
A Dynamic and Adaptable System for Service
Interaction in Mobile Grid

OTEBOLAKU ABAYOMI MORADEYO

(20067353)

A dissertation submitted in fulfilment of the requirements for the degree of

Master of Science

In

Computer Science

Faculty of Science and Agriculture
Department of Computer Science

University of Zululand

2007

DECLARATION

I, Otebolaku Abayomi Moradeyo, declare that this dissertation represents my work, and that

it has not been submitted in any form for another degree or diploma at any University or

other institution of tertiary education. Information derived fr;:>m published or unpublished

work of others has been acknowledged in the text and a list of references is given.

Orebolaku Abayomi Moradeyo

11

DEDICATION
This work is dedicated to the Almighty God for His love, Wisdom and Salvation that He

freely gave me.

111

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to those who made it possible to complete this

research work.

First, I thank God Almighty for His Mercy and Grace bestowed on me in the course of my

life and in particular during the period of this study. Thank you Lord for being the author and

owner ofmy life.

Second, my sincere appreciation goes to my Supervisor, Professor M.O. Adigun, who has

been the backbone of this work, and for the rare privilege he gave me to tap from his wealth

of computing knowledge. In addition, you taught me what research is, and in particular, the

art of writing. Your fatherly role can not be appreciated enough, thank you for believing in

me.

I also acknowledge the financial support I received from the Centre of Excellence of the

Department of Computer Science, University of Zululand without which this study would not

have been possible.

I thank my family members- my Dad, my Mom and my Siblings for their support, I

appreciate your care, love and patience.

My appreciation goes to my friends, colleagues and entire staff of the Department of

Computer Science, Mr F. Nel, Mr Reuben Aremu, Johnson Iyilade, Dr Justice

Emuoyibofarhe, Dr Xulu, TC Nyandeni, Stanley Ekabua, Petrus Shabangu, Mudali

Pregansen, Miss Divya Pillai, Miss Tarirai Chani and others who contributed immensely not

only to this work but to my life in general. The jokes, lively dispositions. love and the

occasional frustrations we shared were inexhaustible fuel that propelled this research to a

conclusion, thank you all.

Finally, I cannot forget my closest friend and love. ani Comfort. who stood by me even

when no one cared. I will eternally be grateful for the prayers. encouragements and love you

shared with me in those trying times.

iv

TABLE OF CONTENTS
DECLARATION ii
DEDICATION iii
LIST OF FIGURES viii
LIST OF TABLES ix
ABSTRACT x

CHAPTER ONE I
I. INTRODUCTION I

1.1 Overview 1
1.2 Background '.. 1
1.3 Statement of the Problem 7
1.4 Rationale of the study 8
1.5 Research Goal and Objectives 9
1.6 Research Methodology 10

1.6.1 Requirements Gathering 10
1.6.2 Model Development... 10
1.6.3 Simulation and Evaluation 11

1.6.4 Organisation of the Dissertation II
CHAPTER TWO 13

2. BACKGROUND CONCEPTS AND REVIEW OF LITERATURE 13
2.1 Introduction 13
2.2 Mobile and Pervasive Computing 14
2.3 Mobile and Pervasive Grid 16
2.4 Dynamic Adaptation Management 18

2.4.1 Adaptation Mechanisms 20
2.4.2 Adaptation Policy 23

2.5 Context Management 29
(a) Physical Context 30
(b) Computing Contexts 30
... 32
2.4.4.2 Context Modelling 3I

2.5 Dynamic Reconfiguration 35
2.5.1 State ofthe art of component Reconfiguration 37
2.6 Related Work on Adaptable Systems 38

2.6.1 CARISMA 38
2.6.2 M3 39
2.6.3 MADAM 40
2.6.4 Sparkle 41
2.6.5 Aura 42
2.6.6 DACIA 43
2.6.7 Globus 43
2.6.8 GRACE Project... 44
2.6.9 ACCORD 45
2.6.10 SECAS 46

2.7 Concluding Remarks 47

v

CHAPTER THREE 51
3. MODEL DESIGN AND DEVELOPMENT 51

3.1 introduction 51
3.2 Requirements for Service lnteractions 51

3.2.1 Example Scenario 51
3.2.2 The CACIP interaction Model 56

3.2.2.1 CACIP lnteraction Bus 56
3.2.2.2 The Service interaction Definition 59

3.3 The Adaptation Model 62
3.3.1 Context Monitoring and Event Management 63
3.3.2 The Evaluator 70
3.3. 2.3 Utility Policy Management. 81

3.3.3 Designing the Service Component and Reconfiguration model82
3.3.3.1 The Component Model 82
3.3.3.2 The Run-Time Component Mode!... 84
3.3.3.3 The Reconfiguration Template 86
3.3.3.4 The Service Reconfigurator 87

3.3.4 Adapting Services 91
3.3.5 Chapter Conclusion 93

CHAPTER FOUR 95
4. MODEL IMPLEMENTATION AND EVALUAnON 95

4.1 Introduction 95
4.2 Implementation Framework 96
4.2.1 Context Monitor Package 97

4.2.1.1 ContextSensor Class 99
4.2.1.2 ContextSensorAccesslnterface 99

4.2.2 Evaluator 99
4.2.3 The Service Reconfigurator 101
4.3 Implementation Environment and Specifications 104
4.3.1 Starting the Adaptation Manager 105
4.3.2 Demonstration of the Model 106

4.3.2.1 Context and Adaptation Strategy Analysis 108
4.3.2.2 Adaptation Strategy III
4.3.2.3 Service Component Architecture liS
4.3.2.4 Specification of the Composition Plans and Architectural Constraints 116
4.3.2.5 Algorithm Implementation 120

4.3.3 Model Performance Evaluation 122
4.3.3.1 Effect of service variants and service consumer choice (Weight) on
Adaptation Quality 122
4.3.3.2 Effect of Adaptation on Overall Response Time 125
4.3.3.3 Effect ofService Consumer Choice and Service Variants on Service
Response Time 127
4.3.3.4 Comparing Adaptation time with Response time as number of variants
lncreased 128

4.3.4 Conclusion 129
CflAPTER FIVE 131

VI

5 CONCLUSION AND FUTURE WORK I31
5.1 Overview 131
5.2 Conclusions 131
5.3 Future Work 134

REFERENCES 136
APPENDIXA 145
APPENDIXB 146

vii

LIST OF FIGURES

Figure 2. 1:Context-unaware service Provision 33
Figure 2. 2: Context-aware service provision 33
Figure 3. I: Service Adaptation Architecture 54
Figure 3. 2:An architecture showing mobile devices interacting with Grid service 57
Figure 3. 3: A CACIP Model of Grid Service Interaction 58
Figure 3. 4:Context Aware Adaptation Model (CAAM) Adaptation Process61
Figure 3. 6:Architectural View of the Context-Aware Adaptation Mode 63
Figure 3. 7:Context Monitor Architecture 65
Figure 3.8: Context Model Adapted from MADAM [25] 69
Figure 3. 9:Services and Service variants Relationship 73
Figure 3. 10.: The adaptation Decision Algorithm 77
Figure 3. I I:Adaptation Decision Flow Diagram 78
Figure 3. 12:Communication Model between components of the model... .. 80
Figure 3. 13:CAAM Component ModeL 83
Figure 3. 14: Reconfiguration Template and Plan Relationship 85
Figure 3. 15:Reconfigurator Model 89
Figure 3. 16: Adaptation using Reconfiguration Panern 93
Figure 4. I :The implementation framework 96
Figure 4. 2:Context Monitor Package 98
Figure 4. 3: Evaluator class diagram 100
Figure 4. 4: Reconfigurator Class diagram 102
Figure 4. 5:Sequence diagram for Reconfiguration process summary 103
Figure 4. 6: Main Implementation Interface and Context Monitor 105
Figure 4. 7: Adaptation Output and service Management panel 106
Figure 4.8: Screenshot of the context monitoring log 145
Figure 4. 9:Components ofthe multimedia service example 116
Figure 4. 10: Variation point stored in F-Mode 118
Figure 4. 11: Utility Function Algorithm Pseudo code 120
Figure 4. 12: Launching a service and Adaptation output.. 121
Figure 4. I3:Effect of Service consumer choice and Service variant on Adaptation Quality
... 125
Figure 4. 14:Effect of Adaptation on Service Response Time 126
Figure 4.15: Effect of Service consumer choice and service variants on Service Response
time 127
Figure 4.16: Effect of Service Variants on Adaptation Time and Service Response Time 129

viii

LIST OF TABLES
Table 2. I: Summary of Reviewed Adaptable Systems 48
Table 3. I :Context Elements and their Category 71
Table4.I:ContextParameter Summary 109
Table 4.2:Summary ofthe First Adaptation Strategy III
Table 4.3:Second Adaptation Strategy 112
Table 4.4: Third Adaptation Strategy 113
Table 4.5: Fourth Adaptation Strategy 114
Table 4.6:Summary ofutilities for Context parameters 119
Table 4.7: Experimental Results 123

IX

ABSTRACT
Mobile and pervasive computing with its peculiar feature of providing services at anywhere anytime

basis has been at the centre of major computing researches in recent times. The device resource

poverty and network instability have been reasons behind unsuccessful use of handheld technology

for service request and delivery. However, interaction of these mobile service components can be

adapted to further improve on the quality of service experienced by service consumers. Content, user

interfaces and other adaptation mechanisms have been explored, but these have not provided needed

service qualities.

However, one of the challenges of designing an adaptable system is on making adaptation decisions.

This dissertation, therefore, presents a dynamic and adaptable system for service interaction. A

context-aware utility-based adaptation model that uses service reconfiguration pattern to effect

adaptation based on contexts was developed. It was assumed that developers of mobile services

design services with variants that can be selected at runtime to fit the prevailing context situation of

the environment. All variants differ in required context utilities. The service variants selection

decision is based on a heuristic algorithm developed for this purpose.

A prototype of the model was built to validate the concept. Experiments were then conducted to

evaluate the proposed model purposely to measure the interaction adaptation quality, the overall

response time with or without adaptation, and the effect of service consumer preference for a given

service variant on adaptation process. Results from the experiments showed that though the

adaptation process comes with additional overheads in terms of variation in response time. the

adaptation of service interaction is beneficial. It was observed that the overall response time

increased initially as the number of service variants increased which was due to overheads by the

adaptation process. However, as the number of variants increased, the response time began to fall

sharply and then became steady. This proved that adaptation can actually help reduce service

response time. We also found that adaptation quality degraded with increased number of service

variants. The lesson learnt was that adaptation can help reduce overall response time and can

improve service quality perceived by the service consumers.

x

Chapter I-Introduction

CHAPTER ONE

INTRODUCTION

1.1 Overview

Mobile and pervasive computing with its feature of providing services anywhere has been at

the centre of major computing researches in recent times. However, this work is particularly

focused on context-aware dynamic adaptation of interaction between mobile Grid service

consumers and Grid service providers, where the system monitors its own execution

environment and reasons about such contextual changes that take place at any given time.

The system then adapts on-the-fly to these changes in order to improve on the quality of

services offered in the delivery of services to consumer in terms of service response times.

The dissertation focuses on how this adaptation of interaction process can be controlled and

effected at runtime. This chapter starts by motivating the need for dynamic adaptation. It then

continues by giving a brief background on Mobile and Grid computing with challenges that

call for adaptation. The chapter then establishes the problem this dissertation is addressing,

including the goal and objectives set out to address this problem and the rationale of the

research. The methodology for addressing this problem is then discussed. Finally, the

organisation of the rest of the dissertation is then introduced.

1.2 Background

Computing is no longer limited to the desktop. Many different types of devices are

increasingly taking advantage of the breakthroughs in wireless network technologies and the

Internet to provide services to the global community. It is no longer news to see cellular or

cell phones being used to browse the internet or used to access emails. Businesses around the

Chapter I-Introduction

globe are setting up wireless networks so that their customers can have seamless access to

information. All these are indications of a model of computing where increasing availability

of small and smart devices with wireless networks provide consumers of services with

convenience and functionality. The users of these devices want to be able to access services

and carry out their computational tasks as they move from place to place regardless of the

place, or time and the device they use, be it a PDA or mobile phone.

In this development, South Africa, which is not an exception to this breakthrough, falls in the

middle tier of ICT development according to a report given in [78] with relatively large and

growing rural communities. Furthermore, South Africans' access to information and

communication services is very crucial to the livelihood strategies of her poor populace. The

report says that mobile telephony in the rural communities is high with about 28% of the

rural households owning a mobile phone compared with 29% ofthe urban communities. This

is an interesting trend in the use ofmobile devices in both rural and urban South Africa.

Therefore, the use of mobile devices among the disadvantaged population could be extended

beyond ordinary telephony. A number of other services could be rendered to the rural

communities through the use of mobile devices. These services have to be provided at low

overhead cost and with good quality of service. These pervasive devices and their

applications should be able to take advantage of facilities and information in the surrounding

environment to provide relevant services. For example, a user might be working on a

document using her PDA at an airport. She or he should be able to use a printer available in

the airport directly, without having to go through setup procedures. Modern Mobile devices

are equipped with features to easily discover other devices in their vicinity. This capability

constitutes in a sense mobile grid computing infrastructure at an airport to enable the

:2

Chapter I-Introduction

discovery of nearby devices, services, etc., and provide links to them. In short, users want a

seamless computing environment in which their device or their location is not a constraint as

they perform their computational tasks.

However, the above need can be met if these services are crafted to cope and adapt in mobile

environment considering the inherent limitations of mobile devices and wireless networks.

Dynamic adaptation therefore, is a way to support these evolving execution environments

[24]. It aims at allowing the applications to modifY themselves depending on the available

resources and changes in their context of execution. The key idea here is that as the context

of application changes, it should be able to modifY its own function or interaction in response

to these contextual variations.

Software systems of today are, however, continuously growing in size and complexity and

are not designed with adaptation in mind. Very recently, these applications are migrating

from their traditional (desktop, fixed network) executing environment to highly mobile,

distributed, pervasive and Grid computing environments. These environments come with

inherent challenges that tend to defY solutions [I]. These result from rhe features of the

devices and networks in which these applications are designed to execute.

Notable among the characteristic features and challenges of mobile systems are: limited

Central Processing Unit (CPU) power, limited memory, small screen, short battery life.

heterogeneity, low bandwidth ofwireless network and intermittent disconnections [2].

One of the suggested solutions is the use of mobile devices to access, provision, share and

perform on-demand service delivery from the Grid [3]. Today, far beyond the capabilities of

other existing technologies such as Internet. the Grid enables the provisioning. accessing,

3

Chapter I-Introduction

sharing, adding, removmg and managing of resources and services such as storage,

processing, network, and database and software application resources. These resources are

dynamic as the demand for them is not static. The Grid has become first choice for problem

solution in science, business and commerce [3]. It adopts different features from existing

paradigms such as clusters computing, utility computing, autonomous computing and peer­

to-peer computing.

Most applications today are not designed to run on the Grid but they only need slight

modifications to be Grid ready. A recent development has caused some researchers to

develop a keen interest in the implementation of Grid concepts [4] in mobile environments.

This is particularly articulated in the use of mobile devices in submitting jobs to the Grid,

retrieving jobs and delivery of services. Adaptable Grid applications that can adjust to both

the dynamism in the Grid environments and the wireless network that mobile devices will

use to access the services offered by the Grid should be the goal to achieve full-fledged

mobile Grid adoption. These. according to Kola et al [12], are needed for two major reasons.

One, applications could be multiphase, dynamic. and heterogeneous requiring large number

of software components with complex interactions. Two, the mobile Grid infrastructure is

also dynamic, heterogeneous and changing due to the inherent features of mobile devices and

ubiquitous network that they use to access the Grid. These two factors do put major burdens

on service composition, accessibility, sharing and delivery. Adaptability, therefore, needs to

be enforced at multiple levels from the application running on the mobile devices to the

network, computation, and storage resources.

These services must be composed in such a way that they can adapt themselves to changes

such as resource unavailability, network latency. bandwidth variations, interaction

4

Chapter I-Introduction

dependencies and link failures. The interaction latency adaptation which is what this research

set out to investigate is inevitable in services that cannot tolerate long response latency.

Primarily, this work investigates how to achieve reduction in response time experienced from

service consumers' interaction with service providers. Thus, the problem to be investigated

assumed that:

(I) There are many service consumers each making use of some computing devices such as

mobile phones, Personal Digital Assistants (PDAs), and Personal Computers (PCs)

connected to a distributed computing infrastructure such as the Grid,

(2) Each service may likely be distributed over the computing infrastructure,

(3) The service consumer's devices have very limited resources such as memory, processing

power, which are not enough to execute the requested service,

(4) Devices are connected to the distributed Grid computing infrastructure by an unstable

wireless network with varying bandwidth,

(5) The service consumer service preferences, device resources and environment change

dynamically.

Thus, methods and approaches need to be explored in this regard to make mobile systems

cope and adapt to disruptions in their execution environment that will result in reducing

ultimately the dissatisfaction experienced by service consumers owing to these limitations.

This could be achieved at two levels namely [8]: at the underlying system level and at

application level. In the application transparent approach, the underlying system is solely

responsible for adaptation. This is beneficial as it causes the application to run uninterrupted.

It is, however, not desirable if there is a long period of disruptions. In application aware

adaptation, the application collaborates with the underlying system to adapt. The underlying

5

Chapter I-Introduction

system provides the application with some status information which it uses to make some

adaptation decisions according to changes in the resource availability and mobility. The

systems have to adapt to the changes in the environment such as the network configuration

and availability of the computational resources and services. This adaptation could be

performed by employing some mechanisms. One, adapting the data being accessed by

various components of the system by varying its quality and two by adapting the

functionalities of the system components.

The first mechanism involves considerable overhead as it compromises the system

performance. The second mechanism however, according to Kristler et al [8], involves

changing dynamically the functionalities of the computational entities in response to changes

in operating conditions. These functionalities could be adapted according to Mikic-Rakic

and Medvidovic [21] by:

(a) Making remote data available locally,

(b) Making remote code available locally,

(c) Making a remote dynamic system state available locally, re-routing the communication in

cases ofpartial disconnection from the network, and

(d) Delaying remote interactions until the connection is re-established.

The purpose ofthe above is to temporarily mask the users from the absence of connection by

mimicking the system's continuous connection. These could be achieved traditionally by

employing some adaptation techniques namely:

(i) Caching - locally storing remote data once it has been accessed in anticipation that it will

be needed again,

6

Chapter I-Introduction

(ii) Hoarding - pre-fetching the likely needed remote data prior to disconnection,

(iii) Queuing remote procedure calls - buffering remote, non-blocking requests and responses

during disconnection and exchanging them upon reconnection,

(iv) Deployment and redeployment - installing, updating, or relocating a distributed software

system,

(v) Replica reconciliation - synchronising the changes made during disconnection to

different local copies ofthe same component,

(vi) Code mobility - dynamic change of the bindings between code fragments and locations

where they are executing.

Some other mechanism is the adaptation of the systems functionalities at architectural level

using software architectural principles [21]. Software architectures provide high level

abstractions for representing the structures, behaviour and key properties of a software

system. But this comes with a lot of complexity which is not cost effective.

All these techniques, however, came with a lot of sacrifices in terms of correctness,

scalability, message throughput and bandwidth consumption that are not desirable. Therefore

there is a need to consider some more efficient strategies.

1.3 Statement ofthe Problem

Some careful and critical investigations into the various approaches currently in use to

address major challenges in the design and development of adaptable and reconfigurable

mobile Grid applications have identified the use of software architectural principles and

component based software engineering to address the problem of disconnection operation

and dynamic reconfiguration resulting from contextual variations in a mobile environment.

7

Chapter I-Introduction

Zuma and Adigun [5] proposed an adaptive interface pattern for mobile applications in which

they defined the interaction pattern between context data producing components and context

data consuming components in a mobile distributed application. Zuma and Adigun proposed

a protocol for the serving of context data among interacting components of a mobile

application that are possibly distributed on various hosts in an unstable network. They did not

address adaptation of these components to context variations in the execution environment.

Zuma and Adigun in [5] further described an interaction architecture that defines a protocol

for providing context information and other elements of a mobile application. Shared space

architectural style and component based development were used to design this architecture.

This goes a long way in addressing the disconnected operation and the quality of service

adaptation at the higher abstraction level.

However, the adaptation and reconfiguration of mobile clients in order to specifically reduce

the consumer's dissatisfaction due to resource starvation, mobility and dynamic nature of the

underlying wireless network is not yet properly addressed. So, how do we design and

develop a mechanism and a strategy for adaptable interaction between mobile clients and

Grid service endpoints in order to reduce the service request response?

1.4 Rationale of the study

This work is a contribution to the Context Aware Component Interface Pattern (CACIP) and

is influenced by various other research works being conducted in the field of mobile and Grid

computing [4] and component based software engineering [22]. These researches, recently,

are being carried out to address challenges facing application development for mobile

environments. Zuma and Adigun in [5] proposed a Context Aware Component Interface

Pattern that defined the interaction pattern between context data producing components and

8

Chapter I-Introduction

context data consuming components in a mobile but distributed application. The CACIP

provides a protocol for serving context data among interacting components of a mobile

application that are possibly distributed on various hosts in an unstable network bandwidth.

This interaction pattern has been adopted (by the centre) for the newly crafted Grid utility

based infrastructure service technology (GUISED, which is a software service driven e­

Service technology based on emerging concept of utility grid computing. In this

infrastructure, the interaction between the mobile client components and the server

components posed serious challenges partly because of instability of the wireless network

connecting these components and partly because of the heterogeneity ofthe mobile devices.

However, CACIP specifically did not address how mobile service components in this

infrastructure could cope under patchy connections in the network, in which they run and

assumed a shared address space, which serves as a performance bottleneck with regard to

scalability. This research work is therefore, motivated by the quest to propose a model that

can help components of mobile application services adapt to its unstable environment in

order to reduce the overall response time between a service consumer and service provider.

1.5 Research Goal and Objectives

The goal of this research was to propose an adaptable and reconfigurable interaction and

communication system between Grid clients and Grid services.

In order to achieve this, the following issues were addressed objectives to:

(a) Develop suitable adaptation mechanisms and algorithms that wili help to reduce service

response time between mobile Grid clients request and service delivery,

(b) Craft a context-aware utility-based adaptation conceptual modeL

9

Chapter I-Introduction

(c) Design a decision making algorithm based on the developed conceptual model,

(d) Develop a prototype of the crafted conceptual model that was evaluated and validated

through a number ofexperiments.

1.6 Research Methodology

The adopted methodology focused on challenges of successful interaction between mobile

clients and Grid services. The following approaches were followed in our quest to solving

this adaptation problem.

1.6.1 Requirements Gathering

Investigations on various adaptation mechanisms for mobile systems were carried out. This

was necessary for the understanding of the state of the art adaptation mechanisms already in

use. These investigations were specifically focused on the following research areas namely

context awareness in mobile systems, adaptability and systems reconfiguration. The

knowledge garnered here was adapted to arrive at methods for developing and evaluating

appropriate adaptation mechanism to guide the design improvements for the CACIP.

1.6.2 Model Development

First, the CACIP model was fitted into the mobile Grid scenario. Second, an adaptation

model for the CACIP was developed in order to reduce the delay experienced between

service request and service delivery. To achieve these, the model was able to sense service

executing environmental and device contexts. It was also able to reason about these contexts

dynamically in order to take intelligent decisions on the prevailing contexts at any given

time. Finally. the model was able to reconfigure the service d)narnically.

10

Chapter I-Introduction

1.6.3 Simulation and Evaluation

An evaluation of the proposed model was carried out. In doing this evaluation, simulation of

the model was fIrst carried out. This was conducted with and without the adaptation

mechanism. This was done to see how the model achieved the set objectives. A number of

other experiments were conducted to ascertain the effects of adaptation, service consumer

choice and number of service requests.

1.6.4 Organisation ofthe Dissertation

The remainder of this dissertation is organised as follows. Chapter two presents an in-depth

state-of-the-art review and theory of dynamic and reconfIgurable service adaptation. It also

presents review of very recent works in software adaptation, classifYing them based on the

adaptation strategies, adaptation mechanisms, decision mechanisms, context-awareness and

their adaptation goals. This helps to identifY gaps which our work attempted to fIll and to

identifY which of these systems will be of help in our design and implementations. Chapter

three describes the design of the dynamic adaptation model. The chapter begins by discussing

the aims and objectives of the project followed by the illustration of an example scenario.

From this discussion some requirements for the dynamic adaptation model are established.

This chapter then continues with an in depth discussion of the context aware and

reconfIgurable model, as some of the concepts adopted in the design were explained. The

decision making model based on a utility function is presented with an algorithm that helped

address this problem.

The chapter ends with a discussion of how the dynamic adaptation model design presented in

this chapter fulfilled the objectives and requirements in order to support the dynamic

interaction adaptation of mobile grid systems in a context-aware manner. Chapter four

II

Chapter I-Introduction

presents the implementation of a prototype based on the resource management and dynamic

component model of the MADAM adaptation middleware [25]. The chapter then continues

with the design and simulation of a hypothetical multimedia service request which was used

to evaluate the performance of the model. The result and its implication on the model were

then presented. Chapter five concludes the dissertation with a discussion on how the stated

goal and objectives of the project were achieved. Also, limitations of the model based on the

evaluation performed are then presented which are used to give possible future works to

improve on the proposed model.

12

Chapter 2-Background

CHAPTER TWO

BACKGROUND CONCEPTS AND REVIEW OF
LITERATURE

2.1 Introduction

This chapter provides some background on the research areas with which this dissertation is

concerned. Sections in this chapter analysed the most influential researches in the area of

dynamic context-aware adaptation and adaptation management. Key areas of interest include

dynamic adaptation, context-awareness, service reconfiguration, and policy-based

management of adaptable software. Since the area of adaptable software is very wide

ranging, the set of systems described is the set of most influential systems, not completely an

exhaustive list. They were however analysed specifically with respect to their relevance to

the aims and objectives ofthis dissertation.

The chapter is divided into four sections. The first section provides an overview of mobile

and pervasive computing, while section two discussed Grid and Mobile Grid computing;

section three gives some insight on adaptation and context awareness. Finally section four

gives an analysis of some adaptive systems in relation with their adaptation approaches,

strategies or mechanisms which helped to identify gaps in adaptation for mobile and

pervasive Grid that satisfY the goal and objectives of this research. The chapter concludes by

an overview of the analysed systems and some open research questions that this work

attempts to address.

13

Chapter 2-Background

2.2 Mobile and Pervasive Computing

As mobile technologies are becoming integral parts of our society and working environment,

the increasing pervasiveness and mobility of computing and communication enables new

services and applications that can improve the quality of work and life. Two trends are

highly-significant in modem computing technology with very rapid development in the areas

of pervasive and mobile systems. One, millions of mobile devices are being deployed, and

two, more integration and computation power are required behind the scenes to provide

opportunities in new application domains. However, accessing services provided by some

end systems using mobile devices is a challenging objective because such small devices are

typically resource-constrained, with limited processing, memory, storage, energy and

network resources [38]. Among the solutions proposed for this problem is to design an

infrastructure that adapts these services and mobile devices to the prevailing contexts of their

execution.

Foreman and ZahOljan of the University of Washington [54] defined mobile computing as a

technology that enables access to digital resources at any time, from any location. The

traditional desktop computing and wired network were very static; they restricted their users

both in time and space. However, the idea of mobile computing frees the users from these

restrictions. A mobile device user can use her system without space or location restriction,

and enjoys the satisfaction she has when she uses her traditional desktop system. Before now,

jf a user wanted to access her electronic mails, she would do this in a confined environment.

If she was not in her office or at home where she probably had desktops, she might not have

access to the mails except if she got to where a desktop that was tethered to the Internet was

located. However, with the convenience and ease mobile computing has brought. coupled

14

Chapter 2-Background

with the advancement in the wireless network technology, the proliferation of intelligent

portable computing devices (e.g. cellphones, PDAand laptops), a user can access information

on-the-flyanywhere, anytime [58]. This use ofportable computers with wireless network has

revolutionised the way computers are used. Pervasive computing extends this capability of

migrating from fixed desktop computing to mobile computing platforms by enabling users or

consumers of services to have access to these services in a way that customises the services

to specific service consumers' request and the task at hand[55].

This vision has led to two fundamental features of pervasive computing: The mobility and

context-awareness issues that result from the extremely dynamic nature of mobile and

pervasive computing environments. Mobility according to Nalini [38] comes with two

dimensions. First, the mobile application needs to run on varieties of devices including those

embedded in various environments and those ones carried by users. Second, these devices are

mobile and are connected by an unstable low bandwidth wireless network to a more stable

fixed network. This means that applications designed for such an environment must be made

to run in degraded mode as a result of varying and unstable network bandwidth. Sometimes,

this network is not even available, yet a pervasive system user expects an all-time

availability. This application must also be very sensitive to its environment as the context

changes. Context-awareness [47] is important for pervasive computing since environmental

contexts change dynamically, the system must be aware of these changes so that it can make

some appropriate and feasible decision on its context of execution. For a pervasive system to

be context-aware there is a need for it to identifY and bind to sensors that provide data

whenever changes occur in the environment [25]. A means to compose information from

these data in order to create useful information for decision making will also be needed.

15

Chapter 2-Background

Furthermore, pervasive systems can be aware of three types of contexts: The mobile device

contexts such as memory, CPU processing power, and storage; the network contexts such as

bandwidth, network types, network configurations and user contexts such as location, user

preferences profiles and QoS specifications.

However, mobile and pervasive computing paradigm came with serious technical challenges

that are yet to be resolved. Device heterogeneity is one of the problems faced by the

technique. End user devices- smart phones, PDAs and embedded sensor computers come in

varieties with varying capabilities both in hardware and software. The form factor, the

processor, the memory and networks vary for each device vendor. The operating systems, the

services and application developed for these devices are of course diverse [33]. Hence, the

impact of device heterogeneity is that application and services need to be developed for each

device. This means that services and applications developed for a particular device may not

execute on a different device. Wireless network issues are also a serious source of

nightmares. The network bandwidth is not always enough for transmission of services from

service endpoint to service consumer's devices. But effort is already being made to make

pervasive services to adapt to these various problems so that such service users or consumers

can have these services with satisfactory quality of service.

2.3 Mobile and Pervasive Grid

Section 2.2 gives an overview of mobile and pervasive computing which recently gave binh

to mobile and pervasive grid. The grO\\th of the Internet with the availability of powerful yet

small computers and high-end fixed networks along with great reduction in the cost of these

resources have gradually changed the way computing is done. Various technologies [58] have

enabled clustering of a wide variety of geographically distributed services and resources.

16

Chapter 2-Background

These resources among others include supercomputers, storage systems, data sources, special

devices and services which are aggregated for purpose of having virtual, powerful

computational resources. These resources and services are provided with seamless access and

interaction among the constituent components. This new approach to computing is termed

Grid.

One of the recent visions of this distributed computing paradigm is to readily make services,

data, and resources available to their consumers the same way electrical power and other

utilities [9] are made available to us. This vision has evolved into provisioning of service

oriented infrastructures that leverage standardised protocols and services for the reason of

pervasive access, and coordinated sharing of geographically dispersed resources and services.

These potentials for seamless access, aggregation, integration and interaction created keen

interests among science and engineering communities to conceive a new paradigm of

distributed computing that helps investigate complex scientific and engineering problems.

Grid computing then can be summarily described as computing infrastructure where

computational power and resources such as services, data, CPU speed, memory, etc. is as

readily available as electrical power. These computational services make this power and

resources available to consumers with differing levels of expertise in diverse areas and in

which these services interact to perform specified tasks efficiently and securely with

minimum of human intervention. While accessing these services is on on-demand basis and

ubiquitous, they can as well be dynamically and transparently constructed from distributed

sources. Therefore, the service consumers do not need to know prior to accessing services

through a simple mobile terminal. Service providers on the other hand can extend Grid

services facilities at any moment, as it also manages the architecture and defines policies and

17

Chapter 2-Background

rules for accessing and consuming such services. Hence, according to Foster et al [9], the

Grid computing is an emerging way ofthinking ofa distributed environment as a global scale

infrastructure to share data, distribute computations, coordinate works, and access remotely

and geographically dispersed services and resources.

However, this original vision of the Grid has moved from what it was in a new dimension.

The explosive growth in computation and communication infrastructure together with

proliferation in the mobile device technology has given birth to a new Grid concept known as

mobile or pervasive Grid. This is the marriage of mobile or pervasive computing with Grid

computing. Mobile computing provides the ubiquity and mobility for accessing conventional

Grid services while the Grid provides the bridge for mobile devices in terms of storage,

computation, resource discovery, and data scheduling and processing power. However,

wireless network and mobile device limitations have to be integrated seamlessly into more

stable and resource-rich Grid infrastructures. The need for this, therefore, calls for a way in

which mobile services running on mobile devices that are designed to access available

services in the infrastructure can be made to adjust and fit into such dynamism in its

execution contexts. In the section that follows, a description of the management of such

technique known otherwise as adaptation is presented.

2.4 Dynamic Adaptation Management

From the preceding sections, it can be seen that there is a fundamental need to integrate both

mobile systems with Grid infrastructures in a manner that will seamlessly make services

available to service consumers with good quality of service. Service adaptation can be

described as changing a service according to context changes, including user needs, which

influence its execution in order to make the service available in the face of the adverse

18

Chapter 2-Background

context changes.

Though these contexts change, some of their properties particularly their core functionalities

remain the same. It is currently the focus of extensive research [48]. Some of the

techniques such as data adaptation, energy-aware adaptation and context-aware adaptation

have recently become crucial in achieving adaptation [38]. We wan~ services to be able to

change at run-time, say, to adapt the amount of memory available for their use, the network

bandwidth they take up, or maybe, when running out of power, switching to low-power

mode. They should be able to detect these changes in the environment and respond to them

appropriately. This is the end result we want services to achieve. On the other hand,

application services can employ various ways to respond to the change - ''the means". By

changing quality of the data accessed, such as a poor quality image, both network

bandwidth and memory can be saved. In other words, we are adapting the data quality, in

order to achieve two ends.

It follows that on-line adaptable systems must react to fluctuating environments. For

instance, if users get connected to wireless multimedia telecommunication services during

peak period, dynamic adaptation maybe desirable rather than dropping calls or rejecting

packets arbitrarily with no care about the rendering. The idea here is to adapt the functions or

behaviours of the systems to the fluctuations in their environments without apparent

degradation. This will involve dealing with adaptation reasoning and determining what

system changes to perform. In the next section, existing adaptation mechanisms and policies

are classified.

19

Chapter 2-Background

2.4.1 Adaptation Mechanisms

In order to design and model adaptation, researchers have used various adaptation

mechanisms and policies. Adaptation mechanism deals with a way to support potential

adaptation and the adaptation policies deal with semantic-based adaptation tailored towards

the underlying applications [25]. Some of these mechanisms are briefly discussed in the next

section.

2.4.1.1 Migration or Code Mobility

The cited works in [22, 27) deal with movement of distributed application components at

runtime. One can also say that it involves moving service from one service node to another

in order to reduce transmission distance and overheads between a service consumer and a

service provider. However, migrating service components from one node to another, requires

the need to preserve states ofthe migrating service.

2.4.1.2 Parameter adaptability

This involves modifying variables that determine program behaviour. In mobile computing,

this approach has been adopted in context-aware systems for developing pervasive

environment [25]. Here, applications are tuned using some external environment properties,

for example this has been used to adjust a TCP protocol by controlling parameters that

influence retransmission in response to apparent network congestion. However. parameter

adaptation is not suitable for handling configuration that is not decided at design time, but

offers the advantage that adaptation help to achieve good performance.

2.4.1.3 Compositional Adaptation

This is a kind of adaptation that results in parts of a system or algorithm being exchanged in

20

Chapter 2-Background

order to improve the application's fitness to its environment [30]. The larger adaptation scope

of this mechanism gives it an edge over all other adaptation mechanisms. It does not only

enable simple tuning of code programmed for design time but also copes with such

adaptability that is not anticipated during system's original design and development. This

type of adaptation redeploys and recomposes applications or services while taking into

consideration the context of execution ofsuch services.

In [30] compositional adaptation mechanism was defined by answering these three questions.

(a) How to compose adaptation: In order to answer this question, some specific approaches

used to compose adaptation are discussed next. Techniques such as reflection, software

components composition [30] create some level of indirection between application entities to

construct open and reconfigurahle systems while applying the separation of concerns

principle, which means separation of functional and non-functional aspects of the

applications.

A software component based approach is a good paradigm used for composing adaptation.

Services are constructed by composing a set of components both statically at design time and

dynamically at run time. At design time, components of a service are specified like contracts

as component types and interaction between these components as connectors.

The service components model is very useful in handling adaptability of mobile systems.

Many component based systems have adopted this pattern. Systems such as SATIN[29]

define component models that support logical migration, dynamic reconfiguration using

active rules; while some use planning as an adaptive deplOyment process to select

appropriate component composition.

21

Chapter 2-Background

(b) Where to compose Adaptation: Compositional adaptation can be constructed in two

different ways; dynamic and static compositions. In dynamic composition, there are

mechanisms that can be applied at run time such as removal or addition ofcomponents at run

time without halting or restarting the application. It is a potential way to compose dynamic

adaptation. However, static adaptation takes place at design time i.e. at development, compile

and load time. In this approach, adaptation is hard-coded into the application codes. This

means that the adaptation behaviour cannot be changed at run time. Some techniques such as

Aspect Oriented Programming using Aspect J [46] have been used in this regard.

Reflection is the ability of a program to reason about, possibly alter its own behaviour [66].

Reflection distinguishes between the base level that represents run time system objects and

the metal level that reflects the base level transparently. These two levels are causally

connected, meaning that modifications to either ofthe two will be systematically reflected on

the other level in both directions. Two types were identified: Introspection and Intercession

[25]. In introspective reflection, architectural properties of the running application are

observed and sensed including interaction between program entities, method signatures and

states, but intercession enables a system or an application to act on these observations and

change its behaviour. This reflective technique has been adopted in a number of mobile

middleware applications to observe and reconfigure the system according to the adaptation

needs and context changes [66].

(c) When do we compose Adaptation? An answer to this question deals with the level of

the system at which adaptation can be integrated. This maybe in the code of the application

itself or a sepatate system maybe used to achieve adaptation such as in the middleware

approach [30]. Three different levels have been identified [33]. At one extreme. adaptation is

22

Chapter 2-Background

independent of the systems (both operating systems and middleware). This approach is also

called the Laissez faire approach [33]. This approach embeds the adaptation into the

application code and hence makes the application development so difficult and complex. It

lacks resource arbitrator that helps to resolve resource demands by the application and the

available resource. The application transparent is another extreme approach where the

systems (both operating systems and middleware) are solely responsible for this adaptation.

In this technique, adaptation requirements of the application are not taken into consideration.

Between these two extremes lies the application aware approach where adaptation is a

collaborative responsibility of both application and the systems. The systems supplies

information on the underline context and resources while the contexts of the users and its

devices are also provided for appropriate and dynamic adaptation decision.

2.4.2 Adaptation Policy

Designing mechanisms or strategies to handle adaptation, or to reconfigure a mobile system

is not enough. The most complex problem in the field of dynamic adaptation is the problem

of how to calculate or derive a new feasible configuration that will fit the current situation in

systems executing contexts. The main advantage for using policy is the separation of

concerns between functional and non-functional properties of an adaptive system. The

declarative nature of policies simplifies the defmition and change of adaptation strategies.

Depending on the domain in which adaptation is being designed, such adaptation policies can

be realised in different ways. In [25], three kinds of policies were distinguished. The action-

based, the goal-based and utility-based policies.

2.4.2.1 Action based polices

Action based policies are very popular and are used in many domains such as network and

Chapter 2-Background

distributed systems. These types of policies consist of situation-action rules that specifY

exactly what to do in certain situations. This approach was adopted in the domain of software

architectures to express dynamics of system architectures. These rules sometimes are

expressed at the architectural description language level (ADL) [71] by associating invariant

in the form of event-action rules so as to express dynamic reconfiguration actions in

components-based architecture. A good example of systems that explicitly used the concept

of an action based adaptation policy is DART [72]. Its policies were represented and

associated to components, coordinated and managed by a manager component. The

coordination included the resolution of conflicts and incoherencies between the set of

policies present in the system. In order to handle these, the DART's policies were organised

at three abstraction layers: the system, the middleware and the application. At each

abstraction or level, the policies are further organised with different priorities. Safran [67]

and Chisel [27] extended this idea by proposing self-adaptive component model and

adaptation manager as separate entities. This enforced separation of concern from application

functionalities. Safran[67] and Chisel[27] for instance, extended the Fractal component

model by associating rule based policies to fractal components as a new kind of components

controllers for adaptation.

Though these systems allow integration and modifications of policies dynamically, they did

not make provision for the policy management problem in situations where there are many

applications with different policies in general and distribution in particular.

The action based policy though very powerful; its use in pervasive environment is a very

difficult venture. Apart from the fact that such policy managers must be very familiar with

24

Chapter 2-Background

low level details of system functions; its use becomes very complex. It may also prevent

some systems from exhaustively exploring all adaptation options.

2.4.2.2 Goal-based Policies

This is an Al based approach to adaptation. Multi-agent systems and planning algorithms are

good examples of areas where this approach has been embraced [25]. In goal-based policies,

a higher level form of behavioural specifications that established performance objectives that

left the middleware to determine the actions required to achieve adaptation objectives were

designed. This is particularly useful in systems that determine algorithms that will allocate

computational resources to guarantee some QoS. Goals provide binary classification of

policies into either desirable or undesirable performance, which is to either maximise the

probability of achieving such desirable state or minimising the undesirable srate. A major

setback of this policy approach is that it does not offer a mechanism and flexibility to

measure how one solution is appropriate to one situation in order to negotiate contracts

between competing mobile adaptive systems. A good example of systems that adopted this

type ofpolicy is the work by Doyle et al [70].

2.4.2.3 Utility Function Based Adaptation

This is an objecrive function that expresses the values for each current state of the systems.

This function permits on-the-fly determination of a best feasible state while other policy

types place the system at any state that are both feasible and acceptable at that point without

any provision to improve the system overall performance[25]. Some existing systems [25,

28, 29, 32, 37] use utility functions to qualifY and quantify the desirability of different

adaptation alternatives. These works are quality of service based and actually deal with

resource allocation and typically in mobile and pervasive computing. Systems such as QuA

25

Chapter 2-Background

[29) and Odyssey [8) are examples of systems that utilise utility function based adaptation

policies.

2.4.3 Adaptation Strategies

An adaptation strategy deals with what needs to be modified or adjusted and how to go about

this [38). Adaptable applications can change their runtime characteristics in response to some

external triggers or changes. These runtime changes are considered using several dimensions

to categorise adaptation strategies as discussed in the next subsections.

2.4.3.1 Network Adaptation

This is the ability of systems to change their network behaviours in response to changes in

the network infrastructure. They should be able to reduce their bandwidth requirements,

accept a greater degree of packet loss or be able to connect to a new network environment as

the need arises.

2.4.3.2 Memory Adaptation

This is the ability to adapt to the changes in run-time memory available. Every device has

different amounts of memory and processing power available. An application should have the

ability to provide the same functionality in a resource-rich PC and in a resource-constrained

PDA environment. Moreover, with several applications running at the same time, it is

possible that one application may find itself suddenly out of memory. In that situation, it

should gracefully adapt to perhaps a more memory efficient mode.

2.4.3.3 Energy Adaptation

This is the ability of an application, or system, to adapt its energy usage. Power is one of the

most limited resources in a mobile environment. Applications and systems should be able to

run in a more energy efficient manner, in situations oflimited power supply.

26

Chapter 2-Background

2.4.3.4 Device Adaptation

This is the ability to adapt to device configurations. Users move from one device to another.

Applications will need to follow the users. The devices may have different input and output

capabilities. For example, a PDA may use a pen-based input, whereas a laptop uses a

keyboard. They may have different processing powers. It involves more than just changing

the device drivers. The presentation format, the UI and perhaps the application logic also

need to adapt to the new configuration. Applications need to provide a seamless transition

from one device to another. A good example of system that provides device adaptation is

MADAM [301 where an application can be adapted to the screen, speaker, and network

adapters of the device.

2.4.3.5 Data Adaptation

Mobile applications usually need to access data for information or for entertainment, such as

emails, stock quotes, web pages, multi-media, etc. Data adaptation involves changing the

data in some manner, such as changing the quality of the data accessed, transforming data to

a more appropriate form, accessing a different set of data altogether, etc. This is the basis of

many of the transcoding and content adaptation techniques. There are several projects that

use proxy-based data adaptation to change the quality, or fidelity of the data accessed, on the

fly according to the client resource available, or according to the network environment [67].

For example, in Odyssey [8], the server has several pre-generated versions of the data with

different fidelity levels, and the appropriate one is chosen at run-time according to the

resources, or even energy, available.

2.4.3.6 Functionality Adaptation

This involves changing the way an application carries out its functionality. Applications in a

27

Chapter 2-Background

mobile environment can be seen as fulfilling certain tasks [5]. Functionality adaptation

implies carrying out the same task but in a different manner, either by using a different

mechanism, different algorithm, a different QoS characteristic, or by switching to another

execution mode, etc. It involves changing the execution of the task. For example, if a device

does not have sufficient computation power, an application can use a smaller key for

encryption.

2.4.3.7 Migration Adaptation

This involves changing the location of execution, for example, by moving to another

machine with more resources. This is often used in the fields of distributed computing and

mobile agents, whereas in the field of mobile computing, it is still rare or underdeveloped.

Adaptive distributed applications and mobile agents migrate to nodes, which fulfil the

resource requirements, if they realise that the current node does not have sufficient resources

for their execution [18, 33]. Migration adaptation can be advantageous in a mobile

environment, for example, migrating from a PDA to a nearby laptop in order to speed up

execution.

2.4.3.8 Interaction Adaptation

Being the focus of this investigation, interaction adaptation deals with adjusting the

communication between ports and connectors of a given mobile application either as a local

or distributed application. Such systems are component based and have their functional and

non-functional properties described in their architecture. A good example of system that

adopts this adaptation mechanism is Prisms [2 I]. The interaction adaptation may involve

disconnecting or removing. or adding of components, connectors and ports in order to adapt

the system to its current executing contexts.

28

Chapter 2-Background

2.5 Context Management

The previous section discussed adaptation management with various mechanisms and

strategies in existence that has been explored in adaptive systems. In this section context

management is discussed. One of the primary requirements for achieving or designing

context aware adaptation model is that the model must make provision for sensing the

changes that occur in its context of execution at runtime. Context management maybe

referred to as the collection and management of contextual information that enable context

aware computing. The context aware computing paradigm does not only adapt applications

but also adapt to changes in context that occur during the execution of the application such as

time of day, location of the system. Dey [26] defined context as "any information that can be

used to characterise the situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an application, including the

application and the users.

In this work, context is defined as those situations surrounding executing systems that either

positively or negatively influence the system. An adaptable mobile Grid system is expected

to provide appropriate mechanisms for acquiring, storing, retrieving and evaluating contexts.

The evaluation of contextual information is a triggering process that causes the execution of

adaptations. The context management aims at accumulating, processing and forwarding of

relevant context information. The following section is focused on the major concerns in

implementing context aware systems- one of the characteristics that must be built into the

adaptation model in this research. To understand this concept, the following questions are

addressed together with analysis of context aware systems. What context data should the

29

Chapter 2-Background

systems sense and present? How does the system collect these context data? And how the

context data should be modelled and stored? Context aware systems have the capability to

discover and exploit contextual information such as user and system locations, time of day,

nearby people and devices; user activities and environmental contextual information such as

network QoS parameters. Contextual information of context aware systems infrastructure is

the core issue that must be addressed to be able to implements such systems.

It is obvious that the mobile and pervasive environment is unpredictable whilst the

application is moving between different geographical locations, different supporting devices,

and variable and local paratneters such as noise, power level, user preferences etc. Therefore

there are needs to accommodate various types of context data structures and means to handle

them appropriately. In [25], context information was categorised into:

(a) Physical Context

Noise, light, temperature and traffic conditions are some good examples of physical context.

These are context information that describes environmental factors that can be sensed by

using some specialised hardware devices such as light and noise sensors.

(b) Computing Contexts

This is related to computable or measurable information that is retrieved by calculating or

checking some routines. Information such as the memory of mobile devices, its processing

power, and storage. Also, network connectivity, bandwidth, latency, and throughput and

nearby resources are good example of computing contexts. This context information can be

sourced by using either logical or virtual sensors that source context data from databases

logins etc.

30

Chapter 2-Background

(c) User Context

User profiles, preferences, interests, expertise, workload, tasks, etc, present good examples of

user contexts. This is closely related to the user personalisation issues that enable the ability

to adapt products and services either to large user groups or, smaller interest group or

individual users.

2.5.1 Context Sensing

Context information can be retrieved by using some specialised mechanisms which are often

referred to as sensors [53]. Time for instance is sensed by using a system local clock to check

scheduled tasks or current activities. Systems such as Active Badge and Cyberguide [64] use

time to adapt the systems behaviour. Location is sensed by using a Global Positioning

System (GPS) for outdoor location sensing. For indoor, transmitters and receivers are used.

This location information can be used to adjust systems behaviours and a good example is a

call forwarding application that uses location information to find the nearest phone to the

users. Network bandwidth can be sensed using kernel functions that measure bandwidth and

gives notification to the adaptation subsystems.

2.4.4.2 Context Modelling

In order to handle contextual information that is produced by the context sensors, it must be

stored in data structures that make it easier for retrieval. Different ways have been explored

31

Service Coosumer
Devices

Chapter 2-Background

Grid InfrnsIrudure

Figure 2.1: Illustrating Mobile Grid Service Execution Contexts

to model and express context data. A service provider in Figure 2.\ is considered as an entity

in the Grid system that provides some communication services, storage services, processing

services, or any service as utility to service consumers. It is envisaged that these services are

provided as utilities to service consumers on demand [56]. The access to this contextual

information, therefore, provides an opportunity to use context in service provisioning that

would result ultimately in some higher quality of service.

Most of the existing traditional Grid systems perform their functionality based on explicit

input and are not necessarily aware of the context of their execution. For example, a web

service request would be made based on the service URJ.

The result will be the service being loaded into the client's device. This result may not well

be well presented on the client device if the service provider is not provided with contextual

information that tells it whether the client device is a mobile phone with constrained

resources or a desktop with considerable rich resources. However, in a context aware

environment, this information is integrated as part of the service or an external context-aware

module monitors the context of the system. Figure 2.2 illustrates a service environment that

32

Chapter 2-Background

---~-1---~-G
Figure 2. 1:Context-Unaware Service Provision

Figure 2.2: Context-Aware Service Provision

is not context aware while Figure 2.3 illustrates a context-aware service environment. The

context-awareness is built as an external module. For this type of systems to provide context­

aware services there is need for context input besides functional input.

This means that the output of such a service request depends on the context information the

system is provided with. This contextual information is provided by some intelligent sensors

and monitors. These contexts can be categorised into three: One, the service client's context

such as available memory. storage and processing power of the mobile c1ienlS: Two, the

environmental context, such as network bandwidth, latency, network availability, etc and

finally, the service consumer's contexts.

These may include, among others, user profiles. services request types and some QoS

specifications. These are explained in more detail in the next section. In a web service for

instance, some information about the service can be transmitted using the SOAP header.

33

Chapter 2-Background

However, there is yet to be a standard mechanism for developing general context-aware

systems. Nonetheless, the following have been identified as advantages for integrating

context awareness in today's adaptable systems [7].

(i) Adapting the service presentation to service consumer devices, for instance, the images

and videos that are suitable for the client's device.

(ii) It helps to adapt services dynamically to a new situation such as location, time, users

profiles, networks and the device capabilities and

(iii)It could also help the service consumers to make decision on the requested service, if the

system is able to provide context information to users.

Finally, considering context aware adaptable services would help improve the objectives for

which the service has been created - improving usability of the service, the number of

satisfied service consumers. However. this context information is complex to model.

Location for instance is very complex and difficult to conceptualise. But some methods for

modelling context make it easier to model any type of context data. These modelling

approaches are briefly discussed as enumerated in [25].

(a) Logic Based Context Model

In this model. context data are expressed as facts in a rule based system. This enables

automated inductive and deductive reasoning to be done on contextual information. The tirst

order model allows an expressive description of context using Boolean operators and

universal quantifiers. A good example oflogic based context model is described in [31].

(b) Tagged encoding model

Context data are represented as tags with corresponding fields. It evolved from

ContextML[60] which is an xml based protocol for transmining contextual information

34

Chapter 2-Background

between a mobile client and a server.

(c) Key-Value Pairs

This is used to store context information as key that refers to environmental context variable

and the value of the variable holding the actual context data. This type of context model uses

pattern matching to query the context data and notifY the adaptation mechanisms. An

example ofcontext model is used in Mobisaic project [61].

(d) Object Oriented Model

The context data is embedded in the states of the object and the object provides methods to

access and modifY the states as used in MADAM project [25].

(e) Ontology Based Model

The basic concept of this model is to provide vocabulary for representing knowledge about a

domain and for describing specific situations in such domain. Ontology based context models

define a common vocabulary to share context infonnation in a pervasive computing domain

and it includes machine-interpretable definitions of basic concepts in the domain and the

relations that exist among them. An example of systems that use this model is SOCAM [65].

2.5 Dynamic ReconfiguratioD

A dY11amic reconfiguration is one of the best techniques [52] to adapt a system as it helps to

easily implement adaptation decisions. The idea here is to evolve incrementally from one

configuration to another at runtime as opposed to design time while having little or no impact

on the system execution. This traditionally takes place at runtime and it can be applied to

rearrange various elements of various parts of the system such as application or services.

platforms. systems architectures and management facilities. This means that systems need not

be taken off-line. rebooted or restarted to accommodate the adaptation changes. Dynamic

35

Chapter 2-Background

reconfiguration however, requires information about the running systems, In addition, to

reconfigure a system, necessary protocol must be defmed, Context sensing with runtime

monitoring can be adopted for this purpose. Such sensing must make provision for reasoning

and evaluation of the sensed context. Triggering and realising reconfiguration should be

based on some specified criteria and runtime monitoring of the system execution contexts.

For instance, performance requirement may require the migration of some components so

that they are closer to their source of demand. An alternative might be to host a particular

service on a less loaded system so that the services can execute faster. Two major approaches

in research have been proposed to achieving reconfiguration [22]. One is by adding

configuration elements to the application modules which is not desirable approach as it

makes the systems very complex and does not allow separation of concern. In such

reconfiguration, the following elements maybe specified. One, the definition of interfaces of

the systems modules in tenns of provided services and required services. Two, localisation of

the source files and three links between provided and required services of the application

modules. This approach. however, offers a solution for structural changes by explicitly

specifying components binding and by on-line replacement and duplicating of components.

In order to ease reconfiguration execution flow, reconfiguration has to be initiated at some- -
points. This sequence consists of two steps: waiting to reach a reconfiguration point: and

blocking communication channels to manage messages in transit while the component

context is encoded and new components are created. Each of these approaches implemented

a reconfiguration mechanism in the application codes which are not desirable as stated earlier

on.

Another important way in which reconfiguration IS effected IS based on component and

36

Chapter 2-Background

configuration languages. This is different from the first approach explained above mainly

because it supports various interaction schemas. In addition, components based

reconfiguration provides additional run time flexibility coupled with separation of concerns it

offers over the previous approach. For instance, the Architectural Description Language

(ADL) can be used to create, validate and update architectures. ADLs are very useful in

expressing component hierarchy and in specifYing interaction, application deployment and

the dynamic features of such applications. Some ADLs have been used to specify behaviour

and non-functional properties such as performance, security, availability etc. by using

additional interfaces to generate and execute code. ACME, C2, Olan, Aster, Rapid, Wright,

Unicon [62,71] are few examples ofsuchADLs that allow the users to specifY the behaviours

ofvarious entities of the systems and the components interconnections.

2.5.1 State of the Art of Component Reconfiguration

The component reconfiguration helps to easily implement dynamic adaptation and it is

classified into two: Software and hardware reconfigurations [25]. To adapt the behaviour of a

mobile device to prevailing context changes in its environment, application services running

on top of such devices must be adapted by reconfiguration. In software reconfiguration,

adaptation is achieved in two ways: by tuning the components parameters and by

components composition. Component parameters tuning describes the processes in which a

component is designed in a way that allows it to operate in more than one possible mode.

Component composition is a more general and powerful way of adapting systems through

reconfiguration [52]. This is because it allows applications to be reconfigured in a manner

that was not anticipated at design time. In hardware reconfiguration, however. features such

as display brightness and speaker's volume can be adjusted according to some context

37

Chapter 2-Background

changes. Also, the network adapter can be adjusted by switching them on or off or to a power

safe mode. Furthermore, operating systems parameters can be tuned, for example the system

storage and memory balance of a PDA. A significant characteristic of hardware

reconfiguration is that the changes, typically, affect the whole device and consequently, all

software running on top of it.

2.6 Related Work on Adaptable Systems

This section provides the analysis of some of the most influential researches in the field of

dynamic software adaptation. The key areas of interest here include, but not limited to

adaptation strategies as enumerated in section 2.2. These systems are analysed specifically

with respect to their relevance to the aims and objectives of this dissertation. In this analysis,

adaptable systems are classified based on their adaptation strategies, mechanisms and target

platforms.

2.6.1 CARISMA

Context Aware Reflective Middleware System for Mobile Applications [66] is a research

carried out at the University College London. It presents a design for peer-to-peer

middleware based on service provision, whereby reflection is used to adapt the interaction

between context-aware mobile applications. Each node of the system can export services and

possible different behaviours or implementations for those services. Services can be selected

according to user and application context information as specified in an application profile,

which is an XML document embedded in the application. It is responsible to monitor the

application execution contexts especially by querying the underlying network-enabled

operating systems. An application can request to view and modifY their protiles at runtime.

thereby adapting the middleware as application specific and user specific requirements

38

Chapter 2-Background

change dynamically. It also provides the ability for the application to be informed by the

middleware of specific execution conditions, supporting the development of resource-aware

applications. This system is specifically based on the provision of multiple implementations

of the same service with different behaviours. This concept is similar to the concept of using

variants of a given service to adapt it to current context situation. These variants are various

implementations or functions of same service but with varying quality of service.

Unlike the work in this dissertation which adapts the interaction of the service to the

execution context changes to ultimately reduce response time. CARISMA is specifically built

to adapt the service to user's contexts. Not only this, it primarily focuses on the identification

and resolution of profile conflicts and not on the actual provision of service adaptation to

other context situations. CARISMA adapts service behaviours in response to context of

execution using reflection. In the process of adaptation, some aspects of the application are

altered. This, however, is not desirable as we want a situation whereby the service consumer

though may not have exactly the requested service, but would be satisfied with what she is

presented with by reducing the service response time.

2.6.2 M3

The M3 [75] architecture is an adaptable middleware framework that supports adaptation

using context-awareness. This it achieves by using a mobile Enterprise Architecture

Description Language (MEADL) script to dynamically reconfigure how application

components interact with each other within runtime environment. In this system, all

components interact and coordinate with each other using events. As these events occur. they

are monitored and used to trigger adaptation of the architecture and the underlying collection

of distributed services and network protocols. The 1',13 runtime environment maintains

39

Chapter 2-Background

context variables that can be used to perform adaptations of this application in a context

aware manner. While our work has many similar design ideas to this project, the M3 system

has some important drawbacks. The adaptation mechanisms prototyped (including filtering,

object migration, interface restrictions and web content adaptation) all lack the generality and

openness of a general-purpose adaptation mechanism as used in our design. Morphable

objects, i.e., objects that can change their type at runtime, are mentioned in [75] but no more

information is available about these reflective techniques. However, our design adopts the

utility function for general purpose dynamic adaptation decision making.

2.6.3 MADAM

In the Mobility and Adaptation Enabling Middleware approach, applications are built as

components frameworks. Explicit models of the application framework architecture that

specify the variability are used by the MADAM Middleware to reason about and control

adaptations at runtime. The central adaptation conrrolloop of the middleware detects changes

in the environment, reasons about and decides on suitable adaptations to tit the new operating

conditions. and then implements the adaptations through recontlguration of the running

applications. To enable the middleware to distinguish between implementation choices at

variation points, components are annotated with property evaluator functions which may

represent QoS characteristics. The decision on which adaptation to make is done by the

MADAM planning framework. The planning activity consists of dynamic discovery of

implementation alternatives at the variation points of the application component framework,

and the selection of those variants that match both the current user and device contexts.

Adaptation alternatives evaluations are performed by a utility function which composes and

40

Chapter 2-Background

weights result from the property evaluator functions of the component. MADAM planning

framework is domain independent and has been applied to many adaptation types. The

middleware is built as an open framework and each of its components dealing with

adaptation management, context management, and dynamic reconfiguration and deployment

are separated from the core. This openness makes MADAM useful for the kind of adaptation

this work addresses as its open frameworks can be adapted to effect our adaptation strategies.

This helps to reduce the prototyping time and eliminate re-inventing the wheel. However,

MADAM does not address adaptation from service oriented point of view and does not

assume a grid environment in its design.

2.6.4 Sparkle

The Sparkle Project aims to provide an Intemet-enabled infrastructure for mobile computing

which supports dynamic component composition. Applications are seen as a means by which

users perform tasks [38]. An application usually provides several functionalities which users

can invoke to fulfill their tasks. According to Sparkle, applications can be broken up into

components along the lines of functionalities. Every component provides certain

functionality. There may be more than one component which fulfills the same functionality.

at runtime, the appropriate component is brought in and executed. Hence. applications are

linked by functionalities. rather than by exact components. Consequently. when one runs an

application in different envirorunents. to carry out the same task, the actual components used

may be different. In this work, clients send requests tor the components to the network. and

are returned with the appropriate component. Since applications are linked by functionality

rather than by exact components. the requests specifY functionality requirements rather than

component identifiers. They also include non-functional requirements such as run-time

41

Chapter 2-Background

resource infonnation and context, so as to detennine which component would be most

suitable for the client. From the client's viewpoint, there is a lot of reliance on the network.

The network stores the components and also possesses intelligence to match the appropriate

component for the client. This project uses component model similar to our component

model for adaptation as application are neatly arranged into component which can be

composed dynamically at runtime. These components are predefined and are stored in the

network. If the network is not available or the network condition become worse, then

applications are not able to run. It also uses resource managers that maintain infonnation

about physical resources, contexts and connectivity. This is similar to our context monitor

that maintains similar context and resource infonnation. It, however, uses proxies for

matching adaptation whereas we used the evaluator that uses planning and utility function for

adaptation decision.

2.6.5 Aura

This project looks into the issues that affect component-based development of pervasive

systems [49]. It considers pervasive systems as collections of cooperating components that

achieve users' tasks. Aura project proves that software systems in a pervasive environment

must exhibit the following characteristics for them to be adaptable in such environment. One,

they must exhibit mobility. This means that tasks must follow users as they move from one

device to another. Two, they must exhibit adaptability. Tasks can take advantage of resources

as they change and three; they must be resource-aware. This means that components must

publish their resource requirements and offer multi-fidelity of services. Aura models

applications in terms of tasks. Our model is very similar to this project in the sense that, our

model must be able to integrate the resource and context requirements of each running

42

Chapter 2-Background

service for adaptation decision making process.

2.6.6 DACIA

This project provides a framework for building adaptive distributed applications. In DACIA,

applications are made of components located in various network entities and the links

between components represent the direction of data flow within the application [76]. It

considers components as processing and routing units, transfonning one or more input data

streams. There are monitoring modules specific to each application, which are responsible

for monitoring application perfonnance and making configuration decisions. These

applications are adapted dynamically by adjusting the connection between components and

location of different components, and hence leading to a change in the applications. This

appears to be a good framework suitable for distributed applications which require data flow

from one entity to another such as video-on-demand applications however; the adaptation in

DACIA is application specific meaning that every application implements its own adaptation

policy. This makes the adaptation very static and complex to develop. This also constitutes a

lot of overheads in tenns of resources requirements. In our design, we look into a more

dynamic and general adaptation policy that is not application specific, but instead optimises

required service execution resources. In this case. the system has a wider view of the

resource needs of all running services. It will also help make services run faster, now that

servIces are not saddled with the responsibility of deciding environmental resource

availability.

2.6.7 Globus

This is a framework that allows for both resource reservation and application adaptation. In

this architecture. heterogeneous resources are modelled by resource objeCls. The architecture

43

Chapter 2-Background

of Globus[15] encompasses several components. The information service provides

information about resource properties and resource availability. A co-reservation agent is in

charge of both mapping application QoS requirements to specific resource requirements and

requesting the reservation of such resources. The task of a co-allocation agent is similar but

focuses on the allocation ofresources. Local resource managers are responsible for attending

request for allocation of resources. Adaptation is then achieved by the use of three distinct

mechanisms. Firstly, sensors are in charge of monitoring both resources and the application

behaviour. Secondly, decision procedures allow for the selection of an adaptation strategy.

Lastly, actuators are the means to dynamically modify both resource allocations and

application behaviour. This pattern of design helps us in the design of the adaptation model.

The Globus project can form our Grid end infrastructure upon which adaptation service

module is built. It will provide the resource management for Grid infrastructure. But the

design of Globus does not consider mobile service and we hope that the combination of the

resource rich Globus platform will help make up for the resource poverty of mobile devices.

2.6.8 GRACE Project

In its approach [63], system layers in GRACE are designed with the ability to adapt in

response to system or application changes. Further, to achieve the full benefits of these

adaptations, all system layers cooperate with each other to determine a system-wide globally

optimal configuration. For example. for real-time video delivery, the simple choice of the

compression technique entails a trade-off between computation time, energy and number of

bits (bandwidth). For a globally optimal solution, the choices for error correction for the

unstable wireless network and protocols for congestion on the wired part of the nel\vork were

considered. The presence of multiple applications contending for the same resources and the

44

Chapter 2-Background

ability of the processor to adapt its perfonnance/energy tradeoffs, further reduce the

possibility that any layer can by itself detennine a globally optimal solution, The centre piece

of the GRACE project is a cross-layer adaptation framework that enables coordination of the

adaptations at the different system layers, for the hest QoS possible. The key challenge lies in

exposing only relevant infonnation across layers without compromising the current

advantages of having system layers that are virtually closed to each other (i.e. selective

transparency).

Thus, the solution has the following properties: (I) It perfonns its global cross-layer

optimisations without exposing implementation internals of a layer to other layers, (2) It

localises adaptation decisions specific to a layer, to within that layer, (3) A system

component that exploits adaptation capabilities in other system layers must also be usable

with implementations of those layers that do not have the same adaptation capabilities.

However, the focus of this project has been on energy management for single multimedia

node. The adaptation we designed is aimed at generic services meaning that it can be

customised to handle any type of service adaptation. But understanding of the use utility to

model adaptation in GRACE project has been very helpful.

2.6.9 ACCORD

Administering Connected CO-<lperative Residential Domains (ACCORD) uses a closely

related approach to the one used by our model as it helps to develop compassable adaptable

applications. It manages behaviours and compositional (interaction, organisation and

coordination between components) aspects of an application using high level rules, injected

at runtime. and enforced by an agent infrastructure. Instead, our work relies on planning [50]

to ensure correct execution of reconfiguration actions. In ACCORD, adaptation element is

45

Chapter 2-Background

augmented with Element Manager that monitors its execution contexts, and fires adaptation

rules. On the other hand, our model uses utility based policies rather than rule-based policies

to fire adaptation actions. It also separates the monitoring module, the dynamic evaluation

model and reconfiguration module. This means that services can now be adapted with ease

by service developers, making services to be easily managed, debugged, and maintained.

2.6.10 SECAS

Simple Environment for Context Aware Systems described in [7] is a platform that attempted

to make services. data and user interface adaptable to varying contexts in a mobile

environment using standard methods and approaches for their solution. It is based on four

sub-systems: the application core, the adaptation layer, the context management and the

client side. A set of components for each of these subsystems manages the operation needed

for sensing and interpreting the contexts and for adapting consequently the application core

and the user interface. SECAS's context management is highly dependent on the

environment and on the sensors that capture and transmit raw context data. The complexity

of designing such context sensors and interpreters is encapsulated in context Providers and

context Interpreter. The context providers are responsible for managing context aspects such

as user profiles and preferences. The interpreter translates the low level context into high

level more meaningful representation. Some part of this context is dynamic and volatile

meaning that they are consumed as soon as they are sensed while some are static meaning

that they are saved a repository. Such contexts usually do not change frequently. The

adaptation is applied to application services, exchanged data with user visualisation. This

means that SECAS uses content and user interface adaptation strategies. However, details of

how their adapter selects a feasible service instantiations were not given. A 101 is learnt from

46

Chapter 2-Background

this work as its modular design of context management, and its idea of having various

instantiations of a given service are very useful for our design. However, the ideas of service

reconfiguration and utility modelling were not used which we believe has an edge over rule­

based model for dynamic adaptation modelling.

2.7 Concluding Remarks

This chapter has described a number of systems. The summary of the system discussed is

given in table 2.1. It has also discussed research that influences the goal and objectives of this

dissertation. The main objective of this research, as stated in chapter one is to design

adaptation mechanisms and algorithms in order to reduce response time between service and

service delivery in CACIP executing environment. Others were to develop a conceptual

adaptation model and dynamic decision making algorithm for the model. In order to reach

these objectives, a number of requirements must be met. An adaptation model that supports

interaction of service components in order to reduce response time is needed. This adaptation

must be able to perform adaptations on service components as they are composed to form

these services. To test the model, an adaptation framework is needed that supports the

dynamic context monitoring, evaluation, and reconfiguration of service components at

runtime. From the research described, it can be seen that there currently exists no mechanism

that completely fulfils the objectives and the dissertation continues next chapter with detail

design of CAAM model that meets objectives and requirements of this research. For

instance. the issue of adapting interaction between service consumers and providers were not

properly addressed. Also, some of the adaptation mechanisms and policies used in those

systems were static and are not good for dynamic adaptation process. Therefore, a Context

Aware Adaptation Model (CAAM) is proposed to address these gaps.

47

Table 2.1: Summary ofReviewed Adaptable Systems

Chapter 2-Background

Adaptable Adaptation Strategies Adaptation Context Reconfigurations Adaptation Application

Systems Explored Mechanism Awareness Policy platform

Accord It uses condition objects to Uses rule- No Context No reconfiguration, Use; For stable

measure state of resources based and awareness lacks capability for conuaet- systems No grid

and services agent but is aware dynamic component based policy or mobile

mechanism for ofexecution compositIOn applications are

adaptation resources assumed

M3 Adapt Interaction of Uses events, Notav..are of Uses reconfiguration Ruk-based Targeted mobile

application components net\.\o'ork user contexts described by a policy applications

protoeols as MEADL scriptmg adopted

contexts to language

'"'apt

applications

interactIon

RAM Adapt application roles Use> Aware of No r~onfiguration Uses rule- Mobile

reflection and application based policy applIcations

meta types contexts targeted

OAClA Adapts cGmpooent Use; Aware-of Reconfigurallon used Uses rule- Not targeted at

connectlon applicatIOn applicauon based pol ICy mobIle

performance contexts application but

dIstnbuted

applIcation

ALR-A. Adapts application's task Uses tasks as A.....are of Us~ Reconfiguratlon Uses utili!) Targeted mobile

.....hich is service with QoS for adapting deVIce, user to effect adaptatIon functIon- applications

specifications the system to and deCISIOn based policy

context application

changes contexts

CARlSMA Adapt application Uses Aware of No reconfiguration Uses rule- ~1obile

interaction and behaviours Reflection w applicatIOns b=d appllcations

monItor and and user policies targeted

adapt contexts WhlCh are

interaction embedu<.-'G JIl

48

Chapter 2-Background

among mobile the

applications applicati.ons

SEeAS Adapting user interface and Based on web Comext:- No Reconfigurntioo Not available Mobile services

data to changes in contexts serviCes aware are targeted.

Globus Uses, reflection and meta Not~onteXt Rule-based No reoonfiguration Use, Mobile services

types to adapt sofu..:are aware but ifs policy decision and devices not

dynamically at nmtime resource procedures considered

aware. It does fa<

not consider adaptation

the context of policy

the users and

devices

GRACE Uses the idea of crosslayer NOl~onteXt Uses utility No reconfiguration Uses utility For single node

adaptation and utility to awace function function multimedia

quantify the quality of model for model to applicatIOn

application configuration decISIon quantify the

making quality of

applICation

configuration

~1ADA..1o,1 CompositionaL parameter Context Utility based Uses component l'ses utiIJr:- Designed only

adaptation adopted to adapt aware. adaptauon reconfiguratlOn function and for mobil.:

sofmare components and resource policy plartmng for apphcat\oos

devices aware dynamIC Ser\"1ce

adaptation mteractlOn and

denslOn gnd sennces

prcviders are not

considered

49

Chapter 2-Background

CAAM Compositional, parameter ConteXt Utility-base Use s service Uses utility Takes care of

adaptation, a\Wfe, adaptation reconfiguration function and service

resource- policy""ith panem for executing planning for consumer and

.""'. on the fly adaptation evaluation service provider

decision service mterachon 10

algorithm conteXts and Grid

[oc Infrastructure

adaptation

decision

50

Chapter 3-Model Design

CHAPTER THREE

MODEL DESIGN AND DEVELOPMENT

3.1 Introduction

This chapter describes the design of the dynamic adaptation model. lbe chapter begins with

the aims and objectives of this project followed by an example scenario as presented by the

author in [47]. Thereafter, some important requirements for the dynamic adaptation model

are identified. The chapter then continues with an in-depth discussion of a proposed context­

aware and reconfigurable model, explains some of the concepts adopted in the design, and

presented how the model can be used for adapting service interaction.

3.2 Requirements for Service Interactions

In chapter one, it was stated that one of the objectives of this investigation is to design

suitable adaptation mechanisms and algorithm for CACIP that reduces response time

between service consumers and grid service providers. Others are to develop conceptual

model for CACIP service components interaction adaptation, to design a dynamic adaptation

decision making algorithm and to demonstrate the design and model. Keeping these

objectives in mind, a number of requirements that meet the needs of the adaptation model are

unveiled by illustrating a simple scenario from which such requirements are generated.

3.2.1 Example Scenario

To identitY the requirement of the model. a scenario is presented that is typical of such a

ubiquitous environment that the envisaged model fits as follows. Eunice has just arrived in

South Africa coming to Europe. On arrival at OR Tambo International Airport, and while

51

Chapter 3-Model Design

waiting for immigration clearance, she switches her blackberry device on and connects

through an enterprise wireless LAN at the airport. After necessary authentication and

authorisation, she is immediately provided with a number of services available in a Grid

environment. She plugs in and requests for mobile entertainment service. She is specifically

interested in a recently advertised home video which she has longed to watch while in

Europe.

However, a call comes telling her that her train will soon leave for the country side where she

is scheduled to meet with her parents. As she rushes to board the train, she decides to use the

cell phone function of her blackberry device while she pauses the video service until when

onboard. The service is then transferred to her mobile phone as she connects using GPRS

network and adapted to that tenninal. She, however, changes her mind to watch a live

broadcast of the president address to the nation which was announced but noticed a serious

delay in response to her request as the train fast moves by. She then requests to connect

through a 4G network, which is higher in price compared to the GPRS network. At this point

she notices that her phone battery level has gone so low and hence requests to watch the

broadcast in black and white video mode. In this mode, her phone consumes less energy.

From the above simple scenario, some requirements tor designing adaptation for such service

provisioning environment can be identified.

It could be observed from the scenario that we need systems that can continuously configure

and reconfigure themselves under varying and unpredictable conditions. They should equally

be able to dynamically monitor and tune the resources available to them. It is believed that

building adaptive behaviour into mobile systems will enable them to respond better and adapt

to changes occurring around them. In order to achieve these. the following seven

52

Chapter 3-Model Design

requirements have been identified.

1 Security: In a distributed system such as Grid, entities interact with some other entities

with which they may not have complete trust. There is therefore need for authorization and

trust management. The decision about this sometimes has to be made in the presence of

strong existing trust systems. The classic Grid has very strong secure authentication but not

in a transient, volatile and unstable mobile Grid environment.

2 Extension of Functionality: This is needed to automatically extend systems functionality

so that it could be discovered on the fly. This could be to discover new hardware resources or

discovering recent dynamically created services.

3 Availability of Networks: Eunice, in the above scenario, has the option of switching

among networks if the capacity of her existing network could not help deliver her needed

services. She can switch between 2.5G, 3G, 4G, Bluetooth, or even WLAN. She should also

be able to switch between both on-line and off-line modes.

4 Service Presentations: The presentation of requested services needs to adapt to the

interfaces of the devices used for this purpose. For instance. switching from laptop to mobile

devices should not hinder her from having access to the service and have same level of

satisfaction with the presentation.

5 Service Redeployment: The services should have the capability to be redeployed on

various devices in order to improve their efficiency.

6 Changing the Quality of Data: There is need for the system to be able to vary the

qualities of the data based on context changes. For instance, when Eunice listens to the

president's address. and suddenly there is a drop in the network bandwidth, changing the

video compression mode might be affected to preserve the quality.

53

Chapter 3-Model Design

Change of devicr due
to context CM es

RequestslDelivel'J
Internet

Grid Service Infiastructure
(Service Providers)

GPRSI3G Networl<

Figure 3.1: Service Adaptation Architecture

7 Context-aware Interaction: The system should be sensitive to the interaction taking place

between the service consumers and the service providers. This is necessary for the systems to

be able to take both reactive and proactive decisions in case there is a delay longer than

necessary for the service delivery due to context variation.

These are some of the basic considerations in designing models for the type of adaptation this

study addresses. However, among all the stated considerations, this work focuses on

investigating adaptable context-aware interaction and Figure 3.1 illustrates such

environment.

In order to achieve this, the following requirements guide the design of the adaptation

model:

(I) The service consumers must be able to specify their quality of service preferences in a

54

Chapter 3-Model Design

flexible way. This is necessary so that adaptation decisions would be sensitive to the needs of

the service consumers. This could be in form of weights attached to the services that

determines how important such given service is.

(2) The model needs as input the current status of the service execution context. The

execution context of both service providers and service consumers change from time to time.

In order to increase the agility of the adaptation model, it must be aware of such changes and

use this to either reactively or proactively configure adaptation.

For instance, the consumer's needs change from time to time, the network connecting the

devices is very unstable, and the devices themselves are constrained by their fluctuating

resources.

(3) The model must have the option to accept or reject new service request or adapt to the

prevailing context situation. This is necessary to make the users not endlessly wait for a

service that will never be delivered.

(4) The model must make provision for dynamic reasoning on the context information it

acquires from the clients. environment and users. This requirement is one of the objectives of

this investigation as adaptation decision making is still an active parts of mobile Grid

adaptation researches [25]. There is need for the systems to make dynamic decision over the

context changes that occur in the system runtime environment.

(5) The model needs to provide some quality of service by reducing the delay

experienced due to contexts changes. Ultimately, the need to adapt the interaction of service

clients with service providers is to improve on the quality of service.

The next section presents the interaction model of our envisaged systems. this presents how

service consumers and service providers interact to get services delivered.

55

Chapter 3-Model Design

3.2.2 The CACIP Interaction Model

Having identified the requirements for the design of the adaptation model in the last section,

now it is time to discuss how CACIP interaction architecture fits into mobile Grid context

being one ofthe objectives ofthis dissertation.

3.2.2.1 CACIP Interaction Bus

Recent years have witnessed explosions of software infrastructures such as middleware

platforms that have dominated distributed applications development with grid systems [4] as

good examples. One of the goals of Mobile Grid computing is to access computational

resources automatically on demand to deliver the services required with appropriate quality

of service [3]. Obviously, mobile devices are now increasingly common, therefore, an

infrastructure is required that allows mobile devices to use Grid services, consequently

enabling the execution of complex, resource-intensive applications on the resource­

constrained devices [4].

However, because of the resource limitations of mobile devices. it becomes complex and

challenging to build applications that run on those devices. We share the view that the

marriage of mobile devices and grid services will greatly minimise the challenges of mobile

devices interaction with grid service providers and at the same time making grid services

accessible anytime anywhere [58]. Typically, design paradigms partition these infrastructures

into components that can be reused. and interconnect them through constructs provided by

such interaction infrastructure. However, service interaction requirements vary. Some gaps,

therefore. do exist between the interaction that such software service provides and those

required for interconnecting application service components. One way of bridging these gaps

56

Chapter 3-Model Design

Grid Services

CACIP

Desktop PDA Mobile
phone Laptop

Figure 3.2: An Architecture Showing Mobile Devices Interacting with Grid Service

is to argue for explicit design of interaction systems between service consumers and service

providers in such distributed systems. The classical clients/server paradigm of interaction is

not suitable for mobile and wireless interaction because it assumes persistent, fixed and

stable network link among communicating entities. Mobile systems, however, are prone to

unanticipated disconnection due to environment fluctuations. Mobile applications that are

designed to access Grid services reside in various mobile devices distributed over the

wireless network. CACIP (Context Aware Component Interface Pattern) [5] adopts

information bus as a persistent data structure that facilitates asynchronous communication

among service components. These components rather than interact directly, register their

messages in form oftuples deposited in the bus. The messages are pre-fetched and kept in the

bus in anticipation of mobile client's request for it. It also helps in routing services among

participating components in the interaction. This means that services are made available to

the bus by service providers and consumed or retrieved by service consumers. Figure 3.2

57

Chapter 3-Model Design

,---------, Wireless Networl< r-------, Internet
Mobile Device CACIP r------j~G~n~·d~s~e~rv~ic~e~s~

ReqlJElStSeMce()

1

I I I

: ;:::::::> AdaptServiceForOelivery()

I I '
, DeliverServiceO I :
!'-I,--------"-----"
I , '
I I I
I I I
I I I

I , '
, , I

I I I

I , '
, I I

I '
I I

Figure 3.3: A CACIP Model ofGrid Service Interaction

illustrates the new CAClP Architecture. One interesting advantage of this bus, upon which

the adaptation model is built. is that components can connect and disconnect trom it without

affecting other components as the presence or absence of a particular service component does

not depend on that of other components. The participating clients or service consumer's first

need to register with the bus specifYing the type of services it is interested in. while the

service providers publish services they offer. As depicted in Figure 3.3. there are mobile

devices as service consumers or clients, CACIP bus as service registry, and Grid services as

service providers. These mobile devices are usually portable but are resource-limited with

varying network capabilities. The CACIP bus might be running on a server or a group of

servers located on a LAN and maybe accessible to the mobile devices via wireless network.

The CACIP bus is also connected to the Grid via a high speed network. Different types of

58

Chapter 3-Model Design

Grid services are registered with the CACIP bus, providing convenient mechanism for

mobile devices to find needed grid services.

The requests from mobile devices are sent directly to the CACIP bus. If the requested service

is available, CACIP processes, adapts and sends it to the service consumers. Otherwise, if the

bus cannot locate the service, it then invokes a request to the Grid service. Once the

requested grid service is deployed and contexts of the service are good for its execution, then

the adaptation model processes and adapts the service before it is sent to the service requestor

or consumer. Figure 3.4 is a bird's eye view of the adaptation process. The CACIP bus

interaction protocol assumes that there is a strong trust relationship between the Grid service

and the CACIP bus so that the bus can interact securely and easily with the Grid. Therefore,

this matter is not discussed any further in this dissertation.

3.2.2.2 The Service Interaction Definition

Having presented the CACIP bus interaction model, what is next in line is a methodical

formulation of the service interaction problem as this basis of the adaptation model proposed

in this dissertation.

Interaction between CACIP clients and provider components IS therefore defined with a

function:

N = feR) (I)

where Rand N represent service request and response respectively.

Assuming R = {ri' r2,r3, ... ,rm} and N= {nI' n2,n3,nm} which are vectors oft)ped values.

Each notification sent by a component is an object with a name and a return type. This

representation offers a standard exchange format between components that facilitates

composition and adaptation of interaclion between clients and service containers. However.

59

Chapter 3-Model Design

these entities have functional dependencies that can prevent service delivery on timely basis

since a request from a client may depend on the notification from another service component.

To define these dependencies, we use the relation (fI, f2... fn) -+ f, f (there could be many of

it) represents a service consumer and fl, f2 ... fn represent service providers as illustrated in

Figure 3.5. This means that for service consumer f to successfully interact and access

services in components fl, f2...•,fn, some specific contexts of the device, the network and user

must be satisfied. This dependency may be illustrated by a graph where nodes on the graph

represent the components and the edges are the conditions that allow the components to

interact with each other.

Now, based on Chaari et al [7], a general model of the envisaged mobile Grid application is

defined as a tople:

M= (S, V, T) (2)

Satisfying the following essential requirements: S is a finite set of Service providers and

consumers {SI, Sl,""So}, V = {Vll,VI2, ...,V'J} is the set of service variants provided. And

these are alternative implementations of a given service. T is a finite set of interactions {tl,

tz ... tm}. Each t, is a tople (0, C, A) where 0 is the maximum delay or latency for

interaction, C is the general context of execution of the application, and A is a finite set of

60

Chapter 3-Model Design

~-!JO"'~--..11ArchItec:tural Model
derived
seMce
variants

!
CAAM

MonitOrs, anatyses and
exe<:ules

SeJvice Adaptation

!
Requeste
dService

Adaptable Grid Servk::es

Figure 3. 4: Context Aware Adaptation Model (CAAM) Adaptation Process

dependencies among the components. Each dependency is a finite set of pairs (Required

Context and Available Context) defined for each actor, for example, the service consumers

and providers in the CACIP bus. Requested service will be executed if the contexts of

execution satisfy some constraints for such interaction otherwise, the system need to effect

adaptation. This is shown in figures 3.4 and 3.5.

61

Chapter 3-Model Design

8~~..., , ,

Figure 3.5: Interaction Dependency among Components

C is a set of constraints specified in the realm of the source context and the destination

contexts for successful service delivery. With this definition, the need for adaptation of the

interaction using context awareness has been established. Next, the architecture of the model

to address this issue is then presented.

3.3 The Adaptation Model

The previous section defined CACIP interaction problem and established the need to design

an adaptation model for handling interaction between CACIP entities. In this section, the

model is presented with the strategies employed to address service interaction problem in a

mobile grid environment which causes prolonged service response time. The model

combines Service and reconfiguration pattern [77, 79] and context awareness to achieve its

goal. Every component of this architecture works in harmony in order to achieve the ultimate

goal of the proposed utility function-based context aware adaptation model.

62

Chapter 3-Model Design

MOBI...E GRJD CL.ENT
APPUCA110N

MONITOR EVALUATOR RECONA URATOR

........- EVALUATOR - REeOMAGURATOR
CONlEJ(T~
SnJRE

f I
..... CONTEXT EVENT MODULE

UllUTY POUCY
MODULE

CONTEXTsou-

Figure 3.6: Architectural View ofthe Context-Aware Adaptation Model

The Context Aware Adaptation Model (CAAM) model architecture is depicted in Figure

3.6. It consists of four main subsystems namely: The Grid service consumers, the Context

Monitor, the Context Evaluator, and the Service Reconfigurator. Since this work is to adapt

the interaction of mobile Grid clients to changing environmental context of mobile terminals.

wireless network and that of Grid services, the overall goal is to improve the service quality

experienced by service consumers in terms of service response.

3.3.1 Context Monitoring and Event Management

This section discusses the design of the monitor component with a view to communicating

monitored changes among other components of the model.

3.3,1.1 The Monitor

The monitor observes the changes occurring In predefined context parameters. Here,

context refers to the states, resources and other conditions that affect the execution of

63

Chapter 3-Model Design

services. For the system to adapt in response to these context changes, it is necessary that

the context be monitored to track such context changes. Two main methods for Context

monitoring are identified [27]: the event driven and time driven methods. The time driven

approach is about periodic probing or polling of the system being monitored to provide a

view of the context status and suffers from missing some contextual event changes between

when it was last probed and present probes particularly if the sample rate is very low.

However, the event driven approach brings liveliness into monitoring without any need for

periodic probing. The event driven approach waits for a change in the status of the context

being monitored to occur and then sends a notification of such changes. In this design, the

event driven approach is adopted. Since the time driven approach comes with a lot of

overheads and trade-offs between time spent probing or polling for change in the context

values that may not have occurred anyway. The state or status of any object in this case.

contexts, is the representation of the cumulative results of its behaviour and this is

represented by the values of all its properties. These events are atomic entities that reflect a

change in the status of the contexts being monitored. It is worth noting that this status

changes continuously, therefore. these changes are observed as subsets of those events that

are of significance to adaptation decisions.

We, therefore. define the events in this design as those dynamic adaptation triggering

policies that help decide on what CAAM does should adaptation be necessary. \Ilhenever

these events are fired, any policy or rules associated with such events is executed. Two or

more events can be used to execute a triggering policy. For instance, the BandWidthLow

and Devicel\ifemoryLow events maybe used to carry out execution of a given service in

another device with enough memory and network connection bandwidth. Therefore an

64

Chapter 3-Model Design

Context Context Monitor(s) Context
Reasoners Reasoners

A

Context
Sensor

Context
sensor

Context
sensor

Figure 3. 7:Contexr Monitor Architecrure

event triggering maybe defined as:

If(BandwidrhUtilityLow AND DeviceMemoryUtiliryLow)

Execute Action!

Where Action] may represent the execution of such service on a remote device with

enough memory and network bandwidth.

Different combinations of such events can be associated with the execution of various

adaptation policies. This means that this event makes it possible to have specification of

composite events thereby making provision for event combination and manipulation. This

idea is very central to the design of the monitoring and evaluator modules of the adaptation

model. One of the design requirements for the monitoring module is that at design time, no

general assumption on how to anticipate context changes is made. This specification of

what constitutes interesting contextual changes is dynamically done at runtime. Another

consideration in this design is that the system is capable ofdynamic definition of events and

dynamic specification of conditions that will flTe or trigger events. The event management

module is, therefore. responsible for dynamic defmition and registration of new events and

65

Chapter 3-Model Design

the specification of when and how these events are fired. It also provides the mechanism

that will allow these events to be manipulated and fired at runtime.

The event management supports the entire operation of the adaptation event driven

communication. The context monitor is highly dependent on the environment which is the

physical context of the terminals, wireless network and the Grid services as well as the

event manager. We, therefore, encapsulate such dependencies in context sensors and

context reasoners. The context sensors and reasoners are responsible for retrieving and

supplying the context data to the context monitor through the event management module.

The context sensors are responsible for observing and gathering context information from

context sources. The context sensors are components of the model that provide context

information to the persistent context store through the context monitor or directly to the

Evaluator. They also provide context information to context reasoners that perform

operations on the context data such as abstraction, aggregation, derivation. and prediction

from primitive context data. They are primarily used to derive new context informarion

from original context data. This is the case of the persistent context store where the context

reasoners take context data from the context store in order to provide new context

information on the trends of context changes in the system. Figure 3.7 gives a clear picture

ofthis concept.

The context Evaluator utilises some of these parameter values directly as soon as they are

produced by the Context monitor. Those that are not consumed immediately are stored

temporarily in the persistent context store so that they can be retrieved later by the

Evaluator through the asynchronous event management module for proactive adaptation

66

Chapter 3-Model Design

decision.

3.3.1.2 Context Modelling

The following context types are important in providing adaptable services in the context of

this research.

(a) Terminal device contexts: The adaptation mechanism must be aware of the capabilities

of devices being used to request services. Capabilities such as device display size, memory,

communication interfaces, available multimedia, processing power, and encoder/decoder are

good examples.

(b) User Context: This will include things like user subscriptions relating to types of

services being requested for, consumer's identity, access right policies, and privacy aspects

for managing and exchanging stored context preferred by context consumers. However, in

this design, this is not really the focus of our context design as this was taken care of in the

previous design of CACIP.

(c) Service Environment Context: This includes the consumer environment such as time.

location, light, noise. activity and mobile clients' wireless network: such as network latency,

bandwidth, network availability are examples.

3.3.1.2 Context Model

The context model refers to the format in which the context data are abstracted. Contextual

information needs to support very broad adaptation decisions in different combinations.

However, to handle such context data that is provided by the context sensors. this data should

be structured in such a way that it will be easy to reason about them. A context-aware system

requires context information to be exchanged and used between different entities such as

67

Chapter 3-Model Design

users and services in the same semantic understanding [17]. This means that an appropriate

context model should support semantic interoperability that enables the common schemas to

be shared between different entities. In the scenario illustrated in section 3.1.1, Eunice

location must be understood by her blackberry device. Also, context data can have variety of

characteristics. The definition of context, therefore, includes information in any given

domain. This context information is interrelated, for example, available bandwidth and

available memory may both determine what adaptation strategies to effect. Finally, this

context information is not static but dynamic meaning that they are not consistent as they

change from time to time. Table 3.1 is a summary of example context elements this model

considered.

Different ways and means have been proposed to model such context information as

illustrated in chapter two. However, among these models. we decided to model our context

using the key-value pair as used in Mobisaic [80] technique that uses the key to refer to the

context variable and the value of the variable holding the actual context data. The decision to

choose this model type is informed by the fact that this is for now the best model that provide

us with simple context abstraction with such values that can be consumed by the our policy

model. In most cases such context model uses pattern-matching queries to notify adaptation

mechanisms.The context model is illustrated in Figure 3.8. Entity represents any context that

is relevant for the purpose of execution of any given service. In the entity representation.

each of our context types is also modelled.

68

Chapter 3-Model Design

comextEntity

Time Stamp Source Probability userRating

Figure 3.8: Context Model Adnptedfrom MADAM [25]

The userEntity represents entities of interest in the user environment. Example is user

location, light, sound, etc. ResourceEntities represents a runtime source of supply. A resource

entity has limited capacity and these are represented by property types. Resources such as

network bandwidths, network types such as GSM, GPRS or 3G. network channels, device

memory, device CPU power etc are good examples of this entity type. ServieeEntity

represents service based entities.

Service entities may be composed of other service entities and use other service entities or

resource entities. A context entity encompasses the context information as illustrated in figure

3.8. This can be composite, that is, having more than one context entity embedded in another.

These entities have values and these values are information that is available in the context

69

Chapter 3-Model Design

entity. An entity can have several values. The context entity is uniquely identified. This is

necessary to avoid inconsistencies resulting from two context entities indicating two different

context values for the same context abstraction.

The values can be associated with metadata that provide additional infonnation about the

value. These metadata are very useful when perfonning reasoning on the context

infonnation.

The model has four of such metadata. The timestamp identifies when context infonnation

changes. The source is the unique identifier of the entity that provides infonnation for the

values, e.g. context sensors. Probability is an indication of the trustworthiness of the

infonnation sources while user rating is an assessment indicating the values' importance to

the user.

3.3.2 The Evaluator

This is the primary component of the adaptation model. Since this model is to adapt

interaction between service consumers and service providers in grid environment. it is

necessary to have some runtime adaptation controller that can reason about the changes

occurring in the system execution context and that decide on what and how the adaptation

should be executed.

Therefore, one of the responsibilities of the Evaluator is to reason on the impact of context

changes on the service requests and for adapting these sets of running services by planning

and selecting service variants and possibly device configurations that best suits the current

context situations of the service environment [25]. The Evaluator has no prior knowledge of

either adaptation strategies or context changes they affect. This means that adaptation

decision must be made in a manner where users. mobile services and contexts are used to

70

Chapter 3-Model Design

Table 3. 1: Context Elements and their Category

ContextElement Context Category Exmnple Service Comments

Memory Mobile device Applicable to any To be dynamically acquired,. the service is
service adapted to this context at the service

consumer end

Storage mobile device Applicable to any To be dynamically acquired., the service is
service adapted to this context at the service

consumer end

Service preferences user context. Applicable to any To be manually entered though static but
application context, service temporal.
and session context

User contaetrldentity User Context Service Applicable to every To be manually entered but static
Information Context requested sen"ice

User Location User context Travelling It's either staticaHy or dynamically
acquired.

Network availability Network context Applicable to any To be dynamically acquired
service

Network Service Net\\'ork Context Applicable to any To be dynamically acquired. Can be
Quality service adapted to service qualit,Y

drive adaptations. These dynamic adaptations are thus required because the mobile

applications' states, device resources, service and user's requirements with their operating

environment all change dynamically. The changing situations are what is regarded here as

contexts and are discussed later. The context evaluator takes the context values passed to it

from the Context Monitor and decides whether the values presented has changed beyond a

threshold or ranges that will demand for the system to adjust itself to cope with such changes.

The context evaluator uses utility function [13] for evaluation. This process and formulation

are elaborated in section 3.3.2.1 below. The evaluator also takes input from the service

consumer, input such as consumer preference for the requested service are used in evaluation

and making feasible adaptation decisions.

71

Chapter 3-Model Design

3.3.2.1 The Utility Function Based Design for On-the-fly Adaptation Decision

The utility function is an objective function that expresses the values for each current state of

the systems [13]. The idea of the utility function is used to model the decision making

process of the system. The utility function is used as a measure of how a service or any of its

variants fits a given context. It is given as a function of the properties of a service and

associated context of execution. The model makes provision for expressing the adaptation

policies that drive the reconfiguration module. The policies embody various parameters

which change from time to time in the executing context of the system. These parameters

such as consumer requirements, environmental context information and service constraints

serve as input to the system.

The model considers complex relationship that may exist among various context parameters,

for instance service consumer requesting for a multimedia service on her PDA will only have

that service provided that bandwidth, memory and CPU processing power required by the

service do not exceed what is obtainable at that point in time in the environment. The failure

of any of these, even if other requirements are met. may prevent the service from being

accessible. Hence, to address this ambiguity, the utility function is used to automate decision

making process. This will allow automated selection of appropriate service configuration

among all possible configurations of the same service so as to make the system adapt to the

varying limited available resources. Since adaptation envisaged in this model is triggered by

some events such as change in system resource level (CPU processing power or memory),

bandwidth variation and even dynamic change in consumer requirements. three basic

requirements are expected to be met.

(I) The system must know from time to time the current states of the system's execution

72

Chapter 3-Model Design

sl v11

v12

52

~
v1n

53

1121

srn v22

v2n

Figure 3.9: Services and Service variants Relationship

environment

(2) The system must be able to take both proactive and reactive decisions in accordance

with level of changes occurring in the system execution contexts. It may decide to reject an

incoming request from a consumer or adapt to the prevailing context situation.

(3) The system must be able to provide some level of satisfaction to the service

consumers as a result of service reconfiguration. These requirements qualifY the utility

function adoption for decision making part of this model.

3.3.2.2 Adaptation Decision Formulation

The adaptation decision is formulated usmg the utility function as described in section

3.2.2.1. It is assumed that a service is implemented by the service developers with

alternatives that are referred to here as variants which are ofdifferent QoS requirements. Any

of these variants that satisfY the prevailing context situation is selected during adaptation

process. Therefore, it is assumed that CAAM processes m number of service requests from

73

Chapter 3-Model Design

service consumers. The service consumers could be a mobile application running on any

mobile device.

Let S be the set the set of available services.

Then S = {SI, !l...s..} and that each service s; has a set of variants V ={v"v2,vJ,...v.},this is

illustrated in figure 3.9. So, service Si, has variants vii The total number of service variants is

m

given as: M = I>ij
i=4

This means that M is the sum of variants for all services.

(4)

Also, let C = {ehe2~.e.}, the set of context parameters for service execution. This will

include contexts such as available device memory, processor speed or device display size that

are available at any given time. And let R = {fh f2, ... f.}, be the set of required context

parameters for itch-free execution of a given service s; then. it is assumed that each of these

contexts is assigned some normalized value and that it has maximum value. Therefore, each

service s, will require fij contexts for execution. Let Xi be the decision variable that indicates

ifa particular variant Vii of service s; is selected for adaptation.

Therefore, the sum of available contexts eii must be greater than or equal to the sum of

required contexts fil of service variant Si. The runtime utility for each service variants V'l is

calculated by: U'l= ri/c'l and the utility for each service Si is thus calculated as

"
Vi = ~>lj/clj

'-I

(5)

In order to ascertain which of the variants of service s; is selected, let d,! be the variable that

ascertains that service variant Vi! is selected and X'l be the decision variable which is set to 0

or I depending on whether v'J is selected. Then, we have :td,x" = I, 'i i 'i j xij E fO,I}

74

Chapter 3-Model Design

(6)

That is, for any given service S;, only one of its variants Vij would be selected for adaptation.

Each service variant must satisfY some quality or preference requirement, indicated by

attached weights Wij. The sum of Wij for a given service s; must be I:

"
LWij=1
i.j~l

(7)

Finally, we have the following formulation for decision making model. We need to

maximize

,v ;V

U (uij .xij v.lj) = L L ulJ {wiJ)r1J
I-I rl

Subject to the following constraints:

,
L ulj :5 Ui for n = 1,..•, N V ij EO fO,l}
If'l

(8)

(9)

Where Uij is the utility parameter associated with each service Si and N represents the

number of utilities under consideration.

(10)

This means that we need to select a service variant V;j of variants for service Si with the

highest utility that satisfies the constraints above. The utility function formulation is an

extension of the multidimensional Knapsack problem [22] with choice problem constraints.

As formulated in the utility function, the decision on which appropriate service variant to

execute is based on varving context values at anv given time. Two algorithms could be used. - '-'

to solve this problem according to Khan in [36]. One. the exact algorithm. as a result of its

high computational complexity. cannot be applied particularly for runtime adaptation

75

Chapter 3-Model Design

decision making being considered. Therefore we need to consider heuristic algorithms which

can help arrive at decision within reasonable computation time with feasible and optimal

decisions.

3.3.2.3 The Decision Making Algorithm

The decision making problem formulated above does not have an exact solution since it's a

variant of the popular Multidimensional Multi choice Knapsack problems [34]. There exist

various heuristics approaches to solve this type of combinatorial optimization problem. The

aim of the above formulation is to pick from among service variants Vij that satisfies the

context constraints A heuristic algorithm based on the work of Michrafy and Sbihi [35] that

provides a guided local search heuristic algorithm GLS that has its origin from constraints

satisfiability applications is adopted. Proved that this algorithm is very effective at solving

this type of problems. The algorithm uses memory to guide the search for appropriate

service variant. The algorithm comes up with a feasible selection of service variant Vij such

N

that L>ij (wij}r, :s Uj 'd ij. xij E {O,l} for iJ = 1 ... N and for each service s, with variants
i,j""l

,\'

Vij, we pick service Vij such that I dijxij = 1 and 0 otherwise.
i,j=l

76

Chapter 3-Model Design

For m = I to M, set u, = max{uij, ij = I to N}
Si <- vij;
set s(m) = s,,; di,xi, = 1

N

set Cj= L UiJjXl.i ,Ij=l,...,M;
i,J~1

end For;
s = (s"...,sn)

while (U.,>Ui, for j = 1 to N){
no <- argmin {uiJ} ISiSn
mo <- argmin{Ui,} 1SmSn
y[iO] = vio; diJxi] = 0;
uiJ = Uij - UiO for m = 1 to M;

if:3 ViO ,tvi l and "u < Ui, for ij = 1 to NL.... If}

then
dijXiJ = 1;
ViO=Vil

Vi, = (ViO; si, \;f i #0, i =1 to M) is feasible
return Vi};

endlf
EndFor;

S'mO <- argmin{u.,};
via = 5'; 5,0 = si; dijXiJ = I;
endwhile;

return S.

Figure 3.10: The adaptation Decision Algorithm

The feasible solution is obtained by a modified greedy procedure of [34]. The modification

done is that we do not need to add any penalty for choosing an infeasible solution in the tirst

place. This is not necessary in our context as the algorithm selects a feasible solution from

the calculated utilities for each service variant. This it does by evaluating the ratio: Uij = r,/c'j

where ij,l E {1.. ...N} of each context parameter CJl required by each service variant Vij and

(Cij,W'j) is the scalar product of both c"" The algorithm then selects service variant v" for

service s, such that vijE {VlI,V'2,....Vnm } with lowest U'j is the selected service variant that is

77

Chapter 3-Model Design

(Slort)

•
Read 5efvica Variants' Required

Context Vall.Ie rif

Read Coned utiity ViIlues fO(si fr:fr1
u contmd: Moma

•

•

S8lea~ vanoun '")
By """""""" U._..,..,.. ..."..

•

Figure 3.11: Adapration Decision Flow Diagram

No

No

•

•

feasible under the current context situation then the algorithm terminates. Otherwise, it takes

context CjO as not being satisfied. It then with respect to CjO, selects service variant vij

corresponding to Si with lowest utility Uij' This very service variant v,o is then swapped with

78

Chapter 3-Model Design

another service variant say ViI and so on. If the new selected service variant is not feasible

then it selects the service variant v'ij with the lowest utility which is now the newly selected

service variant. This process is repeated until the selected service variant is feasible.

The following steps describe how the decision making algorithm works which is also given

in Figure 3.9 while Figure 3.11 is the flow diagram.

(a) The service request is intercepted by the adaptation service that subsequently extracts

relevant user context information and passes these to the context Monitor.

(b) In the initial configuration, the context Monitor sends necessary context values, for

instance, user preference information to the Context Evaluator. In reconfiguration situation,

the Context Monitor notifies the Evaluator ifthere is any significant change.

(c) The Utility function for each of the service variants is calculated using the required

and available context with user preference in terms of weight.

(d) Having calculated the utility, the variants are arranged (sorted) according to each

context utility.

(e) Then the service variant with highest utility is selected.

(f) As the service variant is selected, other incoming service requests must also be

processed which may have some impact on the adaptation service agility [33]. For example.

if the service variant selected will require more of that particular context to execute. and then

this will leave other requests with less of it to execute. This may trigger recalculation of the

utility function tor the unselected service variant.

79

Chapter 3-Model Design

--
--

•
I Evaluator

•

Figure 3.12: Communication Model between Components ofthe Model

This could be avoided by choosing the variant for the next request if there is no significant

secondary effect for choosing such variant.

(g) However, if the adaptation service recalculates the utility for the new request and

sorting its variants, the adaptation service selects the next variant with the highest utility; the

previously selected variant is not reconsidered in the new calculation. This algorithm helps

determine which of the variants of a requested service best suits the present prevailing

context situation.

The decision reached by the algorithm is passed to the policy Manager (see figure 3.6) that

determines the appropriate adjustment to be effected on the system through the

reconfiguration module. The policy manager defines a mapping of the results of the

Evaluator ofthe monitored context and resource parameters to components configuration.

80

Chapter 3-Model Design

3.3.2.3 Utility Policy Management

Every adaptable system that has its adaptation logic embedded into it cannot operate in a

generic manner or adapt dynamically in response to unexpected context changes. The use of

policy management is, therefore, necessary to decouple the adaptation control from

adaptation mechanisms. This helps to specify the adaptation logic which can be interpreted

by the Reconfiguration module dynamically at runtime in order to determine how the

systems should adapt.

The adaptation directives need to contain some necessary elements such as what to adapt,

which adaptation to apply, how and when this should be applied, and what constraints may

limit the application of such adaptation. The use of these directives or adaptation policies will

allow a declarative specification of how the system would adapt without necessarily

specifying how this adaptation would be accomplished. This allows decoupling of adaptation

logic and the adaptation mechanisms. The policies are formulated by using Event-Condition­

Action (ECA) format [27] and these policy utilities are in two forms: the reactive and

proactive forms. The reactive format is specified by selecting an event to be fired in response

to context change. adaptation target and adaptation to be effected on the target. The

application of the utility-based policies needs to be provided with some set of statements that

needs to be evaluated when the policy rule is fired. On the other hand. the proactive format

specifies the adaptation target, adaptation to apply and a set of conditions that are triggered

immediately upon observing some pattern of change in contexts. The utility-based policy [28.

74] is adopted as it allows on-the-fly adaptation decision and it does not create much

overheads since decision are not predetermined but are made d)namically based on the utility

of the current context situations. The Utility policy management is responsible for the

81

Chapter 3-Model Design

interpretation of adaptation decision, conditions and the activation of appropriate adaptation.

3.3.3 Designing the Service Component and Reconfiguration model

Grid service must grow to meet increasing requests, new requirements, and new applications.

Flexibility and availability usually conflict with each other, however, service providers in

conventional systems do shut down in order to reconfigure and then restart the service. In the

utility computing paradigm, it is unacceptable to disrupt the service execution even for two

seconds. Dynamic reconfiguration, identified by Otebolaku in [79, 81], therefore, proffers

solution to managing runtime changes of service execution without shutting down or

disrupting the service execution. In this section how the proposed model integrates

component based technology and dynamic reconfiguration for effecting adaptation is

discussed.

3.3.3.1 The Component Model

The applications are assumed to be component-based. They use and provide resources and

services as they operate in contexts. These applications are influenced by the changes in

resources they require or provide and by the context of their execution. Theretore, we adopt

component based design [11] as it offers a standard mechanism for carrying out

reconfiguration functions such as addition, removal and deletion of components that are

affected by resource variability and context changes. This component model is illustrated in

Figure 3.13.

Each of the components has two types of interfaces: provided and required. Two or more

components interact via connector that is hooked to the components through its interface. A

service component may provide one or more services to the mobile Grid client's component

82

Chapter 3-Model Design

I._-

Ir 1
Component Interact Connector has Port

has

I'id ISPro has ,,~~

'---
Type

,,~~

Services Context
Parameters

Figure 3. 13: CAAM Component Model

provided that context and resource variability do not exceed certain required level. One of the

main benefits of using components frameworks is that it helps to regulate the component

roles and standardizes interfaces. The component model used is based on the one designed

and used in the MADAM project [25].

A service component is designed as a unit of composition with contractually specified

interfaces and explicit dependencies where dependencies are specified by stating the required

interfaces and the acceptable execution platform. Each of these components can be atomic or

composite. In this way, a service can be assembled from a recursive structure of component

frameworks as illustrated in figure 3.12. Services are therefore defined as interfaces that

allow specifications of behavioural features. In this component model. interfaces are

organised as ports and port types. A port represents a component·s capability of participating

83

Chapter 3-Mode1 Design

in a specific interaction. Distinct components can define ports of the same types meaning that

they provide or require identical interfaces. The port type characterises the set of services that

are provided or required through ports of that type. The component framework describes

collaboration of components by defining roles for each component participatin~ in the

collaboration and their interaction. Each role is described by a component type which defines

the functional behaviour and attributes of the component. The component type defines a set

of ports that a component of that type must implement. Each of the components has two

types of interfaces: provided and required. Two or more components interact via connector

that is hooked to the components through its interface.

In order to bind the components together, connectors are used. These connectors specifY the

interaction between a required port of a component and a provided port of another

component. The former is used for request while the latter is used for responding to a request.

The interfaces defined by the two ports define the syntax and semantics of interaction

between the components over that given connector. An instance of these connectors is the

implementation of a connector enabling interaction between two component instances. When

components are instantiated in the same address space, then the connector is a mere local

object reference such as java object reference. Otherwise, a connector is realised by remote

communication protocol such as SOAP, Java RMI, RPC, etc. The connector instances are

created by the connector factory (25). Creating connector instances means providing each

component that specifies a requirement for an interface provided by the other component.

3.3.3.2 The Run-Time Component Model

The run-time model of MADAM [25] is adopted and used to describe difterent aspects of the

service entities. This run-time model is what is used by the adaptation model to reconfigure

84

Chapter 3-Model Design

Reconfiguration - Plan
Template 1

0..*

Figure 3. 14: Reconfigllration Template and Plan Relationship

the running service component at execution time. Each component is presented at runtime as

component plans that specifY the behaviours of a component and the required

implementation resources for that component. Therefore, there exists a relationship between

component, port, plans and connector types. Several service components can implement

same component type but the specifications of differences in the offered and needed

interfaces must be ascertained. All that service developer does is to publish several plans that

are associated with a component type, where the plans specifY the propenies. We adopted the

plans available in MADAM Middleware. These plans are discussed in the subsections that

follow.

3.3.3.2.1 Blueprint Plan

This is serialised. immutable implementation artefact that is used to load components at

runtime. This plan specifies the resource requirements. For example, Java class requires

JVM to execute, thus plan must specifY a resource requirement to a Java-enabled run-time

environment. Also. this is where resource requirements of service variants are kept for

calculating service utility.

85

Chapter 3-Model Design

3.3.3.2.2 The Instance Plan

The instance plan is associated with the existing component instance. These are used when a

component instance can be shared or reused.

3.3.3.2.3 The Connector Plan

This describes the implementation of a connector. A connector plan implements a connector

type, and can be used to instantiate this type between components.

3.3.3.2.4 The Composition Plan

This describes the components implemented as collaboration between several components. It

defines the roles of components participating in such collaboration. For instance, in a

multimedia service application, this could be implemented as a composition of a multimodal

Interface components, multimedia storage and persistent data retrieval components.

3.3.3.3 The Reconfiguration Template

When changes occur in the context of execution ofa given service, some inconsistencies may

follow, for instance, if a running service goes to offiine mode, it may decide to switch off the

network adapter in order to save battery. If another executing service is using this network

adapter, then there is conflict. In order to resolve this conflict, reconfiguration template is

used to ensure consistent state of the context aware system. It provides the intentional

representation of the set of service variants, and that of the model of these service variants

where all variation points [25] are resolved. So. the reconfiguration template is needed to

provide representation and can also be used to evaluate the variants and to instantiate them.

The configuration template refers to the plan for which it provides additional information to

resolve the variation point. In its simplest form, it refers to the blueprint plan without

86

Chapter 3-Model Design

parameters settings. When it refers to composition plan, it will contain mapping from a role

in the composition plan to a nested configuration template that resolves the variation point of

the given role. A role describes the functionality of a component. It could also refer to

blueprint plan with parameters, in which case, it contains reference to a selected parameter

and device setting and corresponding properties. Each of these parameters is considered as a

different realisation of the components and therefore corresponds to different configuration

templates.

Whenever a reconfiguration template representing different service variants is being created,

the architectural constraints applied to the composition plan are checked. If the constraints

are not satisfied, the configuration template will be discarded and will not be used for

adaptation purpose.

3.3.3.4 The Service Reconfigurator

The Reconfigurator is responsible for coordinating the initial configuration and

reconfiguration of the service components and the device. The Evaluator and the

Reconfigurator work together as they operate on some common information element, which

is the configuration template discussed in section 3.3.3. \Vben adaptation ofa service is being

carried out, the Reconjigurator proceeds according to the configuration template for the

variant selected by the Evaluator. Thus. the Reconfigurator carries out the adaptation decided

by the Evaluator by applying the configuration template. When, carrying out configuration

and reconfiguration. the Reconfigurator uses the components frameworks interfaces to

instantiate components and connectors for a given service.

To achieve this. service reconfiguration panem [77. 79) is adopted because it decouples the

service functional behaviour from the point in time at which these service implementations

87

Chapter 3-Model Design

are reconfigured. This decoupling improves modularity of services to evolve over time

independently of reconfiguration issues such as whether two services must be collocated or

what concurrency model should it use to execure services. Also, service reconfiguration

pattern centralises the administration of services it configures. This facilitates automatic

initialisation and termination of services and can improve performance by factoring common

services initialisation and terminarion into efficient reusable components.

Further, the pattern is useful when a service needs to be initiared, suspended, resumed, and

terminated dynamically. It is also used when service configuration decision are made at

service runtime especially for dynamic adaptation of services. It is a very efficient, flexible

and convenient way of implementing distributed services. Service reconfiguration pattern

decouples service behaviours such as their interaction from the point in time at which they

are configured into application.

In considering service reconfiguration, here are some of the problems it helps to solve in this

model:

(i) When there is need ro defer the selection of a particular implementation of a service till

runtime. This will allow service developers to concentrate on service functionalities.

without consuming much time in committing themselves to any particular service

configuration. It in essence decouples non functional behaviours of a service from

functional beh.aviours which makes th.e service to evolve independently of the

reconfiguration policies and mechanisms used by the systems.

(ii) The need to build complete applications or systems by composing multiple independently

developed services that do not require global knowledge. The service reconfiguration

pattern requires all services to have uniform interface for configuration and control. This

88

Chapter 3-Model Design

(1.- E_vent__c_han_nel ->O==E"'-===:l E_venl__Ha_nd_'er_---'

Service Reconfigurator - Service Reconfigurator

4
,

r - - f ~

~ • ~
'" '"

Service Functional Service Functional
Component Component

May CiIpeflQ a"I

Figure 3.15:Reconfigurator Model

allows the services to be treated as building blocks that can be integrated easily as

components into a larger application. The uniform interface across all services makes them

look the same with respect to how they are configured.

(iii) This uniformity in turn simplifies the distributed application development.

(iv) The needs to optimise, control, and reconfigure the behaviour of a service at runtime.

Decoupling the implementation of a service from its configuration makes it possible to

fine-tune certain implementation or configuration parameters. For instance, depending on

the parallelism available on the hardware and operating system, it maybe either more or

less efficient to run multiple services in separate threads or processes. The service

configuration pattern enables applications to select or tune these behaviours at runtime,

when more information maybe available to help optimise the services. In addition, adding

a new or updated service to a distributed system can be performed without requiring

downtime for existing services. Figure 3.15 illustrates the relationship between service

functional components and the ReconfiguralOr that provide standard interface for

89

Chapter 3-Model Design

configuring and controlling services.

A service reconfiguration based application uses this interface to start or initiate, suspend,

resume, and tenninate a service, as well as to obtain runtime infonnation about a service. The

services themselves reside in a service repository and can be added to or removed from

service repository by the service Reconfigurator. The subclasses ofthe service base represent

concrete services that have specific functionalities.

The service configuration pattern has been applied in a number of scenarios particularly

when:

(i) Services must be initiated, suspended, resumed, and tenninated dynamically at runtime,

(ii) The implementation of a service may change but its configuration with respect to related

services remains the same and the configuration of collocated services may change but

their implementations remain the same,

(iii) An application or system can be simplified by being composed of multiple

independently developed and dynamically configurable services and

(iv) The management of multiple services can be simplified or optimised or adapted by

configuring these services using some administrative unit.

The key components of this pattern are:

(a) Service: This specifies the interface containing the hook methods such as initialisation,

remove. suspend, tenninate used by the service to dynamically configure the service at

runtime,

(h) Concrete Service: The concrete service implements the servIces interface and

functionalities such as event processing and communication with service consumers,

(cl Service Repository: This maintains a repository of all services offered by a service

90

Chapter 3-Model Design

Reconfigurator based applications. This allows administrative entities to centrally manage

and control the behaviour of the configured services. The service configuration initialises a

service component by calling its initO method. Once the service has been initialised

successfully, the Service Reconfigurator adds it to the service repository that manages and

controls all the services. After the service is configured into an application, a service

performs its processing tasks i.e. servicing service consumer's requests. Then the services

Reconfigurator terminates the service once it is no longer needed by callingfinitO method on

the service. This hook allows the service to clean up before terminating. As soon as the

service is terminated, the service Reconfigurator removes it from the service repository.

3.3.4 Adapting Services

The sequence of steps followed to adapt services is explained based on the previously

discussed designs. These steps are as follows are as illustrated in Figure 3.16.

(a) getContext(): In order to evaluate service variants. the Evaluator requires the current

values of some of the relevant context values forthe given service.

(b) conextVallleChangedO: The Monitor informs the Evaluator of a change to a context

element for which it has previously requested a change notification.

(c) configureO: Having decided which variant suits the current contexts. the Evaluator

requests the Reconfigurator to perform reconfiguration.

(d) disconnect(): While reconfiguration is ongoing. the Reconfigllrator will call this

operation of the component framework to remove existing connections betv'een component

instances. which will not be part of the configuration for the new set of concurrent services.

(e) initO: The Reconfigllrator calls this operation to create all new components instances

91

Chapter 3-Model Design

required in the configuration for the new set of concurrent services.

(f) resolveO: The &configurator requests the components framework to resolve the name to

an initialised component, which may cause a proxy to be created in case the component is

remotely located.

(g) connectO: Each new connection between components of the new configuration of the

concurrent service variants will be created by calling this operation, and for this to work, the

connectorFactory to use is specified.

(h) ReconfigureServiceO: The Evaluator instructs the Reconfigurator to reconfigure the

service to the new set of utility values for the service context parameters.

Finally. the next section provides insights on how the design explained ID this chapler

achieved some ofthe set goal and objectives of this investigation.

92

Chapter 3-Model Design

ContextMonitor Reconfiguralor

ContextVatueChanged-- ___

. - -getCont.,.~- ..

con1iguce

reconfiguf'e

reconfigureSeMce

disconnect

TI
remove-

TI
inn

TI
resolve

TI
connect

TI

.. reconfigureService

reconfigureService

updateResource

TI

Figure 3. 16: Adaptation using Reconfiguration Panem

3.3.5 Chapter Conclusion

In this chapter, we have described the design of a dynamic system for service interaction in a

mobile grid system. As stated in section lA, the goal of this work is to propose an adaptable

93

Chapter 3-Model Design

and reconfigurable interaction and communication between grid service consumers and grid

service providers, that helps reduce the service request response time; this has been partly

achieved in this chapter with the detailed description of the model design and algorithm.

94

Chapter 4-Model Implementation

CHAPTER FOUR

MODEL IMPLEMENTATION AND EVALUATION

4.1 Introduction

This chapter describes the implementation of the idea and adaptation model design presented

in previous chapters as a proof-of-concept. Most part of this chapter describes how the

Context Monitor, Evaluator and the Recorifigurator are realised. The chapter ends with the

evaluation of the simulated service that runs in the developed CAAM environment.

As explained in chapter three, the main goal of the adaptation model is to propose a dynamic

and adaptable system for service interaction in mobile grid. The objectives to achieve this

were revisited in chapter three in order to ascertain how these were achieved in the model

design. The model consists of a context monitor that further contains context sensors, and a

persistent context storage that temporarily stores context values that are not consumed

immediately for determination of trends of context changes. and also for aggregation of

further context data from the original contexts. The Evaluator uses .eventing' to

communicate its decision to the Reconfigurator. The MADAM (Mobility and Adaptation

enAbling Middleware) [25] provided us with the environment. APIs and libraries to

implement major parts of the model.

95

Chapter 4-Model Implementation

Evaluator

Gnd Service

A IP

Figure 4.1:The Implementation Framework

4.2 Implementation Framework

The design of the components of the adaptation framework has been discussed in chapter

three. However, the implementation of these components integrates the MADAM APls and

libraries that provide useful implementation of some of these concepts. Figure 4.1 illustrates

the framework and how it integrates with the MADAM to achieve our set Goal and

objectives. Next, the integration of the adaptation model and MADAM is briefly explained

thus:

I. The context Monitor communicates with the MADAM COn/extSensor interface in order

to retrieve actual context information from MADAM Context and Resource Managers

that generates these from low level device resources. This helps reduce the

implementation time and to avoid reinventing the wheel.

2. Making use of the MADAM component metal-model which helps to integrate MADAM

component types, connection plans, blueprints plans, and composition plans into our

96

Chapter 4-Modellmplementation

component Model as presented in chapter three.

3. Adding MADAM component reconfiguration methods for the purpose of effecting

adaptation as decided by our model's Evaluator and the utility based algorithm.

Some of the classes and interfaces that realised the implementation are presented In

subsequent sections.

4.2.1 Context Monitor Package

The context monitor is highly dependent on the environment which is the physical context of

the terminals and wireless network. Therefore, the dependencies are encapsulated in context

sensors from which context data as observed in the environment is generated. Some of these

context data is consumed directly as it is generated by the Context monitor. It then passes this

to the Context Evaluator. Those context data that are not utilized immediately are stored

temporarily in the persistent context store and are retrieved later by the Evaluator through

contextAccesslnteiface interface and used for proactive adaptation decision.

97

Chapter 4-Model Implementation

<<jnterface»
ContextSensorlnterface

_ntexlChangedListenel()
+contextChangedEven1()

\contextSerlso!():void
illnsetConte)(tChangedListenet
!:ConlextAccesslnterface

<<interface»
I ContexlAxc:esslnterlace

i \.:
! i

: ContextValueChanged():void

<<interface»
EventManager

contextChangedEvent():Void

<<qntertaee'»
InterfaceMetaData

<<interface»
PersistentContextStore

+storeContextValue():void
+9EltValue():Value
+getLastValue():Value
+getLastValue():Value
+purgeContextStore():void
+storelnFile():void
+IoadFromFiIe(}:void

~uses ...----------­
;getAllAvailaoleVaJueso:Value
9"'EditabIeValue():VaIue

Figure +.2:Context -"donitor Package

The context Monitor package as specified in chapter three will be responsible for monitoring

the contex1 and resources in the service execution contexts using ContextSensor,

PersistentContextStore, ContextAccesslnteiface, contextSensorlnteiface, eventListener

interface. contextElement class. the context metaDatalnterface and the

persistentContextlnteiface. These interfaces and classes work together to provide context

monitoring functionalities and Figure 4.2 is the class diagram for the context monitor.

98

4.2.1.1 ContextSensor Class

Chapter 4-Model Implementation

This is responsible for sensing contexts. The ContextSensor class provides context values to

the Evaluator package and also to the persistent context store. This ContextSensor class can

provide more than one context element. The Evaluator acts as clients to the ContextMonitor

package through the ContextAccesslnterface. This class also implements the

ContextSensorlnterface.

4.2.1.2 ContextSensorAccesslnterface

The ContextSensorlnterface is implemented by the ContextSensor class. It contains context

sensorID field which identifies each context sensor in case there are more than one.

contextElement field is the context element(s) being monitored by the context sensor. The

contextValueChangedEventO is fired whenever value of the context element being monitored

by the context sensor changes. ContextChangeListener is the interface on which

contextValueChangedQ listens for context changes.

4.2.2 Evaluator

Section 3.3.2 of chapter three presented the design and function of the Evaluator as being

responsible for reasoning on the impact of context changes on the services. and for deciding

on the adaptation to effect if context evaluation necessitates adaptation. This it does by

planning and selecting the service variant that best fits the current context situation. Part of

the reasoning requires that the Evaluator accesses the utilities of the contexts of the service

variants. The Evaluator then produces a model of the service variant that best fits the current

contexts using the decision algorithm. It then uses the configuration templates to resolve all

the variation points. The Evaluator uses the context Monitor interfaces to collect context

99

Chapter 4-Model Implementation

(\ IContextListener
ConteXlValueChan
ged

Evaluator
Madam Builder

currentService:Map And Planner
onteXtAccessInter planners: Map

face currentContextListeners : set
getContexrValue()
-

+etContigurationO
+etContextAccess()
+setComponentManager()

econfigurator +evaluateAndSelect()
ComponentManager+adjustContextListener()

- +updateStatus()
+adapt()

c

IR

Figure 4.3: Evaluator Class Diagram.

information on the networks and devices. The Evaluator class implements the

Context4ccesslnterface to retrieve context information it requires from the persistent context

store or directly from ContextMonitor package. The class diagram is given in Figure 4.3. it

illustrates classes and methods and interfaces that implement the Evaluator. More

importantly. the Evaluator implements the ContextListenerlnterface so that it reacts at

runtime to context information for currently running services. It also implements the

Componentlvfanagerlnterface to acquire relevant plans that constitute the service

architectural model. The main event that triggers the Evaluator IS

contextValueChangedEvent.

The Builder and Planner is the MADAM [25] API used to build the adaptation framework or

request necessary adaptation decision from Evaluator. The adaptO method triggers the

adaptation by making the reconfigurator to initiate the process of adaptation. This is

100

Chapter 4-Model Implementation

accomplished by first acquiring current context from the context Monitor using the

ContextAccesslnterface. Then, evaluateAndSelectO method is called to iterate over all

possible configuration templates for the running services using buildTemplateO method of

MADAM BuilderAndPlanner API. Only combinations of service variants that fit best in the

current context and resource limits are considered and the best among these is selected by

calculating the combined utility of each of these combinations. When the choice has been

made, the Reconftgurator is triggered to adapt the running service and its selected variant is

composed and presented to the service consumer.

4.2.3 The Service Reconfigurator

The service Reconftgurator coordinates the initial configuration and the reconfiguration of

the service components. The Evaluator and the Reconftgurator operate on common

information which is the configuration template. In the course of adaptation, the

Reconftgurator nonnally proceeds according to the contents of the configuration template for

the selected service variant. Therefore. the Reconftgurator executes the adaptation that has

been decided upon by the Evaluator while it applies the configuration template. Furthennore.

the Reconftgurator uses the component framework interfaces to instantiate components and

connectors to disconnect from any other component.

The Sen-iceReconftgurationlnterface provides the operation to request the configuration of a

service. A configuration template that models the variant to be instantiated is provided to the

Reconftgurator. The Reconftgurator uses the connector Interface to create and remove

connectors using its addConnectionO and removeConneetionO methods. The new

configuration of the service is provided to the Sen-iceReconftgurator has a set of

101

Chapter 4-Model Implementation

ConnectorFactoI)'

.......j..ses

et.tionO
onnectionO

IReConfigurator

+initCompIete()
+suspendComplete()

IConfiguraror-r ConfigureO +addConn
+removeC

fServiceReConfigurator zr
Category :Category Configurator
cr :IConnectFactory instatiates
CompMan: componentManager

1<---------- +Configurator()
initTimeOut: int +Configure()
finit :int +addConnectionO
init: int +RemoveConnection(}
start:int +contigureDevice()
suspend: int

+reconfigure() uses Confi2TemnIate
+configFromCompPlan()
continueOperationO
+initO
+prepareConfigO
+setComponentParameter()
+setInstanceManager()
+stopConfiguration()
Tsuspend()

Figure 4.4: Reconjigurator Class Diagram

configuration templates, one for each running service. The components for each service and

its structured subcomponents, their blueprints and connectors used for each component, and

parameter setting for each component are included in the configuration templates. The

service Reconjigurator maintains information of the currently running service variants.

\Vhenever a request for service reconfiguration is received, the new configuration templates

are compared with the intorrnation of the currently running services to derive the minimal

sequence ofSleps required to move from the current reconfiguration of the service to newly

102

Chapter 4-Model Implementation

I cO",:um!o' I I SO!Y~econ.guffi1O< 1I compgnentCoce I
,,, ,
: prepareConfigurationO:

Icon~"'acby 11 ,"nningSe<v~ompgnents I

finit{)

i]

!, j! initComP'eteO! 'I: :

; : I I i

r-------------rl---------------1-r---------------1
i I I startAetivityO I: i

I ~

removeConnectionO I I I I
!-+-----1--41I-------..~ I I

IIIf------~+_+~~o J I

I [I, 11 ,I:, i
'i

getComponentStateo ! _.

, ,-
~

,

I",,"mO

"-------------
I

I
11suspendQ I

-r
I i .! i suspendComplete{)

r-------------ri---------------l- ---------------

I I I I

I I removeConnectionO

I ~etConnecto"'aeto'Yc I
II I I I

I I . I

I
[

A
1

1

I i
i I
I i

I I
I ~ntinueOperntiono I!

I I ,.
I ,
! i
I I,
,

i i
I :
11
I .

i i
i

, I

l...J

Figure -t.5.Sequence Diagramfor Reconfiguration Process Summary

described Configuration by the reconfiguration templates. When connecting components, the

service Reconfigurator uses information from the reconfiguration template to determine the

connector to use. The reconfiguration template contains the model's component variants

which can be used to instantiate components. The service Reconfigurator also determines

103

Chapter 4-Modellmplementation

whether to use existing connectors or to create new ones using the connector factory [25].

Figure 4.4 is the class diagram for the Reconfigurator illustrating its interfaces and classes.

The Configurator class is responsible for the initialisation of a service. The Recorifigurator

class receives configuration templates from Evaluator that contains all necessary information

needed to execute a proper reconfiguration. Its corifigureO method uses the reconfiguration

template that is provided to the serviceReonfigurator class when it is instantiated by the

Configurator class in order to reconfigure the service.

prepareConjigO method prepares the running service for reconfiguration by suspending all

component of such service while conjigFromCompPlanO reconfigures the service from the

composition plan. stopConjigurationO is invoked to the current component variant of

currently running service. The serviceReconfigurator class keeps the states of the service

being reconfigured using the init, jinit, start, suspend parameters. These are to store the

states of the service components when being started and suspended. Figure 4.5 summarised

the reconfiguration process.

4.3 Implementation Environment and Specifications

To realise implementation of the prototype. we made use of MADAM reconfiguration

framework, Resource and Context Management APls as explained in section 4.1. In addition.

the prototype is implemented with Java programming language using the Netbeans Integrated

Development Environment version 5.5 .1. The persistent context store was implemented as a

simple text file where context values can be written and read. This is because we intended to

keep this implementation as simple as possible and also to reduce the overheads of using

desktop database which is an implementation is carried out on a Pentium 4 Compaq Presario

104

Chapter 4-Model Implementation

The context elements described above will trigger adaptation for the service request we want

to simulate.

4.3.2.2 Adaptation Strategy

Table 4.2 summarised the adaptation strategies based on the context elements in table 4.1. In

the table some context combination that may trigger specific adaptation are described. The

table described context situation where there is no network connectivity.

Strategy1: This describes a situation where there is no network connectivity.

Table 4.2: Summary ofthe First Adaptation Strategy

Context Context Adaptation Strategy Analysis

Element RangeIValoe

Device Context

DeviceMemory • Nonnal Not Applicable

Speaker Volume

• Normal

CPU • Normal

PO\ver Level • Normal

Environment Context

"Noise This is a siruation whereby' there is not network

I I I

Chapter 4-Model Implementation

• Nonnal to connect to the Grid infrastructure to request

or deliver services. This network might have

Available been lost due 10 situation whereby the

Neuvork consumer walks away from where there is

strong signal or moving from one cell 10

• No Network another. In this situation, The adaptation

strategy is to make the consumer aware afthis

situation. The utility values for all service

variants at this point will be O.

Strategy 2. Table 4.3 described a situation whereby the network currently in use suddenly

becomes unavailable but with some other available network.

Table 4.3: SecondAdaptation Strategy

Context Context Adaptation Strategy Analysis

Element RangeJValue

Device Context

DeviceMemory • Normal Other context are normal for serYlce

execution

Speaker Volume

• Normal

CPU • Normal

III

Chapter 4-Model Implementation

Sel'llice Management

Context Monitor

Adaplation Output

User Contexts

SimulationMode ON

File About

t•Required conteld elements

.. Resources

• SpeakerResource

• MemoryResource

• ScreenResource

•

•

• Networ1<Resource

• MicrophoneResource

• 8alteryResource

• nodeType MASTER

Figure 4.6: Main Implementation Interface and COnlext Monitor

RJOOO model laptop with the following configurations: CPU speed: 3.0 GHz, and 640MB

RAM and 60GB hard drive.

4.3.1 Starting the Adaptation Manager

The CACIP adaptation manager when launched, automatically begins context monitoring

and values of various contexts and resources monitored are refreshed every 5 seconds. The

major parts of the implementation are shown in Figure 4.6. Among these is the Context

Monitor that produces all available contexts and device resources with their values as can be

seen in Figure 4.6. Service management shown in Figure 4.7 is the menu where currently

running service is monitored and managed.

105

Chapter 4-Model Implementation

Altailable Set\lkes---'I
Install I Remove.---.:;.:::.:.:::....- --'----

File About

ava: Sun Mierosystems IneJ1.5.0_12
OS: Windows XP15.1 on x86
CACJP_HOME: lCACIP
MONITORING_DIR: plugjns
NODE 1YPE: MASTER
UserPreferenceSensar constructed
Sel1liees Sensor constructed

Figure 4.7: Adaptation Output and Service Management Panel

Context Monitor menu is used to observe context that are being monitored and adaptation

output is the menu that shows result of the simulated example service is generated. When a

service variant is evaluated for selection a line of output is displayed showing its utility and

reports if it is selected.

Figure 4.8 also shows the prototype log that shows context and resource changes occurring

internally in the system. Once the service is launched, all context sensors for monitoring the

service execution contexts are automatically constructed.

4.3.2 Demonstration ofthe Model

Having presented the detail implementation of the adaptation, demonstration of the usage of

this model is now presented. In order to achieve this, a simple hypothetical service request

application is simulated. Next this section gives details of the multimedia service request

106

Chapter 4-Model Implementation

based on the scenario explained in section 3.2.1 of chapter three. This throws light on how

service developers are expected to design services that would be adapted by the model. It is

assumed that the Airport has a high speed WLAN that provides Internet connectivity to

travellers through either their smart phone or laptops. Also, the airport network is connected

to other service providers' services through a service infrastructure in the country. So, as

soon as Eunice comes off the plane, various services jostle for Eunice's attention as she

walks towards the arrival. Eunice can request for any of these services through her

blackberry device for downloading some of the latest music, or to watch latest home videos.

She can also transfer these to her laptop if her device's battery has run down or that its

memory is not large enough to deliver these music or video services. These two mobile

systems have their limitation and requirements as enumerated in chapters two and three.

However, we found that the following additional requirements are more critical to the

successful use ofEunice's smart device for service delivery at the airport:

(I) The smart phone must have necessary hardware such as adapter for WMAN. GPRS OR

3G for connectivity to the main airport network and Bluetooth for connectivity of the

smart phone with her laptop. Even though they maybe expensive, the GPRS. or 3G

network is provided by the Telco companies.

(2) The smart phone must easily pair with the laptop whenever the contexts of execution

become unreliable in the smart phone, so that transfer can be made to the laptop with

more resources. The communication between the smart phone and the laptop can be

established by the Bluetooth.

The assumption here is that the smart phone has the network adapters for connecting to the

ID7

Chapter 4-Model Implementation

infrastructure. To simplity the demonstration, a multimedia service request is simulated for

the purpose of evaluating the model as described in the example scenario. The service is

assumed to have three main variants that represent three different quality of service in terms

of utility that is used to select one of the variants based on prevailing context situation.

These variants in reality could be more than three. We decided to use audio, black and white,

and full multimedia variants. The audio variant is expected to require less context or

resources to execute, followed by the black and white variant and finally by the full

multimedia. What follows is a detailed adaptation analysis of the above scenario that is given

and this is divided into three main sections.

(1) Context and Adaptation strategy Analysis: A summary of this process is given in

subsequent tables that identity the context parameters that influence the adaptation

strategies.

(2) A simple component model of the service is given in compliance with our component

model described in chapter three.

(3) A simple utility function based design for decision making is also given.

4.3.2.1 Context and Adaptation Strategy Analysis

As illustrated in section 3.3 .1.2 of chapter three, three types of context are considered for the

purpose of the adaptations envisaged in the scenario. Table 4.1 summarised the context

parameters.

(a) Service Context: This describes types of available services or the variants of a given

service that service consumer can select from if necessary.

(b) The Device context: This is the context that affects the smart phone such as its memory

and processing speed.

108

Table 4.I:Context Parameter Summary

Chapter 4-Model Implementation

Context Context RangolVaIue Analysis

Element

Device Context

DeviceMemory • Normal This refers to the amount of device

• Low memory available to execute th~ service.

The values nonnal and low describe the

specific value range that this parameter can

assume at any given time. This depends on

the type of device and its memory.

Speaker Volume • High The speaker volume describes the device

• Normal speaker which may influence audio variant

• Lo\" of the service. The value is assumed to be

high or 100v This is the same for all

devices.

CPU • Normal This describes the processing speed of the

• Normal device. This vanes tor difterent dc'\;kes.

• Low Its value could assume high or low

depending on the number currently

executing services.

Battery power • Normal This describes the power level of device

level • Low battery. This ma) determine whether

already initiated service request should be

tranSferred to a consumer"s laplop if it" s

available or the service request be

suspended.

Environment Context

109

Chapter 4-Model Implementation

Noise • High This describes one of the user contexts. If

• Nonnal the user environment is noisy. this could

• Low affect things like the audio and may

prompt the system for instance to increase

the speaker volume.

Available • GPRS This describes all a""ailable network types

Net\\'ork • 3G in the user environment whether they are

• WMAN connected or not.

• NoNetwork

Necv..'ork • High This describes the network delay which

Latency • Normal also affects service execution.

• Low

Network • High The executing services require some

Band"idth • Normal minimum bandwidth to execute. This also

• Low may determine what service variants to

load for the service consumers

Service Context

Service • Available This describes for instance 'vihether the

availability • NotAvailable service is available or not

Request Mode • Audio This describes a situation where service

• Black and \\"hite consumer decides what type of this ser.-ice

• Full Multimedia she prefers.

(c) The Environment context: This is a type that describes possibly the user environment and

her needs or choice and also the network contexts.

110

Chapter 4-Model Implementation

Power Level • Normal

Environment Context

Noise This is a situation whereby a service request

• Nonnal has been initiated and suddenly the network

becomes unavailable. However, since other

Available network is available. this is immediately

NetWork connected. The consumer has to be informed

of this context situation. In this case. a 3G

• 3G network. is available.

Strategy 3: This is a context situation whereby the available bandwidth of the connected

network becomes very low. This is summarised in Table 4.4.

Table 4.4: Third Adaptation Strategy

Context Context Adaptation Strategy Analysis

Element RangeIValue

Device Context

DeviceMemory • Normal This is a situation whereby the bandwidth of

the available and connected network becomes

Speaker Volume low. This strategy here is to find the ser.:ice

variant \\"ith less network bandwidth

• Nonnal consumption. For instance the choice \\ill be

113

Chapter 4-Model Implementation

CPU • Nonnal between audio and black and white variants.

However. as soon as the bandwidth becomes

normal, the normal service variant which is full

multimedia is resumed.
NetYlOrk • Low

Bandwidth

Environment Context

Noise Not Applicable

• Normal

Strategy 4: This is a situation whereby the battery power becomes very low and this IS

summarised in Table 4.5.

Table 4. 5: Fourth Adaptation Strategy

Context El~meDt Context RangefValue Adaptation Strategy Analysis

Device Context

DeviceMemory • Noma! 1b.is is a situation whereby the battery power has

become very low in the process of service request.

Speaker Volume The strategy is to either suspend the sePiice

request or transfer it to the consumer's laptop if it's

• Normal a~'ailable.

CPU • Normal

114

Chapter 4-Model Implementation

Battery power • Low

level

EnvrronrnentCont~

Noise Not Applicable

• Normal

Available • GPRS

Network • 3G

• WMA.:'i

• Others

In summary, the list is not exhaustive; however, this gives a picture of how the context and

adaptation strategies are designed for all services that can be adapted by the model.

What follows, is a description of the component model of the service which is based on the

components model described in section 3.4.1 ofchapter three.

4.3.2.3 Service Component Architecture

We start with the component types. There are four major component types.

(I) The Component Administrator: This serves such functions such as:

(a) Connecting and disconnecting other service components during execution,

(b) Keeps current state of the service,

(c) Facilitates component communication and

(d) May also perform some component management functions.

115

Audio BIackAnd'M1ite FullMultimedia

Chapter 4-Model Implementation

Figure 4.8: Components ofthe Multimedia Service Example

(2) The audio variant component represents the audio variant of the service which IS an

atomic component of the service composite component.

(3) Black and White Component: This is basically the same as above but represents the black

and white variant of the service

(4) Full Multimedia: This is also similar to the one above but represents the full multimedia

variant of the service.

Figure 4.9 illustrates these component types and their relationship using their connectors and

ports.

This figure illustrates a high level view of the simulated service request components. Each of

the service variants: audio, black and white and full multimedia has its own administrator

namely audioAdmin, BnWAdmin and FullAdmin.

4.3.2.4 Specification of the Composition Plans and Architectural Constraints

The component model of the service presented in section 4.6.2 above is not complete without

116

Chapter 4-Model Implementation

the composition plan and the architectural constraints. The compositional plan helps to store

the description of the collaborations among several service components, while the

architectural constraints help to avoid meaningless service variants instantiation when

resolving variation points of the service component framework. The component types such as

Audio, Black and White may have several realisations which are dynamically created at

runtime.

In theory, all possible combinations of selected components at the variation points represent

valid service variants. However, in practice, this selection maybe meaningless as the selected

components may not form a feasible service variant in terms of their provided and required

properties. Therefore, the composition plan and the architectural constraints help to avoid

these situations. For instance, we will not want components that form Black and White

variant to be combined with those of full Multimedia components. Hence, the need to create

the composition plans for this composition along with the architectural constraints. The

architectural constraints represent the connectors and ports that can be connected or those

that cannot be connected to form meaningful service. The concept of feature which is

borrowed from MADAM [25] is used to keep various components variations of the

multimedia service. This IS necessary to avoid meaningless instantiation of service

components that form a given service variant at runtime.

117

Chapter 4-Modellmplementation

F-Mode

[),

AV BV FV

<<constraints» <<constraints» «constraints»

Figure 4.9: Variation Point Stored in F-Mode

So the component that keeps infonnation about various components of the multimedia

service, here is called F-Mode, which consequently has three subcomponents namely AV BV

and FV representing Audio, Black and White and Full Multimedia variants respectively. This

F-Mode keeps the variations and architectural constraints of the components of the service as

illustrated in Figure 4.10.

Following the presentation of the components of the servIce and the corresponding

component plan, we present in the following lines, how those components are associated

with properties that characterise their extra-functional behaviours. Context analysis presented

earlier helps to associate these properties with each of these components. Table 4.7

summarised this procedure.

Finally. as the component properties of the adaptive service model have been annotated, the

implementation of the utility function algorithm is presented.

118

Chapter 4-ModeI Implementation

Table 4.6:Summary ofutilities for Context parameters

Property Abbreviation
T~

Available AvailMode
Mode

Response ResponseTime
Time

Sound level AvailSound

Power ConsumedPower
Factor

Memof'.' MemoRcq
Reaui~d

Analysis

This property defmes the offered service modes. It
can take the following values.

• AV -Audio Variant
• BV- Black and White Variant
• FV- Full multimedia Variant

The mode preferred by the service consumers is given
b:y the context element RequiredMode whose value is
compared with the AvaiIMode in the evaluation of the
utility function value. The service consumer will have
higher weight during utility value calculation.

This property is related to the service quality and it
represents the maximum response time required by a
component to work correctly. It is measured in
milliseconds. The full multimedia needs better network
condition than the audio variant. This implies that
Response time value for audio \\'ill be lower than that
required by the Black and White variant. In the utility
function calculation, the value of Response Time is
compared with Response Time offered by the
environment. From this propeI1)'. service variant that do
not work correctly as a result of bad network condition,
even if nreferred by the service consumer is discarded.

This is an integer value that represents the sound !e'"e1
offered by those components that emit sound. In this
case all our component emit sound and the value will
depend directly on the speaker volume which is a
setting to be provided by the sen,cice developers. In the
utility function. a speaker configuration that improves
the operation of the service in a noisy environment such
as in an aimnI1 environment will be selected.

This provides information about the power
consumption of the service variant. For this service, it' 5

a function of the selected network segment or type. This
is a device sening to be provided by the sen-ice
developers. For example_ a GPRS nern-ork consumes
less po....·er than a WiFi network. So ConsumedPower
by GPRS < ConsumedPower by WiFi. Hence if
ConsumedPower by GPRS is 3 and that of a \\"iFi \s 6.
then service component variant associated with GPRS
will be preferred to service variant component
associated with WiFi network as this helps to predict
time activifv of these service variant comoooents,

This stores the amount of memory required by each
comnonent for it to work correctlv.

119

Jf(!AVRequested and AvaiL\fode = Return 0;

"AV'j{ }

Return 0: Else

le/se !f(//t/etworkAvailability(nerworkUsed))/

If(!BVRequested and AvaiLMode = Return 0:

Return 0: If(.4vailMode = RequescedModej{

}e1se UtilUserRequesl = 1..

!f(!FVRequesled4ndAvaiL\lode Else {

= "FV"){ Utilf..IserRequesl = 0;

Return 0; } else

Chapter 4-Model Implementation

Uti/BV ~ l;

Else!

)

If(OjfirredResponseTime<Response

TimeRequested{

f../tilResponse := I ..

le/se

{

CII/Response =D:

,,
JElse if (A VRequested and A VAvail; lJtility = wJ *l/luIC"serRequesl

If(.I:VetworkSegRequestedAnd ! -'-w2*L'tiUV w3*UriL4V

NetworkSeg'" '?';one"j! (ltiL4.V= j. -w4*UtilBJ' -,-- w5*(/tilResponseJ:

Figure 4,10: Utility Function Algorithm Pseudo Code Legend

AV= Audio Variant

BV = Black and V/lute VarIant

FV= full Multimedia vanant
AYRequesred, BVRequesred and fTReques!ed repr~ent

requested varIants respectively

[o'ri/l..:serRequeSl c= Utility for user Request

L'tiL4Y=: Utility for Audio Variant

Uti/BV= Utility for Black and White \anam

[JtuiFV = Utility for full ~!ulnrnediavariant

l.Iti/Response =: Utility for Response Time

4.3.2.5 Algorithm Implementation

The objectives of this algorithm are (I) To ease the implementation of the utility function

model and (2) to draft how the utility function is created, The number of service variants of a

given service detennines the number of times the utility function algorithm will be executed

during adaptation process,

120

Chapter 4-Modellmplementation

Install

File About

Availabilily utilItY: a.2 Response util ,.
Requesting for Audio... starting 1his ac

dloaclMty complete
changing to full-.ideo : !rue
Availabilily utilitY: a.2 Response util

Requesting for Audio... starting this ac'
dio aclMty complete

network bandwfdth now : 9a
Availabilily utilily :0.2 Response util

Requesting forAudio... Starting this ac
Audio. aclMty complete
networkbandwfdth now : 28
Availability utility: 0.2 Response util

Requesting for Audio... starting this ac
dio aclMly complete

)

Figure 4.11: Launching a Service andAdaptation Output

This means that in the implementation, variant with required context utility that does not

meet the available context utility is rejected first. In the remaining part of the evaluation,

different properties that are relevant in the decision making such as consumer's preference,

network condition or the device memory are then evaluated. For each property, a partial

utility is calculated, and the final utility is the weighted sum of the partial values according to

the utility function model presented in section 3.3.2.2 of chapter three. The pseudo code in

Figure 4.11 below gives a glimpse of the utility function.

The service is implemented in java and the jar file was ported into the adaptation prototype

and Figure 4.12 illustrates output generated during the execution of the service in the

adaptation manager prototype.

121

Chapter 4-Model Implementation

4.3.3 Model Performance Evaluation

This section presents the evaluation and results of the performance of the proposed

adaptation model based on the multimedia service presented in the preceding section. In

order to demonstrate how the adaptation model performs, some experiments were conducted

on how the context-aware utility-based model influenced the adaptatiiln triggering.

4.3.3.1 Effect of Service Variants and Service Consumer Choice (Weight) on
Adaptation Quality

Experiment on the quality of the adaptation process was carried out which basically was

meant to measure the level of satisfaction attained by the adaptation process as perceived by

the service consumers. Two factors influenced the choice of metrics we used to measure the

quality of adaptation. First, the service variant selected by the adaptation model is expected

to satisfY the execution contexts requirements. This means that the utilities for both required

and available context parameter values must be feasible in order to have a service variant

presented to the service consumers. Second, the choice of variant the service consumer

makes also needs to be satisfied in adverse context situation. In other words, it means that the

more the service consumer is satisfied with a service she is presented with, the better the

adaptation. Adaptation Quality Index (AQI): is defined as the measure of quality the

adaptation model achieves as perceived by the service consumers. This is calculated using

the following parameters.

Context Utility Cl: This is calculated from the RequiredContexrUtiliry and the

AvailableContexrUtiIity given as:

122

Table 4.7: Experimental Results

Chapter 4-Model Implementation

Weight No of Context IAQI Adaptation Response Response
Variants Utilities Time Time Time

without
Adaptation

0.9 10 0.0588734 2.0301936 31 94 125

20 0.061008 0.90557039 62 llO 172

30 0.0620973 0.72924334 93 125 218

40 0.0592659 0.5254227 125 141 266

50 0.0562116 0.39442417 156 156 312

60 0.0580518 0.34486202 204 203 407

70 0.0586652 0.29726798 234 250 484

80 0.0595746 0.25794452 281 250 531

90 0.0594717 0.22433771 297 265 562

100 0.0582682 0.20593692 344 390 734

0.8 10 0.0689471 2.10433695 32 78 110

20 0.0627557 0.94061866 47 62 109

30 0.0669702 0.71260961 94 125 219

40 0.0657288 0.51441572 109 156 265

50 0.0670764 0.42509933 141 172 313

60 0.0663065 0.3357652 172 125 297

70 0.06721% 0.30232961 203 219 422

80 0.0660413 0.25056914 234 172 406

90 0.0663507 0.23093067 266 281 547

100 0.0656323 0.19865548 296 329 625

0.7 10 0.0760788 2.ll153952 31 16 47

20 0.0768899 Lll806309 46 32 78

30 0.0771993 0.72466693 78 125 203

40 0.0784578 0.53562651 94 78 172

50 0.0773772 0.48563313 125 125 250

60 0.0797776 0.36164135 156 406 562

10 0.0182335 0.30169393 203 235 438

80 0.0788941 0.27069791 219 250 469

90 0.0781413 0.23153365 250 250 500

100 0.076044 0.21275054 235 327 562

CI= RequiredContextUtility

AvailableContextUtility

Adaptation Quality:

(ll)

(12)

(13)

Chapter 4-Model Implementation

Cl~ Rcu

ACu

Where Rev denotes the required context utility and Acv denotes the Available Context Utility

Service Consumer choice Index SI = Total Choice satisfied

Total choices made

A higher value of this parameter index implies that the selected service variant is more

important to the service consumer.

Finally, QAI = (Cl + Si)/2 (average of Cl andSi) (14)

It is assumed that the two factors considered in the experiment carry equal weight and this

weight is adjusted according to how much importance is attached to each of these factors.

In order to measure AQI, the number of service variants for a given service request and the

weight were varied. The weight is a numeric value that determines service consumer's

choice of service variant. The higher the weight for a given variant, the more the consumer

prefers that variant. The Bar chart plot of AQI against service variants for weights 0.9, 0.8,

0.7 is shown in Figure 4.12.

It can be inferred from figure 4.12 that the more relaxed the service consumer choice in terms

of weight. the bener the quality, but this degrades as the number of service variants to select

from increased. This shows that when the weight was 0.7. there was bener adaptation quality

of 2. II compared with that of weights 0.9 and 0.8 which were 2.03 and 2.10 respectively

when the number ofservice variants was 10.

124

Chapter 4-Model lmplementation

Effects of service Variants on Adaptation Quality

2.5

2
)(
Gl
'tl 1.5.E
>.-'ii 1
::l
a

0.5

0

.--Weight 0.9

__e__Wegti 0.8

- -Weight 0.7

10 20 30 40 50 60 70 80 90 100

Num ber of Variants

Figure 4.12: Effect o/Service Consumer Choice and Service Variant On Adaptation Quality

4.3.3.2 Effect ofAdaptation on Overall Response Time

Another experiment was conducted to evaluate the effect of adaptation on Response Time.

Two metrics were used; the context utility and response time. The context utility is defined as

the ratio of the required context to that of available context. The response time is defined as

the time in milliseconds between when a request for a given service was made and when it

was delivered.

125

Chapter 4-Model Implementation'

Effect of Adaptation On Service Response Time

No Adaptation • WthAdaptation II
0.063

0.062
>. 0.061
~
;: 0.06
~... 0.059)(
G) 0.058...c
0 0.0570

0.056
0.055

0 200 400 600 800

Tim e(MiIIiseconds)

Figure 4.13: Effect ofAdaptation on Service Response Time

During the experiment, the response time was measured between when a service request was

made and when a response from the system was received. Two versions of this experiment

were conducted. One was when the model was used to adapt the service and the other was

conducted without adaptation process. The experiment was carried out over some 30 minutes

of simulation time; the context utilities and corresponding service response time were

measured and observed behaviour was plotted as shown in Figure 4.13. We observed that the

context utilities did not show any trend but that it kept changing sometimes with increasing

and some other time decreasing.

126

Chapter 4-Modellmplementation

Effect of Consumer Choice and Service Variants on Service
Response Time

__ Weght =0.9

__ Weight =0.8

---.- Weight =0.7

10 20 30 40 50 60 70 80 90 100

Service Variants

Figure 4. J4: Effect ofService Consumer Choice and Service Variants on Service Response
Time

This is very typical of the dynamic instability of the environmental contexts which cannot be

predicted. The plot shows that with time, the response time for both adaptation series and

none-adaptation series increased. However, the rate at which the response time increased for

adaptation series is lower compared with non- adaptation series.

4.3.3.3 Effect of Service Consumer Choice and Service Variants on Service Response
Time

A separate experiment was conducted to ascertain the impact of service consumer choice and

number of service variants on the service response time. In the experiment, we varied the

number of service variants and the service consumer choice which was measured in terms of

weights. The corresponding service response time was determined for three different

127

Chapter 4-Model Implementation

weights 9,8,7, respectively, and number of service variants varied between 10 and 100.

The essence ofthis experiment was to detennine whether the increased preference for a given

service and its variant would either reduce or increase the service response time. The result

was plotted and is as depicted in Figure 4.14. It was found that when the service consumer

relaxed her choice (weight), the system perfonned better. For instance, when the weight was

0.7, though initial response time increased, it began to fall compared to weights 0.9 and 0.8

which rather kept climbing up.

4.3.3.4 Comparing Adaptation time with Response time as numher of variants
Increased

The third experiment was to evaluate the effect of consumer choice and service variants on

response and adaptation times. In the experiment, we varied the number of service variants

and then subjected the service request to adaptation. The time it took to evaluate and

reconfigure the service was measured; the overall response time was also measured.

128

Chapter 4-Model Implementation

Effect of Service Variants on~"'IinearxI Service
Res, -me TIrI'E

500

!400
300

I~_",un>ol__ Resp::rIse Time

Figure 4.15: Effect ofService Variants on Adaptation Time and Service Response Time

The adaptation time, that is, the time it takes to evaluate the service variants is compared with

the overall response time which is the time between when a request for a service is received

and when a response is received or when the service is delivered. Figure 4.15 reveals that as

the number of service variants increased, the adaptation time and consequently the response

time increased. It was observed that as we increased the number of service variants, though

both response and adaptation time increased the adaptation time was steady. However, it was

observed thar the response time increased at higher rate than the adaptation time.

4.3.4 Conclusion

In this chapter, the implementation and simulation of the proposed context-aware utility

function based adaptation model were presented as a demonstration. A performance

evaluation of the model showed that adaptation is very useful to provide considerable service

quality as experienced by service consumer through series of experiments that have been

129

Chapter 4-Model Implementation

conducted. The experiments also showed clearly that there is need to improve the model to

provide better service quality.

130

Chapter 5-Conclusion and Future Work

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1 Overview

This chapter concludes the dissertation with a summary of the investigation and the overview

of the contributions. A brief discussion of some of the open research questions unearthed in

the course ofthis investigation is then presented.

5.2 Conclusions

Adaptable Mobile Grid services should be able to modifY its own behaviors at run time to

adjust to changes in its execution contexts in order to optimize its performance and

availability in a transient environment. However. traditional services (be it Grid or Web)

performed their functions with explicit inputs and are not aware of their contexts. Access to

context information, therefore, provides an opportunity tor using contexts in service

provisioning that may result in higher quality of service. This context can be used to reason

about adjustments the systems may have to make in response to changes in contexts that may

otherwise negatively impact on the quality of service delivery. Making services to reason and

modifY their behaviors at runtime is a complex task that has been addressed in a number of

ways; from content adaptation to user interface adaptation even service function has been

adapted. All these adaptation mechanisms and strategies are yet to provide needed service

quality in terms of service response time which is still very high as a result of the dynamic

nature of mobile technology.

131

Chapter 5-Conclusion and Future Work

This work attempted to fill the gap found in the mobile Grid based E-service infrastructure

proposed in the centre. The e-Service technology is based on the emerging concept of utility

grid computing. In the GUISET infrastructure, the interaction between the mobile client

components and the server components posed serious challenges for two reasons. First, the

wireless network connecting these components is unstable. Second, the heterogeneity of the

mobile devices poses interaction problem. In depth analysis and study of this interaction

problem led to the discovery of the increased response time between a service request from

the mobile clients and when the server component (service providers) deliver the requested

services.

In order to address this problem, context-aware adaptation of service component interaction

was proposed in order to improve on the quality or satisfaction experienced by a mobile grid

service consumer. The study was founded on a methodical definition of interaction. and then

foHowed by fitting the existing interaction pattern (CACIP) into mobile grid setting, and

finally the birth of a context-aware utility function based adaptation model. A dynamic utility

function based decision algorithm was also proposed. All these served as the objectives to

achieving the main goal of proposing a model for dynamic and adaptable system of service

interaction in mobile grid. Context-aware in the model meets the need of the running

application services to be aware of the platforms and environment on which they are running.

Context-aware services are enabled to take both reactive and proactive decision on what to

do in case the contextual situation does not provide feasible execution context for their hitch-

free execution. This aspect was handled by the context monitor of the model. Furthermore,

there was need for the model to reason about monitored contexts in order to decide at runtime

Chapter 5-Conclusion and Future Work

what to do should the context fluctuate adversely. We designed a utility based decision

algorithm which decides on feasible adaptation options.

The algorithm works on the assumption that services are designed by the developers to have

alternative implementation called variants. A variant differs in context requirements. The

crafted model selects at runtime which would be feasible under the cl.:rrent prevailing context

situations.

To effect adaptation, service reconfiguration pattern was adopted. The pattern is based on

component technology, executes adaptation decision reached by the Evaluator module. The

choice of this pattern was based on the fact that it is component based and facilitates easy

composition of services not only at design time but at runtime. The proposed model was

implemented with the integration of MADAM APls and libraries [25] for context

management, and component reconfiguration.

These design fulfilled the goal and the objectives that were set for this investigation to

achieve as a simple service request was simulated in the framework to evaluate the proposed

model. A number of experiments were conducted to evaluate and to prove the concepts

adopted in the model design. One of the experiments was to determine the effect of number

of service variants and service consumer choice on the quality of adaptation which was

defined as the satisfaction or quality perceived by the service consumers. As expected. it was

observed that the more the number of variants, with increasing choice of service variants

(measured by weights), the more the adaptation quality degraded.

.t\nother experiment was conducted to determine the effect of adaptation process on service

response time. In this experiment. runtime context utilities were plotted against the response

time measured when adaptation process was executed and when it was not applied. We found

Chapter 5-Conclusion and Future Work

out that the response time with adaptation is lower than that without adaptation at any given

context utility. This is very significant as it proved that adaptation can actually help reduce

response time. The third experiment was to evaluate the effect of consumer choice and

service variants on response and adaptation times. In the experiment, we varied the number

of service variants and then subjected the service request to adaptation. The time it took to

evaluate and reconfigure the service was measured. Also, the overall response time was

measured as we varied the weights. The result showed that as we increased number of service

variants, though both response and adaptation time increased the adaptation time was steady.

Finally, the last experiment was to evaluate the effect of weights or service consumer choice

on response time, the result showed that when the consumer choice was relaxed, the response

time was not as high as when the choice was high as determined by the applied weight.

5.3 Future Work

The evaluation results of the proposed model unearthed some important questions that

formed the basis for future investigations. For example, in the first experiment. the adaptation

quality degraded faster with increasing number of variants and with high service consumer

choice. This means that if a service consumer insists on having a given service variant at the

expense of others, the quality experienced by such service consumers is very poor. There is

need to look critically into the utility-based model and decision algorithm to improve on

giving priority to service consumers choice and integrating this in to the model so as to

improve on the overall quality experienced by the service consumers.

Also, it was observed that there was very high disparity between the adaptation time and the

overall response time. The cause of this is yet to be ascertained but this point to the fact that

134

Chapter 5-Conclusion and Future Work

there is some negative effect of service reconfiguration which time did not allow us to

investigate in this research. Hence, there is need to investigate message exchanges among the

components of the adaptation model. Standard protocols for communication, for "eventing",

messaging and addressing need to be looked into. Also, to facilitate runtime binding for

structured information exchange between adaptation elements, the interfaces and model have

to be defmed in machine readable manner.

Another aspect of this work that needs further investigation is the integration of the

adaptation model into practical grid infrastructure as concluded in [81J. This we think can be

done by integrating adaptation as service that can be consumed by both service consumers

and providers guided by the service oriented architecture standards. This means that rather

than embedding adaptation techniques into the grid application services, it can be provided as

a service for the purpose of reusability and interoperability. It means that service developers

will not bother about designing adaptation in the grid application services.

135

References

REFERENCES

[I] Gaddah A, and Kunz T., " A survey ofmiddleware paradigms for mobile
computing", Carleton University, Systems and Computing Engineering,2003
Technical Report (SCE-03):Available from:
http://www.sce.carleton.calwmc/middleware/middleware.pdf(accessed 28th June
(2006)

[2] Katz R., "Adaptation and Mobility in Wireless Information Systems". IEEE Personal
Communication, Vo!. I:pp6-17, 1994.

[3] Chu D., and Humphrey M., "Mobile OGSLNET: Grid Computing on Mobile
Devices", 5th IEEE!ACM International Workshop on Grid Computing - Grid2004 (at
Supercomputing 2004). Nov 8 2004, Pittsburgh, PA.

[4] Guan T., Zaaluska E. and Roure D." A Grid Service Infrastructure for mobile
Devices", Proceedings of the First International Conference on Semantics,
Knowledge and Grid, 2006.Available
from:http://doi.ieeecomputersociety.org/I 0.11 09/SKG2005.1 0

[5] Zuma S., and Adigun M.,"CACIP: Context Aware Components Interfacing Pattern",
In 2006 Proceedings lASTED Conference of Modelling and Simulation: Available
from http://,,,ww.actapress.comlPaperInfo.aspx?PaperlD=26815006 [Accessed 29th
June 2006]

[6] Adigun M.O., "Software Infrastructure for e-Commerce and e-Business" unpublished
Research Working paper, Res-CSD-OI, Centre for Mobile e-Services, University of
Zululand, 2006

[7] Chaari T.. Laforest F. and Celentano A. "Adaptation in Context Aware Pervasive
Information Systems" Journal ofPervasive Computing And Communication Vo!. 2
No. 2, June, 2006

[8] Kistler 1, and Satyanarayanan M. ,"Disconnected Operation in the Coda File System".
ACM Transactions on Computer Systems, vo!. 10. no. I. February.1992.

[9] Foster, I., Kesselman, C, Nick, J. and Tuecke. S" 'The Physiology of the Grid: An
open Grid services Architecture for Distributed Systems" Available from:

136

[8]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

References

http://www.gIobus.org/alIiance/pubIications/papers/ogsa.pdf.

GoyaI S. and Carter J., "A Lightweight Secure CyOOr Foraging Infrastructure for
Resource-Constrained Devices". Appears in Sixth IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA2004), pp. 186-195.

Bruno D., Scarpa M., Zaia A., and Puliafito A. "Communication Paradigms for
Mobile Grids Users", 3'd IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2003, Available from:
http://ieeexpIore.ieee.orgIXplore/Iogin.jsp?url=/iel5/8544/27003/0119943 I.pdf

Kola G., Kosar T. and Livny M., " Run Time Adaptation ofGrid Data Placement
Jobs",Computer Sciences Department, University of Winconsin Madison, USA,
2004:Available from:
http://www.cs.wisc.edulcondor/stork/papers/runtime_adaptation-pdcp2004.pdf

AI-bar A. and Wakeman I., "A survey ofAdaptive Applications", Proceedings of the
2 I" International Conference on Distributed Computing Systems Workshops", 200 I.
Available from: http://ieeexplore.ieee.org/ieI517338/I9870/009I87I3.pdf

Bradram l."The lava Context Awareness Framework (JCAF)-A Service Infrastructure
and Programming Framework for Context Aware Applications Tutorial'·. Available
from:http://W\\w.daimi.au.dk/-bardramljca£ijcaf.v I 5.pdf

GT4: www.globus.org/tooIkitJ

OSGi: The OSGi Service Platform - Dynamic services for networked devices.
Available from:http://www.osgi.org/ [accessed: June 23, 2007].

OWL-S: www.w3.org/Submission/OWL-SI

Rossi P. and .Ryan C. ,"Emperical Evaluation ofa Local Adaptation
AIgorithm",RMIT University, Melboume,Australia,2005.Available from:
http://goanna.cs.nnit.edu.aul--caspar!ATcrc! I.2/paperslDOAPaper2005.pdf

Aksit M. and Choukair Z. ,"Dynamic, Adaptive and Reconfiguration Systems
Overview and Prospective Vision", Proceedings of the 23'd International Conference

137

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

References

on Distributed Computing Systems Workshop,2003.Availablefrom:
http://ieeexplore.ieee.orglXplorellogin.jsp?url=/ieI5/8560/27094/01203537.pdf

Kurkovsky S., Bhagyavati A. R., M.Yang. 'Modeling a Grid-Based Problem Solving
Environment for Mobile Devices', In Proceedings of the InternationalConference on
Information Technology: Coding and Computing (lTCC'04), Las Vegas, Nevada,
April 05 - 07, 2004.

Mikic-Rakic M. and Medvidovic N. "Support for Disconnected Operation via
Architectural Reconfiguration", International Conference on Autonomic Computing
(lCAC'04) New York, May, 2004.

Aksit M. and Choukair Z."Dynamic, Adaptive and Reconfigurable Systems
Overview and Perspective Vision", Proceedings of the 23 rd IEEE International
Conference on Distributed Computing Systems Workshops, 2003

Geighs K., Khan M.U, Reichle R. Solberg A., Hallsteinsen S. and Merral ."Modelling
ofComponent based Adaptive Distributed Applications", Proceedings of the ACM
21 st Symposium on Applied Computing,2006. Bourgogne University, Dijon, France.

Buisson J., Andre F. and pazat J. "Dynamic Adaptation for Grid
Computing"lNRlSAIlNSA, Rennes, France. Available
from:http://www.irisa.fr/paris/BibliolPaperlBuiAndPaz05EGC.pdf. Accessed: 5th

March, 2007

MADAM Deliverables: Available from: www.istmadam.org, accesed last 25 th April,
2007.

Dey A. "Providing Architectural Support for Building Context-Aware Applications".
PhD thesis. College of Computing, Georgia Institute ofTechnology. 2000.

Keeney J., and Cabill V. "Chisel: A policy-driven, context-aware, dynamic adaptation
framework". In proceedings of the 4th International Workshop on Policies for
Distributed Systems and Networks. 2003. Lake Como, Italy.

Walsh W.E, Tesauro G, Kephart J.O and Das R. "Utility Functions in Autonomic
Systems". In proceedings of First International Conference on Autonomic Computing
(ICAC'04). 2004. p. 70-77.

138

References

Systems". In proceedings of First International Conference on Autonomic Computing
(ICAC'04). 2004. p. 70-77.

[29] Simula Research Laboratory. The QuA project. Available
From:http://bagadjimbiri.simulano:8888/QuA [accessed: May 23,2007].

[30] McKinley, P.K., Sadjadi S.M., Kasten E.P. and Cheng B.H."A ta.xonomy of
Compositional Adaptation". Tech report, Software Engineering and Network
Systems Laboratory, Michigan state university. 2004. pp 56-64

[31] Ranganathan A. and CampbelI R.H." An infrastructure for context-awareness based
on first order logic" International Journal of Personal and Ubiquitous Computing,
Vol 7 Number 6, 2003, Springer Verlag London pp 353-364

[32] University ofIllinois at Urbana-Champaign. The Illinois GRACE Project (Global
Resource Adaptation through Cooperation). Available from:
hrtp://rsim.cs.uiuc.edu/grace/index.html[accessed: June 24, 2007].

[33] Adelstein, F., Gupta S.K., Richard Cl and Schwiebert L.. Fundamentals of Mobile and
Pervasive Computing. 2005. McGraw-HilI Professional. ISBN 0071412379.

[34] Akbar, M.M., Manning E.G, Shoja Gc. and Khan S. Heuristic Solutions for the
Multiple-Choice Multi-Dimension Knapsack Problem. In proceedings of International
Conference International Conference on Computational Science. 200 I. San
Francisco, USA.

[35] Hill. M., M. MichralY, and A. Sbihi. Heuristic algorithms for the multiple-choice
multidimensional knapsack problem. Journal of the Operational Research Society,
2004.55(12): p. 1323-1332.

[36] Khan, S., Li K.F., Manning E.G and Akbar M.D. "Solving the Knapsack Problem for
Adaptive Multimedia System. Studia Informatica, Special Issue on Cutting, Packing
and Knapsack Problems, 2002. 2(1): p. 155-/77.

[37] Sousa, J.P., Poladian V., Garlan D.. Schmerl B and Shaw M. "Task-Based Adaptation
for Ubiquitous Computing". IEEE Trans. on Systems, Man, and Cybernetics, Part C:
Applications and Reviews. 2006. 36(3): p. 328- 340.

139

References

[38] Belaramani N.M "A Component-based Software System With Functionality
Adaptation for Mobile Computing". Master's thesis, The University ofHong Kong,
2002.

[39] Pillai P. and Shin K. G "Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems". In Proceedings ofthe 18th ACM Symposium on
Operating System Principles, pp. 89-102, October 2001.

[40] Han R., Bhagwat P., LaMaire R., Mummert T., Perret V. and Rubas J. Dynamic
Adaptation in an Image Transcoding Proxy for Mobile Web Browsing. In IEEE
Personal Communication, vo!. 5(6), pp.8-17, 1998.

[41] Gross T., Steenkiste P. and Subhlok J. "Adaptive Distribu.tedApplications on
Heterogeneous Networks". In Proceedings of the 8th Heterogeneous
ComputingWorkshop, pp.209-21 S, April 1999.

[42] Fox A., Gribble S., Chawathe Y. and Brewer E. A. "Adapting to Network and Client
Variation UsingActive Proxies Lessons and Perspectives". In IEEE Personal
Communications, Special Issue onAdaptation. August 1998.

[43] Flinn i.and Satyanarayanan M. "Energy-aware Adaptation for Mobile Applications".
In Proceedings of the 17th ACM Symposium on Operating System Principles, pp. 48­
63, December 1999.

[44] Corradi A., Montanari R. and Stefanelli C. "How to Support Adaptive Mobile
Applications". lnProceedings of W0A200 1, September 2001.

[45] Chandra S., ElIis C. S., and VahdatA.'· Mulitmedia Web Services for Mobile Clients
Using QualityAware Transcoding". In Proceedings of the Second ACM International
Workshop on Wireless MobileMultimedia(WOWMOM '99), pp. 99·108, Augus!
1999.

[46] France, R., Ray I., Georg G and Ghosh S.. An aspect-<Jriented approach to design
modeling. IEE Proceedings -Software, Special Issue on Early Aspects: Aspect­
Oriented Requirements Engineering and Architecture Design. 2004. pp 151 (41).

140

References

[47] Otebolaku A.M., Adigun M.O., Iyilade 1.S. and Ekabua 0.0., "On Modelling
Adaptation in Context-Aware Mobile Grid Systems," icas, Third International
Conference on Autonomic and Autonomous Systems (ICAS'07), 2007 p. 52, .

[48] Chen, G and Kotz D. "A survey ofcontext-aware mobile computing research".
Department ofComputer Science, Dartmouth College, Dartmouth. 2000. Technical
report TR2000-381.

[49] Sousa J.P. and Garlan D. "Aura: An Architectural Framework for User Mobility in
ubiquitous Computing Environments". In Proceedings of the 3rd Working IEEEflFlP
Conference on Software Architecture, 2002. pp. 29-43

[50] Alia M., Wold Eide v.S.,Paspallis N.,Hallsteinsen .0.,Papadopoulos GA. "A
Component-based Planning Framework for Adaptive Systems". In proceedings of 8th
International Symposium on Distributed Objects and Applications (DOA). 2006.
Montpellier, France. Springer Verlag.

[51] Huebscher, M.C. and 1.A. McCann. "An adaptive middleware framework for context­
aware applications". Personal and Ubiquitous Computing, 2006. 10(1): p. 12-20.

[52] Alia M., Wold Eide V.S., Paspallis N., Eliassen E, Hallsteinsen S.O., Papadopoulos
GA" A Utility-Based Adaptivity Model for Mobile Applications". AINA Workshops
(2) 2007: pp556-563.

[53] Want R.,Hopper A., Falcao V., and Gibbons J. "The Active Badge location system".
ACMTransactions on Information Systems, 1992. 10(1): p. 91-102.

[54] Foreman G,and ZahOljan J. "The Challenges of Mobile Computing", IEEE
Computer, April 1994, pp. 38-47.

[55] Banavar G. and Bernstein A.," Challenges in design and software infrastructure for
ubiquitous computing applications". Advances in Computers 62: pp180-203 (2004)

[56] Liu H., Bhat V., Parashar M. and KIasky S., "An Autonomic Service Architecture
for Self-Managing Grid Applications," Proceedings of the 6th IEEE!ACM
International Workshop on Grid Computing (Grid2005), Seatlle. WA. USA. IEEE
Computer Society Press, November 2005.

141

References

[57] Rasche, A. and Polze A. "'Configurable Services for Mobile Users". In proceedings
ofSeventh IEEE International Workshop on Object-Griented Real-Time Dependable
Systems (WORDS 2002). 2002. San Diego, California, USA. p. 163.

[58] Parashar M. and Pierson 1.M., "'When the Grid becomes Pervasive: A Vision for
Pervasive Grids," Research Position Paper, 2007 Available from:
http://www.caip.rutgers.edurfASSLI [Accessed: 1st October 2007]

[59] Parashar M. and Hariri S., "'Autonomic Grid Computing - Concepts, Requirements,
Infrastructures," "'Autonomic Computing: Concepts, Infrastructure and Applications,"
Editors: M. Parashar and S. Hariri, CRC Press, 2006.

[60] Ryan N., ConteXtML: Exchanging Contextual Infonnation between a Mobile Client
and theFieldNote Server. Available
from:http://www.cs.kent.ac.uk/projects/mobicomp/fuc/ConteXtML.html [accessed:
August, 2006].

[61] Voelker, G.M. and RN. Bershad. Mobisaic, An Infonnation System for a Mobile
Wireless Computing Environment & Engineering In proceedings of IEEE Workshop
on Mobile Computing Systems and Applications. 1994. Santa Cruz, CA, US.

[62] Garlan, D., R.T. Monroe, and D. Wile. Acme: Architectural Description of
Component-Based Systems, in Foundations of Component-Based Systems, G.T.
Leavens and M. Sitararnan, Editors. 2000, Cambridge University Press. pp. 47-68

[63] University of Illinois at Urbana-Champaign. The Illinois GRACE Project (Global
Resource Adaptation through CoopEration). Available from:
http://rsim.cs.uiuc.edulgrace/index.html [accessed: May 23,2006].

[64] Georgia Institute ofTechnology. The Cyberguide project. Available
from:www.cc.gatech.edu/fce/cyberguide/ [accessed: Mav 23, 2006].

[65] Gu T., Wang X.H, Pung H.K. and Zhang D.Q.,"An Ontology-Based Context Model
in Intelligent Environrnents"Available from:
http://citeseer.ist.psu.edulcache/papers/cs/3 I620ihttp:zSzzSzwww.comp.nus.edu.sgzS
z-gutaozSzgutao_NUSzSzCNDS2004~utao.PDFlan-ontology-based­
context.pdf[Accessed:June 27,2007].

142

References

[66) Capra, L., Emmerich W, and Mascolo C. CARISMA: Context-Aware Reflective
middleware System for Mobile Applications. IEEE Transactions on Software
Engineering, 2003. 29(10): pp.929-945.

[67) Han R., Bhagwat P., LaMaire R., Mummert T. Perret V., Rubas J.,"Dynamic
Adaptation in an Image Transcoding Proxy for Mobile Web Browsing". In IEEE
Personal Communication, Vo!. 5(6), pp. 8-17, 1998. Available from
http://www.cs.colorado.edu/-rhanlIEEEPersComm_Dec98.pdf{Accessed, 16th August
2007)

[68J David, P.-C. and T. Ledoux. Towards a framework for self-adaptive component-based
applications. In proceedings ofDistributed applications and Interoperable Systems
(DAIS'2003). 2003. Paris, France. Available from:
h~://pcdavid.net/research!papers/2003/dais/david-ledoux_dais2003.pdf{accessed
10 October, 2007)

[69J Zachariadis, S., C. Mascolo, and W. Emmerich. SATIN: a component model for
mobile selforganization.In proceedings of Proceedings of CoopIS, DOA and
ODBASE. Cyprus. 2004. Available from:

[70J Doyle, R.P. and Chase J.S. Model-based resource provisioning in a web service
utility. In proceedings of Fourth USENLX Symposium on Internet Technologies and
Systems. 2003. Available from: http://issg.cs.duke.edu/publications/mbrp-
usits03 .pdf{Accessed 10th October, 2007J

[71J FIPTC-2 Workshop on Architecture Description Languages (WADL), World
Computer Congress. 2004. Toulouse, France.

[72J Raverdy, P.-Ci And R. Lea. DART: A distributed adaptive run-time. In proceedings of
IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware '98). 1998.

[73] Silva FJ.. Kon F.. Yonder J., and Johnson R." A Pattern Language for Adaptive
Distributed Systems", Technical Report. The department of Informatics, Computer
Science Universities of Manhoa, Sao PauIo, and Illinois Urbana Champaign, Brazil
and USA respectively. 2004.

143

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

References

Alia M., Wold Eide V.S.,Paspallis N.,Hallsteinsen .0.,Papadopoulos GA," A Utility­
based Adaptivity Model for Mobile Applications", 21st International Conference on
Advanced Infonnation Networking and Applications Workshops (AINAW'07) pp.
556-563, Available from:
http://doLieeecomputersociety.org/IO.11 09/AINAW.2007.64, [Accessed: 03
October,2007].

Indulska J., Loke S. Rakotonirainy A., and Zaslavsky A.. "Adaptive Enterprise
Architecture for Mobile Computation". in Workshop on Refle.:tive Middleware, at
Middleware 2000.2000

Litiu R. and .Prakash A., "DACIA: A Mobile Component Framework for Building
Adaptive Distributed Applications", ACM SIGOPS Operating Systems Review, Vo!.
35, Issue 2, 2001.

Jain P. and Schmidt C.S., Service Configurator: "A Pattern for Dynamic
Configuration of Services" in proceedings of the third USENIX Conference on
Object-Oriented Technologies(COOTS) ,June 1997. Available From:
http://citeseer.ist.psu.edulcache/paperslcs/614/http:zSzzSzsiesta.cs.wustl.eduzSz-sch
midtzSzService-Configurator.pd£'jain96service.pdtIaccessed: IOth October, 2007].

Testing Models for helping Developing Country Entrepreneurs at ground level:
Lessons learned from the ECHO pilot in South Africa

Available from: http://W....w.bridges.org[accessed last 25th May, 2007]

Otebolaku A.M., Adigun M.O., and Emuoyibofarhe J.0. "A Dynamic and
Asynchronous Interface Pattern" Southern Africa Telecommunications Networks And
Application Conference(SATNAC, 2006), Cape Town.

Volker ,GM. and Bershad B.N. Mobisaic : An Information System for a Mobile
Wireless Computing Environment and Engineering. In proceedings of the IEEE
Workshop on Mobile and Applications, 1994, Santa Cruz.

Otebolaku. A.M., Iyilade J.S., Adigun M.O., "CAAI\II: A Context Aware Adaptation
Model for Mobile Grid Service," The 11 th IEEE International Conference on
Computational Science and Engineering (CSE'08), 2008 pp 419-425.

144

Appendix

APPENDIXA

Screenshot ofthe context monitoring log

ICACIPI Networkoescriptor IOEEUGI NetliOrkHolder class initi.lized ...
\CACIp!_esourceserv"eIOEEUG!Finished filling _kOescriptor object with connection id ­
10000PI_esourceserviceloEELGIRetUrning Netwrkoescriptor with connection id 1
ICACIPI_esourceserviceloEEUGIRead ra" signal strength of 0
10000plItORe5ourceservicelDEEUGIRead fe.sible value of signal strength to: 4
ICACIPIResourc!l'!anager IOEEUG!Resource chanQed! resource service: NetworkResourcecontext
ICAapl ResourCE.<:CJntextsensor DEBlKiI Receivea event: Resource name: NetworkResource Res!
IOlCIP IResourcecOntextsensorI DEEUGI+- properties. sizeQ: 11
!CACIpl Resourcecontextsensorl OEEllil +- name/Value: ",,"etwrkcap.city/11534B6
ICACIPIResourcecontextsensor OEElliI +- name/Value: rroclientState/STARTED
ICACIP!ResourcecOntextsensorI OEEllil +- name/Value: -.Jde/sIMULATED
ICACIPI ResourCe<:ontextsensor DEElli! +- name;val ue: _v.llabil ity/AvAILABLf
ICACIpl ResOurcecontextsensorJ DEElli! +- name/V.lue: IlIINetliOrksign.1Strenqch/CRITICAl
ICACIP IResource<:ontextsensorIDEElliI +- name/V.lue: """",,liOrksign.1StrengthR."/4
ICACIPIResourcecontextsensor DEElliI +- name/V.l ue: nllNetliOrkSi gn.l StrengthTrend/HEAVILY DEI
10000P Resource<:Ontextsensor IOEElli! +- name;v.lue: """",,,",rkName/sillUl atedNetliOrkName
ICACIP IResource<:Ontextsensor Ioesu;! +- name/Value: """"""'rkType..........
/CACIplResourcecOntextsensorI OEEUO! +- namelV.lue: ",,"etliOrkEncryption!f«lT-ENCJlYPTEO
ICACIPIResource<:ontextsensor IOEElliI +- name/Value: """,,,,_kState/cOflNECl"E)
!CACIP!contextMan.gerloEEUGleontext v.lue Changed: NetwrkResource<:ontext -> CONTOO-ELEM8
ICACIPIGUIM.inwindOllIDEBUGlnodecontextBrOllSerslZe: 1
ICACIPIGUIM.inwindOllIOEBlli membershipSize: 1
ICACIPI :MtIemoryResourceservice! OEEllil ev.luatellithFiher: true
ICACIP!ResourceManagerloEEUGIResource ch.nged! resource service: lVMMemoryResource<:ontext
ICACIPI ResourCe<:ontextsensor IDEElliI Received event: Resource name: _oryResource Rest
ICACIplResourcecontextsensor IDEElliJ +- properties. sizeO: 4
ICACIplResourcecontextsensor IDEEllil +- name/V.lue: tot:Mtlemory!2031616
ICACIP!Resource<:ontextsensorIOEElXiI +- name/V.lue: used:Mtlemory/1318032
/CACIPIResourcecontextsensor DEBUiI +- namejv.lue: reserv.blount/1ll5752
ICACIPIResourcecontextsensorlOEElXi +- name/V.lue: reservedAmount/O
ICACIP!contextMan.gerloEEllilcontext v.lue ch""9ed: :MtIE!IIlJryResourcecontext -> CONTOO-EW
ICACIPIGUIM.inwindOllIDEBUGlnodecontextBrOllSerS1ze: 1
ICACIpIGUIM.i nwi ndOIIlll"-BlXi Imenbershipsi ze: 1
ICACIpllti ndtMl<PMenoryResourceservice! OEElliIGettinq c.p.city•..
!CACIPIwindtMl<PMenoryResourceservice IoEEllilmenoryrnfo obt.lned
ICACIPlltindOllSl<PMemoryResourceserviceloEEllilmemoryrnfO obt.ined
ICACIP ltindOllSl<PMemoryResourceservicel OEEllil usedo!€mory: 4g2433408

ICACIPjltindtMl<PMemoryResourceservice OEBUiI_yrnFo obt.ined
CACIP ResourCeMan.ger! OEEUG!Resource chanQed' resource service: MemoryResourcecOntext

ICACIPI Resource<:ontextsensor IDEBllil Receivea event: Resource name: _oryResource Rest
ICACIP ResourcecontextsensorIOEElli!+- praperties.sizeO: 5
ICACIP IResourcecOntextsensor IOEElliI +- name;v.l ue: devi ceMBIlorycap.c1ty/6700l951l4
ICACIpl Resource<:ontextsensor IOEEUGI +- name/V.lue: deviceMBIloryus.ge/492433408
ICACIpl Resourcecontextsensor IDEBlliI +- namelV.lue: dev1c_oryLO.dj73
ICACIPI ResourceeontextSen'ior IDEBlliI +- name/V.lue: r05erv.blount/177186176
ICACIP Resource<:ontextsensorlOEElliI +- name/V.lue: reservedAmount/O
ICACIplcontextMan.gerloEEllilCOntext value changed: ME!IIlJry1lesourcecontext -> CONTEXT-ElEMElf-

~1<. _ _)

145

Appendix

APPENDIXB

Some Sample Code

The codes listed here contain the implementation ofmajor components ofthe work. Some of
the other codes are left out because of space.

la) Adaptation Package: This is the package that is responsible for execution ofAdaptation using
reconfiguration process.

package AdaptationManager.adaptation;
import org.istmadam.conflguration.lApplicationReconfiguration;
import org.istmadam.context.IContextAccess;
import org-istmadarn.core.IComponentManagement;
import org.istmadam.connectable.IConnectable;

public class Adaptation.Manager implements IConnectable
(

static public final String COMPON"ENT_MANAGEMENT_PORT ~ "ComponentManagement_Port";
static public final String CONFlGURATlON]ORT ~ "Configuration]ort";
static public final String CONTEXT_ACCESS]ORT ~ "ContextAccess_Port";

AdaptationCoordinator coordinator:

public AdaptalionManager(i,,
coordinator = new AdaptationCoordinatort);

public AdaptalionCoordinator getAdaptationCoordinator\j
(

return coordinator;

public void addConnectionfString portName. lConnectabk object)

if (poru'iame.equa!s(COMPONENT_MA,"IAGEMEl'T]ORT))

f
coordinator,setComponentManager({IComponentManagement) object);,,

else if (portName.equals(CONFlGURA.TION]ORT))

coordinator.setConfigurator((IApplicarionRecontiguration l obj eet);,,
else if Iporu'iame.equals(CO'iTEXT_ACCESS]ORT J)

coordinawr.setContext-A.ccess((leonteXL<\'cc-ess) object);

146

public void removeConnection(String portNarne, IConnectable object)
{

throw new UnsupportedOperationException("Not implemented");
}

(b) Tbe re<onliguration Package

package Reconfigurator;

import java.utiI.HashMap;

import orgjstmadam.core.*:

public class Reconfigurator
{

/* The template use in the current running application, or null if no application is running yet
*;

ConfigurationTemplate template = nuB;

CACIPName componentlnstance ~ null;
HashMap config.l\1ap ~ new HashMap();
Configuration coordinatorConfig = null;

publicReconfiguration()

:
•,

public void addConfigurationForRole{ String roleName. Contiguration contlg),
•

config,\1ap.put{roleName. config);

public void removeConfigurationForRole(String roleName)
••

configMap.remove(roleName);

public cacipName getInstanceForRole(String roleName)

l
/Ireturn (CACIPName)roleToInsIance\''1ap.geUro1eName);
rerum getConfigurationForRole< roleName).getComponentInsrance();

public Configuration getConfigurationForRolefSuing role-Name)

return (Configuration) config..."'-1ap.get(roleNarne,:

Appendix

147

Appendix

;--
* @retum Returns the componentlnstance.
-;

public CACIPName getComponentInstance()
{

return componentInstance;
}

public void setComponentInstance(CACIPName complnstance, boolean c1earRoleConfigurations)
(

this.componentInstance ::: compInstance;
if (c1earRoleConfigurations)
{

configMap.c1ear();

}

;--
* Get the current template used tor this configuration.

public ConfigurationTemplate getTemplate()
(

return template~

;--
* @param template The template to set.
-;

public void setTemplate(ConfigurationTemplate template)
(

this.template = template;

public Configuration getCoordinatorConfiguration()

return coordinatorConfig;

public void setCoordinatorConfiguration(Configuration contig}
{

(c) The eventManager Package: is responsible for communication among the model components

package context.event.~lanager;

import org.istmadam.contexi.ComexLElement;

importjava.utiI.EvcntObject:
impon java.io.Serializable;

public class 'lalueChangedEsem extends E,,"entObject implements Serializable

148

Appendix

public static final int CONTEXT_ELEMENT_CHANGE_UNKNOWN ~ OxOO;
public static final int CONTEXT_ELEMENT_ADDED ~ OxO 1;
public static final int CONTEXT_ELEMENT_UPDATED = Ox02;
public static final int CONTEXTJLEMENT_REMOVED ~ Ox03;

private fmal CootextElement conrextElement;!/todo transient?
private final int changeType;

public ValueChangedEvent(fmal Object source, final ConteAuolement contextElement)
(

this(source, contextElemenl, CONTEXT_ELEMENT_CHANGE_UNKNOWN);
}

public ValueChangedEvent(fmal Object source, final ContextElement contextElement, final im type)
{

super(source};
this.contextElemen1: = contextElement;
this.changeType ~ type;

public ContextElement getContextElementO
{

return contextElement:

public int getChangeType(),,
return changeType;

public String gelChangeTypeAsString()
{

s",..itch(changeType)

case CONTEXT_ELEMENT_ADDED:
rerum "CONTEXTJLEMENT_ADDED":

case CONTEXT ELEMENT UPDATED:
rerum "CONTEXT_ELEMENT_UPDATED";

case CONTEXT ELEMENT REMOVED:
return "CONTEXT_ELEMENT_REMOVED":

case CONTEXT ELEl'.lENT CHANGE UNK.NOWN:
default: - - -

return "CONTEXT_ELEMENT_CHANGE_UNKNOWN":

public String toString()
I,

SuingBuffer stringBuffer == new StringButferC'ValueChangedEvent :type:
").append(getChangeTypeAsString(»:

stringButfer.append{" , element: "}.appendt contextElement.toString()).append(": "):

return suingBuffer.toString\):

149

Appendix

(c) Context Monitor :this package is responsible for context Monitoring. it contains the context sensors
package contextMonitor;

import context.event.ValueChangedEvent;
import org.istmadam.context.IContextListener;

public class DefaultContextSensor implements ContextSensor,,

protected IContextListener listener;

private final String sensorId;

protected final Metadata metadata;

public DefaultContextSensor(
final String id,
final String contextElementlD,
final IContextListener listener,
fmal Metadata metadata)

if(id = null 11 contextElementlD = null)
{

throw new NullPointerException("lnvalid null argument"):

this.sensorId = id:
this.contextElementId =; contextElementID:
this.1istener = listener;
this.metadata = metadata;

public ContextSensor(
final String id.,
tinal String contextElementlD,
fmal IContextListener listener>

this(id comextEJementlD, listener, new DefaultMetadata(»:

public DefaultContextSensor(final String id, final String comextElementldl
{

this(id., contextElememld, null):

public synchronized void setContextChangeListenertIContextListener listener),,
this.listener = iistener;

public synchronized void unsetContextChangeListeneHIContextListener listener)

150

if (this.listener~ listener)
{

this.listener ~ null;
}

}

public String getSensorlDO
{

return sensorId;

public String getContextElementIDO,
•

return contextElementId;

public void fireContextChangeEvent(ValueChangedEvent valueChangedEvent)
{

if(listener !~ null)
(

Iistener.contextValueChanged(valueChangedEvent);

}

public Metadata getMetadata()
{

return metadata;

(d) Tbe Evaluator Package
package Evaluator;

import javautil.Collection;
importjava.util.HashMap:
import jav,,-utiI.HashSet;
import java.util.1terator.
import java.utiI.Se~
import Reconfiguration.ConfigurarionTemplate;
import Reconfiguration.IConfiguration:
import context.IContextAccess;
import context.IContextListener;
import eontext.ContextElement~
import context.event.ValueChangedE,,"em:
import org.istmadam.core.IComponenL\1anagemem;
import org.istmadam.plan.BlueprintPlan;
import org.istmadam.plan.CompositionPlan:
import org.istmadam.plan.IPlan;
import org.istmadam.plan.Role:
import org.istmadam.propeny.PropenyEvaluaror,
import org.istmadam.application-4.ppllcatiofu\1anager:
public class AdaptationCoordinator implements IAdaptation..c\lanagernenL IContex'1Listener
{

private IConfigurarion configurator:
i/privare BuiIderAndPlanner planner;

Appendix

151

HashMap planners ~ new HashMap();
HashMap oldTemplates ~ new HashMap();
HashMap currentServices ~ new Hash-Map();

II private boolean needsRebuild ~ true;
private IContextAccess contextAccess;

//public AdaptationCoordinator(BuilderAndPlanner planner)
public AdaptationCoordinator()
{

Jlthis.planner = planner,

public void setConliguralOr(IConfiguration config)
{

configuratoT == config~

public void setContext.~ccess(lContextAccessaccess)
{

contextAccess == access;
}

private IComponentManagement core;
public void setComponentManager(IComponentManagement mngr)
{

core = mngr;

public CAClPName launch(CAClPNarne mainComponentType)
f
•

!i Create a planner for the ne\\i component to launch
BuilderAndPlanner p ~ new BuilderAndPlanner();
p.setComponent.Manager(core):
p.buildFrameworkModeI(mainComponemTYl'e);
planners.put(mainComponentType. p);

adjustContextListeners{):
// adjustContextListenerst p.getContextDependencies{ »;

CACIPName ser'i = evaluateAndSelect(mainCornponentType):
update....ppStatus():
return seT\' ~

!/retum currentService:

private void updateAppStatus(i {

Set keys = currentServices.keySet{);
Srring[] typeSrrings ~ new Srring[keys.size()]:
int strIndex = 0:
for tIterator nameIt = keys.iteraror(); namelt.hasNext();) :

rypeSrrings[srrlndex] ~ IICACIPName)nameh.next().IOSrring();
strlndex-.,---;...:

Appendix

APfJendix

ApplicationManager.setRunningApplications(typeStrings);

private Set crContextListeners =. new- HashSet();

// private void adjustContextListeners(Set elementNames)
private void adjustContextListeners()
(

Collection ps ~ planners.values();
~~Sel:ol.t.el<:ment1Sames? new HashSet();

for (Iterator plannerIt ~ ps.iterator(); plannerlt.hasNext();) {
BuilderAndPlanner p = (BuilderAndPlannerjpLannerlt.next();
elementNames.addAIl(p.getContextDependencies(»;

for (Iterator oldCttt ~ crCortteXlListeners.iterator(); oldCtJ<l.hasNeJ<l();) .
(

If First,. stop listening to elements on which we no longer depend
String old ~ (String) oldCtxt.neJ<l();
if (!elementNames.contains(old»
{

Systetrt:out.println("Contextlistener removed: " + old);
contextAccess.removeContextListener(this, old);

for (Iterator neWet.Xl ~ element.'1ames.iterator(); newCtxt.hasNextU;)
{

I1 Next, start listening to elements we do not already listen to
String newEl = (String) newCtxt.nextO:
if (!crContextListeners_contains{ncv.EI»
\

System.out.println("Context listener added: .. -;.- newEl):
contextAccess.addConte.\."tListener(this, newEl);

J
crContextListeners = element.Narnes;

// CACIPName currentService = null:

private void evaluateAndSelectForAllt)

\
for (Iterator names ~ pLanners.keySet().iterator(); names.hasNext():),,

evaluareAndSelect((CACIPName)names.next(»;

private CACIPName evaluateAndSelect(CACIPName mainComponentType)

i/ First find planner and old template for component
BuilderAndPlanner planner = IBuilderAndPlanner)pJanners.geu mainComponemType);
ConfigurationTemplate oIdTemplate = (ConfigurationTemplat~ }oldTernpbltes.gett rnai.nCamponentType):

153

Appendix

IEnumeratorWithReset templates = planner.buildTemplates();
ConfigurationTemplate bestTemplate ~ null;
double bestUtil ~ 0.0;

ContextElement context = contextAccess.getRootContext();

// First, reevaluate the utility ofthe current service. ifany
double oldUtil ~ 0.0;
if(oldTemplate!~ null)

oldUtil ~ ((Double) oldTemplate.evaluate(PropertyEvaluator.UTILITY_PROPERTY.
context».doubleValue();

11 Iterate through the available templates, and find the one with the best utility
while (templates.hasMoreElements(»
{

ConfigurationTemplate crTemplate = (ConfigurationTemplate) templates.nextElement{);

double crUtil ~ «Double) crTemplate.evaluate(PropertyEvaluator.UTILlTY]ROPERTY,
context».doubleValue():

if (crUtil > bestUtil)
{

bestUtil = crUtil;
bestTemplate ~ crTemplate:

if((bestTemplate !~ null) && (bestUtil > oldUtil)),,
System.out.println(" NEW CONFIGURATION SELECTED - RECONFlGURATION

STARTING ");
11 Display the plan
Systern.out.println("New configuration: "):
System.out.print{" "):
displayTemplate(bestTemplate." ");
// Change to ne\-\' template
currentServices.put(mainComponentType. configurator.configure(bestTemplateJl:
oldUtil ~ bestUtil:
IloldTemplate ~ bestTemplate;
oldTemplates.put(mainComponentType, bestTemplate);
System.out.println("--RECONFIGURATION COMPLETE FOR:"';-

mainComponentType.IOString() ~ "--");
}
else

System.out.println("-oLD CON'FIGURATION STILL BEST - NO CHANGE FOR: " ~
mainComponentType.toString()..,..." __"):

}
return tMada.tru"'iame>currentServices.get(mainComponentTypc);

publicoid displayTemptatetConfigurationTemplate template. String indent},,
IPlan plan ~ template.getPlan():
if (plan instanceof CompositionPlan),,

154

System.out.println("Component type: " + plan.getComponentType()):
CompositionPlan cPlan ~ (CompnsitionPlan) plan;
RoleD roles ~ cPlan.getRolesO;
System.ouLprintln(indent + "Roles: ");
for (int i ~ 0; i < roles.length; i++)
(

String roleName ~ roles[i].getName();
System.out.print(indent +" .. + roleName);
displayTemplate(template.getChildTemplateForRole(roleName), indent +" ");

}
else if(plan instanceof BlueprintPlan)
{

BlueprintPlan bPlan ~ (BlueprintPlan) plan;
System.out.println("Component type: " + plan.getComponentType() + " bp:" +

bPlan.getBlueprintName(»):

1
else

System.out.println("Component type: " + plan.getComponentType());

public void contextValueChanged(ValueChangedEvent vEvent)
{

evaluateAndSelectForAll();

Package BuilderAndPlanner
import javautiLCollection;
import java.utiLHashMap;
import java.util.HashSet;
import java..utiLlterator,
import java.util.Sei:

import org.istrnadam.configuration.ConfigurationTemplate:
import org.istrnadam.core.IComponent."1anagernent;
import org.istmadam.plan.CompositionPlan;
import org.istmadam.plan.lPlan:
import org.istmadam.plan.Role;
import org.istmadam.property.PropertyEvaluator;

public class BuilderAndPlanner implements IVariantManagement,
•

private CAClPName rootType;
private Haslll\\ap frameworkModei ~ new Haslll\;lap();
private HashSet comextDependencies = new HashSet():

pri"-ate IComponenL\1anagement core;

public void setComponentManager(IComponenL\hnagement mngr)
••

core =mngr:

Appendix

155

public void buildFrameworkModel(CACIPName component),,
rootType = component;

II First, clear old model
frameworkModel.clear();
contextDependencies.cleat();

If Now, perfonn recursive buildup of model
fillModel(component);

public Set getContextDependenciesO
{

return contextDependencies;

private HashMap emptyPropertyMap ~ new HashMap();

private void fillContextDependencies(IPlan plan)
(

try
{

/1 Find context dependencies
Collection vals = plan.getPropertiesO.valuesO;
for (lterator it ~ vals.iterator(); it.hasNextO;)

\
PropertyEvaluator eval ~ (PropertyEvaluator) it.nex1();
String[] deps ~ eval.getContex"tDependenciesO;
for (lnt i = O~ i < depsJength; i++)
{

contextDependencies.add(deps[i]);

•J
catch (Exception ex),,

System.ouLprintln("Exeception during BuilderAndPlanner.fillContextDependencies(l"):

private void fillModel(CACIPName complype),,
try,
•

Set allPlans = core.findComponentPlansccompType. empryPropenyMap);
framework.1vlodel.put(compI) pe. alIPlans):
for (!teratar i ~ allPlans.iterator(); i.hasNext();),
•

IPlan crPlan ~ IlPlan) i.nextl):

tlllContc:\illependencieslcrPlan):

Appendix

156

if (crPlan instanceof CompositionPlan),,
CompositionPlan cPlan ~ (CompositionPlan) crPlan;
Role[] allRoles ~ cPlan.getRoles();
for (int r ~ 0; r < allRoles.length; t++)
{

CACIPName roleTypeName = alIRoles[r].getComponentType();
If Continue recursivly ifcomponent type not already handled
if (!frarneworkModel.containsKey(roleTypeName»
{

fillModel(roleTypeName);

\
CACIPName coord ~ cPlan.getCoordinatorType{):
if (!frameworkModel.containsKey(coord»
\

fiIlModel(coord):

}
}
catch (CACIPException e)
:

e.printStackTrace();

public IEnumeratorWithReset buildTemplares(),
•

return new PlansForTypeEnumerator(romType);

private boolean includes(Object[] objMat. Obj<cr obj)

:
for (int i ~ 0; i < objMat.length; i++)

i
if«objMat[i]!~ null) && (objMar[ij.equals(obj))),,

rerum true;

•,
return false;

class PlansForTypeEnumerator implements IEnumerator\VithReset
(

IEnumerarorWithReset planVarEnums[J:
int crlndex = 0:

public PlansForTypeEnumeraror{Madaml\arne compType)

Appendix

157

Appendix

Set a1lPlans ~ (Set) frameworkModel.get(compType);
planVarEnums ~ new IEnumetatorWithReset[a1IPlans.size());
intj ~ 0;
for (lterator i ~ a1lPlans.iterator(); LhasNext();)
{

lPlan crPlan ~ (lPlan) Lnext();
if (crPlan instanceofCompositionPlan)
{

planVarEnumsOl ~ new CompositionPlanVariantEnumerator«CompositionPlan) crPlan);

J
else

planVarEnumsOl ~ new SimplePlanVariantEnumerator(crPlan);

J
i++;

public void reset()
(

for (int i = 0; i < planVarEnums.length: i++)
{

planVarEnums[i].reset();

J
crlndex = O~

public boolean hasMoreElements(),
•

for (int i = crlndex: i < planVarEnums.length; j-r-;-)

{
if (planVarEnums[i].hasMoreElements(),,

return true;

l,
return false;

public Object nextElement(),,

while (crIndex < planVarEnums.length)

if (planVarEnums[crlndex].hasMoreElements(»,
•

return planVarEnums[crlndex l.nextElemenU);

else

158

Appendix

crIndex++;

J
return null;

class SimplePlanVariantEnumerator implements IEnumeratorWithReset
(

ConfigurationTemplate template;
boolean hasMore ~ true;

publie SimplePlanVariantEnumerator(IPlan plan)
{

template = new ConfigurationTemplate(plan);

public void reset()
{

hasMore = true;

public booIean hasMoreElementsO
(

rerum hasMore;

public Object nextElement()
(

if(hasMore)

hasMore ~ false;
return template:

•,
else

return null;

J

class CompositionPlanVariantEnumerator implements IEnumeratorWithReset,,

CompositionPlan plan:
Role roIes[]:
PlansForTypeEnumeralOr roleEnums[]; r An array containing an enumerator for each role
ContigurationTemplate roleTemplates[]; // The last results from using nextElementl) for each role
ConfigurationTemplare coordinarorTemplme = null:

159

public CornpositionPlanVariantEnumeralor(CompositionPlan plan)
(

this.plan ~ plan;

roles ~ plan.getRoles();
roleEnums ~ new PlansForTypeEnumerator[roles.lengtb];
roleTernplates ~ new ConfigurationTernplate[roles.lengtb];
for (int i ~ 0; i < roles.lengtb; i++)
(

roleEnums[i] ~ new PlansForTypeEnumerator(roles[i].getComponentType(»;
roleTernplates[i] ~ (ConfigurationTernplate) roleEnums[i].nextElement():

}
if (roles.length > 0)

roleEnums[O].reset();
Object[] coordPlans ~ «Set) framework..Model.get(plan.getCoordinatorType())).IOArrayO;
if (coordPlans.lengtb > 0)
f,

coordinalOrTernplate ~ new ConligurationTernplate«IPlan) coordPlans[O]);

public void resetO
{

for (int i = 0; i < roleEnums.length; i++)
(

roleEnums[i].reset():
roleTernplates[i] ~ IConfigurationTernplate) roleEnums[i].nextElementO:

}
if(roles.length > 0)

roleEnums[O].reset();

public boolean hasMoreElements(),,

if(coordinatorTemplare = null)
{

return false:

for lint i = 0; i < roleTemplates.length; j-+-i-),,
iflroleTernplates[i]~ null)

retuITl false:

for (int i = 0: i < roleEnums.length; i-i--i-),,
if (roleEnums[i].hasMoreElernenlS(»

return rrue;

,,
rerum ralse;

Appendix

160

public Object nextElement()
{

if (!hasMoreElements(»,
l

return null;

for (int i = 0; i < roleEnums.length; i++)
{

if (roleEnums[i].basMoreElementsO)
{

roleTemplates[i] ~ (ConfigurationTemplate) roleEnums[i].nextElementO;
II All ready, so break out of the iteration
break:

}
else,,

roleEnums[i].reset();
roleTemplates[i] ~ (ConfigurationTemplate) roleEnums[i].nextElementO;

HashMap map ~ new HashMap();
for (int i ~ 0; i < roleEnums.length; i++)

I
map.put(roles[i].getName(). roleTemplates[ij);

return new ConfigurationTemplate(plan, map, coordinatorTemplate~;

Appendix

16!

	Table of Contents
	Declaration
	Dedication
	List of Figures
	List of Tables
	Abstract
	Chapter One - Introduction
	Chapter Two - Background Concepts and Review of Literature
	Chapter Three - Model Design and Development
	Chapter Four - Model Implementation and Evalution
	Chapter Five - Conclusion and Future Work
	References
	Appendix A
	Appendix B

