address the combination the presented tools SCA Tuscany, OSGi Runtime, Apache 

CXF in the realisation of GUISET infrastructure and the supporting application prototyping 

approaches were observed to understand which one may best suit this project.  The basic 

motivator for the selection of prototyping as an approach was basically its ability to provide 

early feedbacks in the development giving opportunity for evaluating the progress of the 

project and possibly addressing matters of concern early in the stages of development. 



82 

 

The implementation requires these three steps.  First, components are assembled based on 

some business goal that must be achieved. Next, there is a need for a technique that will 

enable the dynamic binding to the services defined in the assembled components in the first 

step.  Finally, external services to be used may be implemented in any technology.  There is a 

need for a mechanism that manages the differing technology protocols to use services 

implemented in any technology. 

 

Figure 5.2: GUISET Infrastructure Use Case Diagram 

The use case diagram in Figure 5.2 represents the interaction between the user and 

infrastructure.  The user interacts with the GUISET interface which in turn uses the 

Coordination to assemble services found in the Partner Services. Partner Services use 

External Services to provide the necessary functionality.  



83 

 

 

Figure 5.3: GUISET infrastructure sequence diagram 

The sequence diagram in Figure 5.3 shows the sequence of events among the interacting 

components that make up the GUISET infrastructure.  The flow of messages is initiated by 

the user requesting services for managing his/her business processes.  The SMME client is 

the initiator of any session or business process that must be handled by the GUISET 

infrastructure. The SMME client initialises the session through an interaction with the 

GUISET interface.  The GUISET interface receives a request for a service which in turn is 

sent to the Coordination component.  The Coordination component first extracts the service 

parameters before selecting the relevant service from the Partner services. Once the Partner 

services receive the request it queries the external services repository for a composite of 

services that fulfil the request.  External services are the outsourced services providing some 

functionality at a given time.  The essence of using external services is that there should 

always be an available service to satisfy users‟ requests. 



84 

 

 

Figure 5.4: GUISET Infrastructure Activity Diagram 

The activity diagram in Figure 5.4 shows the flow of activities that take place when the 

infrastructure is in operation.  Assumptions that have been established pertaining to this 

infrastructure is that services are always available.  That is why no decisions were taken 

should the service be not available.  The activities start when the user initialises a session 

which is done simultaneously with the request for a service.  The request is to the 

Coordination to assemble the services that are needed to complete the process.  Once the 

service request is sent, Partner services receive a query to establish the composite of service 

then finally the results are returned to the user.    

5.5 Prototyping the NOS application: 

The implementation intends to illustrate how the GUISET infrastructure has been realised 

through the use of existing tools.  The NOS application on completion of its business process 

will validate the GUISET infrastructure through the application of service composition and 

dynamicity service binding for the enablement of the sale of some art and craft product or 

some other process given the infrastructure is in support of completely different applications.  

For the purposes of the NOS application enablement, the SMME as the client of GUISET 

infrastructure registers its process prior to its usage by defining abstract services, the abstract 



85 

 

service being interfaces defining the functionality.  The customer buying products from the 

NOS triggers a process which in turn uses the abstract services as guidance to which concrete 

services to use, concrete services being service implementations that provide the actual 

functionality. 

The Nongoma Online Stores (NOS) is a typical implementation of an application that is 

supported by the GUISET infrastructure for selling arts and crafts, with the infrastructure 

expected to feature a variety of applications with differing functionalities and goals. For the 

purposes of this work, the NOS application has not been implemented to perform as many 

functionalities as one would expect in an online store.  The implemented functionalities are 

the querying of the catalogue and making an order for available products.  This is to show 

how the components have been assembled and to achieve dynamic binding to services.  

Following is both a SCA design and a graphical view of the service interactions.  

The diagram represented by Figure 5.5 gives an abstract view of how the interaction of 

components occurs between the infrastructure, the supported application and service 

providers in realising its goal. For clarification purposes in the figure the design has been 

numbered with (1) representing the supported application which has been termed full-app 

user interface (UI) in this case being the NOS application, (2) representing the infrastructure 

which has been termed coordination UI, (3) being the providers of concrete services being 

termed partners UI and (4) being the cart for temporary storage during the session being 

termed shopping-cart UI. The module for placing orders for the items on request has been 

implemented in this work as the realisation of the arts store and played a role addressing the 

arguments made throughout this work such as service composition, dynamic service binding, 

software development and evolution and usage of SCA specifications to outline a few.   

 



86 

 

NOS and Infrastructure SCA-based Component Designs: 

 
Figure 5.5: Nongoma Online Store and Infrastructure SCA-based designs 

The NOS and infrastructure SCA-based design has four separate composites.  These 

composites are independent of one another in terms of performing the intended business 



87 

 

activities.  Each composite is made up of one or more components using services.  The names 

and functionality of each composite is defined as follows:   

Full-app-ui: acts a front-end to the user of the system, it contains all the functions that the 

system performs, such as searching the catalogue, buying products and managing shopping 

cart.  Widget has been used for the interface interacting with the user and the business logic is 

implemented using Java. 

Coordination-ui: implements the core business logic of the system.  It consists of two 

components, one for searching the catalogue for specific items and the other for buying items 

of choice.   The components have been implemented using Java.  

Partners-ui: contains third-party services that provide the necessary products.  It is 

integrated with the coordination-ui to provide the available services relating to arts and crafts.  

These services are implemented in any technology since they are outsourced from outsiders.  

Shopping-cart-ui: for managing the orders received by the system.  A cart is initialised to be 

only available for that particular session and destroyed immediately when the transaction 

elapses.  Each cart is managed using an id automatically created on initialisation  

 

Figure 5.6: Service interaction diagram 



88 

 

Figure 5.6 shows an abstract view of the services interacting in processing a users‟ (admin or 

SMME client) request.   The administrator is responsible for adding item details in the data 

warehouse and also querying for the available items, these use the CatalogService and 

WarehouseService respectively.  The SMME client browses for available items and/or even 

makes an order for those items of interest.  These use the CatalogService and OrderService 

respectively.  In a case where an order has been placed using the OrderService, the 

OrderService will in turn reserve the item through the WarehouseService and an email 

notification will be sent via the EmailNotification service specifying the details of the 

possible buyer to the item seller.  

Next, are the UML sequence diagrams depicting the business processes performed by the 

infrastructure.  These UML diagrams show the interacting objects with the system actor 

issuing the request. 

 

Figure 5.7: Administrator sequence diagram 

Figure 5.8 represents a graphical view of the flow of events representing the process of 

adding an item.  An administrator through the GUISET interface enters the item details such 

as the name, price and quantity.   The form persists this information using a servlet through 



89 

 

Tuscany, Tuscany is responsible for transforming the HttpRequest into the Art object. On 

successful addition of an item the result is returned in the interface for the user to see.   

 

Figure 5.8: SMME Client sequence diagram 

Figure 5.9 shows a graphical representation of the flow of events in processing a search 

through the catalogue.  The SMME client using the GUISET interface enters the details of the 

item being queried.  A binding CXF marshals the request between Java and WSDL/XML 

through Tuscany to communicate with the catalogue service querying the Art object.  The Art 

object returns the results to the GUISET interface, which has been transformed by CXF 

binding in Tuscany. The SMME client views the result in an html format.    

The following interfaces just show how the user interacts with NOS application in 

performing their intended transactions.  



90 

 

 

Figure 5.9 Nongoma Online Store Solution 

This is the home page that acts as a starting point to the Nongoma Online Stores.  It gives 

some idea of the services and other useful information of the Nongoma area.  To start using 

the store, a simple click to the View Stores tab will display the store as per figure below. 

 

Figure 5.10: Example of a search for a product (Trendy and Trinket) 

This is the interface that the client queries for the item of choice.  The client enters the item 

name the textbox then followed by a click on the search button in Figure 5.12. 



91 

 

 

Figure 5. 11: Example of the returned product (Trendy Trinket) after search. 

This interface shows the results of the previous query for an item.  The item search results are 

presented as shown inside the yellow box. To place an order for this item, the client clicks on 

Order this item shown in Figure 5.13.  

 

 

Figure 5.12: Example of placing an order for an item 



92 

 

This interface shows how an order for an item is placed. The client enters their shipping 

details for the item to be delivered and click on the order button.  On the success of the order 

placing the results will be shown as per figure below. 

 

Figure 5.13: Example of an order confirmation 



93 

 

This interface shows the confirmation for both an order and an e-mail notification for the 

order received. The client sees this notification for a successful order placement and awaits 

an e-mail notification containing details of when to expect to receive the order. 

 

Figure 5.14: Example of the products catalogue 

The figure above is an example of the items that are available in the store.  These are the 

items that are currently available in the store catalogue.   

5.6 Chapter Summary: 

The chapter started by introducing the methodology applied, this was then followed by an in-

depth view of the selected open-source solutions used as applicable to this project.  A generic 

sequence diagram was presented to show sequence of any GUISET-based infrastructure that 

was then followed by a walk through the sample GUISET application the NOS, its user 

interface design showing an example of an order for arts.      

  



94 

 

Chapter 6: Conclusions and Future Work 

6.1 Introduction: 

The goal of this research work was to prototype the GUISET infrastructure using a 

combination of existing tools to support the e-business enablement of SMMEs to conduct 

their business activities online. The GUISET infrastructure is put together from existing 

open-source solutions and the NOS application has been prototyped to support service 

composition as components have to be assembled to achieve some business goal and also 

supporting dynamic service binding to enable late binding to the services defined by the 

assembled components.  

This chapter begins by presenting, in Section 6.2, the summary in realisation of the GUISET 

infrastructure and NOS application which is supported by the infrastructure; the 

achievements of this research work are highlighted.  The limitations and future directions of 

this work are given in section 6.3.  

6.2 Conclusion: 

There is a very high demand for infrastructures that enable conducting business activities 

online.  This is especially true for SMMEs trading in rural areas with minimal budget to get 

exposure to the broader market brought about by the Internet.  The GUISET infrastructure 

has been proposed as such an infrastructure to enable the usage of e-business for SMMEs in 

rural areas.  The GUISET infrastructure is demonstrated through combining existing tools to 

address service composition and dynamic binding.  The GUISET infrastructure is presented 

as an abstract architecture presented in Chapter 2, this is adopted from the on-going research 

on the GUISET concept.  The architecture presented in Chapter 5 that takes a closer look at 

approach taken by GUISET in addressing the issues of service composition and dynamic 

service binding.  The GUISET characteristics laid the foundation for the software 

development paradigm adopted.  A comparison of different paradigms was conducted to 



95 

 

select the candidate development paradigms for the development of an infrastructure that 

conforms to the GUISET based requirements.  These GUISET requirements are specifically 

for the context of this work and these requirements were mostly met by SOC. This then 

restricted the tool selection to only the tools supporting SOC as the idea was they would 

make the implementation easier.  Several works were explored to find tools that would be 

adopted for the infrastructure reported here.  The process of exploring each tool was made 

easier as there was extensive documentation for the tools that were explored. 

The GUISET infrastructure as it has been developed using the SCA specifications made the 

development a lot easier.  The development came mostly through using some examples 

provided online, extending and modifying capabilities to meet the specific needs of GUISET.  

Apache Tuscany came packaged with several examples that one can learn from, the one 

watched closely for this work was that of an online store to get a clear view of how it 

addressed service composition; this was explored together with possibilities of finding an 

approach that would allow dynamic binding to service to achieve a flexible environment.   

Apache Tuscany is built based on the SCA specifications.  Both CBSE and SOA focus 

reusing existing software components in their development approach.  The choice of using 

SOA over CBSE was mostly informed by the support of GUISET requirements and in 

addition the tool support was deemed sufficient especially for the development of a dynamic 

environment.   The SCA specifications based on the assembly model created an assembly of 

components based on some business goal and then used the OSGi runtime to ensure that the 

services used by these components are dynamically bound to and finally used Apache CXF to 

enable usage of services implemented in any technology. 

6.3 Limitations and Future Work: 

The market is overwhelmed with these open-source solutions aimed at achieving some 

business goal.  Some open-source solutions are used independently and others are combined 



96 

 

to work together, like the solution provided for the GUISET infrastructure which has seen the 

combination of existing open-source solutions. This work showed how the GUISET 

infrastructure can be put together supporting service composition and dynamic service 

binding by combining readily available solutions effectively. The limitations of this work 

entails not giving a fair judgement of how the infrastructure would actually perform in a real 

scenario as only the minimal functionality has been implemented.  In the near future the 

intention is to build upon this work to make the GUISET infrastructure ready for usage by its 

member users.  Some of the issues that will be addressed are how the GUISET infrastructure 

can support localisation of interfaces for the Nongoma community and how it can support the 

diverse language choices of its users.  The evolutionary prototyping approach selected for this 

work will make the process of applying these changes to the prototype easier through further 

iterations of the prototype being developed. Compared to the requirements that were 

addressed in the reported work which was only concerned with demonstrating a typical 

GUISET configuration, the evaluation of the iterations developed based on the identified 

future work will require users to evaluate the prototype to determine if the developed iteration 

of the prototype has met the intended requirements.  Further to that the intention is also to 

implement an infrastructure supporting other applications such as e-health, e-booking and 

other ideas that might come along.  Since GUISET is realisable as a prototype other ideas that 

might be worth pursuing is finding ways of integrating existing works that have been done on 

the GUISET concept.  Among other works that are worth mentioning is the work of Buthelezi 

et al, (2008), this work can provide a pricing model for the GUISET services, the work of 

Mathonsi (2011) can provide quality of service measure for selecting services to be 

composed to achieve a business goal and Mhlongo (2011) can provide for an authentication 

framework to ensure the GUISET infrastructure is secured.  With the works I have just 

mentioned, which is among the few that has been done in the department, these are thought to 



97 

 

be the closest in easy integration and are of vital importance in the success of the GUISET 

infrastructure. 

6.4 Chapter Summary: 

The chapter has presented the summary of the research work that has been conducted in 

realising the GUISET infrastructure and how the NOS application supported by the GUISET 

infrastructure validates the infrastructure.  The user experience is presented to outline the 

process taken in the development of the infrastructure.  The limitations and future directions 

of the work were discussed to show there is still further work to be done on GUISET as only 

the first prototype was presented here it mainly concentrated on some narrow requirements of 

GUISET. 

  



98 

 

References 
 

Adigun, M.O., Emuoyibofarhe, O.J., Migiro, S.O. (2006). Challenges to Access and 

Opportunity to use SMME enabling Technologies in Africa, A presentation at 1
st
 All 

Africa Technology Diffusion Conference, Johannesburg, June 12-14,  

Adigun, M.O. (2007). E-Infrastructure Support for Rural Small and Micro Enterprises, 

SME: A Case Study of South Africa, World IT Forum 2007, 22-24 August 2007, 

http://www.witfor.org/2007/www.witfor2007.org/commission/building-the-

infrastructure/GUISEWITFOR.pdf (Last accessed on 30 June 2012) 

Adigun, M., Iyilade, J., Kabini, K. (2010). Agent-Based Infrastructure for Dynamic 

Composition of Grid Services. In N. Antonopoulos, G. Exarchakos, M. Li, & A. Liotta 

(Eds.), Handbook of Research on P2P and Grid Systems for Service-Oriented 

Computing: Models, Methodologies and Applications, (pp. 911-936). Hershey, PA: 

Information Science Reference. doi:10.4018/978-1-61520-686-5.ch039  

Akoumianakis, D. (2008). Distributed Knowledge Management in Virtual Organizations: 

the „Social‟ Experience Factory, 2008, The Electronic Journal of Knowledge 

Management, (Vol. 6, No. 1), pp. 13-32,  

http://www.aiai.ed.ac.uk/~jessicac/project/KMM/Reading%20List/16-DKM-

Akoumianakis-2008.pdf (Last accessed on 29 August 2012) 

Al-Jaroodi, J., Mohamed, N., Aziz J. (2010). Service Oriented Middleware: Trends and 

Challenges, 2010 Seventh International Conference on Information Technology, pp. 974-

979 

Avison, D., & Fitzgerald, G. (2006). Information Systems Development: Methodologies, 

Techniques and Tools, 4
th

 Edition, Illustrated, McGraw-Hill Education, 2006  

Blinco, K., Grisby, T., Laird, A., O‟Neill, O., Srikanth, V., Smythe, C. (2009). Adoption 

of Service Oriented Architecture (SOA) for Enterprise Systems in Education: 

Recommended Practices: Original White Paper, 14 September 2009, 

http://www.imsproject.org/soa/soawpv1p0/imsSOAWhitePaper_v1p0.html (Last 

accessed on 30 December 2011) 

http://www.witfor.org/2007/www.witfor2007.org/commission/building-the-infrastructure/GUISEWITFOR.pdf
http://www.witfor.org/2007/www.witfor2007.org/commission/building-the-infrastructure/GUISEWITFOR.pdf
http://www.imsproject.org/soa/soawpv1p0/imsSOAWhitePaper_v1p0.html


99 

 

Boochi, L., Fiadeiro, J.L., Lopes, A. (2008). Service-Oriented Modelling of Automotive 

Systems, 32
nd

 Annual IEEE International Computer Software and Applications 

Conference, (COMPSAC „08), 28 July – 1 August 2008, pp. 1059-1064 

Brada, P. (2008). Enhanced OSGi Bundle Updates to Prevent Runtime Exceptions, 34
th

 

Euromicro Conference Software Engineering and Advanced Applications, 2008, (SEAA 

„08), 3-5 September 2008, pp. 92-99 

Breivold, H.P., Larsson, M. (2007). Component-Based and Service-Oriented Software 

Engineering: Key Concepts and Principles, 33rd EUROMICRO Conference on Software 

Engineering and Advanced Applications, (2007), 28-31 August 2007, pp. 13-20 

Bucchiarone, A., Gnesi, S. (2006). A Survey on Services Composition Languages and 

Models, International Workshop on Web Services Modelling and Testing, (WS-MaTe 

2006), http://www.selab.isti.cnr.it/ws-mate/Bucchiarone_WS-MaTe.pdf (Last accessed on 

30 December 2011)    

Buthelezi, M.E., Adigun, M.O., Ekabua, O.O., Iyilade, S.S. (2008). Accounting, Pricing 

and Charging Service Models for a GUISET Grid-Based Service Provisioning 

Environment, Proceedings of the 2008 International Conference on E-Learning, E-

Business, Enterprise Information Systems, and E-Government, (EEE 2008), 14-17 July 

2008, pp. 350-355  

Chappel, D.A. (2004). Enterprise Service Bus: Theory in Practice, O‟Reilly Media 

Chappell, D. (2007). Introducing SCA, July 2007, 

http://www.davidchappell.com/articles/introducing_sca.pdf (Last accessed on 14 October 

2011)  

Cheesman, J., Ntinolazos, G. (2004). The SOA Reference Model, CBDI Journal 2004, 

http://stratasoftware.com/downloads/CBDIWP-SOARMPart1.pdf (Last accessed on 15 

August 2012) 

Chiliya, N., Chikandiwa, C.K., Afolabi, B. (2011). Factors Affecting Small Micro 

Medium Enterprises‟ (SMMEs) Adoption of E-Commerce in the Eastern Cape Province 

of South Africa, International Journal of Business and Management, October 2011 (Vol. 

http://www.selab.isti.cnr.it/ws-mate/Bucchiarone_WS-MaTe.pdf
http://www.davidchappell.com/articles/introducing_sca.pdf
http://stratasoftware.com/downloads/CBDIWP-SOARMPart1.pdf


100 

 

6, No. 10), pp. 28-36, http://dx.doi.org/10/5539/ijbm.v6n10p28 (Last accessed on 07 July 

2012)  

Chu, Q., Shen, Y., Jiang, Z. (2009). A Transaction Middleware Model for SCA 

Programming, International Workshop on Education Technology and Computer Science, 

2009, (ETCS ‟09), 7-8 March 2009, pp.568-571 

Cloete, E., Courtney, S., Fintz, J. (2002). Small Businesses‟ Acceptance and Adoption of 

e-commerce in the Western-Cape Province of South Africa, Electronic Journal on 

Information Systems in Developing Countries, 2002, EJISDC, (Vol. 10 No. 4), pp. 1-13 

COFISA Project Plan, (2008). Rural ICT Mapping Exercise in the Eastern Cape and 

Western Cape, Step 3.3 – Rural Development and ICTs, Final Version: May 2008, 

http://unpan1.un.org/intradoc/groups/public/documents/cpsi/unpan038413.pdf (Last 

Accessed on 31 August 2012) 

Crnkovic, I., Larsson, M. (2002). Building Reliable Component-Based Software Systems, 

Artech House.2002, Norwood 

Dahiya, D. (2010). Enterprise Systems Development: Impact of Various Software 

Development Methodologies, 2
nd

 International On Software Engineering and Data 

Mining (SEDM), 23-25 June 2010, pp. 177-122  

Dalvit, L., Thinyane, M., Muyingi, H., Terzoli, A. (2007). The Deployment of an e-

Commerce Platform and Related Projects in a Rural Area in South Africa, International 

Journal of Computing and ICT Research, 2007, (Vol. 1, No. 1), pp. 9-18, 

www.ijcir.org/downloads/article1.pdf (Last accessed on 29 August 2012) 

Davis, J. (2009) Open Source SOA, Manning Publications Co., 2009 

DTI, The. (2005). Integrated Strategy on the Promotion of Entrepreneurship and Small 

Enterprises, The Department of Trade and Industry: Republic of South Africa, 2005 

http://www.thedti.gov.za/sme_development/docs/strategy.pdf (Last Accessed on 11 

August 2012)  

http://dx.doi.org/10/5539/ijbm.v6n10p28
http://unpan1.un.org/intradoc/groups/public/documents/cpsi/unpan038413.pdf
http://www.ijcir.org/downloads/article1.pdf
http://www.thedti.gov.za/sme_development/docs/strategy.pdf


101 

 

Dyakalashe, S. (2009). Cultural and Linguistic Localization of the Virtual Shop-Owner 

Interface of E-Commerce Platforms for Rural Development, University of Fort Hare, 

November 2009, Eastern Cape, South Africa (unpublished) 

Eichberg, M. (2005). Component-Based Software Development with Aspect Oriented 

Programming, http://www.jot.fm/issues/issue_2005_04/article3/ (Last Accessed: 15 

March 2012) 

Ekabua, O.O., (2009). Change Impact Analysis Model-Based Framework for Service 

Provisioning in a Grid Environment, University of Zululand, February 2009, KwaZulu-

Natal, South Africa (unpublished) 

Ekabua, O.O., Adigun, M.O. (2010). GUISET LogOn: Design and Implementation of 

GUISET-driven Authorization Framework, 1
st
 International Conference on Cloud 

Computing, GRIDs and Virtualization, 21-26 November 2010, pp. 1-7   

Etienne, J.P., Bouzefrane, S. (2006). Applying the CBSE paradigm on Real-time 

Systems, 2006 International Workshop on Factory Communications Systems, vol., no., 

pp. 368-373  

Farrel, A. (2007). Selecting a Software Development Methodology based on Organization 

Characteristics, Athabasca University, October, Canada (unpublished) 

Ferguson, C., Finn, F., Hall, J., Pinnuck, M. (2010). Speculation and e-commerce: The 

long and the short of IT, International Journal of Accounting Information Systems 11, 

ScienceDirect, pp. 79-104 

Foster, I., Kesselman, C., Tuecke, S. (2001) The Anatomy of the Grid: Enabling Scalable 

Virtual Organisations, International Journal of High Performance Computing 

Applications, Fall 2001, (Vol. 15, No. 3), pp. 200-222 

Gomez, J.M., Alor-Hernandez, G., Posada-Gomez, Rivera I., Mencke, M., Chamizo, J., 

Sanchez, F.G., Toma, I. (2008). An approach for Component-based Software 

Composition, Electronics, Robotics and Automotive Mechanics Conference, (CERMA 

‟08),  Vol., No., 30 September – 03 October 2008, pp. 195-200  

http://www.jot.fm/issues/issue_2005_04/article3/


102 

 

Guinard, D., Trifa, V., Wilde, E. (2010) A Resource Oriented Architecture for the Web of 

Things, Internet of Things, IEEE, 29 Nov – 1 Dec 2010, pp. 1-8 

Guner, S. (2005). Architectural Approaches, Concepts and Methodologies of Service 

Oriented Architecture, Software System Institute, Technical University Hamburg 

Germany, August 2005, (Unpublished) 

Gunestas, M. (2005) A Study on Component Based Software Engineering, Atilim 

University, Ankara, Turkey, January 2005 (unplublished) 

Guo, X., Shen, J., Yin, Z. (2010). On Software Development Based on SOA and ROA, 

2010 Chinese Control and Decision Conference, Vol., No.,, 26-28 May 2010, pp. 1032-

1035 

Haapasalo, T. (2007). Using Open-Source Solutions in Agile Software Development, 

Helsinki University of Technology, January 2007, Finland (Unplublished) 

Herselman, M.E. (2003). ICT in Rural Areas in South Africa: Various Case Studies, 

Proceedings of Informing Science, InSITE – “Where Parallels Intersect”, 

http://proceedings.informingscience.org/IS2003Proceedings/docs/120Herse.pdf (Last 

accessed on 11 August 2012) 

Hesari, S., Mashayekhi, H., Ramsin, R. (2010). Towards a General Framework for 

Evaluating Software Development Methodologies, 34
th

 Annual IEEE Computer Software 

and Applications Conference, 19-23 July 2010, 208-217 

Houspanossian, A. (2006). Enhancing a BPEL4WS Engine Supporting the Execution of 

Flexible WS-flows According to the ReFFlow Model, Universidad Nacional del Centro 

de la Provincia de Buenos Aires, March, 2006, Tandil, Argentina (unpublished). 

Igbaria, M., Zinatelli, N., Cragg, P., Cavaye, A.L.M. (1997). Personal Computing 

acceptance factors in Small Firms: A Structural Equation Model, MIS Quarterly 

September, 1997, (Vol. 21 No. 3), pp. 279-305, Minneapolis, 

http://www.jstor.org/stable/pdfplus/249498.pdf (Last accessed on 30 July 2012) 

Internet World Stats. (2011). http://www.internetworldstats.com/stats.htm (Last accessed 

on 30 October 2011) 

http://proceedings.informingscience.org/IS2003Proceedings/docs/120Herse.pdf
http://www.jstor.org/stable/pdfplus/249498.pdf
http://www.internetworldstats.com/stats.htm


103 

 

Ishikawa, H., Ogata, Y., Adachi, K., Nakajima, T. (2004). Building Smart Appliance 

Integration Middleware on the OSGi Framework, Proceedings of the 7
th
 IEEE 

International Symposium on Object-Oriented Real-Time Distributed Computing 

(ISORC‟04), Vienna, 12-14 May 2004 

Iyilade, J.S., Kabini, K., Adigun, M. (2009). MINDS: A Middleware Infrastructure for 

Distributed Services Provisioning, 6
th

 International Conference on Information 

Technology: New Generations, 27-29 April 2009, pp. 1018-1023 

Iyilade, J.S. (2010). Grid-Based Utility Middleware Infrastructure for Distributed 

Services Provisioning, University of Zululand, April 2010, KwaZulu-Natal, South Africa 

(unpublished) 

Jarvensivu, J., Kosola, M., Kuusipalo, M., Reijula, P., Mikkonen, T. (2006). Developing 

an Open Source Integrated Development Environment for a Mobile Device, International 

Conference on Software Engineering Advances, October 2006, pp. 55 

Joseph, J., Ernest, M., Fellenstein, C. (2004). Evolution of grid computing architecture 

and grid adoption models, IBM Systems Journal, October 2004 (Vol. 43 No. 4), pp. 624-

645 

Ketfi, A., Belkhatir, N. (2005). Model-Driven Framework for Dynamic Deployment and 

Reconfiguration of Component-Based Software Systems, In Proceedings of the 2005 

symposia on Metainformatics, (MIS „05) ACM, New York, Article 8  

Kiczales, G., Mezini, M. (2005). Aspect-Oriented Programming and Modular Reasoning, 

In Proceedings of the 27
th

 International Conference on Software Engineering, 2005, 

(ICSE‟05), 15-21 May 2005, pp. 49-58 

Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., Rosenberg, J. (2002). Preliminary 

Guidelines for Empirical Research in Software Engineering, IEEE Transactions on 

Software Engineering, August 2002, (Vol. 28, No. 8), pp. 721 - 734  

Koskela, M., Rahikainen, M., Wan, T. (2007). Software development methods: SOA vs. 

CBD, OO and AOP, Helsinki University of Technology, http://www1.soberit.hut.fi/T-

86/T-86.5165/2007/final_koskela_rahikainen_wan.pdf (Last accessed on 30 June 2012) 

http://www1.soberit.hut.fi/T-86/T-86.5165/2007/final_koskela_rahikainen_wan.pdf
http://www1.soberit.hut.fi/T-86/T-86.5165/2007/final_koskela_rahikainen_wan.pdf


104 

 

Kozuch, M., Mahadev Satyanarayanan Bressoud, T., Helfrich, C., Sinnamohideen, S. 

(2004).  Seamless mobile computing on fixed infrastructure, Computer, (Vol.37, No.7), 

July 2004, pp. 65-72 

Kryvinska, N., Strauss, C., Collini-Nocker, B., Zinterhof, P. (2010) A Scenario of 

Service-oriented Principles Adaptation to the Telecom Providers Service Delivery 

Platform, Fifth International Conference on Software Engineering Advances, 22-27 

August 2010, pp. 265-271 

Kshetri, N. (2007). Barriers to e-commerce and competitive business models in 

developing countries: A case study, Electronic Commerce Research and Applications 6, 

2007, (ScienceDirect), pp. 443-452 

Laws, S., Combellack, M., Feng, R., Mahbod, H., Nash, S. (2011). Tuscany SCA in 

Action, Manning Publications Co, Greenwich 

Li, W., Zhang, Y., Jin, J. (2009). Research of The Service Design Approach Based on 

SCA_OSGi, IITA International Conference on Services Science, Management and 

Engineering, 2009, (SSME ‟09), 11-12 July 2009, pp. 392-395 

Li, Z., Parashar, M. (2006). An Infrastructure for Dynamic Composition of Grid Services, 

7
th

 IEEE/ACM International Conference on Grid Computing, 28-29 September 2006, pp. 

315-316 

Liping, Y., Kai, S. (2010). Design and Realization of Image Processing System Based on 

Embedded Platform, International Forum on Information Technology and Applications, 

(Vol. 2, no.), 16-18 July 2010, pp. 446-449 

Llorente, I.M., Montero, R.S., Huedo, E., Leal, K. (2006). A Grid Infrastructure for 

Utility Computing, 26-28 June 2006, pp. 163-168  

Maarouf,  M.Y., Chung, S.M. (2008). XML Integrated Environment for Service-Oriented 

Data Management, 20
th

 IEEE International Conference on Tools with Artificial 

Intelligence, 3-5 November 2008, pp. 361-368 



105 

 

Maican, C.I. (2009). Integrated University Management System Based on Open Source 

Tools, Fourth International Conference on Internet and Web Applications and Services, 

24-28 May 2009, pp. 626-631 

Maigre, R. (2010). Survey of the Tools for Automating Service Composition, IEEE 

International Conference on Web Services, vol., no., 5-10 July 2010, pp. 628-629 

Management Services, Computers Fail to Click with Small Businesses, Enfield, (Vol. 41, 

No. 4) Institute of Management Services, 1997, HighBeam Research: 

http://www.highbeam.com/doc/1P3-14526989.htm (Last accessed on 30 September 2012) 

Marino, J., Rowley. M. (2009). Understanding SCA (Service Component Architecture), 

Addison Wesley, 2009, Indianapolis 

Masek, K., Hnetynka, P., Bures, T. (2009). Bridging the component-based and service-

oriented worlds, Conference on Software Engineering and Advanced Applications, 35
th

 

Euromicro, 27-29 August 2009, pp. 47-54  

Maswera, T., Dawson, R., Edwards, J. (2008). E-commerce adoption of travel and 

tourism organisations in South Africa, Kenya, Zimbabwe and Uganda, Telematics and 

Informatics 25, ScienceDirect, 2008, pp. 187-200 

Mathonsi, E.L. (2011). Development of a Web Service Client Framework for GUISET, 

University of Zululand, July 2011, KwaZulu-Natal, South Africa (unpublished)  

Medvidovic, N., Mikic-Rakic, M., Mehta, N.R., Malek, S. (2003). Software architectural 

support for handheld computing, Computer, September 2003, (Vol.36, No.9), pp. 66-73 

Migiro, S.O., Adigun, M.O. (2005). ICTs, e-Commerce and Rural Development: The case 

of arts and crafts SMEs in rural KwaZulu-Natal, Commonwealth Youth and 

Development, 2005, (Vol. 3, Issue 2), pp. 65-83 

Minoli, D. (2008). Enterprise Architecture A to Z: Frameworks, Business Process 

Modelling, SOA, and Infrastructure Technology, CRC Press, 2008 

Modimogale, L., Kroeze, J.H. (2011). The Role of ICT within Small and Medium 

Enterprises in Gauteng, Communications of IBIMA, (Vol. 2011), ArticleID: 369288, 

http://www.highbeam.com/doc/1P3-14526989.html


106 

 

http://www.ibimapublishing.com/journals/CIBIMA/2011/369288/369288.pdf (Last 

Accessed on 01 July 2012) 

Mulik, S. (2009). Using Enterprise Service Bus (ESB) for connecting Corporate 

Functions and Shared Services with Business Divisions in a large Enterprise, 2009 IEEE 

Asia-Pacific Services Computing Conference, 7-11 December 2009, pp. 430-434 

Murphy, G.C., Kersten, M., Findlater, L. (2006). How Are Java Software Developers 

Using the Eclipse IDE?, IEEE Software, July-August. 2006, (Vol. 23, No. 4), pp. 76-83 

Nadiminti, K., Buyya, R. (2005). Enterprise Grid computing: State-of-the-Art, October 

2005, Grid Computing and Distributed Systems Laboratory, The University of 

Melbourne, http://www.cloudbus.org/reports/EOSJArticleTR05.pdf (Last accessed on 30 

June 2012) 

Najdawi, A. (2009). SOA and Web Services for Leveraging Inter-Organizational 

Integration in Travel and Tourism Industry, 2009 World Conference on Services – I, 6-10 

July 2009, pp. 151-154  

Nakagawa, E.Y., Machado de Sousa E.P., Mura, K., Andery, G., Morelli, L.B., 

Maldonado, J.C. (2008). Software Architecture Relevance in Open Source Software 

Evolution: A Case Study, 32
nd

 Annual IEEE International Computer Software and 

Applications Conference, COMPSAC, 28 July – 1 August 2008, pp. 1234-1239 

Nigul, L., Kontogiannis, K., Brealey, C. (2009). The SOA programming model: 

challenges in a services oriented world, 2009 Conference of the Center for Advanced 

Studies on Collaborative Research (CASCON '09), pp. 341-342. 

Ning, W., Liming, L., Yanzhang, W., Yi-bing, W., Jing, W. (2008). Research on the Web 

Information System Development Platform Based on MVC Design Pattern, 

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent 

Technology,  9-12 December 2008, pp. 203-206 

Njeje, S.G. (2008). Implementing a robust, cost effective, e-commerce platform for a 

disadvantaged community of the Eastern Cape, South Africa, University of Fort Hare, 

March 2008, Eastern Cape, South Africa (unpublished) 

http://www.ibimapublishing.com/journals/CIBIMA/2011/369288/369288.pdf
http://www.cloudbus.org/reports/EOSJArticleTR05.pdf


107 

 

Nyholm L, Liz in Africa, http://lizinafrica.posterous.com/umkhosi-womhlanga-royal-

reed-dance (Last accessed: 30 December 2011) 

Obrenovic, Z., Gasevic, D. (2007). Open Source Software: All You Do Is Put It Together, 

IEEE Software, September – October 2007, (Vol 24, No. 5), pp. 86-95 

Ommering, R., Linden, F., Kramer. J., Magee, J. (2000). The Koala Component Model 

for Consumer Electronics Software, Computer, Mar 2000, (Vol. 33, No.3), pp. 78-85  

Oreku, G.S. (2010). Open Source Software Application and their Impacts on SMEs: an 

Action for Building an OSS Community environment in Tanzania, IST-Africa 2010, vol, 

no, 19-21 May 2010, pp. 1-8, 

OSGi Alliance, OSGi Alliance Core Specifications Version 4.3, 

http://www.osgi.org/download/r4v43/r4.core.pdf  (last accessed on 14 October 2011). 

Overdick, H. (2007). The Resource-Oriented Architecture,  Proceedings of the 2007 IEEE 

Congress on Services, 9-13 July 2007, pp. 340-347 

Papazoglou, P.M., Georgakopoulos, D. (2003). Introduction: Service-oriented 

Computing, ACM Communications, ACM 46, 10 October 2003, pp. 23-28  

Papazoglou, P.M., Traverso, P., Dustdar, S., Leymann, F., Kramer, B.J. (2006). Service-

Oriented Computing Research Roadmap, http://infolab.uvt.nl/pub/papazogloump-2006-

96.pdf (Last accessed on 30 December 2011) 

Pastrana, A., Lopez, E.S. (2009). Possibilities of Open Source Software in Developing 

Local Small Business, International Conference on Intelligent Networking and 

Collaborative Systems, 4-6 November 2009, pp. 413-416 

Pieber, A., Spoerk, J. (2008). A Comparative Analysis of State-of-the-Art Component 

Frameworks for the Java Programming Language, 25 September 2008, 

http://cocoon.ifs.tuwien.ac.at/lehre/praktikumsarbeiten/2008_pieber_component_framew

orks.pdf (Last accessed on 30 June 2012) 

Pollard, C.E., Hayne, S.C. (1998). The Changing Faces of Information Systems Issues in 

Small Firms, International Small Business Journal, April 1998 (Vol. 16, No. 3), pp. 70-

87, http://isb.sagepub.com/content/16/3/70.abstract (last accessed on 31 August 2012) 

http://lizinafrica.posterous.com/umkhosi-womhlanga-royal-reed-dance
http://lizinafrica.posterous.com/umkhosi-womhlanga-royal-reed-dance
http://www.osgi.org/download/r4v43/r4.core.pdf
http://infolab.uvt.nl/pub/papazogloump-2006-96.pdf
http://infolab.uvt.nl/pub/papazogloump-2006-96.pdf
http://cocoon.ifs.tuwien.ac.at/lehre/praktikumsarbeiten/2008_pieber_component_frameworks.pdf
http://cocoon.ifs.tuwien.ac.at/lehre/praktikumsarbeiten/2008_pieber_component_frameworks.pdf
http://isb.sagepub.com/content/16/3/70.abstract


108 

 

Ramollari, E., Dranidis, D., Simons, A.J.H. (2007). A Survey of Service Oriented 

Development Methodologies, 2
nd

 European Young Researchers Workshop on Service 

Oriented Computing, University of Leicester, UK, 11-12 June 2007  

Ruiz, J.L., Duenas, J.C., Cuadrado, F. (2008). A Service Component Deployment 

Architecture for e-Banking, International IEEE Workshop on Service Oriented 

Architectures in Converging Networked Environments, (SOCNE 08), 25-28 March 2008, 

pp. 1369-1374 

Savva, A., Suzuki, T., Kishimoto, H. (2004). Business Grid Computing Project Activities, 

Fijutsi Science Tech Journal, Dec. 2004, (Vol. 40, No. 2), pp. 250-262, 

http://www.fujitsu.com/downloads/MAG/vol40-2/paper09.pdf (Last Accessed on 25 

March 2012) 

Seinturier, L., Merle, P., Fournier, D., Dolet, N. (2009). Reconfigurable SCA 

Applications with the FraSCAti Platform, 6
th
 IEEE International Conference on Service 

Computing, pp. 268-275 

Seinturier, L., Merle, P., Rouvoy, R., Romero D., Schiavoni, V., Stefani, J. (2012). A 

Component-Based Middleware Platform for Reconfigurable Service-Oriented 

Architectures, Software: Practice and Experience, 2012, (Vol. 42, No.5), pp. 559-583  

Sibiya, M.G., Jembere, E., Xulu, S.S., Adigun, M.O. (2008). A Web Services based e-

Commerce Business Model for Resource Constrained SMMEs, Proceedings of the 2008 

SATNAC Conference 

Sibiya, M.G. (2010). Context-aware Service Discovery for Dynamic Grid Environments, 

University of Zululand, October 2010, KwaZulu-Natal, South Africa (unpublished) 

Sibiya, S.S. (2009). Dynamic Service Recovery in a Grid Environment, University of 

Zululand, October 2009, KwaZulu-Natal, South Africa (unpublished) 

Sirbi, K., Kulkarni, P.J. (2010). Modularization of Enterprise Application Security 

Through Spring AOP, International Journal of Computer Science and Communication, 

July-December 2010, (Vol. 1, No. 2), pp. 227-231, 

Sommerville, I. (2001), Software Engineering, 6
th

 Edition, Addision-Wesley 

SQA FIVT 34. Prototyping, http://www.sqa.org.uk/e-

learning/IMAuthoring01CD/page_04.htm#Proto (Last accessed on 18 July 2011). 

http://www.fujitsu.com/downloads/MAG/vol40-2/paper09.pdf
http://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_04.htm#Proto
http://www.sqa.org.uk/e-learning/IMAuthoring01CD/page_04.htm#Proto


109 

 

Srinivasan, L., Treadwell, J. (2005).  An Overview of Service-oriented Architecture, Web 

Services and Grid Computing, HP Software Global Business Unit, White Paper, 3 

November 2005, (Last Accessed : 10 November 2011) 

Sun, C. (2011). China‟s E-Commerce Becomes Reality, 2011 International Conference on 

E-Business and E-Government, (ICEE), 6-8 May 2011, pp. 1-4 

Sun Microsystems, Inc., Guide to Using Open-Source Software to Develop Web 

Applications, Open Web Application Platform. White Paper, April 2009 

Tan, W., Tian, Z., Rao, F., Wang, L., Fang, R. (2006). Process Guided Service 

Composition in Building SOA Solutions: A Data Driven Approach, International 

Conference on Web Services, Vol., no., 18-22 September 2006, pp. 558-568 

Tosic, V., Mennie, D., Pagurek, B. (2001). On Dynamic Service Composition and Its 

Applicability to E-business Software Systems, Workshop on Object-Oriented Business 

Solutions, Budapest Hungary, 18 June 2001  

Wang, J. (2006). Web Service Discovery and Invocation Assistant Service, 

http://technology.asu.edu/files/documents/tradeshow/Dec06/ProjectReport_WSDIA_Jun

Wang.pdf  (Last accessed on 28 October 2010)  

Wang, Y., Guo, C., Song, L. (2009). Architecture of E-Commerce Systems Based on 

J2EE and MVC Pattern, International Conference on Management of e-Commerce and  e-

Government, 16-19 September 2009, pp. 284-287 

Warden, S.C., Motjolopane, I.M. (2007). E-commerce Adoption Factors for SMMEs: 

Supporting Cases from South Africa, Managing Worldwide Operations and 

Communications with Information Technology, pp. 701-709, http://www.irma-

international.org/viewtitle/33168/ (Last accessed on 29 August 2012) 

Weaver, R. (2009). The Business Value of the Service Component Architecture (SCA) 

and Service Data Objects (SDO), November 2009 

Wesner S, Jahnert J.M. (2006). Mobile Collaborative Business Grids – A short overview 

of the Akogrimo Project, pp 1-6, 

http://technology.asu.edu/files/documents/tradeshow/Dec06/ProjectReport_WSDIA_JunWang.pdf
http://technology.asu.edu/files/documents/tradeshow/Dec06/ProjectReport_WSDIA_JunWang.pdf
http://www.irma-international.org/viewtitle/33168/
http://www.irma-international.org/viewtitle/33168/


110 

 

http://www.mobilegrids.org/download/White_Papers_and_Publications/Akogrimo_White

Paper_Overview.pdf; (Last accessed: 12 February 2014)   

Wu, C., Liao C., Fu, L. (2007), Service-Oriented Smart-Home Architecture Based on 

OSGi and Mobile-Agent Technology, IEEE Transactions on Systems, Man, and 

Cybernetics, Part C: Applications and Reviews, March 2007 (Vol. 37, No. 2), pp. 193-

205 

Xiong-Yi, L. (2009). Research and Application of SOA in B2B Electronic Commerce, 

International Conference on Computer Technology and Development, IEEE, 13-15 

November 2009 

Yan, J., Jian, W., Zheng, S., Wu, C., Pan, H. (2009). Research on application of Web 

based ESB in School Common Data Platform, Computer Science and Education, 4
th

 

International Conference on Computer Science and Education, 25-28 July 2009, Nanning 

Yung-Wei, K., Chia-Feng, L., Kuei-An, Y., Shyan-Ming, Y. (2011). A Cross-Platform 

Runtime Environment for Mobile Widget-Based Application, International Conference 

on Cyber-Enabled Distributed Computing and Knowledge Discovery, 10-12 October 

2011, pp. 68-71 

Zhang, B., Xu, T., Wang, W., Jia, X. (2011). Research and implementation of cross-

platform development of mobile widget, 3rd International Conference on Communication 

Software and Networks, 27-29 May 2011, pp. 146-150 

Zhang, L., Li, H., Lam, H. (2004). Toward a business process grid for utility computing, 

IT Professional, September - October 2004, (Vol. 6, Issue: 5), pp. 62-64  

Zhengyan, D. (2011). Aspect Oriented Programming Technology And The Strategy Of Its 

Implementation, 2011 International Conference on Intelligence Science and Information 

Engineering, ISIE, 20-21 August 2011, pp. 457-460 

Zhou, C., Nu,i L. (2010). Research on Component Based Online Shopping System 

Design, International Conference on Computational Aspects of Social Networks, vol., 

no., 26 – 28 September 2010, pp. 133-136 

http://www.mobilegrids.org/download/White_Papers_and_Publications/Akogrimo_WhitePaper_Overview.pdf
http://www.mobilegrids.org/download/White_Papers_and_Publications/Akogrimo_WhitePaper_Overview.pdf


111 

 

Zululand Tourism. (2009). Zululand Tourism, 

http://www.zululandtourism.org.za/Tourism/details/nongoma.aspx?ShowAspMap=nongo

ma (Last accessed: 30 December 2011) 

 

http://www.zululandtourism.org.za/Tourism/details/nongoma.aspx?ShowAspMap=nongoma
http://www.zululandtourism.org.za/Tourism/details/nongoma.aspx?ShowAspMap=nongoma


Prototyping the GUISET Architecture 

using the Nongoma Online Stores 

 

 

Siyabonga Sifiso Cebekhulu 

(20034365) 

 

 

A dissertation submitted in fulfilment of the requirements for the  

degree of  

 

Master of Science in Computer Science 

 

 

Department of Computer Science, Faculty of Science and Agriculture 

 

 

University of Zululand 

Supervisor: Professor M.O. Adigun 

 

 

2014 


