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Commercial forestry plantations are an important and valuable segment of the South African economy and forest 
managers are required to maximise and sustain forest productivity. However, various factors such as the outbreak 
of damaging agents are constantly hampering forest health and thus decrease productivity. It is therefore important 
to detect the presence and spread of these agents within plantation forests, a task efficiently achieved using remote 
sensing technology. A wide assortment of sensors with varying resolutions are available and have been extensively 
used for this purpose. This paper reviews the current status of remote sensing of forest health in South Africa 
by providing insight on the latest developments on the use of the technology in forest plantations. A systematic 
search was executed on Google Scholar, ScienceDirect® and EBSCOhost® databases that identified 627 articles of 
which 29 made reference to remote sensing of forest health in South Africa. Four key results were found: (1) the 
latest technology is capable of detecting and monitoring forest health with great accuracy, especially with the 
adoption of machine learning methods; (2) studies employing remote sensing to characterise forest health have 
burgeoned since 2006 with even more applying hyperspectral data; (3) most studies were spatially concentrated 
in the KwaZulu-Natal Midlands region around Pietermaritzburg with only a few over the Western Cape; and (4) the 
remote detection of pest outbreaks and pathogens have received much attention followed by alien invasive plants 
and a few studies directed to fragmentation. Present and future partnerships may open up opportunities for exploit-
ing remote sensing further; this should address growing expectations from government and industry for more 
detailed and accurate information concerning the health and condition of South Africa’s plantation forests.     

Keywords: alien invasive plants, forest health, fragmentation, pest and pathogens, remote sensing

Introduction 

Southern Forests is co-published by NISC (Pty) Ltd and Informa UK Limited (trading as Taylor & Francis Group)

Forest health has become an increasingly important 
concept for sustainable forest management. This 
concept, however, lacks universal meaning, because it 
comprises subjective judgements as a result of differing 
socioeconomic and ecological viewpoints that have 
yielded a variety of indicators used to measure forest 
health (Ferretti 1997; Stone and Mohammed 2017). Most 
scientists agree, however, that forest health essentially 
describes the capacity of forests to maintain and preserve 
constantly high-quality supply of environmental products 
and services (Coyle and Megalos 2016). In this review, 
the emphasis is on tree health, particularly tree crowns 
that have been affected by tree-damaging insect pests and 
disease, invasive alien plants and fragmentation in South 
Africa’s planted forests. 

In recent years, there has been increasing attention on 
the susceptibility of forests to various damaging agents 
that may be regulated by climate (FAO 2010) and these 
are expected to grow with global warming and climate 
change (Bentz et al. 2010). Factors such as insects and 
disease outbreaks, alien species invasion and fragmenta-
tion warrant particular concern (Tkacz et al. 2008) as they 

have been reported to cause substantial forest deterioration 
where they occur. These factors, if not properly monitored, 
could have devastating effects in the forestry sector, 
particularly for those markets dependent on timber and 
its allied products. More recently, concerns over these 
forest-disturbing agents have led to increased collabo-
rative research by foresters, government and academic 
institutions, a practice that is widely used to address the 
decline in forest health. For instance, in South African 
forestry, a concerted research approach has been applied 
to combat the escalating damage to resources from pests 
(Ismail et al. 2012; Lottering et al. 2018), pathogens 
(McTaggart et al. 2015), alien invasive plants (Peerbhay et 
al. 2015, 2016b) and, more recently, the damage to pine 
trees by bark-stripping baboons (Germishuizen et al. 2017). 
Information on the spatial extent and severity of such forest-
damaging disturbances is perceived to require manage-
ment planning (Westfall and Ebata 2014) to reduce forest 
damage to acceptable levels (Coulson and Stephen 2008).  

Forest protection strategies typically depend on timely 
detection of threats to permit the accurate assessment and 
introduction of effective mitigation measures; however, the 
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traditional visual detection of affected trees is labourious 
and not straightforward (Rullan-Silva et al. 2013). The 
process is dubious because it is subjective, qualitative 
and hinges on the assessor’s expertise (Stone and Coops 
2004). The monitoring of large and unreachable areas 
further exacerbates this quandary, especially when using 
costly and spatially restrictive field surveys. The need for 
an affordable and spatially comprehensive approach has 
stimulated much research into extracting the necessary 
forest health information from airborne and satellite-based 
remote sensing (Trotter et al. 1997). Several studies have 
demonstrated that forest health is efficiently assessed by 
exploiting remote sensing capabilities (Wulder et al. 2006; 
Ismail and Mutanga 2010; McDowell et al. 2015). 

Remote sensing has gained wide acceptance and 
plays a growing role in forest management; its application 
introduces new opportunities for improving the assessment 
of forest-disturbing agents, their location, nature, areal 
extent and frequency (Ciesla 2000). Moreover, it offers 
forestry researchers and managers a flexible and spatially 
exploratory tool to augment other methods and extends 
monitoring capabilities (McDowell et al. 2015). However, 
to detect the impacts of disturbance on forest trees, the 
variation in reflectance must be great enough to respond 
to sensitivity of the imaging sensor (McGowen et al. 2001). 
Key vegetation attributes, such as size, shape, distribution 
and phenology, contribute to the detection of tree health 
using remote sensing (Lawley et al. 2015). Hitherto, great 
strides in remote sensing have been made with the early 
sensors recording features at relatively coarse resolu-
tion (Melesse et al. 2007). As space- and air-borne 
platforms with improved sensor capability became 
available, so did the means to collect images across a 
wide range of spatial, spectral and temporal resolutions 
(Jakubowski 2012). These advances from contemporary 
high-resolution sensors permit data quality close to that 
of aerial photography (Chuvieco 2016), so that the use of 
aerial photographs has since become largely overtaken – 
but not entirely – by remote sensing. The latest genera-
tion of sensors that generate high-spatial, hyperspectral 
and multispectral resolution data, allows automated image 
computation and holds much promise to obtain even 
more information related to forest health more efficiently 
(Jia et al. 2006). 

In summary, this paper provides a review of different 
remote sensing applications in South African commercial 
forestry and discusses their unique contributions in 
assessing forest health. The algorithms applied to process 
remotely sensed data when interpreting forest health indica-
tors are also considered. While this paper is limited to a 
South African context, studies that explain the application 
and ability of remote sensing to evaluate forest health in 
other parts of the world were considered for completeness 
and to guide future research focus. 

The remainder of the paper proceeds as follows. Firstly, 
the search strategy and the study area is described. 
Secondly, remote sensing for characterising forest health 
is explained. Then, tree-damaging agents that have been 
studied remotely in South Africa and their spatiotemporal 
aspects are provided. Finally, concluding remarks and 
future research directions are presented.     

Materials and methods

Systematic review 
Unlike general research reviews (e.g. Rullan-Silva et al. 
2013), which typically do not provide a detailed account of 
the review procedures applied (e.g. databases searched, 
articles excluded and search words used) – and with a 
dearth of such information – it is difficult to replicate the 
study to confirm the completeness of the analysis (Ford 
et al. 2011). In principle, systematic reviews employ 
literature search methods to select relevant studies that 
meet explicit criteria that reasonably confirm the strength 
of the evidence produced by previously published studies 
(Ham-Baloyi and Jordan 2015). Thus, the systematic 
review in this case is expected to provide the foundation 
of an evidence-based account of remote detection of forest 
health, emerging practices and knowledge gaps in the 
South African context.   

Method 
A systematic literature search was carried out using 
the Google Scholar, ScienceDirect® and EBSCOhost® 

databases for published articles on the remote detection 
of plantation forest health in South Africa. The following 
combinations of keywords and Boolean operators were 
entered into the database to retrieve relevant publications: 
remote sensing OR satellite imagery OR earth observation 
OR forest health OR forest disturbance OR forest damage 
OR insect pest infestation OR insect outbreak OR alien 
invasive plants OR machine learning algorithm OR forest 
plantations OR commercial plantations OR South Africa. 
As illustrated in Figure 1, the search identified 627 articles, 
and for the purposes of this paper, articles were narrowed 
down to 29 that made a direct reference to ‘remote sensing 
of forest health in South Africa’s plantation forest’. The 
selected studies were considered based on a number of 
criteria as illustrated in Figure 1. First, they had to apply 
remote sensing to detect forest health. Second, they had to 
be restricted to commercial forestry plantations. Third, they 
had to be based in South Africa for analysis, or elsewhere 
for accurate reporting and completeness. 

Reviewed articles were vetted using the following strati-
fication: forest-disturbing agent tackled, methods applied, 
study site location, and year of publication. Further details 
on each application can be found in Table 1.  

Study area
Plantation forests in South Africa cover approximately 
1.2 million ha of the total land area (1.2%), stretching from 
the Western Cape and traversing the eastern seaboard 
to Limpopo in the north (Figure 2). These fast-growing 
trees consist overall of 50% pine, 43% Eucalyptus and 
7% wattle, most of which are spatially concentrated in 
Mpumalanga (40%), KwaZulu-Natal (40%), Eastern Cape 
(12%), Limpopo (4%) and Western Cape (4%) provinces. 
Generally, commercial forestry plantations follow dryland 
cropping practices and grow most productively in environ-
ments receiving more than 800 mm rainfall y−1. All planta-
tion sites are restricted to relatively high rainfall areas 
exceeding 750 mm y−1 (van der Zel 1995); these are favour-
able conditions for forestry plantations (DWAF 2004).
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Figure 1: Schematic flow chart demonstrating the literature search process using the various databases

Reference Study area Data Approach Accuracy (%)
Ismail et al. (2006) SAPPI Pinewoods, KZN LrEye Analysis of variance 69–84
Ismail et al. (2007) SAPPI Pinewoods, KZN LrEye Analysis of variance 69–84
Mutanga et al. (2007) SAPPI Pinewoods, KZN ASD Analysis of variance 99
Dye et al. (2008) SAPPI Richmond, KZN LrEye Image texture analysis 70
Ismail et al. (2008) SAPPI Pinewoods, KZN ASD Analysis of variance 99
Ismail et al. (2008) SAPPI Pinewoods, KZN LrEye Minimum variance  –
Ismail and Mutanga (2010) SAPPI Pinewoods, KZN ASD Random forest, bagging  

and boosting 
68–73

Mutanga and Ismail (2010) SAPPI Pinewoods, KZN ASD Analysis of variance 84
Oumar and Mutanga (2010) Richmond, KZN ASD Artificial neutral networks 67–74
Ismail and Mutanga (2011) SAPPI Pinewoods, KZN ASD Random forest and boosting 

trees 
–

Oumar and Mutanga (2011) – – Review article –
Lottering and Mutanga (2012) New Hannover District, KZN SPOT-5 Artificial neutral networks 89
Poona and Ismail (2012) Tokai plantations, Western Cape ASD Random forest 81
Oumar and Mutanga (2013) Richmond, KZN WorldView-2 Partial least squares 65
Oumar et al. (2013) Pietermaritzburg ASD Partial least squares 63–74
Poona and Ismail (2013) Tokai plantations, Western Cape QuickBird Artificial neural network  82
Adam et al. (2013) Helvetia plantations, Mpumalanga – Random Forest 82
Abdel-Rahman et al. (2014) Greytown, KZN AISA Random forest and support 

vector machine 
74–78

Atkinson et al. (2014) SAPPI Hodgsons, KZN AISA Support vector machine 93
Oumar and Mutanga (2014) Richmond, KZN WorldView-2 Artificial neural network  71
Oumar and Mutanga (2014) Pietermaritzburg, KZN ASD Artificial neural network  88
Peerbhay et al. (2014) SAPPI Hodgsons, KZN AISA Partial least squares 82
Poona and Ismail (2014) Tokai plantations, Western Cape ASD Botura algorithm 75
Peerbhay et al. (2015) SAPPI Hodgsons, KZN AISA Random forest 89–95
Lottering and Mutanga (2016) SAPPI Pinewoods, KZN WorldView-2 Artificial neural network  80
Peerbhay et al. (2016) SAPPI Hodgsons, KZN WorldView-2 Random forest 67–91
Peerbhay et al. (2016) SAPPI Hodgsons, KZN WorldView-2,  

AISA and LiDAR
Partial least squares 68–98

Peerbhay et al. (2016) – – Review article –
Lottering et al. (2018) Greytown, KZN WorldView-2 Artificial neural network  83

Table 1: Summary of studies that applied remote sensing to assess forest health in South Africa. KZN = KwaZulu-Natal

Literature search from databases
(n = 627)

Title/abstract vetting
(n = 345)

Studies for potential further
screening
(n = 37)

Studies finally selected 
and reviewed

(n = 29)

282 duplicates removed

308 excluded:
No use of remote sensing = 72

Outside South Africa = 236

8 excluded:
No plantation forest = 8
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Conceptualising pests and pathogens as remotely 
sensed forest health indicators 

Remote detection of diseased or stressed trees typically 
involves the use of leaf chlorophyll (Mutanga et al. 2007; 
Dye et al. 2008) and moisture content (Ismail and Mutanga 
2010, Oumar and Mutanga 2014b) as acute indicators. 
These indicators are consistently related to spectral 
information, in that spectral characteristics change when 
trees are exposed to any source of stress (Chuvieco 
2016). Therefore, the details of reflectance spectra provide 
the most suitable and accurate means for detecting tree 
stress. Their measurement entails contrasting the chloro-
phyll absorbing (red band; 0.6–0.7 µm) and non-absorbing 
near-infrared (NIR; 0.7–1.1 µm) spectral regions to 
determine tree health status (Mutanga et al. 2007). In this 
regard, healthy trees exhibit greater reflectance in the NIR 
portion and absorb most of the visible light as illustrated 
in Figure 3. In contrast, reflectance decreases when tree 
health deteriorates (Dye et al. 2008). It is well established 
that stressed trees generally reduce chlorophyll activity, 

which consequently causes increased reflectance in the red 
band (Chuvieco 2016). 

The contrast between the NIR and short-wave infrared 
(SWIR) regions of the spectrum has been used widely to 
estimate leaf moisture content (Oumar and Mutanga 2010; 
Yebra et al. 2013) as illustrated in Figure 3. Variations in 
strategic bands located at 1.4 and 1.9 µm within the SWIR 
region form the foundation for the insect pest-induced water 
stress detection because water in the leaf absorbs strongly 
at these wavelengths (Lillesand and Kiefer 1994). On the 
basis of this evidence, several studies have progressively 
evaluated the utility of different sensors and ways to 
improve stress detection. 

It is important to note that many damaging agents 
confront South African forestry plantations but for the 
purpose of this paper, only those that have been investi-
gated using remote sensing technologies will be reported. 
Overall, it was found convenient to divide the remote 
sensing applications in forest health into three broad 
categories: insect pest and pathogens, alien invasive plants, 
and fragmentation. 

Figure 2: Distribution of plantation forests in South Africa 
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Insect pest and pathogens

In South African forest plantations, over the past decade, 
pests and pathogens have been the dominant cause of 
serious damage to forest trees, affecting future forest 
resource sustainability. The Siricid wasp (Sirex noctilio) is 
among the insect pests that have had a great impact on 
commercially planted pine species (Ismail et al. 2007). Its 
periodic outbreaks have caused extensive tree mortality in 
KwaZulu-Natal, threatening more than 72 000 ha of forest 
(Ismail et al. 2008b) with a 6% infestation rate (Hurley et 
al. 2007). Ismail et al. (2006) used a selection of vegeta-
tion indices derived from high-resolution imagery to 
distinguish different stages of S. noctilio infestations in 
pine plantations. They applied canonical variate analysis, 
which discriminated the red from the grey infestation 
stage with an accuracy of 84% and 69%, respectively. A 
key priority among foresters is detecting the red infesta-
tion stage, which reflects the degree of infestation (Leckie 
et al. 2005; Ismail et al. 2007). The difficulty in discerning 
the green infestation stage was noted and still remains a 
challenge in related studies using other criteria (Leckie et al. 
2005). Using hyperspectral imagery, Mutanga et al. (2007) 
established that most (77%) wavebands within the visible 
region distinguished three levels of S. noctilio attack. This 
is attributed to the sensitivity of wavebands located within 
the visible region to reduced leaf chlorophyll content (Ismail 
et al. 2008a). Dye et al. (2008) applied texture analysis 
and found that the NIR and blue bands correlated well with 
S. noctilio infestations compared with green and red bands, 
which had weak correlations. The study confirmed that the 
integration of spectral and textural information improves 
the discrimination between different insect pest infestation 
stages (Wang et al. 2015).  

Mutanga and Ismail (2010) analysed the relation-
ship between plant water content and different classes of 
S. noctilio infestations using analysis of variance (ANOVA). 
These authors found that variation in leaf water content  
correlated well with variation in spectral reflectance across 
three classes (59% for healthy, 46% for the green and 15% 
for the red). These results corroborate earlier studies (Carter 

1991; Eitel et al. 2006) in which wavebands within the SWIR 
part of the spectrum were more sensitive to plant water 
variations than wavebands in the NIR region. In the same 
area, Ismail and Mutanga (2010) tested the performance of 
three regression tree ensembles for predicting S. noctilio-
induced water stress in Pinus patula plantations. The results 
showed random forest (RF) to have relatively superior 
predictive accuracy (73%) than boosting (68%) and bagging 
(69%). RF seems consistently to achieve better accuracy 
than bagging, with exceptions when a modified form of 
bagging, termed adaptive bagging, was applied, which 
surpassed RF (Ismail and Mutanga 2010).   

More recently, Abdel-Rahman et al. (2014) applied RF 
and  support vector machine (SVM) to distinguish between 
healthy, S. noctilio-infested and lightning-damaged pine 
trees from airborne hyperspectral data. Both RF and 
SVM performed relatively well in discriminating healthy, 
S. noctilio-attacked and lightning-damaged classes, 
attaining an accuracy of 75% and 74%, respectively. 
Following Ismail and Mutanga (2011), RF was implemented 
to select discriminatory bands and the accuracy shifted to 
78% for RF and 77% for SVM. Similarly, Adam et al. (2013) 
used RF to model climatic and topographical variables 
to determine susceptibility of E. nitens to cossid moth 
(Coryphodema tristis) attack in Mpumalanga province, 
and the model produced good accuracy (82%) results. 
Coryphodema tristis is a native wood-boring insect to South 
Africa that only feeds on Eucalyptus nitens trees (Gebeyehu 
et al. 2005), threatening products and markets associated 
with E. nitens (Boreham 2006). 

The recent appearance of Thaumastocoris peregrinus 
(bronze bug) pest in South Africa (Jacobs and Neser 
2005), that affects Eucalyptus plantations, is another 
concern to timber production in the country. This is a 
sap-feeding insect pest from Australia, which has almost 
achieved ubiquitous distribution in South African planta-
tion forests on 26 Eucalyptus genotypes (Laudonia and 
Sasso 2012). The insect constitutes a major threat to the 
forestry industry by affecting the trees’ photosynthetic 
ability, causing much reduced growth and even mortality 
of severely affected trees (FAO 2010). Jacobs and Neser 
(2005) studied T. peregrinus extensively and found infesta-
tion symptoms to include the reddening and dropping of 
leaves, branch dieback and tree mortality in severe cases. 
The current pest detection methods involve time-consuming 
and costly field surveys as well as cost-effective remote 
sensing. Considerable progress has been made to detect 
T. peregrinus occurrence remotely in South Africa and 
elsewhere in the world.   

In the KwaZulu-Natal Midlands region, Oumar et al. 
(2013) used narrow indices calculated from normalised 
difference vegetation index ratios to predict the presence 
of Thaumastocoris peregrinus using ASD field spectro-
meter (0.35–2.5 µm). The indices produced an accuracy of 
59%. Subsequently, a partial least squares (PLS) algorithm 
was applied for spectral data reduction so as to identify 
spectral bands with high predictive power. The resultant top 
20 indices (located in the NIR at 0.80–0.89 µm) increased 
the accuracy to 63%. Overall, the accuracy increased to 
65%. Oumar et al. (2013) further tested a greedy backward 
variable selection model, which identified three indices 

Figure 3: Leaf spectral reflectance signatures in terms of moisture 
content (MC) (modified from Chuvieco 2016)
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(anthocyanin, carotenoid and normalised [0.86–0.88 µm]), 
resulting in improved (74%) accuracy.   

In an alternate study, Oumar and Mutanga (2013) 
developed PLS models from multispectral WorldView-2 
bands and indices to predict T. peregrinus infestations. 
The performance of these data sets was tested individually 
and combined using a PLS regression. WorldView-2 bands 
outperformed vegetation indices in predicting T. peregrinus 
infestation with an accuracy of 63% against 42%. Both 
bands and indices identified performed well in all PLS 
models with 65% accuracy. Much predictive strength for 
Worldview-2 bands was vested in the red edge and NIR 
portions of the spectrum. Oumar and Mutanga (2014a) 
reaffirmed this finding, reinforcing the power of the red 
edge and NIR bands. These wavebands have been found 
useful for detecting forest stress as tress undergo chlorosis, 
resulting in alterations in reflectance from the trees affected 
(Zarco-Tejada et al. 2002). 

More recently, Oumar and Mutanga (2014a) combined 
environmental variables with WoldView-2 data to enhance 
the prediction of T. peregrinus infestation using a PLS 
algorithm. Among the environmental variables, rainfall 
significantly correlated with T. peregrinus presence, with 
accuracy ranging from 62% to 76%. NIR-1 and NIR-2 as 
well as the red-edge band produced significantly (p < 0.05) 
high correlations with T. peregrinus damage (60% to 74%). 
In a subsequent study, these authors successfully predicted 
water stress induced by T. peregrinus damage from field 
spectral data using an artificial neural network (ANN) 
(Oumar and Mutanga 2014b).

Eucalyptus snout beetle (Gonipterus scutellatus) is 
another important insect pest in the South African forestry 
sector. This is a leaf-feeding weevil that is a major defoliator 
of Eucalyptus species (Newete et al. 2011). The weevil 
has caused extensive damage in Eucalyptus planta-
tions, particularly over the eastern areas of South Africa 
(Lottering et al. 2018). An understanding of G. scutellatus 
is essential for effective management and to maximise the 
productivity of Eucalyptus species due to its widespread 
damage. In this regard, Lottering and Mutanga (2016) 
determined the optimal spatial resolution for predicting 
different levels of G. scutellatus-infested Eucalyptus trees 
using a minimum variance technique. They established that 
low to medium defoliation levels can be detected at 2.5 m 
resolution, whereas high and severe defoliation levels 
can be detected at 3.5 and 4.5 m resolution, respectively. 
Moreover, these authors modelled the relationship between 
weevil-induced defoliation and leaf area index (LAI) from 
WorldView-2 imagery. The results showed strong correla-
tion between these variables at 72% accuracy. The authors 
further applied ANN to optimised vegetation indices and the 
accuracy improved to 83% (Lottering et al. 2018).

Similar to tree-damaging insect pests, some studies 
have remotely detected diseases caused by fungal 
pathogens that attack commercial trees in South Africa. 
While numerous pathogens have been recorded to date, 
the fungus Fusarium circinatum, known to cause pitch 
canker disease (Wingfield et al. 2008), is currently the most 
remotely detected pathogen in the country. This disease 
has become widespread in pine species, causing extensive 
mortality in plantations and nurseries across South Africa 

(Porter et al. 2009) and resulting in significant economic 
losses. Poona and Ismail (2012) determined hyperspectral 
wavebands for discriminating healthy and diseased 
seedlings using the RF algorithm. They found wavebands 
in the red-edge and NIR regions to be highly capable for 
separating healthy and infected classes. Poona and Ismail 
(2013) undertook a similar study using QuickBird imagery 
and an ANN approach, and found QuickBird imagery 
(0.6–2.44 m, 0.44–0.93 µm resolution) to be capable of 
discriminating diseased from healthy classes with an 82% 
accuracy. The authors concluded that wavebands in the 
red-edge and NIR portions of the spectrum are useful for 
detecting F. circinatum infection prior to the noticeable 
visual symptom stage. 

Recently, a new pathogen, wattle rust (Uromycladium 
acaciae) emerged in KwaZulu-Natal and southern 
Mpumalanga (Little and Payn 2016), threatening the 
productivity of black wattle (Acacia mearnsii) plantations in 
South Africa (McTaggart et al. 2015). The pathogen affects 
all age classes and has currently spread throughout wattle 
growing areas in KwaZulu-Natal with the Midlands region 
being the worst-affected area (Little and Payn 2016). The 
rust seems to be favoured by moist and low-light conditions, 
making spring and early summer months appropriate 
for the spread of this disease. In their empirical study, 
McTaggart et al. (2015) studied key characteristics of the 
wattle rust and concluded that it causes gummosis of the 
bark on trunks, stems and matted leaves. Infection occurs 
when spores germinate on a leaf or branch and penetrate 
the surface, resulting in spots of diseased tissue on the 
tree (Little and Payn 2016). As yet, only laboratory work 
has been done and there is an urgent need for the spatial 
detection of this rust fungus to monitor the spread and 
impact at a landscape level. 

On the basis of this account, it has proved possible to 
apply remote sensing for successful detection and mapping 
of insect pests and pathogen-infected trees. The integration 
of machine learning has greatly increased the accuracy of 
detecting affected trees, making remote sensing a more 
practical tool for effective forest management.

Invasive alien plants

Invasion alien species (IAS) and their effects on forestry 
plantations are another serious management concern. 
In South Africa, the proliferation of the aggressive weed, 
Solanum mauritianum (bugweed), has received much 
attention. This is currently the most insidious, densely 
growing and highly resilient invasive plant species in the 
country as recorded by the South African Plant Invaders 
Atlas (Henderson 2007). The grey-green-leaved plant, with 
a roughly 30-year life span, is a major forestry plantation 
invader in South Africa (Peerbhay et al. 2016a). As such, 
continuous evaluation and monitoring of IAS has been 
accepted as a research necessity (Johnson 1999) that 
South Africa is progressively addressing.   

Several studies have demonstrated remote sensing 
technology as highly capable for mapping IAS. The practice 
has evolved from using images with low spectral but high 
spatial resolution (i.e. aerial photographs) to digital images 
comprising mature spectral with medium to high spatial 
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resolution (Underwood et al. 2007). The emergence of 
multispectral data has amplified the detection ability of 
IAS by recording up to eight wavebands (Groeneveld and 
Watson 2008). Locally in South Africa, WorldView-2 is 
currently the most used source of multispectral data for 
this purpose. In part, this is because Oumar and Mutanga 
(2013) acclaimed WorldView-2 as having superior bands 
located strategically in the visible and NIR regions with 
1.8 m resolution, which outstrips those of other multispectral 
sensors, such as GeoEye, IKONOS and QuickBird. The 
sensor’s newly incorporated red-edge (0.68–0.75 µm), 
coastal (0.40–0.45 µm), yellow (0.58–0.62 µm) and 
NIR-2 (0.86–1.04 µm) bands are strongly correlated 
with variations in plant health, which makes it useful 
for detection purposes (DigitalGlobe 2010; Oumar and 
Mutanga 2014a; Stone and Mohammed 2017). 

Peerbhay et al. (2016b) tested the ability of WorldView-2 
and a unique unsupervised RF method to detect bugweed 
occurrences in forest margins, open areas and riparian 
sites in the KwaZulu-Natal Midlands. Their results showed 
high competency for WorldView-2 imagery to discriminate 
bugweed as they achieved respectively high (91%, 85% 
and 68%) accuracies. Despite these successes, McGowen 
et al. (2001) noted limitations with recent multispectral data 
to include inability to distinguish light and scattered weed 
occurrences. The sensor is able to detect weeds when they 
become heavy and widespread (Ghiyamat and Shafri 2010) 
and this has serious economic implications. Alternatively, 
the use of hyperspectral data with many narrow contiguous 
spectral bands that are sensitive to phenological changes 
is a promising option (Zeng et al. 2017). Hyperspectral 
remote sensing offers greater spectral resolving power 
than multispectral data, making it well-suited for extracting 
weeds’ biochemical and structural attributes at fine scales 
(Underwood et al. 2003). This further permits detection of 
the weed at an early stage of establishment, which adds 
to a suppression campaign for weed control. Early weed 
control cuts the effects that may affect tree productivity, 
which enhances the success of prevention and eradica-
tion measures (Peerbhay et al. 2016a). In the KwaZulu-
Natal Midlands, Atkinson et al. (2014) successfully detected 
bugweed within mature P. patula stands using 2 m AISA 
hyperspectral imagery (0.3–0.99 µm) with overall accuracy 
of 93%. This accuracy was influenced by the adoption of 
SVM, which selected 17 optimal bands from 272 original 
AISA bands. Peerbhay et al. (2015) also reported an 
excellent accuracy of 95% through using an AISA and RF 
approach. Peerbhay et al. (2016c) used AISA imagery to 
compare with LiDAR data collected over the same period 
to detect bugweed abundance. The AISA and LiDAR data 
individually produced an overall accuracy of 63% and 64%, 
respectively. The integration of these data sets improved 
the accuracy to 78%. This improvement ascribes to the 
synergetic effect of very highly detailed spatial and spectral 
data that provide complementary abilities for vegetation 
classification (Lim et al. 2003). 

The use of multispectral and hyperspectral remotely 
sensed data for IAS detection and mapping has been 
improved by the incorporation of machine learning, 
especially RF and SVM. These algorithms are instrumental 
in IAS detection using hyperspectral data, which suffers 

from several caveats, including data dimensionality. 
Nonetheless, the issue of dealing with high data dimension-
ality has been eased by applications selecting and 
processing a subset of important bands that best charac-
terise a feature of interest (Atkinson et al. 2014). This holds 
much potential for detecting IAS with high accuracy.  

Fragmentation 

Forest fragmentation is one of the broad spectrum of 
factors that affect forest health, involving the division of 
forest stands into smaller and more isolated patches. 
Lindenmayer and Fischer (2006) note that fragmentation 
is responsible for long-term changes to the composition 
and function of forests, an aspect that disrupts silvicul-
tural management and forest productivity. In South African 
forestry landscapes, attempts have been made to record 
such manifestations remotely. For instance, Lottering 
and Mutanga (2012) used SPOT-5 imagery to estimate 
road-edge effects on Eucalyptus plantations in KwaZulu-
Natal. They applied ANN to select ideal texture measures.  
The results demonstrated that structural differences 
existed from forest road edges towards the interior. They 
subsequently applied an ANOVA to verify the results, 
and the outputs confirmed a decrease of forest structural 
attributes from the road edge towards the interior. The 
overall accuracies ranged from 69% to 89%. 

Having highlighted the utility of various sensors in tacking 
the myriad of forest health conditions, the narrative now 
turns to a spatiotemporal account of these studies across 
South African landscapes. 

Spatiotemporal account of remote sensing application 
to forest health

Overall, the remote sensing of forest health in South Africa 
is a growing research area with much attention devoted to 
pest and pathogen outbreak as they constitute the majority 
(19 of the total of 28) of the articles. This is followed by the 
detection of alien plant species (totalling seven articles) with 
relatively little focus (two articles) devoted to fragmenta-
tion (Table 2). Insect pests and pathogens were combined 
as they are often mutually dependent. The search results 
encapsulated in this table also showed that in South Africa, 
as in other forest-growing countries, remote detection 
of forest health is largely restricted to optical platforms 
because of their reflectance spectra that enables detection 
of vegetation stress. Notably, hyperspectral (Analytical 
Spectral Device [30%], AISA [17%] and LrEye [14%]) and 
multispectral data (WorldView-2 [24%]) have dominated the 
forest health assessment practice. The use of LiDAR has 
been limited due to its high cost, but it is hoped that growing 
research partnerships may increase its application. 

Spatially, most studies (80%) were spatially concentrated 
in the province of KwaZulu-Natal, particularly in the 
Midlands region, around Pietermaritzburg. The Western 
Cape accounts for about 10% with Mpumalanga having 
3% of the articles, while the remainder featured reviews on 
specific damaging agents (Figure 4). Should studies that 
have remotely detected forest plantation health elsewhere 
in South Africa exist, then such studies have not been 
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Sirex noctilio 1 – 5 4 – – – 10 68
Thaumastocoris peregrinus – 2 2 – – – – 4
Gonipterus scutellatus – 2 – – – – – 2
Pitch canker – – 2 – – 1 – 3
Solanum mauritianum 4 2 – – – – 1 7 25
Road edge – – – – 1 – – 1 7
Moisture content – – 1 – – – – 1
Total application 5 6 10 4 1 1 1 28 100

Insect pests and pathogens

Forest fragmentation

Invasive alien species

Table 2: Summary of remote sensing applications for forest health in South Africa (2006–2018)

Figure 4: Spatial distribution of remote sensing of forest health studies in South Africa
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published and this review solely considered the published 
surveys as required.

Regarding developments in remote sensing as publica-
tion records indicate, the history of remote sensing of forest 
health in South Africa is slightly more than a decade long 
with 2006 recording the first publication. Since then, there 
has been a gradual increase over the years, yielding a total 
of 29 publications by 2017. Mutanga et al. (2016) credit 
this progress to data availability and the increase in Earth 
observation and geographic information systems (GIS) 
programmes at various institutions locally. 

The research partnerships, such as between SAPPI, the 
Department of Science and Technology, the Council for 
Scientific and Industrial Research, and the University of 
KwaZulu-Natal (Ismail et al. 2012), are also adding to this 
increasing output. Furthermore, Köhl et al. (2006) note 
improved access to remotely sensed data, constant data 
cost reduction and better-quality resolution from imaging 
sensors is stimulating the utility of remote sensing further. 

Discussion 

Studies of remote sensing for forest health have shown that 
tree stress by different damaging agents alter biochemical 
and structural properties so that the resultant variations 
in leaf reflectance can be recorded by imaging sensors. 
This review has demonstrated that information generated 
by means of remote sensing platforms are essential for 
developing spatial maps that will expose the occurrence 
and the extent of tree damaging agents so that early 
warning systems and effective monitoring measures can be 
established. The benefits of early forest stress detection are 
that they reduce costs and enhance the success of preven-
tion measures, which consequently maximise forest produc-
tivity, as expected. 

The continuous developments in imaging sensors has 
made remote sensing a desired and practical tool for 
characterising the state of forest health in various respects 
with great fidelity. High-resolution multispectral data, such 
as WorldView-2 (Lottering et al. 2018) and QuickBird 
(Poona and Ismail 2013), have been used with success to 
detect tree-damaging insects and to discriminate affected 
from healthy trees. WoldView-2 has also been found useful 
for detecting weeds, particularly those that have become 
dense and widespread (Peerbhay et al. 2016a). The 
monitoring of early weed invasions, however, has not yet 
been successful. The appearance of hyperspectral data with 
many contiguous narrow spectral bands overcomes this 
problem by proving highly capable of recording weeds at 
their early stages (Houborg et al. 2015). Studies have also 
shown high competency of hyperspectral data to classify 
different levels of trees exposed to several tree-damaging 
insects (Dye et al. 2008; Oumar et al. 2013) and pathogens 
(Poona and Ismail 2012; Poona and Ismail 2014). 

More recently, Peerbhay et al. (2016c) demonstrated 
that the integration of either hyperspectral or multispectral 
data with LiDAR data deliver better accuracies for weed 
detection than using these data sets on their own. 
Moreover, the combination of LiDAR with hyperspectral 
data in particular prevails over that with multispectral data. 
While hyperspectral data can afford detailed information 

on the spectral properties associated with varying levels 
of stresses, the immanent high dimensionality of the data 
makes the analysis challenging (Kursa et al. 2010). Several 
algorithms have been applied to reduce data dimensionality 
of hyperspectral data and most studies found that RF stood 
out as the best approach for this purpose (Abdel-Rahman et 
al. 2014). 

Several studies have produced satisfactory accuracies 
for numerous forest health conditions using satellite 
imagery, but better accuracies were mostly achieved when 
competent machine learning algorithms were employed. 
Overall, several studies have demonstrated RF, and to 
some extent ANN, as highly suitable for characterising forest 
health parameters. These algorithms have been applauded 
in particular for their strength not only in amplifying classi-
fication accuracies or reduce data dimensionality but also 
in selecting useful variables with high discriminatory power 
(Ismail and Mutanga 2010). As a result, the prevalence 
of these algorithms in remote sensing of forest health 
research is to be expected. Peerbhay et al. (2016a) advised 
that further investment should now be directed toward the 
development of accurate automated and semi-automated 
algorithms that are capable of exploiting the massive 
amounts of information associated with remotely sensed 
data sets in order to sort out spectral complexities. 

This review has also shown that studies on remote 
sensing of forest health have been almost entirely limited 
to the KwaZulu-Natal Midlands, and few undertaken within 
Tokai plantations over the Western Cape and Mpumalanga 
province. With the advent of freely available sensors, such 
as Landsat and Sentinel, and increase in access to data 
along with abreast and rapid advances in computer applica-
tions, forest health studies are expected to spread across 
the forestry landscape of South Africa. In addition, the 
state-of-the-art synthetic aperture radar (SAR) appears to 
have great potential for characterising the structure and 
detecting subtle changes within forest stands (Verhegghen 
et al. 2016). Imminent SAR developments are anticipated 
with much capability for recording disturbance manifesta-
tions that are concomitant with canopy structure, such as 
canopy gaps. Ultimately, the monitoring of forest canopy 
disturbances will expand since SAR is capable of imaging 
forests throughout the year regardless of cloud conditions 
(Siegert and Ruecker 2000).   

Given that forest health, like all forestry applications, 
requires accurate analysis, the modifications of forest 
conditions due to climate change and other drivers make 
forest characterisation an extremely important consideration 
for management planning in order to maximise forest 
productivity. For this assessment, spatially explicit risk 
models with scenario capability are required to fully 
understand current and future potential of insect pests and 
other damaging agents on the plantation forestry industry. 
This may also facilitate the economic evaluation of the 
impact of forest stressors within plantations and provide the 
industry with measures to mitigate financial losses. 

Further studies on forest health employing multitemporal 
with medium to high spatial and temporal resolution images 
are essential to expose disturbance pattern. Future airborne 
and satellite sensors are anticipated to bring far more 
capable observations to detect forest stressors, allowing for 



Xulu, Gebreslasie and Peerbhay10

the separation of impacts of multiple stressors in support of a 
comprehensive forest protection and monitoring framework.  

Conclusion 

This review has demonstrated the use of remote sensing 
as a practical tool for extracting forest health information 
in South Africa. Studies have applied a range of data sets, 
the majority of which are hyperspectral data followed by 
multispectral and lately incorporating LiDAR and machine 
learning techniques. Thus far, studies are restricted to 
few areas, much of which are based in the KwaZulu-
Natal Midlands region, probing insect pests and disease, 
invasion alien species and forest fragmentation. While 
South Africa’s plantation forests are confronted with a 
multitude of tree-damaging agents, only few, thus far, have 
been explored using remote sensing technology. With the 
advent of cloud-based remote sensing platforms such as 
Google Earth Engine that afford access to freely available 
and processed satellite data, it is hoped that full potential 
of this technology will be explored in order to meet the 
government and industry’s growing expectations for more 
updated and accurate information on forest conditions 
and timber procurement potential. There is also potential 
to further increase the utility of remote sensing by shifting 
towards long-term time-series analyses, as part of an 
effective management framework to monitor several other 
tree-damaging instances, such as forest drought, forest 
fires or anthropogenic disturbance. Otherwise, remote 
sensing of forest health in South Africa is very much in its 
infancy, and with improving research partnerships there are 
promising developments in this regard. 
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