A Dynamic and Adaptable System for Service
Interaction in Mobile Grid

OTEBOLAKU ABAYOMI MORADEYO

(20067353)

A dissertation submitted in fulfilment of the requirements for the degree of
Master of Science
In

Computer Science

Faculty of Science and Agriculture
Department of Computer Science
University of Zululand

2007

DECLARATION

I, Otebolaku Abayomi Moradeyo, declare that this dissertation represents my work, and that
it has not been submitted in any form for another degree or diploma at any University or
other institution of tertiary education. Information derived from published or unpublished

work of others has been acknowledged in the text and a list of references is given.

ne
@mm

Otebolaku Abavomi Moradevo

DEDICATION
This work 1s dedicated to the Almighty God for His love, Wisdom and Salvation that He

freely gave me.

i

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to those who made it possible to complete this
research work.

First, I thank God Almighty for His Mercy and Grace bestowed on me in the course of my
life and in particular during the period of this study. Thank you Lord for being the author and

owner of my life.

Second, my sincere appreciation goes to my Supervisor, Professor M.O. Adigun, who has
been the backbone of this work, and for the rare privilege he gave me to tap from his wealth
of computing knowledge. In addition, you taught me what research is, and in particular, the
art of writing. Your fatherly role can not be appreciated enough, thank you for believing in

me.

I also acknowledge the financial support I received from the Centre of Excellence of the
Department of Computer Science, University of Zululand without which this study would not

have been possible.

[thank my family members- my Dad, my Mom and my Siblings for their support, |

appreciate your care, love and patience.

My appreciation goes to my friends, colleagues and entire staff’ of the Department of
Computer Science, Mr F. Nel, Mr Reuben Aremu, Johnson Iyilade. Dr Justice
Emuoyibofarhe, Dr Xulu, TC Nyandeni. Stanley Ekabua, Petrus Shabangu, Mudali
Pregansen, Miss Divya Pillai, Miss Tarirai Chani and others who contributed immensely not
only to this work but to my life in general. The jokes, lively dispositions. love and the
occasional frustrations we shared were inexhaustible fuel that propelled this research to a

conclusion, thank you all.

Finally. 1 cannot forget my closest friend and love. Oni Comfort. who stood by me even
when no one cared. I will eternally be grateful for the prayers. encouragements and love vou

shared with me in those trying times.

TABLE OF CONTENTS

DECLARATION ...t tetee e eere e serss e sseanss s snssnebasbassans i
DEDECATION ..ottt cercsbeseec e seaes e cessss b sasmasarasnarnsesanaas iii
LIST OF FIGURES ..ottt necssassnebe e nnaens viii
LISTOF TABLES ...t ese e resse s es b sr e s enan ix
ABSTRACUT ...ttt st et a s s b ens e arasnean b et a e X
CHAPTER ONE ..ottt cr st et sn bbb |
1. INTRODUCTION ..ottt eieenesesee e sestensssasmasisssnsessanneias 1
1.1 OVEIVIEW ...cteeeemeeianrstneseeeraeereasvess e s e s mnssessseee s sasaeasassssnnsennenas 1
1.2 BackgroUund ...t reesess e see et e s n et 1
1.3 Statement of the Problem ... 7
1.4 Rationale of the study ..., 8
1.5 Research Goal and Objectivescccccovvinirenenrirccsieneeeeee, 9
1.6 Research Methodologycoocoiivienierreerc e, 10
1.6.1 Requirements Gatheringocccoooevrveeivecnirciieneinn 10
1.6.2 Model Development............cccooocvevererniecreeeccrencerrrerneeene. 10
1.6.3 Simulation and Evaluation.......cccc.eocoieenniccnnenenenncns 11
1.64 Organisation of the Dissertationcccovevveecinccnieninicnnn 11

2. BACKGROUND CONCEPTS AND REVIEW OF LITERATUREI3
2.1 INtrOdUCHION......civiirieiieeee e 13
2.2 Mobile and Pervasive Computing........ccoocoeeeirinicccnnnnnns 14
2.3 Mobile and Pervasive Gridc.ooeiviiirieeeceee e 16
2.4 Dynamic Adaptation Managementoccoeveeieconncnenennn 18
24.1 Adaptation Mechanisms..........ccocooeieiinon e 20
242 Adaptation POliCY.....coicii e 23
2.5 Context Managementoeeereeemieiieiiininrmrrcrre et 29
(8) Physical COREXE. ..ottt 30
(b) Computing CONEXES.ceevrrrerrrrirceeeeeeeene e sneeesesneeanen 30
2442 Context Modelling ..., 31
2.5 Dynamic Reconfiguration ..o, 35
2.5.1 State of the art of component Reconfiguration..........ccc....... 37
2.6 Related Work on Adaptable Systemsovveveecveereeceeceeeene. 38
2.6.1 CARISMA e e 38
262 M3 ettt 39
263 MADAM Lo 40
264 SPArKIE ..o e 41
2.6.5 AR oot ae et e e e e e e e an e ems e aaa e e naes 42
2.6.6 DA A e e 43
2.6.7 GLOBUS - ieeeee et e st et s e et e e e sstee s s s sesenennens 43
2.6.8 GRACE PIOJECT .o ceceeecieeeeeeee e e eeae e assn e 44
2.6.9 ACCORD .o eeee e e 43
2610 SECAS oo et see e v ene e 46

2.7 Concluding RemarksS.........ccooiiiiiiiiee 47

3. MODEL DESIGN AND DEVELOPMENT ..o 51
3.1 INtrOdUCHION.....ceereeeeiecee e e e as st e e e e sanes reereenreenne 51
3.2 Requirements for Service Interactions...........ccceemreirmvneeniiiinins 51

3.2.1 Example SCENariococveeinineniciis et 51
322 The CACIP Interaction Model.....c.veoccverieveccicnciinerenee. 56
3.2.2.1 CACIP Interaction BUScoveevreeeeireeeeeeerencssvescesssiacinans 56
3.2.2.2 The Service Interaction Definition...........cocovevriernrnnnnnn, 59
3.3 The Adaptation Model ... 62
3.3.1 Context Monitoring and Event Management................... 63
332 The Evaluatorcocecinnieireceeeeecisseeseee e sneenceneenene 70
3.3, 2.3 Utility Policy Management........ccoceoeeeeeniviecnnniennnnnn. 81
333 Designing the Service Component and Reconfiguration model82
3.3.3.1 The Component Model.........oovverevenieieecenirce e 82
33.3.2 The Run-Time Component Model............cccouvvrinneenee.. 84
3333 The Reconfiguration Template.........c.oooeeiiiniinnnninnnee. 86
3334 The Service Reconfiguratorccooooveeeiiereneicceecccee 87
334 Adapting ServiCeSccoovmeveereuererreiecomeeeeesessesesessseeeeseeceene 91
335 Chapter ConclusSION......ccccceeecciereeeeeercaite e srenees 93
CHAPTER FOUR.....oteee ettt eae s 95
4, MODEL IMPLEMENTATION AND EVALUATION........ocoeoo. 95
4.1 INTrodUCTION ...t 95
42 Implementation Framework........cccorviceciiicicreeircerercene 96
421 Context Monitor Packageoocvvvrvreeeeceeece e 97
42.1.1 ContextSensor Classoccoveeeieeereeeiiecccveee e ceae e 99
42.1.2 ContextSensorAccessInterfaceccooovvveeeecereeveeceecnennnn. 99

4272 Evallatorcccooireee e e 99

423 The Service RecOnfiguratorcocoevciiiiereccrnnicieeeececeenne 101

43 Implementation Environment and Specifications.........c......... 104

4.3.1 Starting the Adaptation Managercooocceccecconinrniininnnen. 105

432 Demonstration of the Model ..cc.eorveeveceoiinrinreeeciee 106
4.3.2.1 Context and Adaptation Strategy Analysis..........cccoceee.. 108
4322 Adaptation SIrategy ...t e 111
4323 Service Component ArchiteCture.............ococeecniveeccenraans i13
43.2.4 Specification of the Composition Plans and Architectural Constraints 116
4.3.2.5 Algorithm Implementation........cooreeeiieeninecece. 120

433 Moedel Performance Evaluationococoeovvvvvireeceireceeneenee. 122
43.3.1 Effect of service variants and service consumer choice {Weight) on
Adaptation QUANLYcovvveerirerrc et 122

4332 Effect of Adaptation on Overall Response Time............ 125
4333 Effect of Service Consumer Choice and Service Variants on Service
ReSpONSe TIMe .ot 127
43.3.4 Comparing Adaptation time with Response time as number of variants
Increased 128
434 CONCIUSION .ooieerriiteeiiasireneerene et st s s e e 129
CHAPTER FIVE oottt 131

vi

5 CONCLUSION AND FUTURE WORKcooooeiereecmeeirirerenersvenenes 131
5.1 OVRIVIEW vt sressnereesanese e sessssresests s trennssesarerrnre 131

52 CONCIUSIONS . e.eeeeevire et isstreceee s e s essr s s raasssee s sasasnsasanes 151

5.3 FUBIEe WOrK oottt ettt et sar e s e s ebs e 154
REFERENCES ...ttt cstas e mee et s s e e ssssem e ne s 136
APPENDIX A c.oooaeeeeeeeeeeceeeeestveereeettsssssrmsaesesiesvssnssesesrsrasssp e eeers s s sres 145
APPENDIX B ...t esesesisemssasssessssssssssss st sasssssssssssnensssnsessnssaes 146

vii

LIST OF FIGURES

Figure 2. I:Context-unaware service Provision...........coccceeererceercennneeecnn, 33
Figure 2. 2: Context-aware Service provisioncceccecoeecreeensscceaeraesnnees 33
Figure 3. 1: Service Adaptation Archit€CIireoovveeeevremrscevereesceneessreneenes 54

Figure 3. 2:An architecture showing mobile devices interacting with Grid service 57

Figure 3. 3: A CACIP Model of Grid Service Interaction........cccoecveeveenenne. 58
Figure 3. 4:Context Aware Adaptation Model (CAAM) Adaptation Process61
Figure 3. 6:Architectural View of the Context-Aware Adaptation Mode 63

Figure 3. 7:Context Monitor ArchiteCturecocvoveereecieeeerieieeeeeeeeeeevenee. 65
Figure 3. 8: Context Model Adapted from MADAM [25] ..oeeervveccnvccricnnens 69
Figure 3. 9:Services and Service variants Relationship.....cccovovrorrciennnn. 73
Figure 3. 10.: The adaptation Decision Algorithmcccooocoviecrneen., 77
Figure 3. 11:Adaptation Decision Flow Diagram... SRSIUUSIRPSORY .
Figure 3. 12:Communication Model between components of the model..... 80
Figure 3. 13:CAAM Component Model...........cccovmmnnninrcnrerirrecrn, 83
Figure 3. 14: Reconfiguration Tempiate and Plan Relationship................... 85
Figure 3. 15:Reconfigurator Modelcccooeemerieiiieees 89
Figure 3. 16: Adaptation using Reconfiguration Pattemc....cccccouevevenn. 3
Figure 4. 1:The implementation frameworkcocovvevvrcenrenn e, 96
Figure 4. 2:Context Monitor Packageccccovmmmneeieiciceeeeeeeeee 98
Figure 4. 3: Evaluator class diagram..........ccoccocoooionnioioeneeieiive e 100
Figure 4. 4: Reconfigurator Class diagram ..o 102
Figure 4. 5:Sequence diagram for Reconfiguration process summary 103
Figure 4. 6: Main Implementation Interface and Context Monitor 105
Figure 4. 7: Adaptation Output and service Management panel 106
Figure 4. 8: Screenshot of the context monitoring log..........cccoceveeevernnnne.. 143
Figure 4. 9:Components of the multimedia service example 116
Figure 4. 10: Variation point stored in F-Mode.........cc.coovovevninnnene 118
Figure 4. 11: Utility Function Algorithm Pseudo codeocceneenn.... 120
Figure 4. 12: Launching a service and Adaptation output..........cooeun..... 121
Figure 4. 13:Effect of Service consumer choice and Service variant on Adaptation Quality
... 125
Figure 4. 14:Effect of Adaptation on Service Response Time 126

Figure 4. 15: Effect of Service consumer choice and service variants on Service Response

BEETIE . oiieieeeeeeeeesemensesssssesn s raanaaessassemensase s e sasmmnnn e e aanssessmancmennssmtnn s eeseemeressenmmnnnne 127

Figure 4. 16: Effect of Service Variants on Adaptation Time and Service Response Time 129

viii

LIST OF TABLES

Table 2. 1: Summary of Reviewed Adaptable Systems........cccceevevevcvccnnnncee. 48
Table 3. 1:Context Elements and their Categorycevrenrnirscrrcecrcnnane 71
Table 4.1:Context Parameter SUmMmMALYcc..oveecetmreereeieernneereeetnsneeene 109
Table 4.2:Summary of the First Adaptation Strategyccccccveevereerromeerunacs 111
Table 4.3:Second Adaptation Srategyccoooivreemmriiiicreneceiereeenerseeeene 112
Table 4.4: Third Adaptation SIrategyceececovereeecerrececiecneeeene ceveeeeeeees 113
Table 4. 5: Fourth Adaptation Strategy.....ccccecvrieeeeeeeeerrerrreecrereereneessereas 114
Table 4.6:Summary of utilities for Context parameters........c.ocoeecmcerereeces 119
Table 4. 7: Experimental Results ..o 123

ix

ABSTRACT

Mobile and pervasive computing with its peculiar feature of providing services at anywhere anytime
basis has been at the centre of major computing researches in recent times. The device resource
poverty and network instability have been reasons behind unsuccessful use of handheld technology
for service request and delivery. However, interaction of these mobile service components can be
adapted to further improve on the guality of service experienced by service consumers. Content, user
interfaces and other adaptation mechanisms have been explored, but these have not provided needed

service qualities.

However, one of the challenges of designing an adaptable system is on making adaptation decisions.
This dissertation, therefore, presents a dynamic and adaptable system for service interaction. A
context-aware utility-based adaptation model that uses service reconfiguration pattern to effect
adaptation based on contexis was developed. It was assumed that developers of mobile services
design services with variants that can be selected at runtime to fit the prevailing context situation of
the environment. All variants differ in required context utilities. The service variants selection

decision is based on a heuristic algorithm developed for this purpose.

A prototype of the model was built to validate the concept. Experiments were then conducted to
evaluate the proposed model purposely to measure the interaction adaptation quality, the overall
response time with or without adaptation, and the effect of service consumer preference for a given
service variant on adaptation process. Results from the experimems showed that though the
adaptation process comes with additional overheads in terms of variation in response time. the
adaptation of service interaction is beneficial. It was observed that the overall response time
increased initially as the number of service variants increased which was due to overheads by the
adaptation process. However, as the number of variants increased, the response time began to fall
sharply and then became steady. This proved that adaptation can actually help reduce service
response time. We aliso found that adaptation quality degraded with increased number of service
variants. The lesson learnt was that adaptation can help reduce overall response time and can

improve service quality perceived by the service consumers.

Chapter I-Introduction

CHAPTER ONE

INTRODUCTION

1.1 Overview

Mobile and pervasive computing with its feature of providing services anywhere has been at
the centre of major computing researches in recent times. However, this work is particularty
focused on context-aware dynamic adaptation of interaction between mobile Grid service
consumers and Grid service providers, where the system monitors its own execution
environment and reasons about such contextual changes that take place at any given time.
The system then adapts on-the-fly to these changes in order to improve on the quality of
services offered in the delivery of services to consumer in terms of service response times.
The dissertation focuses on how this adaptation of interaction process can be controlled and
effected at runtime. This chapter starts by motivating the need for dynamic adaptation. It then
continues by giving a brief background on Mobile and Grid computing with challenges that
call for adaptation. The chapter then establishes the problem this dissertation is addressing,
including the goal and objectives set out to address this problem and the rationale of the
research. The methodology for addressing this problem is then discussed. Finally, the

organisation of the rest of the dissertation is then introduced.

1.2 Background

Computing is no longer limited to the desktop. Many different types of devices are
increasingly taking advantage of the breakthroughs in wireless network technologies and the
Internet to provide services to the global community. It is no longer news to see cellular or

cell phones being used to browse the internet or used to access emails. Businesses around the

Chapter [-Introduction

globe are setting up wireless networks so that their customers can have seamless access to
information. All these are indications of a mode] of computing where increasing availability
of small and smart devices with wireless networks provide consumers of services with
convenience and functionality. The users of these devices want to be able to access services
and carry out their computational tasks as they move from place to place regardless of the
place, or time and the device they use, be it a PDA or mobile phone.

In this development, South Africa, which is not an exception to this breakthrough, falls in the
middie tier of ICT development according to a report given in [78] with relatively large and
growing rural communities. Furthermore, South Africans’ access to information and
communication services is very crucial to the livelihood strategies of her poor populace. The
report says that mobile telephony in the rural communities is high with about 28% of the
rural households owning a mobile phone compared with 29% of the urban communities. This
is an interesting trend in the use of mobile devices in both rural and urban South Africa.
Therefore, the use of mobile devices among the disadvantaged population could be extended
beyond ordinary telephony. A number of other services could be rendered to the rural
communities through the use of mobile devices. These services have 10 be provided at low
overhead cost and with good quality of service. These pervasive devices and their
applications should be able to take advantage of facilities and information in the surrounding
environment to provide relevant services. For example, a user might be working on a
document using her PDA at an airport. She or he should be able to use a printer available in
the airport directly, without having to go through setup procedures. Modern Mobile devices
are equipped with features to easily discover other devices in their vicinity. This capability

constitutes in a sense mobile grid computing infrastructure at an airport to enable the

-2

Chapter 1-Introduction

discovery of nearby devices, services, etc., and provide links to them. in short, users want a
seamless computing environment in which their device or their location is not a constraint as

they perform their computational tasks.

However, the above need can be met if these services are crafted to cope and adapt in mobile
environment considering the inherent limitations of mobile devices and wireless networks.
Dynamic adaptation therefore, is a way to support these evolving execution environments
[24]. It aims at allowing the applications to modify themselves depending on the available
resources and changes in their context of execution. The key idea here is that as the context
of application changes, it should be able to modify its own function or interaction in response

to these contextual variations.

Software systems of today are, however, continuously growing in size and complexity and
are not designed with adaptation in mind. Very recently, these applications are migrating
from their traditional (desktop, fixed network) executing environment to highly mobile,
distributed, pervasive and Grid computing environments. These environments come with
inherent challenges that tend to defy solutions [1]. These result from the features of the

devices and networks in which these applications are designed to execute.

Notable among the characteristic features and challenges of mobile systems are: limited
Central Processing Unit {(CPU) power, limited memory, small screen, short battery life,

heterogeneity. low bandwidth of wireless network and intermittent disconnections [2].

One of the suggested solutions is the use of mobile devices to access, provision, share and
perform on-demand service delivery from the Grid {3]. Today, far beyond the capabilities of

other existing technologies such as Internet. the Grid enables the provisioning. accessing,

Lad

Chapter 1-Introduction

sharing, adding, removing and managing of resources and services such as storage,
processing, network, and database and software application resources. These resources are
dynamic as the demand for them is not static. The Grid has become first choice for problem
solution in science, business and commerce [3]. It adopts different features from existing
paradigms such as clusters computing, utility computing, autonomous computing and peer-

to-peer computing.

Most applications today are not designed to run on the Grid but they only need slight
modifications to be Grid ready. A recent development has caused some researchers to
develop a keen interest in the implementation of Grid concepts [4] in mobile environments.
This is particularly articulated in the use of mobile devices in submitting jobs to the Grid,
retrieving jobs and delivery of services. Adaptable Grid applications that can adjust to both
the dynamism in the Grid environments and the wireless network that mobile devices will
use to access the services offered by the Grid should be the goal to achieve full-fledged
mobile Grid adoption. These. according to Kola et al [12], are needed for two major reasons.
One, applications could be multiphase, dynamic, and heterogeneous requiring large number
of software components with complex interactions. Two, the mobile Grid infrastructure is
also dynamic, heterogeneous and changing due to the inherent features of mobile devices and
ubiquitous network that they use to access the Grid. These two factors do put major burdens
on service composition, accessibility, sharing and delivery. Adaptability, therefore, needs to
be enforced at multiple levels from the application running on the mobile devices to the
network, computation, and storage resources.

These services must be composed in such a way that they can adapt themselves to changes

such as resource unavailability, network latency, bandwidth variations, interaction

Chapter 1-Introduction

dependencies and link failures. The interaction latency adaptation which is what this research

set out to investigate is inevitable in services that cannot tolerate long response latency.

Primarily, this work investigates how to achieve reduction in response time experienced from

service consumers’ interaction with service providers. Thus, the problem to be investigated

assumed that:

(1) There are many service consumers each making use of some computing devices such as
mobile phones, Personal Digital Assistants (PDAs), and Personal Computers (PCs)
connected to a distributed computing infrastructure such as the Grid,

(2) Each service may likely be distributed over the computing infrastructure,

(3) The service consumer’s devices have very limited resources such as memory, processing
power, which are not enough to execute the requested service,

(4) Devices are connected to the distributed Grid computing infrastructure by an unstable
wireless network with varving bandwidth,

(5) The service consumer service preferences, device resources and environment change
dynamically.

Thus, methods and approaches need to be explored in this regard to make mobile systems

cope and adapt 1o disruptions in their execution environment that will result in reducing

ultimately the dissatisfaction experienced by service consumers owing to these limitations.

This could be achieved at two levels namely [8]: at the underlying system level and at

application level. In the application transparent approach, the underlying system is solely

responsible for adaptation. This is beneficial as it causes the application to run uninterrupted.

It is, however, not desirable if there is a long period of disruptions. In application aware

adaptation, the application collaborates with the underlving system to adapt. The underlying

Chapter 1-Introduction

system provides the application with some status information which it uses to make some
adaptation decisions according to changes in the resource availability and mobility. The
systems have to adapt to the changes in the environment such as the network configuration
and availability of the computational resources and services. This adaptation could be
performed by employing some mechanisms. One, adapting the data being accessed by
various components of the system by varying its quality and two by adapting the

functionalities of the system components.

The first mechanism involves considerable overhead as it compromises the system
performance. The second mechanism however, according to Kristler et al {8], involves
changing dynamically the functionalities of the computational entities in response to changes
in operating conditions. These functionalities could be adapted according to Mikic-Rakic

and Medvidovic [21] by:

(a) Making remote data available locally,

(b) Making remote code available focally,

(c) Making a remote dynamic system state available locally, re-routing the communication in
cases of partial disconnection from the network, and

(d) Delaying remote interactions until the connection is re-established.

The purpose of the above is to temporarily mask the users from the absence of connection by
mimicking the sysiem’s continuous connection. These could be achieved traditionally by

employing some adaptation techniques namely:

(i) Caching — locally storing remote data once it has been accessed in anticipation that it will

be needed again,

Chapter 1-Introduction

{11) Hoarding — pre-fetching the likely needed remote data prior to disconnection,

(iii} Queuing remote procedure calls — buffering remote, non-blocking requests and responses
during disconnection and exchanging them upon reconnection,

(iv) Deployment and redeployment — installing, updating, or relocating a distributed software
system,

(v) Replica reconciliation — synchronising the changes made during disconnection to
different local copies of the same component,

(vi) Code mobility — dynamic change of the bindings between code fragments and locations

where they are executing.

Some other mechanism is the adaptation of the systems functionalities at architectural level
using software architectural principles [21]. Software architectures provide high level
abstractions for representing the structures, behaviour and key properties of a software

system. But this comes with a lot of complexity which is not cost effective.

All these techniques, however, came with a lot of sacrifices in terms of correctness,
scalability, message throughput and bandwidth consumption that are not desirable. Therefore

there is a need to consider some more efficient strategies,

1.3 Statement of the Problem

Some careful and critical investigations into the various approaches currently in use to
address major challenges in the design and development of adaptable and reconfigurable
mobile Grid applications have identified the use of software architectural principles and
component based sofiware engineering to address the problem of disconnection operation

and dynamic reconfiguration resulting from contextual variations in a mobile environment.

Chapter 1-Introduction

Zuma and Adigun [5] proposed an adaptive interface pattern for mobile applications in which
they defined the interaction pattern between context data producing components and context
data consuming components in a mobile distributed application. Zuma and Adigun proposed
a protocol for the serving of context data among interacting components of a mobile
application that are possibly distributed on various hosts in an unstable network. They did not
address adaptation of these components to context variations in the execution environment.
Zuma and Adigun in 5] further described an interaction architecture that defines a protocol
for providing context information and other elements of a mobile application. Shared space
architectural style and component based development were used to design this architecture.
This goes a long way in addressing the disconnected operation and the quality of service

adaptation at the higher abstraction level.

However, the adaptation and reconfiguration of mobile clients in order to specifically reduce
the consumer’s dissatisfaction due to resource starvation, mobility and dvnamic nature of the
underlying wireless network is not yet properly addressed. So, how do we design and
develop a mechanism and a strategy for adaptable interaction berween mobile clients and
Grid service endpoints in order to reduce the service request response?

1.4 Rationale of the study

This work is a contribution to the Context Aware Component Interface Pattern (CACIP} and
is influenced by various other research works being conducted in the field of mobile and Grid
computing [4] and component based software engineering [22]. These researches, recently,
are being carried out 10 address challenges facing application development for mobile
environments. Zuma and Adigun in [5] proposed a Context Aware Component Interface

Pattern that defined the interaction pattern between context data producing components and

Chapter 1-Introduction

context data consuming components in a mobile but distributed application. The CACIP
provides a protocol for serving context data among interacting components of a mobile
application that are possibly distributed on various hosts in an unstable network bandwidth.

This interaction pattern has been adopted (by the centre) for the newly crafied Grid utility
based infrastructure service technology (GUISET), which is a software service driven e-
Service technology based on emerging concept of utility grid computing. In this
infrastructure, the interaction between the mobile client components and the server
components posed serious challenges partly because of instability of the wireless network
connecting these components and partly because of the heterogeneity of the mobile devices.

However, CACIP specifically did not address how mobile service components in this
infrastructure could cope under patchy connections in the network, in which they run and
assumed a shared address space, which serves as a performance bottleneck with regard to
scalability. This research work is therefore, motivated by the quest to propose a model that
can help components of mobile application services adapt to its unstable environment in

order to reduce the overall response time between a service consumer and service provider.

1.5 Research Goal and Objectives

The goal of this research was to propose an adaptable and reconfigurable interaction and

communication system between Grid clients and Grid services.

In order to achieve this, the following issues were addressed objectives to:
(a) Develop suitable adaptation mechanisms and algorithms that wili help to reduce service
response time between mobile Grid clients request and service delivery,

(b} Craft a context-aware utility-based adaptation conceptual model.

Chapter 1-Introduction

(¢} Design a decision making algorithm based on the developed conceptual model,
(d) Develop a prototype of the crafted conceptual model that was evaluated and validated

through a number of experiments.

1.6 Research Methodology

The adopted methodology focused on challenges of successful interaction between mobile
clients and Grid services. The following approaches were followed in our quest to solving

this adaptation problem.

1.6.1 Requirements Gathering

Investigations on various adaptation mechanisms for mobile systems were carried out. This
was necessary for the understanding of the state of the art adaptation mechanisms already in
use. These investigations were specifically focused on the following research areas namely
context awareness in mobile systems, adaptability and systems reconfiguration. The
knowledge garnered here was adapted to arrive at methods for developing and evaluating

appropriate adaptation mechanism to guide the design improvements for the CACIP.

1.6.2 Model Development

First, the CACIP model was fitted into the mobile Grid scenario. Second, an adaptation
model for the CACIP was developed in order to reduce the delay experienced between
service request and service delivery. To achieve these, the model was able to sense service
executing environmental and device contexts. It was also able to reason about these contexts
dynamically in order to take intelligent decisions on the prevailing contexts at any given

time. Finally. the model was able to reconfigure the service dynamically.

10

Chapter 1-Introduction

1.6.3 Simulation and Evaluation

An evaluation of the proposed model was carried out. In doing this evaluation, simulation of
the model was first carried out. This was conducted with and without the adaptation
mechanism, This was done to see how the model achieved the set objectives. A number of
other experiments were conducted to ascertain the effects of adaptation, service consumer
choice and number of service requests.

1.6.4 Organisation of the Dissertation

The remainder of this dissertation is organised as follows. Chapter two presents an in-depth
state-of-the-art review and theory of dynamic and reconfigurable service adaptation. It also
presents review of very recent works in software adaptation, classifying them based on the
adaptation strategies, adaptation mechanisms, decision mechanisms, context-awareness and
their adaptation goals. This helps to identify gaps which our work attempted to fill and to
identify which of these systems will be of help in our design and implementations. Chapter
three describes the destgn of the dynamic adaptation model. The chapter begins by discussing
the aims and objectives of the project followed by the illustration of an example scenario.
From this discussion some requirements for the dynamic adaptation model are established.
This chapter then continues with an in depth discussion of the context aware and
reconfigurable model, as some of the concepts adopted in the design were explained. The
decision making model based on a utility function is presented with an algorithm that helped

address this problem.

The chapter ends with a discussion of how the dvnamic adaptation model design presented in
this chapter tulfilled the objectives and requirements in order to support the dynamic

interaction adaptation of mobile grid systems in a contexi-aware manner. Chapter four

Il

Chapter 1-Introduction

presents the implementation of a prototype based on the resource management and dynamic
component model of the MADAM adaptation middleware [25]. The chapter then continues
with the design and simulation of a hypothetical multimedia service request which was used
to evaluate the performance of the model. The result and its implication on the model were
then presented. Chapter five concludes the dissertation with a discussion on how the stated
goal and objectives of the project were achieved. Also, limitations of the model based on the
evaluation performed are then presented which are used to give possible future works to

improve on the proposed model.

Chapter 2-Background

CHAPTER TWO

BACKGROUND CONCEPTS AND REVIEW OF
LITERATURE

2.1 Introduction

This chapter provides some background on the research areas with which this dissertation is
concerned. Sections in this chapter analysed the most influential researches in the area of
dynamic context-aware adaptation and adaptation management. Key areas of interest include
dynamic adaptation, context-awareness, service reconfiguration, and policy-based
management of adaptable software. Since the area of adaptable software is very wide
ranging, the set of systems described is the set of most influential systems, not completely an
exhaustive list. They were however analysed specifically with respect to their relevance to

the aims and objectives of this dissertation.

The chapter is divided into four sections. The first section provides an overview of mobile
and pervasive computing, while section two discussed Grid and Mobile Grid computing;
section three gives some insight on adaptation and context awareness. Finally section four
gives an analysis of some adaptive systems in relation with their adaptation approaches,
strategies or mechanisms which helped to identify gaps in adaptation for mobile and
pervasive Grid that satisfy the goal and objectives of this research. The chapter concludes by
an overview of the analysed systems and some open research questions that this work

attempts to address.

Chapter 2-Background

2.2 Mobile and Pervasive Computing

As mobile technologies are becoming integral parts of our society and working environment,
the increasing pervasiveness and mobility of computing and communication enables new
services and applications that can improve the quality of work and life. Two trends are
highly-significant in modern computing technology with very rapid development in the areas
of pervasive and mobile systems. One, millions of mobile devices are being deployed, and
two, more integration and computation power are required behind the scenes to provide
opportunities in new application domains. However, accessing services provided by some
end systems using mobile devices is a challenging objective because such small devices are
typically resource-constrained, with limited processing, memory, storage, energy and
network resources [38]. Among the solutions proposed for this problem is to design an
infrastructure that adapts these services and mobile devices to the prevailing contexts of their

execution.

Foreman and Zahorjan of the University of Washington [54] defined mobile computing as a
technology that enables access to digital resources at any time, from any location. The
traditional desktop computing and wired network were very static; they restricted their users
both in fime and space. However, the idea of mobile computing frees the users from these
restrictions. A mobile device user can use her system without space or location restriction,
and enjoys the satisfaction she has when she uses her traditional desktop system. Before now,
if a user wanted to access her electronic mails, she would do this in a confined environment.
If she was not in her office or at home where she probably had desktops, she might not have
access to the mails except if she got to where a desktop that was tethered to the Internet was

located. However, with the convenience and ease mobile computing has brought, coupled

14

Chapter 2-Background

with the advancement in the wireless network technology, the proliferation of intelligent
portable computing devices (e.g. cellphones, PDA and laptops), a user can access information
on-the-fly anywhere, anytime [58]. This use of portable computers with wireless network has
revolutionised the way computers are used. Pervasive computing extends this capability of
migrating from fixed desktop computing to mobile computing platforms by enabling users or
consumers of services to have access to these services in a way that customises the services

to specific service consumers’ request and the task at hand[55].

This vision has led to two fundamental features of pervasive computing: The mobility and
context-awareness issues that result from the extremely dynamic nature of mobile and
pervasive computing environments. Mobility according to Nalini [38] comes with two
dimensions. First, the mobile application needs to run on varieties of devices including those
embedded in various environments and those ones carried by users. Second, these devices are
mobile and are connected by an unstable low bandwidth wireless network to a more stable
fixed network. This means that applications designed for such an environment must be made
to run in degraded mode as a result of varying and unstable network bandwidth. Sometimes,
this network is not even available, yet a pervasive system user expects an all-time
availability. This application must also be very sensitive to its environment as the context
changes. Context-awareness [47] is important for pervasive computing since environmental
contexts change dynamicaily, the system must be aware of these changes so that it can make
some appropriate and feasible decision on its context of execution. For a pervasive system to
be context-aware there is a need for it to identify and bind to sensors that provide data
whenever changes occur in the environment [25]. A means to compose information from

these data in order to create useful information for decision making will also be needed.

Chapter 2-Background

Furthermore, pervasive systems can be aware of three types of contexts: The mobile device
contexts such as memory, CPU processing power, and storage; the network contexts such as
bandwidth, network types, network configurations and user contexts such as location, user

preferences profiles and QoS specifications.

However, mobile and pervasive computing paradigm came with serious technical challenges
that are yet to be resolved. Device heterogeneity is one of the problems faced by the
technique. End user devices- smart phones, PDAs and embedded sensor computers come in
varieties with varying capabilities both in hardware and software. The form factor, the
processor, the memory and networks vary for each device vendor. The operating systems, the
services and application developed for these devices are of course diverse [33]. Hence, the
impact of device heterogeneity is that application and services need to be developed for each
device. This means that services and applications developed for a particular device may not
execute on a different device. Wireless network issues are also a serious source of
nightmares. The network bandwidth is not always enough for transmission of services from
service endpoint to service consumer’s devices. But effort is already being made to make
pervasive services 1o adapt to these various problems so that such service users or consumers

can have these services with satisfactory quality of service.
2.3 Mobile and Pervasive Grid

Section 2.2 gives an overview of mobile and pervasive computing which recently gave birth
to mobile and pervasive grid. The growth of the Internet with the availability of powerful vet
small computers and high-end fixed networks along with great reduction in the cost of these
resources have gradually changed the way computing is done. Various technologies [38] have

enabled clustering of a wide variety of geographically distributed services and resources.

16

Chapter 2-Background

These resources among others include supercomputers, storage sys;tems, data sources, special
devices and services which are aggregated for purpose of having virtual, powerful
computational resources. These resources and services are provided with seamless access and
interaction among the constituent components. This new approach to computing is termed
Grid.

One of the recent visions of this distributed computing paradigm is to readily make services,
data, and resources available to their consumers the same way electrical power and other
utilities [9] are made available to us. This vision has evolved into provisioning of service
oriented infrastructures that leverage standardised protocols and services for the reason of
pervasive access, and coordinated sharing of geographically dispersed resources and services.
These potentials for seamless access, aggregation, integration and interaction created keen
interests among science and engineering communities to conceive a new paradigm of
distributed computing that helps investigate complex scientific and engineering problems.
Grid computing then can be summarily described as computing infrastructure where
computational power and resources such as services, data, CPU speed, memory, etc. is as
readily available as electrical power. These computational services make this power and
resources available to consumers with differing levels of expertise in diverse areas and in
which these services interact to perform specified tasks efficiently and securely with
minimum of human intervention. While accessing these services is on on-demand basis and
ubiquitous, they can as well be dynamically and transparently constructed from distributed
sources. Therefore, the service consumers do not need to know prior to accessing services
through a simple mobile terminal. Service providers on the other hand can extend Grid

services facilities at any moment, as it also manages the architecture and defines policies and

17

Chapter 2-Background

rules for accessing and consuming such services. Hence, according to Foster et al [9], the
Grid computing is an emerging way of thinking of a distributed environment as a global scale
infrastructure to share data, distribute computations, coordinate works, and access remotely

and geographically dispersed services and resources.

However, this original vision of the Grid has moved from what it was in a new dimension.
The explosive growth in computation and communication infrastructure together with
proliferation in the mobile device technology has given birth to a new Grid concept known as
mobile or pervasive Grid. This is the marriage of mobile or pervasive computing with Grid
computing. Mobile computing provides the ubiquity and mobility for accessing conventional
Grid services while the Grid provides the bridge for mobile devices in terms of storage,
computation, resource discovery, and data scheduling and processing power. However,
wireless network and mobile device limitations have to be integrated seamlessly into more
stable and resource-rich Grid infrastructures. The need for this, therefore, calls for a way in
which mobile services running on mobile devices that are designed to access available
services in the infrastructure can be made to adjust and fit into such dynamism in its
execution contexts. In the section that follows, a description of the management of such

technigue known otherwise as adaptation 1s presented.
2.4 Dynamic Adaptation Management

From the preceding sections, it can be seen that there is a fundamental need to integrate both
mobile systems with Grid infrastructures in a manner that will seamlessly make services
available to service consumers with good quality of service. Service adaptation can be
described as changing a service according to context changes, including user needs, which

influence its execution in order to make the service available in the face of the adverse

18

Chapter 2-Background

context changes.

Though these contexts change, some of their properties particularly their core functionalities
remain the same. It is cumently the focus of extensive research [48]. Some of the
techniques such as data adaptation, energy-aware adaptation and context-aware adaptation
have recently become crucial in achieving adaptation [38]. We wan: services to be able to
change at run-time, say, to adapt the amount of memory available for their use, the network
bandwidth they take up, or maybe, when running out of power, switching to low-power
mode. They should be able to detect these changes in the environment and respond to them
appropriately. This is the end result we want services to achieve. On the other hand,
application services can employ various ways to respond to the change — “the means”. By
changing quality of the data accessed, such as a poor quality image, both network
bandwidth and memory can be saved. In other words, we are adap;ing the data quality, in

order to achieve two ends.

It follows that on-line adaptable systems must react to fluctuating environments. For
instance, if users get connected to wireless multimedia telecommunication services during
peak period, dynamic adaptation maybe desirable rather than dropping calls or rejecting
packets arbitrarily with no care about the rendering. The idea here is to adapt the functions or
behaviours of the systems to the fluctuations in their environments without apparent
degradation. This will involve dealing with adaptation reasoning and determining what
system changes to perform. In the next section, existing adaptation mechanisms and policies

are classitied.

19

Chapter 2-Background

24.1 Adaptation Mechanisms

In order to design and model adaptation, researchers have used various adaptation
mechanisms and policies. Adaptation mechanism deals with a way to support potential
adaptation and the adaptation policies deal with semantic-based adaptation tailored towards
the underlying applications [25]. Some of these mechanisms are briefly discussed in the next

sectiofn.

2.4.1.1 Migration or Code Mobility

The cited works in [22, 27} deal with movement of distributed application components at
runtime. One can also say that it involves moving service from one service node to another
in order to reduce transmission distance and overheads between a service consumer and a
service provider. However, migrating service components from one node to another, requires

the need to preserve states of the migrating service.

24.1.2 Parameter adaptability

This involves modifving variables that determine program behaviour. In mobile computing,
this approach has been adopted in context-aware systems for developing pervasive
environment [25]. Here, applications are tuned using some external environment properties,
for example this has been used to adjust a TCP protocol by controlling parameters that
influence retransmission in response to apparent network congestion. However. parameter
adaptation is not suitable for handling configuration that is not decided at design time, but

offers the advantage that adaptation help to achieve good performance.

2413 Compositional Adaptation

This is a kind of adaptation that results in parts of a system or algorithm being exchanged in

Chapter 2-Background

order to improve the application's fitness to its environment [30]. The larger adaptation scope
of this mechanism gives it an edge over all other adaptation mechanisms. It does not only
enable simple tuning of code programmed for design time but also copes with such
adaptability that is not anticipated during system's original design and development. This
type of adaptation redeploys and recomposes applications or services while taking into
consideration the context of execution of such services.

In [30] compositional adaptation mechanism was defined by answering these three questions.

(a) How to compose adaptation: In order to answer this question, some specific approaches
used to compose adaptation are discussed next. Techniques such as reflection, software
components composition [30] create some level of indirection between application entities to
construct open and reconfigurable sysiems while applying the separation of concemns
principle, which means separation of functional and non-functional aspects of the
applications.

A software component based approach is a good paradigm used for composing adaptation.
Services are constructed by composing a set of components both statically at design time and
dynamicalily at run time. At design time, components of a service are specified like contracts

as component types and interaction between these components as connectors.

The service components model is very useful in handling adaptability of mobile systems.
Many component based systems have adopted this pattern. Systems such as SATIN[29]
define component models that support logical migration, dynamic reconfiguration using
active rules; while some use planning as an adaptive deployment process to select

appropriate component composition.

Chapter 2-Background

(b) Where to compose Adaptation: Compositional adaptation can be constructed in two
different ways; dynamic and static compositions. In dynamic composition, there are
mechanisms that can be applied at run time such as removal or addition of components at run
time without halting or restarting the application. It is a potential way to compose dynamic
adaptation. However, static adaptation takes place at design time i.e. at development, compile
and load time. In this approach, adaptation is hard-coded into the application codes. This
means that the adaptation behaviour cannot be changed at run time. Some techniques such as

Aspect Oriented Programming using Aspect J [46] have been used in this regard.

Reflection is the ability of a program to reason about, possibly alter its own behaviour [66].
Reflection distinguishes between the base level that represents run time system objects and
the metal level that reflects the base level transparently. These two levels are causally
connected, meaning that modifications to either of the two will be systematically reflected on
the other level in both directions. Two types were identified: Introspection and Intercession
[25]. In introspective reflection, architectural properties of the running application are
observed and sensed including interaction between program entities, method signatures and
states, but intercession enables a system or an application to act on these observations and
change its behaviour. This reflective technique has been adopted in a number of mobile
middleware applications to observe and reconfigure the system according to the adaptation

needs and context changes [66].

(¢) When do we compose Adaptation? An answer to this question deals with the level of
the system at which adaptation can be integrated. This maybe in the code of the application
itself or a separate svstem maybe used to achieve adaptation such as in the middleware

approach [30]. Three different levels have been identified [33]. At one extreme, adaptation is

(R
2

Chapter 2-Background

independent of the systems (both operating systems and middleware). This approach is also
called the Laissez faire approach [33]. This approach embeds the adaptation into the
application code and hence makes the application development so difficult and complex. It
lacks resource arbitrator that helps to resolve resource demands by the application and the
available resource. The application transparent is another extreme approach where the
systems (both operating systems and middleware) are solely responsible for this adaptation.
In this technique, adaptation requirements of the application are not taken into consideration.
Between these two extremes lies the application aware approach where adaptation is a
collaborative responsibility of both application and the systems. The systems supplies
information on the underline context and resources while the contexts of the users and its

devices are also provided for appropriate and dynamic adaptation decision.

2.4.2 Adaptation Policy

Designing mechanisms or strategies to handle adaptation, or to reconfigure a mobile system
is not enough. The most complex problem in the field of dynamic adaptation is the problem
of how to calculate or derive a new feasible configuration that will fit the current situation in
systems executing contexts. The main advantage for using policy is the separation of
concerns between functional and non-functional properties of an adaptive system. The
declarative nature of policies simplifies the definition and change of adaptation strategies.
Depending on the domain in which adaptation is being designed, such adaptation policies can
be realised in different ways. In [25], three kinds of policies were distinguished. The action-
based, the goal-based and utility-based policies.

2.42.1 Action based polices

Action based policies are very popular and are used in many domains such as network and

I~
tad

Chapter 2-Background

distributed systems. These types of policies consist of situation-action rules that specify
exactly what to do in certain situations. This approach was adopted in the domain of software
architectures to express dynamics of system architectures. These rules sometimes are
expressed at the architectural description language level (ADL) [71] by associating invariant
in the form of event-action rules so as to express dynamic reconfiguration actions in
components-based architecture. A good example of systems that explicitly used the concept
of an action based adaptation policy is DART [72]. Its policies were represented and
associated to components, coordinated and managed by a manager component. The
coordination included the resolution of conflicts and incoherencies between the set of
policies present in the system. In order to handle these, the DART’s policies were organised
at three abstraction layers: the system, the middleware and the application. At each
abstraction or level, the policies are further organised with different priorities. Safran [67]
and Chisel |27} extended this idea by proposing self-adaptive component model and
adaptation manager as separate entities. This enforced separation of concern from application
functionalities. Safran[67] and Chisel[27] for instance, extended the Fractal component
model by associating rule based policies to fractal components as a new kind of components

controllers for adaptation.

Though these systems allow integration and modifications of policies dynamically, they did
not make provision for the policy management problem in situations where there are many

applications with different policies in general and distribution in particular.

The action based policy though very powerful; its use in pervasive environment is a very

difficult venture. Apart from the fact that such policy managers must be very familiar with

Chapter 2-Background

low level details of system functions; its use becomes very complex. It may also prevent

some systems from exhaustively exploring all adaptation options.

2422 Goal-based Policies

This is an Al based approach to adaptation. Multi-agent systems and planning algorithms are
good examples of areas where this approach has been embraced [25]. In goal-based policies,
a higher level form of behavioural specifications that established performance objectives that
left the middleware to determine the actions required to achieve adaptation objectives were
designed. This is particularly useful in systems that determine algorithms that will allocate
computational resources to guarantee some QoS. Goals provide binary classification of
policies into either desirable or undesirable performance, which is to either maximise the
probability of achieving such desirable state or minimising the undesirable state. A major
setback of this policy approach is that it does not offer a mechanism and flexibility to
measure how one solution is appropriate to one situation in order to negotiate contracts
between competing mobile adaptive systems. A good example of systems that adopted this

type of policy is the work by Doyle et al [70].

2.4.2.3 Utility Function Based Adaptation

This is an objective function that expresses the values for each current state of the systems.
This function permits on-the-fly determination of a best feasible state while other policy
types place the system at any state that are both feasible and acceptable at that point without
any provision to improve the system overall performance[25]. Some existing systems [25,
28, 29, 32, 37] use utility functions 10 qualify and quantify the desirability of different
adaptation alternatives. These works are quality of service based and actually deal with

resource allocation and typically in mobile and pervasive computing. Systems such as QuA

Chapter 2-Background

129] and Odyssey [8] are examples of systems that utilise utility function based adaptation
policies.

2,43 Adaptation Strategies

An adaptation strategy deals with what needs to be modified or adjusted and how to go about
this [38]. Adaptable applications can change their runtime characteristics in response to some
external triggers or changes. These runtime changes are considered using several dimensions

to categorise adaptation strategies as discussed in the next subsections.

2.43.1 Network Adaptation

This is the ability of systems to change their network behaviours in response to changes in
the network infrastructure. They should be able to reduce their bandwidth requirements,
accept a greater degree of packet loss or be able to connect to a new network environment as
the need arises.

2.4.32 Memory Adaptation

This is the ability to adapt to the changes in run-time memory available. Every device has
different amounts of memory and processing power available. An application should have the
ability to provide the same functionality in a resource-rich PC and in a resource-constrained
PDA environment. Moreover, with several applications running at the same time, it is
possible that one application may find itself suddenly out of memory. In that situation, it
should gracetully adapt to perhaps a more memory efficient mode.

2.4.3.3 Energy Adaptation

This is the ability of an application, or system, to adapt its energy usage. Power is one of the
most limited resources in a mobile environment. Applications and systems should be able 10

run in a more energy efficient manner, in situations of limited power supply.

Chapter 2-Background

243.4 Device Adaptation

This is the ability to adapt to device configurations. Users move from one device to another.
Applications will need to follow the users. The devices may have different input and output
capabilities. For example, a PDA may use a pen-based input, whereas a laptop uses a
keyboard. They may have different processing powers. It involves more than just changing
the device drivers. The presentation format, the Ul and perhaps the application logic also
need to adapt to the new configuration. Applications need to provide a seamless transition
from one device to another. A good example of system that provides device adaptation is
MADAM [30] where an application can be adapted to the screen, speaker, and network
adapters of the device.

2.43.5 Data Adaptation

Mobile applications usually need to access data for information or for entertainment, such as
emails, stock quotes, web pages, multi-media, etc. Data adaptation involves changing the
data in some manner, such as changing the quality of the data accessed, transforming data to
a more appropriate form, accessing a different set of data altogether, etc. This is the basis of
many of the transcoding and content adaptation techniques. There are several projects that
use proxy-based data adaptation to change the quality, or fidelity of the data accessed, on the
tly according to the client resource available, or according to the network environment [67].
For example, in Odyssey [8], the server has several pre-generated versions of the data with
different fidelity levels, and the appropriate one is chosen at run-time according to the
resources, or even energy, available.

2.4.3.6 Fuactionality Adaptation

This involves changing the way an application carries out its functionality. Applications in a

Chapter 2-Background

mobile environment can be seen as fulfilling certain tasks [5]. Functionality adaptation
implies carrying out the same task but in a different manner, either by using a different
mechanism, different algorithm, a different QoS characteristic, or by switching to another
execution mode, etc. It involves changing the execution of the task. For example, if a device
does not have sufficient computation power, an application can use a smaller key for
encryption.

2.43.7 Migration Adaptation

This involves changing the location of execution, for example, by moving to another
machine with more resources. This is often used in the fields of distributed computing and
mobile agents, whereas in the field of mobile computing, it is still rare or underdeveloped.
Adaptive distributed applications and mobile agents migrate to nodes, which fulfil the
resource requirements, if they realise that the current node does not have sufficient resources
for their execution [18, 33]. Migration adaptation can be advantageous in a mobile
environment, for example, migrating from a PDA to a nearby laptop in order to speed up
execution.

2.43.8 Interaction Adaptation

Being the focus of this investigation, imeraction adaptation deals with adjusting the
communication between ports and connectors of a given mobile application either as a focal
or distributed application. Such systems are component based and have their functional and
non-functional properties described in their architecture. A good example of system that
adopts this adaptation mechanism is Prisms [21]. The interaction adaptation may involve
disconnecting or removing. or adding of components, connectors and ports in order to adapt

the system 1o its current executing contexts.

Chapter 2-Background

2.5 Context Management

The previous section discussed adaptation management with various mechanisms and
strategies in existence that has been explored in adaptive systems. In this section context
management is discussed. One of the primary requirements for achieving or designing
context aware adaptation mode! is that the model must make provision for sensing the
changes that occur in its context of execution at runtime. Context management maybe
referred to as the collection and management of contextual information that enable context
aware computing. The context aware computing paradigm does not only adapt applications
but also adapt to changes in context that occur during the execution of the application such as
time of day, location of the system. Dey [26] defined context as “any information that can be
used to characterise the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the

application and the users.

In this work, context is defined as those situations surrounding executing systems that either
positively or negatively influence the system. An adaptable mobile Grid system is expected
to provide appropriate mechanisms for acquiring, storing, retrieving and evaluating contexts.
The evaluation of contextual information is a triggering process that causes the execution of
adaptations. The context management aims at accumulating, processing and forwarding of
relevant context information. The following section is focused on the major concerns in
implementing context aware systems- one of the characteristics that must be built into the
adaptation model in this research. To understand this concept, the following questions are

addressed together with analysis of context aware systems. What context data should the

Chapter 2-Background

systemns sense and present? How does the system collect these context data? And how the
context data should be modelled and stored? Context aware systems have the capability to
discover and exploit contextual information such as user and system locations, time of day,
nearby people and devices; user activities and environmental contextual information such as
network QoS parameters. Contextual information of context aware systems infrastructure is

the core issue that must be addressed to be able to implements such systems.

it is obvious that the mobile and pervasive environment is unpredictable whilst the
application is moving between different geographical locations, different supporting devices,
and variable and local parameters such as noise, power level, user preferences etc. Therefore
there are needs to accommodate various types of context data structures and means to handle

them appropriately. In [25], context information was categorised into:

{a) Physical Context

Noise, light, temperature and traffic conditions are some good examples of physical context.
These are context information that describes environmental factors that can be sensed by
using some specialised hardware devices such as light and noise sensors.

(b) Computing Contexts

This is related to computable or measurable information that is retrieved by calculating or
checking some routines. Information such as the memory of mobile devices, its processing
power, and storage. Also, network connectivity, bandwidth, latency, and throughput and
nearby resources are good example of computing contexts. This context information can be
sourced by using either logical or virtual sensors that source context data from databases

logins etc.

Chapter 2-Background

(e) User Context

User profiles, preferences, interests, expertise, workload, tasks, etc, present good examples of
user contexts. This is closely related to the user personalisation issues that enabie the ability
to adapt products and services either to large user groups or, smaller interest group or

individual users.

2.5.1 Context Sensing

Context information can be retrieved by using some specialised mechanisms which are often
referred to as sensors [53]. Time for instance is sensed by using a system local clock to check
scheduled tasks or current activities. Systems such as Active Badge and Cyberguide [64] use
time to adapt the systems behaviour. Location is sensed by using a Global Positioning
System {GPS) for outdoor location sensing. For indoor, transmitters and receivers are used.
This location information can be used to adjust systems behaviours and a good example is a
call forwarding application that uses location information to find the nearest phone to the
users. Network bandwidth can be sensed using kernel functions that measure bandwidth and

gives notification to the adaptation subsystems.

2.4.4.2 Context Modelling

In order to handle contextual information that is produced by the context sensors, it must be

stored in data structures that make it easier for retrieval. Different ways have been explored

Chapter 2-Background

Figure 2.1: lllustrating Mobile Grid Service Execution Contexts

to model and express context data. A service provider in Figure 2.1 is considered as an entity
in the Grid system that provides some communication services, storage services, processing
services, or any service as utility to service consumers. It is envisaged that these services are
provided as utilities to service consumers on demand [56]. The access to this contextual
information, therefore, provides an opportunity to use context in service provisioning that

would result ultimately in some higher quality of service.

Most of the existing traditional Grid systems perform their functionality based on explicit
input and are not necessarily aware of the context of their execution. For example, a web

service request would be made based on the service URI.

The result will be the service being loaded into the client’s device. This result may not well
be well presented on the client device if the service provider is not provided with contextual
information that tells it whether the client device is a mobile phone with constrained
resources or a desktop with considerable rich resources. However, in a context aware
environment, this information is integrated as part of the service or an external context-aware

module monitors the context of the system. Figure 2.2 illustrates a service environment that

(5]
~J

Chapter 2-Background

l
|

s
{
|
s
|
s

| |
| Servsuﬁoquest! —— ! Service Provicers -1 Service

Context Information

L

Figure 2.2: Context-Aware Service Provision

is not context aware while Figure 2.3 illustrates a context-aware service environment. The
context-awareness is built as an external module. For this type of systems to provide context-
aware services there is need for context input besides functional input.

This means that the output of such a service request depends on the context information the
system is provided with. This contextual information is provided by some intelligent sensors
and monitors. These contexts can be categorised into three: One, the service client’s context
such as available memory, storage and processing power of the mobile clients; Two, the
environmental context, such as network bandwidth, latency, network availability, etc and
finally, the service consumer’s contexts.

These may include, among others, user profiles, services request types and some QoS
specifications. These are explained in more detail in the next section. In a web service for

instance, some information about the service can be transmitted using the SOAP header.

33

Chapter 2-Background

However, there is vet to be a standard mechanism for developing general context-aware

systems. Nonetheless, the following have been identified as advantages for integrating

context awareness in today’s adaptable systems [7].

(i) Adapting the service presentation to service consumer devices, for instance, the images
and videos that are suitable for the client’s device.

(i1) It helps 1o adapt services dynamically to a new situation such as location, time, users
profiles, networks and the device capabilities and

(iiD)It could also help the service consumers to make decision on the requested service, if the
system is able to provide context information to users.

Finally, considering context aware adaptable services would help improve the objectives for

which the service has been created — improving usability of the service, the number of

satisfied service consumers. However. this context information is complex to model.

Location for instance is very complex and difficult to conceptualise. But some methods for

modelling context make it easier 1o model any type of context data. These modelling

approaches are briefly discussed as enumerated in [23].

(a) Logic Based Context Model

In this model. context data are expressed as facts in a rule based svstem. This enables
automated inductive and deductive reasoning to be done on contextual information. The first
order model allows an expressive description of context using Boolean operators and
universal quantifiers. A good example of logic based context model is described in [31].

(b) Tagged encoding model

Context data are represented as tags with corresponding fields. It evolved from

ContextML[{660] which is an xml based protocol for transmiting contexiual information

Chapter 2-Background

between a mobile client and a server.

(c) Key-Value Pairs

This is used to store context information as key that refers to environmental context variable
and the value of the variable holding the actual context data. This type of context model uses
pattern matching to query the context data and notify the adaptation mechanisms. An
example of context model is used in Mobisaic project [61].

(d) Object Oriented Model

The context data is embedded in the states of the object and the object provides methods to
access and modify the states as used in MADAM project [25].

(e} Ontology Based Model

The basic concept of this model is to provide vocabulary for representing knowledge about a
domain and for describing specific situations in such domain. Ontology based context models
define a common vocabulary to share context information in a pervasive computing domain
and it includes machine-interpretable definitions of basic concepts in the domain and the

relations that exist among them. An example of systems that use this model is SOCAM [65].

2.5 Dypamic Reconfiguration

A dynamic reconfiguration is one of the best techniques {52] to adapt a system as it helps to
easily implement adaptation decisions. The idea here is to evolve incrememtally from one
configuration 1o another at runtime as opposed to design time while having little or no impact
on the system execution. This traditionally takes place at runtime and it can be applied to
rearrange various elements of various parts of the system such as application or services,
platforms. systems architectures and management facilities. This means that systems need not

be taken off-line, rebooted or restarted 1o accommodate the adaptation changes. Dynamic

(¥
L

Chapter 2-Background

reconfiguration however, requires information about the running systems. In addition, to
reconfigure a system, necessary protocol must be defined. Context sensing with runtime
monitoring can be adopted for this purpose. Such sensing must make provision for reasoning
and evaluation of the sensed context. Triggering and realising reconfiguration should be
based on some specified criteria and runtime monitoring of the system execution contexts.
For instance, performance requirement may require the migration of some components so
that they are closer to their source of demand. An alternative might be to host a particular
service on a less loaded system so that the services can execute faster. Two major approaches
in research have been proposed to achieving reconfiguration [22]. One is by adding
configuration elements to the application modules which is not desirable approach as it
makes the systems very complex and does not allow separation of concern. In such
reconfiguration, the following elements maybe specified. One, the definition of interfaces of
the systems modules in terms of provided services and required services. Two. localisation of
the source files and three links between provided and required services of the application
modules. This approach. however, offers a solution for structural changes by explicitly

specifying components binding and by on-line replacement and duplicating of components.

In order to ease reconfiguration execution flow. reconfiguration has to be initiated at some
points. This sequence consists of two steps: waiting to reach a reconfiguration point: and
blocking communication channels to manage messages in transit while the component
context is encoded and new components are created. Each of these approaches implemented
a reconfiguration mechanism in the application codes which are not desirable as stated earlier
on.

Another important way in which reconfiguration is effected is based on component and

Chapter 2-Background

configuration languages. This is different from the first approach explained above mainly
because it supports various interaction schemas. In addition, components based
reconfiguration provides additional run time flexibility coupled with separation of concerns it
offers over the previous approach. For instance, the Architectural Description Language
(ADL) can be used to create, validate and update architectures. ADLs are very useful in
expressing component hierarchy and in specifying interaction, application deployment and
the dynamic features of such applications. Some ADLs have been used to specify behaviour
and non-functional properties such as performance, security, availability etc. by using
additional interfaces to generate and execute code. ACME, C2, Olan, Aster, Rapid, Wright,
Unicon [62,71] are few examples of such ADLs thart allow the users to specify the behaviours

of various entities of the systems and the components interconnections.

2.5.1 State of the Art of Component Reconfiguration

The component reconfiguration helps to easily implement dynamic adaptation and it is
classified into two: Software and hardware reconfigurations [23]. To adapt the behaviour of a
mobile device to prevailing context changes in its environment, application services running
on top of such devices must be adapted by reconfiguration. In software reconfiguration,
adaptation is achieved in two ways: by tuning the components parameters and by
components composition. Component parameters tuning describes the processes in which a
component is designed in a way that allows it to operate in more than one possible mode.
Component compesition is 2 more general and powerful way of adapiing systems through
reconfiguration [32]. This is because 1 allows applications to be reconfigured in a manner
that was not anticipated at design time. In hardware reconfiguration. however. features such

as display brighiness and speaker’s volume can be adjusted according to some context

Chapter 2-Background

changes. Also, the network adapter can be adjusted by switching them on or off or to a power
safe mode. Furthermore, operating systems parameters can be tuned, for example the system
storage and memory balance of a PDA. A significant characteristic of hardware
reconfiguration is that the changes, typically, affect the whole device and consequently, all

software running on top of it.

2.6 Related Work on Adaptable Systems

This section provides the analysis of some of the most influential researches in the field of
dynamic software adaptation. The key areas of interest here include, but not limited to
adaptation strategies as enumerated in section 2.2. These svstems are analysed specifically
with respect to their relevance to the aims and objectives of this dissertation. In this analysis,
adaptable systems are classified based on their adaptation strategies, mechanisms and target
platforms.

2.6.1 CARISMA

Context Aware Reflective Middleware System for Mobile Applications [66] is a research
carried out at the University College London. It presents a design for peer-to-peer
middleware based on service provision, whereby reflection is used to adapt the interaction
between context-aware mobile applications. Each node of the system can export services and
possible difterent behaviours or implementations for those services. Services can be selected
according to user and application context information as specified in an application profile,
which is an XML document embedded in the application. It is responsible to monitor the
application execution contexts especially by querying the underlying network-enabled
operating systems. An application can request to view and modify their profiles at runtime,

thereby adapting the middleware as application specific and user specific requirements

Chapter 2-Background

change dynamically. It also provides the ability for the application to be informed by the
middleware of specific execution conditions, supporting the development of resource-aware
applications. This system is specifically based on the provision of multiple implementations
of the same service with different behaviours. This concept is similar to the concept of using
variants of a given service to adapt it to current context situation. These variants are various

implementations or functions of same service but with varving quality of service.

Unlike the work in this dissertation which adapts the interaction of the service to the
execution context changes to ultimately reduce response time, CARISMA is specifically built
to adapt the service to user’s contexts. Not only this, it primarily focuses on the identification
and resolution of profile conflicts and not on the actual provision of service adaptation to
other context situations. CARISMA adapts service behaviours in response to context of
execution using reflection. In the process of adaptation, some aspects of the application are
altered. This, however, is not desirable as we want a situation whereby the service consumer
though may not have exactly the requested service, but would be satisfied with what she is

presented with by reducing the service response time.

2.6.2 M3

The M3 [75] architecture is an adaptable middleware framework that supports adaptation
using context-awareness. This it achieves by using a mobile Enterprise Architecture
Description Language {(MEADL) script to dynamically reconfigure how application
components interact with each other within runtime environment. In this system, all
components interact and coordinate with each other using events. As these events occur, they
are monitored and used to trigger adaptation of the architecture and the underlying collection

of distributed services and nerwork protocols. The M3 runtime environment maintains

Chapter 2-Background

context variables that can be used to perform adaptations of this application in a context
aware manner. While our work has many similar design ideas to this project, the M3 system
has some important drawbacks. The adaptation mechanisms prototyped (including filtering,
object migration, interface restrictions and web content adaptation) all lack the generality and
openness of a general-purpose adaptation mechanism as used in our design. Morphable
objects, i.e., objects that can change their type at runtime, are mentioned in [73] but no more
information is available about these reflective techniques. However, our design adopts the

utility function for general purpose dynamic adaptation decision making.

2,63 MADAM

In the Mobility and Adaptation Enabling Middleware approach, applications are built as
components frameworks. Explicit models of the application framework architecture that
specify the variability are used by the MADAM Middleware to reason about and control
adaptations at runtime. The central adaptation control loop of the middleware detects changes
in the environment, reasons about and decides on suitable adaptations to fit the new operating
conditions. and then implements the adaptations through reconfiguration of the running
applications. To enable the middleware to distinguish between implementation choices at
variation points, components are annotated with property evaluator functions which may
represent QoS characteristics. The decision on which adaptation to make is done by the
MADAM planning framework. The planning activity consists of dynamic discovery of
implementation alternatives at the variation points of the application component framework,

and the selection of those variants that maich both the current user and device contexts.

Adaptation alternatives evaluations are performed by a utility function which composes and

40

Chapter 2-Background

weights result from the property evaluator functions of the component. MADAM planning
framework is domain independent and has been applied to many adaptation types. The
middleware is built as an open framework and each of its components dealing with
adaptation management, context management, and dynamic reconfiguration and deployment
are separated from the core. This openness makes MADAM useful for the kind of adaptation
this work addresses as its open frameworks can be adapted to effect our adaptation strategies.
This helps to reduce the prototyping time and eliminate re-inventing the wheel. However,
MADAM does not address adaptation from service oriented point of view and does not
assume a grid environment in its design.

2.6.4 Sparkle

The Sparkle Project aims to provide an Internet-enabled infrastructure for mobile computing
which supports dynamic component composition. Applications are seen as a means by which
users perform tasks [38]. An application usually provides several functionalities which users
can invoke to fulfill their tasks. According to Sparkle, applications can be broken up into
components along the lines of funcrionalities. Every component provides certain
functionality. There may be more than one component which fulfills the same functionality,
at runtime, the appropriate component is brought in and executed. Hence, applications are
linked by functionalities. rather than by exact components. Consequently, when one runs an
application in different environments, to carry out the same task, the actual components used
may be ditferent. In this work, clients send requests for the components to the network. and
are returned with the appropriate component. Since applications are linked by functionality
rather than by exact components. the requests specify functionality requirements rather than

component identifiers. They also include non-functional requirements such as run-time

41

Chapter 2-Background

resource information and context, so as to determine which component would be most
suitable for the client. From the client’s viewpoint, there is a lot of reliance on the network.
The network stores the components and also possesses intelligence to match the appropriate
component for the client. This project uses component model similar to our component
model for adaptation as application are neatly arranged into component which can be
composed dynamically at runtime. These components are predefined and are stored in the
network. If the network is not available or the network condition become worse, then
applications are not able to run. It also uses resource managers that maintain information
about physical resources, contexts and connectivity. This is similar to our context monitor
that maintains similar comtext and resource information. It, however, uses proxies for
matching adaptation whereas we used the evaluator that uses planning and utility function for
adaptation decision.

2.6.5 Aura

This project looks into the issues that affect component-based development of pervasive
systems [49]. It considers pervasive systems as collections of cooperating components that
achieve users’ tasks. Aura project proves that software systems in a pervasive environment
must exhibit the following characteristics for them to be adaptable in such environment. One,
they must exhibit mobility. This means that tasks must follow users as they move from one
device to another. Two, they must exhibit adaptability. Tasks can take advantage of resources
as they change and three; they must be resource-aware. This means that components must
publish their resource requirements and offer multi-fidelity of services. Aura models
applications in terms of tasks. Our model is very similar 1o this project in the sense that, our

model must be able 1o integrate the resource and context requirements of each running

Chapter 2-Background

service for adaptation decision making process.

2.6.6 DACIA

This project provides a framework for building adaptive distributed applications. In DACIA,
applications are made of components located in various network entities and the links
between components represent the direction of data flow within the application [76]. It
considers components as processing and routing units, transforming one or more input data
streams. There are monitoring modules specific to each application, which are responsible
for monitoring application performance and making configuration decisions. These
applications are adapted dynamically by adjusting the connection between components and
location of different components, and hence leading to a change in the applications. This
appears to be a good framework suitable for distributed applications which require data flow
from one entity to another such as video-on-demand applications however; the adaptation in
DACIA is application specific meaning that every application implements its own adaptation
policy. This makes the adaptation very static and complex to develop. This also constitutes a
lot of overheads in terms of resources requirements. In our design, we look into a more
dynamic and general adaptation policy that is not application specific, but instead optimises
required service execution resources. In this case, the system has a wider view of the
resource needs of all running services. It will also help make services run faster, now that
services are not saddled with the responsibility of deciding environmental resource
availahility.

2.6.7 Globus

This 1s a framework that allows for both resource reservation and application adaptation. In

this architecture. heterogeneous resources are modelled by resource objects. The architecture

Chapter 2-Background

of Globus[13] encompasses several components. The information service provides
information about resource properties and resource availability. A co-reservation agent is in
charge of both mapping application QoS requirements to specific resource requirements and
requesting the reservation of such resources. The task of a co-allocation agent is similar but
focuses on the allocation of resources. Local resource managers are responsible for attending
request for allocation of resources. Adaptation is then achieved by the use of three distinct
mechanisms. Firstly, sensors are in charge of monitoring both resources and the application
behaviour. Secondly, decision procedures allow for the selection of an adaptation strategy.
Lastly, actuators are the means to dynamically modify both resource allocations and
application behaviour. This pattern of design helps us in the design of the adaptation model.
The Globus project can form our Grid end infrastructure upon which adaptation service
module is built. It will provide the resource management for Grid infrastructure. But the
design of Globus does not consider mobile service and we hope that the combination of the
resource rich Globus platform will help make up for the resource poverty of mobile devices.

2.6.8 GRACE Project

In its approach [63]. system layers in GRACE are designed with the ability to adapt in
response to system or application changes. Further. to achieve the full benefits of these
adaptations, all system layers cooperate with each other to determine a system-wide globally
optimal configuration. For example, for real-time video delivery, the simple choice of the
compression technique entails a trade-off between computation time, energy and number of
bits (bandwidth). For a globallv optimal solution, the choices for error correction for the
unstable wireless network and protocols for congestion on the wired part of the network were

considered. The presence of multiple applications contending for the same resources and the

Chapter 2-Background

ability of the processor to adapt its performance/energy tradeoffs, further reduce the
possibility that any layer can by itself determine a globally optimal solution. The centre piece
of the GRACE project is a cross-layer adaptation framework that enables coordination of the
adaptations at the different system layers, for the best QoS possible. The key challenge lies in
exposing only relevant information across layers without compromising the current
advantages of having system layers that are virtually closed to each other (i.e. selective

transparency).

Thus, the solution has the following properties: (1) It performs its global cross-layer
optimisations without exposing implementation internals of a laver to other layers, (2) It
localises adaptation decisions specific to a layer, to within that layer, (3) A system
component that exploits adaptation capabilities in other system layers must also be usable
with implementations of those lavers that do not have the same adaptation capabilities.
However, the focus of this project has been on energy management for single multimedia
node. The adaptation we designed is aimed at generic services meaning that it can be
customised to handle any type of service adaptation. But understanding of the use utility to

model adaptation in GRACE project has been very helptul.

269 ACCORD

Administering Connected Co-operative Residential Domains {(ACCORD) uses a closely
related approach to the one used by our model as it helps to develop compassable adaptable
applications. It manages behaviours and compositional (interaction, organisation and
coordination between components) aspects of an application using high level rules, injected
at runtime. and enforced by an agent infrastructure. Instead, our work relies on planning {50]

to ensure correct execution of reconfiguration actions. In ACCORD, adaptation element is

Chapter 2-Background

augmented with Element Manager that monitors its execution contexts, and fires adaptation
rules. On the other hand, our model uses utility based policies rather than rule-based policies
to fire adaptation actions. [t also separates the monitoring module, the dynamic evaluation
model and reconfiguration module. This means that services can now be adapted with ease
by service developers, making services to be easily managed, debugged, and maintained.
2.6.10 SECAS

Simple Environment for Context Aware Systems described in {7] is a platform that atempted
to make services. data and user interface adaptable to varying contexts in a mobile
environment using standard methods and approaches for their solution. It is based on four
sub-systems: the application core, the adaptation layer, the context management and the
client side. A set of components for each of these subsystems manages the operation needed
for sensing and interpreting the contexts and for adapting consequently the application core
and the user interface. SECAS’s context management is highly dependent on the
environment and on the sensors that capture and transmit raw context data. The complexity
of designing such context sensors and interpreters is encapsulated in context Providers and
context Interpreter. The context providers are responsible for managing context aspects such
as user profiles and preferences. The interpreter translates the low level context into high
level more meaningful representation. Some part of this context is dynamic and volatile
meaning that they are consumed as soon as they are sensed while some are static meaning
that they are saved a repository. Such contexts usuallv do not change frequently. The
adaptation is applied to application services. exchanged data with user visualisation. This
means that SECAS uses content and user interface adaptation strategies. However, details of

how their adapter selects a feasible service instantiations were not given. A ot is learnt from

16

Chapter 2-Background

this work as its modular design of context management, and its idea of having various
instantiations of a given service are very useful for our design. However, the ideas of service
reconfiguration and utility modelling were not used which we believe has an edge over rule-

based model for dynamic adaptation modelling.

2.7 Concluding Remarks

This chapter has described a number of systems. The summary of the system discussed is
given in table 2.1. It has also discussed research that influences the goal and objectives of this
dissertation. The main objective of this research, as stated in chapter one is to design
adaptation mechanisms and algorithms in order to reduce response time between service and
service delivery in CACIP executing environment. Others were to develop a conceptual
adaptation model and dynamic decision making algorithm for the model. In order to reach
these objectives, a number of requirements must be met. An adaptation model that supports
interaction of service components in order to reduce response time is needed. This adaptation
must be able to perform adaptations on service components as thev are composed to form
these services. To test the model. an adaptation framework is needed that supports the
dynamic context monitoring, evaluation, and reconfiguration of service components at
runtime. From the research described, it can be seen that there currently exists no mechanism
that compietely fulfils the objectives and the dissertation continues next chapter with detail
design of CAAM model that meets objectives and requirements of this research. For
instance. the issue of adapting interaction between service consumers and providers were not
properly addressed. Also, some of the adaptation mechanisms and policies used in those
systems were static and are not good for dvnamic adaptation process. Therefore, a Context

Aware Adaptation Model (CAAM) is proposed to address these gaps.

47

Chapter 2-Background

Table 2.1: Summary of Reviewed Adaptable Systems

Adaptable | Adaptation Srategies { Adapation Caontext Reconfigurations Adaptation Application
Systems Explored Mechanism Awareness Policy platforem
Accord It uses condition objects 1o Usas rule- No Context No reconfiguration, Elses For stable
measure state of resources based and awareness lacks capability for contract- svstems. No grid
and services agent but is aware dynamic component pased policy { or mobile
mechanism for | of execution composition applications are
adaptation resources assumed
M3 Adapt Interaction of Uses events. Notaware of [Uses reconfiguration Rule-based Targeted mobile
apphcation components network user contexts ¥ described by a policy applicanons
protocols as MEADI scnpting adopted
contexts to language.
adapt
applications
interaction
RAM Adapt applicatzon roles Uses Aware of No reconfiguration Uses rule- Mobite
reflection and | application based policy [applications
meatd types contexts targeted
DACIA Adagis compongnt Uses Aware of Reconfiguranon used]| Uses rule- Not 1argeted at
connecton application applicat:on based policy § maobile
performance contexts application but
distributed
apphication
AURA Adapts application’s task Uses tasks as } Aware of Uses Reconfiguration | Uses utibty Targeted mabile
which 1s service with QoS for adapting device, user to effect adaptation funcuon- applications
specifications the svstem to | and decision based policy
context application
changes contexas
CARISMA |} Adapt application Uses Aware of No recoafiguration [ises rule- Mobile
interaction and behaviours Reflection applicanions based applications
moniter and and user palicies targeted
adagt COMENIS whith are
nteraciion embedded

48

Chapter 2-Background

among mobile the
applications applications

SECAS Adapting user imerface and || Based on web | Conmext- No Reconfiguration Not available I Mobile services
data 0 changes in conrexts SEIVICES aware are targeted.

Globus Uses, reflection and meta Not-Context Rule-based No reconfiguration Uses Mobife services
types to adapt sofrware aware but it's policy decision and devices not
dynamically at runtime resource procedures considered.

awdre. It does for

not consider adaptation
the context of policy

the users and

devices,

GRACE Uses the idea of crosslayer Not-comext Uses unimy No reconfiguration Uses utlity For singte node
adaptation and utibity 1o aware function function multimedia
quantfy the quality of modet for model to apphcation
application configuration decision quantify the

making quality of
application
configuration

MADAM Compositienal, parameter Context Utility based | Uses component Uses utilin Designed only
adaptation adopted to adapt | aware. adapeation reconfiguration function and § for mobile
software components and resource policy planaing for apphications
devices aware dvnam:c Senice

adapation wnteragnon and

decision erid services
providers are not
considerad

19

Chapter 2-Background

CAAM

Compositional, parameter

adapration,

Context

aware,

resQurce-

awarg

Utility-base
adaptation
policy with
on the flv
decision

algonithin

Use s service

reconfiguration

pattern for executing

adapation

Uses utiliry
function and
plarming for
evaluation
service
comexis and
for
adaptation

decision

Takes care of
service
consumer and
service provider
interaction 1n
Grid

Infrastrucure

Chapter 3-Model Design

CHAPTER THREE
MODEL DESIGN AND DEVELOPMENT

3.1 Introduction

This chapter describes the design of the dynamic adaptation model. The chapter begins with
the aims and objectives of this project followed by an example scenario as presented by the
author in [47]. Thereafter, some important requirements for the dynamic adaptation model
are identified. The chapter then continues with an in-depth discussion of a proposed context-
aware and reconfigurable model, explains some of the concepts adopted in the design, and

presented how the model can be used for adapting service interaction.

3.2 Requirements for Service Interactions

In chapter one, it was stated that one of the objectives of this investigation is to design
suitable adaptation mechanisms and algorithm for CACIP that reduces response time
between service consumers and grid service providers. Others are to develop conceptual
model for CACIP service components interaction adaptation, to design a dynamic adaptation
decision making algorithm and to demonstrate the design and model. Keeping these
objectives in mind, a number of requirements that meet the needs of the adaptation model are

unveiled by illustrating a simple scenario from which such requirements are generated.

3.2.1 Example Scenario

To identify the requirement of the model. a scenario is presented that is typical of such a
ubiquitous environment that the envisaged model fits as follows. Eunice has just arrived in

South Africa coming to Europe. On arrival at OR Tambo International Airport, and while

Chapter 3-Model Design

waiting for immigration clearance, she switches her blackberry device on and connects
through an enterprise wireless LAN at the airport. After necessary authentication and
authorisation, she is immediately provided with a number of services available in a Grid
environment. She plugs in and requests for mobile entertainment service. She is specifically
interested in a recently advertised home video which she has longed to watch while in
Europe.

However, a call comes telling her that her train will soon leave for the country side where she
is scheduled to meet with her parents. As she rushes to board the train, she decides to use the
cell phone function of her blackberry device while she pauses the video service until when
onboard. The service is then transferred to her mobile phone as she connects using GPRS
network and adapted to that terminal. She, however, changes her mind to watch a live
broadcast of the president address to the nation which was announced but noticed a serious
delay in response to her request as the train fast moves by. She then requests to connect
through a 4G network, which is higher in price compared to the GPRS network. At this point
she notices that her phone battery level has gone so low and hence requests to watch the
broadcast in black and white video mode. In this mode, her phone consumes less energy.
From the above simple scenario, some requirements for designing adaptation for such service
provisioning environment can be identified.

It could be observed from the scenario that we need systems that can continuously configure
and reconfigure themselves under varying and unpredictable conditions. Thev should equally
be able to dynamically monitor and tune the resources available to them. It is believed that
building adaptive behaviour into mobile systems will enable them to respond better and adapt

10 changes occurring around them. In order to achieve these. the following seven

Chapter 3-Model Design

requirements have been identified.

1 Security: In a distributed system such as Grid, entities interact with some other entities
with which they may not have complete trust. There is therefore need for authorization and
trust management. The decision about this sometimes has to be made in the presence of
strong existing trust systems. The classic Grid has very strong secure authentication but not
in a transient, volatile and unstable mobile Grid environment.

2 Extension of Functionality: This is needed to automatically exiend systems functionality
s0 that it could be discovered on the fly. This could be to discover new hardware resources or
discovering recent dynamically created services.

3 Availability of Networks: Eunice, in the above scenario, has the option of switching
among networks if the capacity of her existing network could not help deliver her needed
services. She can switch between 2.5G, 3G 4G, Bluetooth, or even WLAN. She should also
be able to switch between both on-line and off-line modes.

4 Service Presentations: The presentation of requested services needs to adapt to the
interfaces of the devices used for this purpose. For instance, switching from laptop to mobile
devices should not hinder her from having access to the service and have same level of
satisfaction with the presentation.

5 Service Redeployment: The services should have the capability to be redeployed on
various devices in order to improve their efficiency.

6 Changing the Quality of Data: There is need for the system to be able to vary the
qualities of the data based on context changes. For instance, when Eunice listens to the
president’s address, and suddenly there is a drop in the network bandwidth, changing the

video compression mode might be affected to preserve the quality.

wh
ot

Chapter 3-Model Design

Figure 3.1: Service Adaptation Architecture

7 Context-aware Interaction: The system should be sensitive to the interaction taking place
between the service consumers and the service providers. This is necessary for the systems to
be able to take both reactive and proactive decisions in case there is a delay longer than
necessary for the service delivery due to context variation.

These are some of the basic considerations in designing models for the type of adaptation this
study addresses. However, among all the stated considerations, this work focuses on
investigating adaptable context-aware interaction and Figure 3.1 illustrates such
environment.

In order to achieve this. the following requirements guide the design of the adaptation

model:

(1) The service consumers must be able to specify their quality of service preferences in a

Chapter 3-Model Design

fiexible way. This is necessary so that adaptation decisions would be sensitive to the needs of
the service consumers. This could be in form of weights attached to the services that

determines how important such given service is.

{(2) The model needs as input the cwrent status of the service execution context. The
execution context of both service providers and service consumers change from time to time.
In order to increase the agility of the adaptation model, it must be aware of such changes and

use this to either reactively or proactively configure adapiation.

For instance, the consumer’s needs change from time to time, the network connecting the
devices is very unstable, and the devices themselves are constrained by their fluctuating
resources.

(3 The model must have the option to accept or reject new service request or adapt to the
prevailing context situation. This is necessary to make the users not endlessly wait for a
service that will never be delivered.

(4) The model must make provision for dynamic reasoning on the context information it
acquires from the clients. environment and users. This requirement is one of the objectives of
this investigation as adaptation decision making is still an active parts of mobile Grid
adaptation researches [25]. There is need for the systems to make dynamic decision over the
context changes that occur in the system runtime environment.

(3) The model needs to provide some quality of service by reducing the delay
experienced due to contexts changes. Ultimarely, the need 1o adapt the interaction of service
clients with service providers is to improve on the quality of service.

The next section presents the interaction model of our envisaged systems, this presents how

service consumers and service providers interact to get services delivered.

Wh
h

Chapter 3-Model Design

3.2.2 The CACIP Interaction Model

Having identified the requirements for the design of the adaptation model in the last section,
now it is time to discuss how CACIP interaction architecture fits into mobile Grid context

being one of the objectives of this dissertation.

3221 CACIP Interaction Bus

Recent years have witnessed explosions of software infrastructures such as middleware
platforms that have dominated distributed applications development with grid systems [4] as
good examples. One of the goals of Mobile Grid computing is to access computational
resources automatically on demand to deliver the services required with appropriate quality
of service [3]. Obviously, mobile devices are now increasingly common, therefore, an
infrastructure is required that allows mobile devices to use Grid services, consequently
enabling the execution of complex, resource-intensive applications on the resource-
constrained devices [4].

However, because of the resource limitations of mobile devices, it becomes complex and
challenging to build applications that run on those devices. We share the view that the
marriage of mobile devices and grid services will greatly minimise the challenges of mobile
devices interaction with grid service providers and at the same time making grid services
accessible anytime anywhere [38). Typically, design paradigms partition these infrastructures
into components that can be reused. and interconnect them through constructs provided by
such interaction infrastructure. However, service interaction requirements vary. Some gaps,
therefore. do exist between the interaction that such software service provides and those

required for interconnecting application service components. One way of bridging these gaps

Chapter 3-Model Design

—

' Grid Services

Figure 3.2: An Architecture Showing Mobile Devices Interacting with Grid Service

is to argue for explicit design of interaction systems between service consumers and service
providers in such distributed systems. The classical clients/server paradigm of interaction is
not suitable for mobile and wireless interaction because it assumes persistent, fixed and
stable network link among communicating entities. Mobile systems, however, are prone to
unanticipated disconnection due to environment fluctuations. Mobile applications that are
designed to access Grid services reside in various mobile devices distributed over the
wireless network. CACIP (Context Aware Component Interface Pattern) [5] adopts
information bus as a persistent data structure that facilitates asynchronous communication
among service components. These components rather than interact directly, register their
messages in form of tuples deposited in the bus. The messages are pre-fetched and kept in the
bus in anticipation of mobile client’s request for it. It also helps in routing services among
participating components in the interaction. This means that services are made available to

the bus by service providers and consumed or retrieved by service consumers. Figure 3.2

57

Chapter 3-Model Design

Wirelgss Network Internet . .
Mobile Device [¢——— CACIP e = Grid Services
o o
. ' RegisterService() !
RequestService() fo— o :
— !

¢
,> AdaptServiceForDelivery()
\

DelivarService()

Timedire

RequestService()

Lo

i
D AdaptService Fo;ﬁeiivery(l)

el -

DeliverService()

aiaiaiahde Ay e S Rk il

Figure 3.3: A CACIP Mode! of Grid Service Interaction

illustrates the new CACIP Architecture. One interesting advantage of this bus, upon which

the adaptation model is built, is that components can connect and disconnect from it without
affecting other components as the presence or absence of a particular service component does
not depend on that of other components. The participating clients or service consumer’s first
need to register with the bus specifying the type of services it is interested in, while the
service providers publish services they offer. As depicted in Figure 3.3. there are mobile
devices as service consumers or clients, CACIP bus as service registry, and Grid services as
service providers. These mobile devices are usually portable but are resource-limited with
varying network capabilities. The CACIP bus might be running on a server or a group of
servers located on a LAN and mavbe accessible to the mobile devices via wireless network.

The CACIP bus is also connected 1o the Grid via a high speed nerwork. Different types of

Chapter 3-Model Design

Grid services are registered with the CACIP bus, providing convenient mechanism for
mobile devices to find needed grid services.
The requests from mobile devices are sent directly to the CACIP bus. if the requested service
is available, CACIP processes, adapts and sends it to the service consumers. Otherwise, if the
bus cannot locate the service, it then invokes a request to the Grid service. Once the
requested grid service is deployed and contexts of the service are good for its execution, then
the adaptation model processes and adapts the service before it is sent to the service requestor
or consumer. Figure 3.4 is a bird’s eye view of the adaptation process. The CACIP bus
interaction protocol assumes that there is a strong trust refationship between the Grid service
and the CACIP bus so that the bus can interact securely and easily with the Grid. Therefore,
this matter is not discussed any further in this dissertation.
3.2.2.2 The Service Interaction Definition
Having presented the CACIP bus interaction model, what is next in line is a methodical
formulation of the service interaction problem as this basis of the adaptation model proposed
in this dissertation.
Interaction berween CACIP clients and provider components is therefore defined with a
function:

N=1R) (1)
where R and N represent service request and response respectively.
Assuming R = {r, r2,r3,.,rm} and N= {n,, n, n;,nm} which are vectors of ryped values.
Each notification semt by a component is an object with a name and a return tvpe. This

representation offers a standard exchange format between components that facilitates

composition and adaptation of interaction between clients and service containers. However.

Chapter 3-Model Design

these entities have functional dependencies that can prevent service delivery on timely basis
since a request from a client may depend on the notification from another service component.
To define these dependencies, we use the relation (fy, ... f,) — f, f (there could be many of
it) represents a service consumer and f), f;... f, represent service providers as illustrated in
Figure 3.5. This means that for service consumer f to successfully interact and access
services in components f1, > ...,f,, some specific contexts of the device, the network and user
must be satisfied. This dependency may be illustrated by a graph where nodes on the graph
represent the components and the edges are the conditions that allow the components to
interact with each other.

Now, based on Chaari et al [7], a general model of the envisaged mobile Grid application is
defined as a tuple:

M=(,V.T) (2}
Satisfying the following essential requirements: S is a finite set of Service providers and
consumers {S1. S2....,S:}, V = {vy,vi2,..., vy} is the set of service variants provided. And
these are alternative implementations of a given service. T is a finite set of interactions {t;,
t... ty}. Each tis a tuple (D, C, A) where D is the maximum delay or latency for

interaction, C is the general context of execution of the application, and A is a finite set of

60

Chapter 3-Model Design

&

s
N

:
I

A / \
-y | E \
y v | e
| | carm |
| Adapiable Grid Senices - T i——Us&‘—-.‘ Arcnitecural Model |
i Il |
|
i1‘\ " I; & .‘f
\I‘\. % fgg /
;\\ "%,% I a,é‘éb (f:‘;he /:
\\%e_ & a//f

Figure 3. 4: Context Aware Adaptation Model (CAAM) Adaptation Process

dependencies among the components. Each dependency is a finite set of pairs (Required
Context and Available Context) defined for each actor, for example, the service consumers
and providers in the CACIP bus. Requested service will be executed if the contexts of
execution satisfy some constraints for such interaction otherwise, the system need to effect

adaptation. This is shown in figures 3.4 and 3.5.

61

Chapter 3-Model Design

o | e | i £, —)
[] | |
A A
4 Y Y
£ f4 7
Y
| y

Figure 3.5: Interaction Dependency among Components

C is a set of constraints specified in the realm of the source context and the destination
contexts for successful service delivery. With this definition, the need for adaptation of the
interaction using context awareness has been established. Next, the architecture of the model
to address this issue is then presented.

3.3 The Adaptation Model

The previous section defined CACIP interaction problem and established the need to design
an adaptation model for handling interaction between CACIP entities. In this section, the
model is presented with the strategies employed to address service interaction problem in a
mobile grid environment which causes prolonged service response time. The model
combines Service and reconfiguration pattern [77, 79] and context awareness to achieve its
goal. Every component of this architecture works in harmony in order to achieve the ultimate

goal of the proposed utility function-based context aware adaptation model.

Chapter 3-Model Design

MOBALE GRID CLEENT
APPLICATION
1
MONITOR EVALUATOR RECQNFTURATOR
PERSISTEN
e EVALUATOR r— RECONFIGURATOR
STORE
C F 3
r
CONTEXT MONITO EVENT MODULE i
" 11| unry poucy
MODULE
|
1
CONTEXT SOU

Figure 3.6: Architectural View of the Context-Aware Adaptation Mode!

The Context Aware Adaptation Model (CAAM) model architecture is depicted in Figure
3.6. It consists of four main subsystems namely: The Grid service consumers, the Context
Monitor, the Context Evaluator, and the Service Reconfigurator. Since this work is to adapt
the interaction of mobile Grid clients to changing environmental context of mobile terminals,
wireless network and that of Grid services, the overall goal is to improve the service quality
experienced by service consumers in terms of service response.

3.3.1 Context Monitoring and Event Management

This section discusses the design of the monitor component with a view to communicating

monitored changes among other components of the model.
3.3.1.1 The Monitor

The monitor observes the changes occurring in predefined context parameters. Here,

context refers to the states. resources and other conditions that affect the execution of

Chapter 3-Model Design

services. For the system to adapt in response to these context changes, it is necessary that
the context be monitored to track such context changes. Two main methods for Context
monitoring are identified [27]: the event driven and time driven methods. The time driven
approach is about periodic probing or polling of the system being monitored to provide a
view of the context status and suffers from missing some contextual event changes between

when it was last probed and present probes particularly if the sample rate is very low.

However, the event driven approach brings liveliness into monitoring without any need for
periodic probing. The event driven approach waits for a change in the status of the context
being monitored to occur and then sends a notification of such changes. In this design, the
event driven approach is adopted. Since the time driven approach comes with a lot of
overheads and trade-offs between time spent probing or polling for change in the context
values that may not have occurred anyway. The state or status of any object in this case.
contexts, is the representation of the cumulative results of its behaviour and this is
represented by the values of all its properties. These events are atomic entities that reflect a
change in the status of the contexts being monitored. It is worth noting that this status
changes continuously, therefore, these changes are observed as subsets of those events that
are of significance to adaptation decisions.

We, therefore. define the events in this design as those dynamic adaptation triggering
policies that help decide on what CAAM does should adaptation be necessary. Whenever
these events are fired, any policy or rules associated with such events is executed. Two or
more events can be used to execute a triggering policy, For instance, the BandWidthLow
and DeviceMemoryvLow events mavbe used 1o carry out execution of a given service in

another device with enough memory and network connection bandwidth. Therefore an

64

Chapter 3-Model Design

S —
i : Context | Context Monitor(s) Context
l Reasoners Reasoners
A A A
| E
Context Context | cContext |

]
Sensor | | Sensor ‘ Sensor [
|

Figure 3. 7:Context Monitor Architecture

event triggering maybe defined as:

If (BandwidthUtilityLow AND DeviceMemoryUtilityLow)

Execute Actionl
Where Actionl may represent the execution of such service on a remote device with
enough memory and network bandwidth.
Different combinations of such events can be associated with the execution of various
adaptation policies. This means that this event makes it possible to have specification of
composite events thereby making provision for event combination and manipulation. This
idea is very central to the design of the monitoring and evaluator modules of the adaptation
model. One of the design requirements for the monitoring module is that at design time, no
general assumption on how to anticipate context changes is made. This specification of
what constitutes interesting contextual changes is dynamically done at runtime. Another
consideration in this design is that the system is capable of dynamic definition of events and
dynamic specification of conditions that will fire or trigger events. The event management

module is, therefore, responsible for dynamic definition and registration of new events and

Chapter 3-Model Design

the specification of when and how these events are fired. It also provides the mechanism

that will allow these events to be manipulated and fired at runtime.

The event management supports the entire operation of the adaptation event driven
communication. The context monitor is highly dependent on the environment which is the
physical context of the terminals, wireless network and the Gnd services as well as the
event manager. We, therefore, encapsulate such dependencies in confext sensors and
context reasoners. The context sensors and reasoners are responsible for retrieving and
supplying the context data to the context monitor through the event management module.
The context sensors are tesponsible for observing and gathering context information from
context sources. The context sensors are components of the model that provide context
information to the persistent context store through the context monitor or directly to the
Evaluator. They also provide context information to context reasoners that perform
operations on the contex! data such as abstraction, aggregation, derivation. and prediction
from primitive context data, They are primarily used to derive new context informarion
from original context data. This is the case of the persistent context store where the context
reasoners take context data from the context store in order to provide new context
information on the trends of context changes in the system. Figure 3.7 gives a clear picture

of this concept.

The context Evaluator utilises some of these parameter values directly as soon as they are
produced by the Context monitor. Those that are not consumed immediately are stored
temporarily in the persistent context store so that they can be retrieved later by the

Evaluator through the asynchronous event management module for proactive adaptation

66

Chapter 3-Model Design

decision.

3.3.1.2 Context Modelling

The following context types are important in providing adaptable services in the context of
this research.

(a) Terminal device contexts: The adaptation mechanism must be aware of the capabilities
of devices being used to request services. Capabilities such as device display size, memory,
communication interfaces, available multimedia, processing power, and encoder/decoder are

good examples.

{b) User Context: This will include things like user subscriptions relating to types of
services being requested for, consumer’s identity, access right policies, and privacy aspects
for managing and exchanging stored context preferred by context consumers. However, in
this design, this ts not really the focus of our context design as this was taken care of in the

previous design of CACIP.

(c) Service Environment Context: This includes the consumer environment such as time,
location, light, noise, activity and mobile clients’ wireless network; such as network latency,
bandwidth, network availability are examples.

33.1.2 Context Model

The context model refers to the format in which the context data are abstracted. Contextual
information needs to support very broad adaptation decisions in different combinations.
However, to handle such context data that is provided by the context sensors, this data should
be structured in such a way that it will be easy to reason about them. A context-aware system

requires context information to be exchanged and used between different entities such as

67

Chapter 3-Model Design

users and services in the same semantic understanding [17]. This means that an appropriate
context model should support semantic interoperability that enables the common schemas to
be shared between differemt entities. In the scenario illustrated in section 3.1.1, Eunice
location must be understood by her blackberry device. Also, context data can have variety of
characteristics. The definition of coatext, therefore, includes information in any given
domain. This context information is interrelated, for example, available bandwidth and
available memory may both determine what adaptation strategies to effect. Finally, this
context information is not static but dynamic meaning that they are not consistent as they
change from time 1o time. Table 3.1 is a summary of example context elements this model
considered.

Different ways and means have been proposed to model such context information as
illustrated in chapter two. However, among these models, we decided to model our context
using the key-value pair as used in Mobisaic [80] technique that uses the key to refer to the
context variable and the value of the variable holding the actual context data. The decision to
choose this mode! type is informed by the fact that this is for now the best model that provide
us with simple context abstraction with such values that can be consumed by the our policy
model. In most cases such context model uses pattern-martching queries to notify adaptation
mechanisms.The context model is illustrated in Figure 3.8. Entity represents any context that
is relevant for the purpose of execution of any given service. In the entity representation.

each of our context types is also modelled.

68

Chapter 3-Model Design

]: contexiEntity

Entity <{

_Yalue

Value: Siring

AN

Time Stamp Source Probability userRating

Figure 3.8: Context Mode! Adapted from MADAM [25]

The wuserEntity represents entities of interest in the user environment. Example is user
location, light, sound, etc. ResourceEntities represents a runtime source of supply. A resource
entity has limited capacity and these are represented by property types. Resources such as
network bandwidths, network types such as GSM, GPRS or 3G network channels, device
memory, device CPU power etc are good examples of this entity type. ServiceEntity
represents service based entities.

Service eniities may be composed of other service entities and use other service entities or
resource entities. A context entity encompasses the context information as illustrated in figure
3.8. This can be composite, that is, having more than one context entity embedded in another.

These entities have values and these values are information that is available in the context

69

Chapter 3-Model Design

entity. An entity can have several values. The context entity is uniquely identified. This is
necessary to avoid inconsistencies resulting from two context entities indicating two different
context values for the same context abstraction.

The values can be associated with metadata that provide additional information about the
value. These metadata are very useful when performing reasoning on the context
information.

The mode! has four of such metadata. The timestamp identifies when context information
changes. The source is the unique identifier of the entity that provides information for the
values, e.g. context sensors. Probability is an indication of the trustworthiness of the
information sources while user rating is an assessment indicating the values’ importance to
the user.

3.3.2 The Evaluator

This 1s the primary component of the adaptation model. Since this model is to adapt
interaction between service consumers and service providers in grid environment. it is
necessary to have some runtime adaptation controller that can reason about the changes
occurring In the system execution context and that decide on what and how the adaptation
should be executed.

Therefore, one of the responsibilities of the Evaluator is to reason on the impact of context
changes on the service requests and for adapting these sets of running services by planning
and selecting service variants and possibly device configurations that best suits the current
context situations of the service environment {25]. The Evaluator has no prior knowledge of
cither adaptation strategies or context changes they affect. This means that adaptation

decision must be made in a manner where users. mobile services and contexts are used 1o

70

Chapter 3-Model Design

Table 3. 1: Context Elements and their Category

ContextElement | Context Category | Example Service Comments
Memory Mobile device Applicable to any To be dynamically acquired, the service is
service adapied to this context at the service
consumer end
Storage mabile device Applicable to any To be dynamically acquired, the service is
service adapted to this context at the service
consumer end
Service preferences Juser context. Applicable to any To be manually entered though static but
application conmtext, |service temporal.

and session context

User contact/ldentity
Information

User Coniext Service
Context

Applicable to every
requested service

To be manuallv entered but static

User Location

User context

Travelling

It's either statically or dynamically
acquired.

Nerwork availability

Network context

Applicable to any
service

To be dynamically acquired

Network Service
Quality

Nerwork Context

Applicable to any
service

To be dynamically acquired. Can be
adapted to service quality

drive adaptations. These dynamic adaptations are thus required because the mobile
applications’ states, device resources, service and user’s requirements with their operating
environment all change dvnamically. The changing situations are what is regarded here as
contexts and are discussed later. The context evaluator takes the context values passed to it
from the Context Monitor and decides whether the values presented has changed beyond a
threshold or ranges that will demand for the system to adjust itself 1o cope with such changes.
The context evaluator uses utility function [13] for evaluation. This process and formulation
are elaborated mn section 3.3.2.1 below. The evaluator also takes input from the service
consumer, input such as consumer preference for the requested service are used In evaluation

and making feasible adaptation decisions.

71

Chapter 3-Model Design

3.3.2.1 The Utility Function Based Design for On-the-fly Adaptation Decision

The utility function is an objective function that expresses the values for each current state of
the systems [13]. The idea of the utility function is used to model the decision making
process of the system. The utility function is used as a measure of how a service or any of its
variants fits a given context. It is given as a function of the properties of a service and
associated context of execution. The model makes provision for expressing the adaptation
policies that drive the reconfiguration module. The policies embody various parameters
which change from time to time in the execuiing context of the system. These parameters
such as consumer requirements, environmental context information and service constraints
serve as input to the system.

The model considers complex relationship that may exist among various context parameters,
for instance service consumer requesting for a multimedia service on her PDA will only have
that service provided that bandwidth, memory and CPU processing power required by the
service do not exceed what is obtainable at that point in time in the environment. The failure
of any of these, even if other requirements are met. may prevent the service from being
accessible. Hence, to address this ambiguity, the utility function is used to automate decision
making process. This will allow automated selection of appropriate service configuration
among all possible configurations of the same service so as to make the system adapt to the
varying limited available resources. Since adaptation envisaged in this model is triggered by
some events stch as change in system resource level (CPU processing power or memory),
bandwidth variation and even dynamic change in consumer requirements. three basic
reguirements are expected to be met.

(1) The systemn must know from time to time the current states of the system’s execution

Chapter 3-Model Design

- N 3= (
vi2 7
=2
vin
s3
1 a1
J
sm f 22
J
vn

Figure 3.9: Services and Service variants Relationship

environment,

(2) The system must be able to take both proactive and reactive decisions in accordance
with level of changes occurring in the system execution contexts. It may decide to reject an
incoming request from a consumer or adapt to the prevailing context situation.

(3) The system must be able to provide some level of satisfaction to the service
consumers as a result of service reconfiguration. These requirements qualify the utility

function adoption for decision making part of this model.

3.3.2.2 Adaptation Decision Formulation

The adaptation decision is formulated using the utility function as described in section
3.22.1. It is assumed that a service is implemented by the service developers with
alternatives that are referred to here as variants which are of different QoS requirements. Any
of these variants that satisfy the prevailing context situation is selected during adaptation

process. Therefore, it is assumed that CAAM processes m number of service requests from

Chapter 3-Model Design

service consumers. The service consumers could be a mobile application running on any
mobile device.

Let § be the set the set of available services.

Then 8 = {8y, s;...8;} and that each service s; has a set of variants V ={v,,¥2,v3,...V,},this is

illustrated in figure 3.9. So, service s;, has variants v;; The total number of service variants is

givenas: M= Zvu 4

i=l

This means that M is the sum of variants for all services.

Also, let C = {¢1,€2,..Ca}, the set of context parameters for service execution. This will
include contexts such as available device memory, processor speed or device display size that
are available at any given time. And let R = {r, rs,...r,}, be the set of required context
parameters for itch-free execution of a given service s; then, it is assumed that each of these
contexts is assigned some normalized value and that it has maximum value. Therefore, each
service s; will require ry; contexts for execution. Let x; be the decision variable that indicates
if a particular variant v;; of service §; is sclected for adaptation.

Therefore, the sum of available contexts ¢;; must be greater than or equal to the sum of
required contexts ry of service variant s;. The runtime utility for each service variants v, is

calculated by: uy= ry/¢;; and the utility for each service s; is thus calculated as
U, = Z r, / c, {5)
-1

In order to ascertain which of the variants of service s; is selected, let d; be the variable that

ascertains that service variant v, is selected and x,, be the decision variable which is setto 0

or 1 depending on whether v;; is selected. Then, we have Zn:d” x, =1, Viv] x5 {01}

[

74

Chapter 3-Model Design

(6)
That is, for any given service s;, only one of its variants v;; would be selected for adaptation.
Each service variant must satisfy some quality or preference requirement, indicated by

attached weights wj;. The sum of wy; for a given service s; must be 1:

S w, =1 9

i j=1

Finally, we have the following formulation for decision making model. We need to

maximize

U ¢ iy i m‘jFZZHU (W,J)r,j (8}

N N
-1

Ll)

Subject to the following constraints:

Nu, Suiforn=L.,NVy efol} (%
1l
Where u; is the utility parameter associated with each service s; and N represents the

number of utilities under consideration.
Ndx, =L (10)

This means that we need to select a service variant vy of variants for service s; with the
highest utility that satisfies the constraints above. The utility function formulation is an
extension of the multidimensionat Knapsack problem [22} with choice problem constrainis.

As formulated in the utility function, the decision on which appropriate service variant to
execute is based on varying context values at any given time. Two algorithms could be used
to solve this problem according to Khan in [36]. One, the exact algorithm. as a result of its

high computational complexity. cannot be applied particularly for runtime adaptation

Chapter 3-Model Design

decision making being considered. Therefore we need to consider heuristic algorithms which
can help arrive at decision within reasonable computation time with feasible and optimal
decisions.

3.3.2.3 The Decision Making Algorithm

The decision making problem formulated above does not have an exact solution since it's a
vanant of the popular Multidimensional Multi choice Knapsack problems [34]. There exist
various heuristics approaches to solve this type of combinatorial optimization problem. The
aim of the above formulation is to pick from among service variants v;; that satisfies the
context constraints A heunstic algorithm based on the work of Michrafy and Sbihi [35] that
provides a guided local search heuristic algorithm GLS that has its origin from constraints
satisfiability applications is adopted. Proved that this algorithm is very effective at solving
this type of problems. The algorithm uses memory to guide the search for appropriate

service variant. The algorithm comes up with a feasible selection of service variant vj; such

N
that Zu!}.(wi,.)r,. <u; VYV x;€{0,1} forij=1...Nand for each service s; with variants

ij=t

K
vij, we pick service vjj such that % 4 x, =1 and 0 otherwise.
i.j=t

76

Chapter 3-Model Design

Form = 1 10 M, set u; = max{u, i,j = | to N}
Si «— vij;
set s(m) = s;; dixy = 1
N
set C= Z U X, JLiELe oM
ig-1
end For;
s =(s1,...,5n)
while (u>u;, for j=11t0 N){

np « argmin {u;} 1<i<n

mg «— argmin{uy;} 1<m<n

y[i0] = vig; dijxi; = 0;

U = —Ujo for m=110M;
if 3 v #vi;and Zuw <y, fori,j=1to N

then
dj}‘Xj_,= 1;
Yio = ¥y
vy = {vio: si. ¥V ;#lp. 1 =110 M) is feasible
return vyj;
endIf
EndFor;

S'm0 «— argmin{u;};
vig =5 sp = sh; djx;; = 1
endwhile;

return S.

Figure 3.10: The adaptarion Decision Algorithm

The feasible solution is obtained by a modified greedy procedure of [34]. The modification

done is that we do not need to add any penalty for choosing an infeasible solution in the first

place. This is not necessary in our context as the algorithm selects a feasible solution from

the calculated utilities for each service variant. This it does by evaluating the ratio: ;= ry/c;;

where i,j,l€ {1.....N} of each context parameter ¢; required by each service variant v;, and

(cywy) is the scalar product of both ¢;;,. The algorithm then selects service variant v, for

service s; such that Vi) € {vi1.v)z,....vam} with lowest u, is the selected service variant that is

77

Chapter 3-Model Design

Read Context utiity Values for si
ui Context Monitor

Y

|
Caiculsie Context Utiity for Context
ujj = [

| Wi i/) |
| L |

— =]

§
g
|
i

Yes

¢ N
Feasible hs::;ux? No ..
Figure 3.11: Adaptation Decision Flow Diagram
feasible under the current context situation then the algorithm terminates. Otherwise, it takes

context cjp as not being satisfied. It then with respect to cj. selects service variant v;

corresponding to s; with lowest utility u;;. This very service variant vy, is then swapped with

78

Chapter 3-Model Design

another service variant say v;; and so on. If the new selected service variant is not feasible
then it selects the service variant v'ij with the lowest utility which is now the newly selected
service variant. This process is repeated until the selected service variant is feasible.

The following steps describe how the decision making algorithm works which is also given

in Figure 3.9 while Figure 3.11 is the flow diagram.

(a) The service request is intercepted by the adaptation service that subsequently extracts
relevant user context information and passes these to the context Monitor.

(b) In the initial configuration, the context Monitor sends necessary context values, for
instance, user preference information to the Context Evaluator. In reconfiguration situation,
the Context Monitor notifies the Evaluator if there is any significant change.

() The Utility function for each of the service variants is calculated using the required
and available context with user preference in terms of weight.

{d) Having calculated the utility, the variants are arranged (sorted) according to each
context utility.

(e) Then the service variant with highest utility is selected.

(f) As the service variant is selected, other incoming service requests must also be
processed which may have some impact on the adaptation service agility {33]. For example,
if the service variant selected will require more of that particular context to execute, and then
this will leave other requests with less of it to execute. This may trigger recalculation of the

utility function for the unselecied service variant.

79

Chapter 3-Model Design

o et | N Servies
Evaluator |

P / Event Channel 1 Ny Evem .J Sees
i ContextMonitor } ;
s o R |

Figure 3.12: Communication Model between Components of the Model

This could be avoided by choosing the variant for the next request if there is no significant
secondary effect for choosing such variant.

(g) However, if the adaptation service recalculates the utility for the new request and
sorting its variants, the adaptation service selects the next variant with the highest utility; the
previously selected variant is not reconsidered in the new calculation. This algorithm helps
determine which of the variants of a requested service best suits the present prevailing
context situation.

The decision reached by the algorithm is passed to the policy Manager (see figure 3.6) that
determines the appropriate adjustment to be effected on the system through the
reconfiguration module. The policy manager defines a mapping of the results of the

Evaluator of the monitored context and resource parameters to components configuration.

80

Chapter 3-Model Design

3.3.2.3 Utility Policy Management

Every adaptabie system that has its adaptation logic embedded into it cannot operate in a
generic manmer or adapt dvnamically in response to unexpected context changes. The use of
policy management is, therefore, necessary to decouple the adaptation control from
adaptation mechanisms. This helps to specify the adaptation logic which can be interpreted
by the Reconfiguration module dynamically at runtime in order to determine how the
systems should adapt.

The adaptation directives need to contain some necessary elements such as what 10 adapt,
which adaptation to apply, how and when this should be applied. and what constraints may
limit the application of such adaptation. The use of these directives or adaptation policies will
allow a declarative specification of how the system would adapt without necessarily
specifying how this adaptation would be accomplished. This ailows decoupling of adaptation
logic and the adaptation mechanisms. The policies are formulated by using Event-Condition-
Action (ECA) format [27] and these policy utilities are in two forms: the reactive and
proactive forms. The reactive format is specified by selecting an event to be fired in response
to context change. adaptation target and adaptation to be effected on the target. The
application of the utility-based policies needs 1o be provided with some set of statements that
needs to be evaluated when the policy rule is fired. On the other hand, the proactive format
specifies the adaptation target, adaptation to apply and a set of conditions that are triggered
immediately upon observing some pawern of change in contexts. The utility-based policy {28.
74} is adopted as it allows on-the-fly adaptation decision and it does not create much
overheads since decision are not predetermined but are made dynamically based on the utility

of the current context situations. The Utility policy management is responsible for the

81

Chapter 3-Model Design

interpretation of adaptation decision, conditions and the activation of appropriate adaptation.

3.3.3 Designing the Service Component and Reconfiguration model

Grid service must grow to meet increasing requests, new requirements, and new applications.
Flexibility and availability usnally conflict with each other, however, service providers in
conventional systems do shut down in order to reconfigure and then restart the service. In the
utility computing paradigm, it is unacceptable to disrupt the service execution even for two
seconds. Dynamic reconfiguration, identified by Otebolaku in [79, 81], therefore. proffers
solution to managing runtime changes of service execution without shutting down or
disrupting the service execution. In this section how the proposed model integrates
component based technology and dynamic reconfiguration for effecting adaptation is
discussed.

3.3.3.1 The Component Model

The applications are assumed to be component-based. They use and provide resources and
services as they operate in contexts. These applications are influenced by the changes in
resources they require or provide and by the context of their execution. Therefore, we adopt
component based design [11] as it offers a standard mechanism for carrving out
reconfiguration functions such as addition, removal and deletion of components that are
affected by resource variability and context changes. This component model is illustrated in
Figure 3.13.

Each of the components has two types of interfaces: provided and reguired. Two or more
components interact via connector that is hooked to the components through its interface. A

service component may provide one or more services to the mobile Grid client’s component

Chapter 3-Model Design

P > has
Component| Interact| connector | has Port p—
Cr——————
PrOVidE has ha J_,
I Type
‘L (o]
Services Context
Parameters

Figure 3. 13: CAAM Component Model

provided that context and resource variability do not exceed certain required level. One of the
main benefits of using components frameworks is that it helps to regulate the component
roles and standardizes interfaces. The component model used is based on the one designed
and used in the MADAM project [25].

A service component is designed as a unit of composition with contractually specified
interfaces and explicit dependencies where dependencies are specified by stating the required
interfaces and the acceptable execution platform. Each of these components can be atomic or
composite. In this way, a service can be assembled from a recursive structure of component
frameworks as illustrated in figure 3.12. Services are therefore defined as interfaces that
allow specifications of behavioural features. In this compenent model. interfaces are

organised as ports and port types. A port represents a component’s capability of participating

Chapter 3-Model Design

in a specific interaction. Distinct components can define ports of the same types meaning that
they provide or require identical interfaces. The port fype characterises the set of services that
are provided or required through ports of that type. The component framework describes
collaboration of components by defining roles for each component participating in the
collaboration and their interaction. Each role is described by a component type which defines
the functional behaviour and attributes of the component. The component type defines a set
of ports that a component of that type must implement. Each of the components has two
types of interfaces: provided and required. Two or more components interact via connector
that is hooked to the components through its interface.

In order to bind the componenis together, connectors are used. These connectors specify the
interaction between a required port of a component and a provided port of another
component. The former is used for request while the latter is used for responding to a request.
The interfaces defined by the two ports define the syntax and semantics of interaction
between the components over that given connector. An instance of these connectors is the
implementation of a connector enabling interaction between two component instances. When
components are instantiated in the same address space, then the connector is a mere local
object reference such as java object reference. Otherwise, a connector is realised by remote
communication protocol such as SOAP, Java RMI, RPC, etc. The connector instances are
created by the connector factory [25]. Creating connector instances means providing each

component that specifies a requirement for an interface provided by the other component.

3.3.3.2 The Run-Time Component Model

The run-time mode] of MADAM [25] is adopted and used to describe different aspects of the

service entities. This run-time model is what is used by the adaptation modet to reconfigure

84

Chapter 3-Model Design

——<2 Reconfiguration > Plan
Template

-

Figure 3. 14: Reconfiguration Template and Plan Relationship

the running service component at execution time. Each component is presented at runtime as
component plans that specify the behaviours of a component and the required
implementation resources for that component. Therefore, there exists a relationship between
component, port, plans and connector types. Several service components can implement
same component type but the specifications of differences in the offered and needed
interfaces must be ascertained. All that service developer does is to publish several plans that
are associated with a component type, where the plans specify the properties. We adopted the
plans available in MADAM Middleware. These plans are discussed in the subsections that
follow.

3.3.3.2.1 Blueprint Plan

This is serialised. immutable implementation artefact that is used to load components at
runtime. This plan specifies the resource requirements. For example, Java class requires
JVM 1o execute, thus plan must specify a resource requirement to a Java-enabled run-time
environment. Also, this is where resource requirements of service variants are kept for

calculating service utility.

Chapter 3-Model Design

3.3.3.22 The Instance Plan

The instance plan is associated with the existing component instance. These are used when a

component instance can be shared or reused.

3.33.23 The Connector Plan

This describes the implementation of a connector. A connector plan implements a connector

type, and can be used to instantiate this type between components,

33.3.24 The Composition Plan

This describes the components implemented as collaboration between several components. It
defines the roles of components participating in such collaboration. For instance, in a
multimedia service application, this could be implemented as a composition of a multimodal

Interface components, multimedia storage and persistent data retrieval components.

3.3.3.3 The Reconfiguration Template

When changes occur in the context of execution of a given service, some inconsistencies may
follow, for instance, if a running service goes to offline mode, it may decide 1o switch off the
network adapter in order to save battery. If another executing service is using this network
adapter, then there 1s conflict. In order to resolve this conflict, reconfiguration template is
used to ensure consistent state of the context aware system. It provides the intentional
representation of the set of service variants, and that of the mode! of these service variants
where all variation points [25] are resolved. So, the reconfiguration template is needed to
provide representation and can also be used to evaluate the variants and 1o instantiate them.
The configuration template refers to the plan for which it provides additional information to

resolve the variation point. In its simplest form, it refers to the blueprint plan without

86

Chapter 3-Model Design

parameters settings. When it refers to composition plan, it will contain mapping from a role
in the composition plan to a nested configuration template that resolves the variation point of
the given role. A role describes the functionality of a component. [t could also refer to
blueprint plan with parameters, in which case, it contains reference to a selected parameter
and device setting and corresponding properties. Each of these parameters is considered as a
different realisation of the components and therefore corresponds to different configuration

templates.

Whenever a reconfiguration template representing different service variants is being created,
the architectural constraints applied to the composition plan are checked. If the constraints
are not satisfied, the configuration template will be discarded and will not be used for

adaptation purpose.
3.3.3.4 The Service Reconfigurator

The Reconfigurator is responsible for coordinating the initial configuration and
reconfiguration of the service components and the device. The Evaluator and the
Reconfigurator work together as they operate on some common information element, which
is the configuration template discussed in section 3.3.3. When adaptation of a service is being
carried out, the Reconfigurator proceeds according to the configuration template for the
variant selected by the Evaluator. Thus, the Reconfiguraror carries out the adaptation decided
by the Evaluator by applying the configuration template. When, carrving out configuration
and reconfiguration. the Reconfigurator uses the components frameworks interfaces to
instantiate components and connectors for a given service.

To achieve this. service reconfiguration pattern [77. 79] is adopted because it decouples the

service functional behaviour from the point in time at which these service implementations

87

Chapter 3-Model Design

are reconfigured. This decoupling improves modularity of services to evolve over time
independently of reconfiguration issues such as whether two services must be collocated or
what concurrency model should it use to execute services. Also, service reconfiguration
pattern centralises the administration of services it configures. This facilitates automatic
initialisation and termination of services and can improve performance by factoring common

services initialisation and termination into efficient reusable components.

Further, the pattern is useful when a service needs to be initiated, suspended, resumed, and
terminated dynamically. It is also used when service configuration decision are made at
service runtime especially for dynamic adaptation of services. It is a very efficient, flexible
and convenient way of implementing distributed services. Service reconfiguration pattern
decouples service behaviours such as their interaction from the point in time at which they
are configured into application.

In considering service reconfiguration, here are some of the problems it helps to solve in this

model:

(1) When there is need to defer the selection of a particular implementation of a service till
runtime. This will allow service developers to concentrate on service functionalities.
without consuming much time in committing themselves to any particular service
configuration. It in essence decouples nonr functional behaviours of a service from
functional behaviours which makes the service to evolve independently of the
reconfiguration policies and mechanisms used by the systems.

(i) The need to build complete applications or systems by composing multiple independently
developed services that do not require global knowledge. The service reconfiguration

pattern requires all services to have uniform interface for configuration and control. This

88

Chapter 3-Model Design

(T

fime
‘
Service Remnﬁgu:ator‘ Service Reconfigurator
i o
583 §e3
[x L Sase Level
‘ J
! Service Functianal ¢ | Service Fundimalj
i Component [Compaonent '
I May cepend an # |
e SRt s FE AT o]

Figure 3.13:Reconfigurator Model

allows the services to be treated as building blocks that can be integrated easily as

components into a larger application. The uniform interface across all services makes them

look the same with respect to how they are configured.

(iii) This uniformity in turn simplifies the distributed application development.

(iv) The needs to optimise, control, and reconfigure the behaviour of a service at runtime.
Decoupling the implementation of a service from its configuration makes it possible to
fine-tune certain implementation or configuration parameters. For instance, depending on
the parallelism available on the hardware and operating system, it maybe either more or
less efficient to run multiple services in separate threads or processes. The service
configuration pattern enables applications to select or tune these behaviours at runtime,
when more information maybe available to help optimise the services. In addition, adding
a new or updated service to a distributed system can be performed without requiring
downtime for existing services. Figure 3.15 illustrates the relationship between service

functional components and the Reconfigurator that provide standard interface for

89

Chapter 3-Model Design

configuring and controlling services.

A service reconfiguration based application uses this interface to start or initiate, suspend,
resume, and terminate a service, as well as to obtain runtime information about a service. The
services themselves reside in a service repository and can be added to or removed from
service repository by the service Reconfigurator. The subclasses of the service base represent
concrete services that have specific functionalities.
The service configuration pattern has been applied in a number of scenarios particularly
when:
(i) Services must be initiated, suspended, resumed, and terminated dynamically at runtime,
(i) The implementation of a service may change but its configuration with respect to related
services remains the same and the configuration of collocated services may change but
their implementations remain the same,
{iii) An application or system can be simplified by being composed of multiple
independently developed and dynamically configurable services and
(iv) The management of multiple services can be simplified or optimised or adapied by
configuring these services using some administrative unit.
The kev components of this pattern are:
{a) Service: This specifies the interface containing the hook methods such as initialisation.
remove. suspend, terminate used by the service to dynamically configure the service at
runtime,
(b) Concrete Service: The concrete service implements the services interface and
functionalities such as event processing and communication with service consumers,

{¢) Service Repository: This maintains a repository of all services offered by a service

90

Chapter 3-Model Design

Reconfigurator based applications. This allows administrative entities to centrally manage
and control the behaviour of the configured services. The service configuration initialises é
service component by calling its init{) method. Once the service has been initialised
successfully, the Service Reconfigurator adds it to the service repository that manages and
controls all the services. After the service is configured into an application, a service
performs its processing tasks i.e. servicing service consumer’s requests. Then the services
Reconfigurator terminates the service once it is no longer needed by calling finit() method on
the service. This hook allows the service to clean up before termina;ting. As soon as the

service is terminated, the service Reconfigurator removes it from the service reposttory.

3.3.4 Adapting Services

The sequence of steps followed to adapt services is explained based on the previously
discussed designs. These steps are as follows are as illustrated in Figure 3.16.

(a) getContext(): In order to evaluate service variants, the Evaluator requires the current
values of some of the relevant context values for the given service.

(b) conextValueChanged(;. The Monitor informs the Evaluator of a change to a context

element for which it has previously requested a change notification.

(¢) configure(). Having decided which variant suits the current contexts, the Evaluator

requests the Reconfigurator to perform reconfiguration.

(d) disconnecr(j: While reconfiguration is ongoing. the Reconfigurator will call this
operation of the component framework 10 remove existing connections between component

instances. which will not be part of the configuration for the new set of concurrent services.

{e) init(j: The Reconfiguraror calls this operation to create all new components instances

91

Chapter 3-Model Design

required in the configuration for the new set of concurrent services.

(f) resolve(): The Reconfigurator requests the components framework to resolve the name to
an initialised component, which may cause a proxy to be created in case the component is

remotely located.

(g) connectf): Each new connection between components of the new configuration of the
concurrent service variants will be created by calling this operation, and for this to work, the

connectorFactory to use is specified.

(h) ReconfigureService(): The Evaluator instructs the Reconfigurator to reconfigure the
service to the new set of utility values for the service context parameters.
Finally. the next section provides insights on how the design explained in this chapter

achieved some of the set goal and objectives of this investigation.

Chapter 3-Model Design

getContext
" I{—l configure =
| | f I
= ‘ L

; (I
|]
(-
| A
| N— '
|
£ i updateResource
I

reconfigureService — »-
I
|
|

=

le reconfigureService i
-« reconfigureService L

Figure 3. 16: Adaptation using Reconfiguration Pattern

3.3.5 Chapter Conclusion

In this chapter, we have described the design of a dynamic system for service interaction in a

mobile grid system. As stated in section | 4, the goal of this work is to propose an adaptable

Chapter 3-Model Design

and reconfigurable interaction and communication between grid service consumers and grid
service providers, that helps reduce the service request response time; this has been partly

achieved in this chapter with the detailed description of the model design and algorithm.

54

Chapter 4-Model Implementation

CHAPTER FOUR

MODEL IMPLEMENTATION AND EVALUATION

4.1 Introduction

This chapter describes the implementation of the idea and adaptation model design presented
in previous chapters as a proof-of-concept. Most part of this chapter describes how the
Context Monitor, Evaluator and the Reconfigurator are realised. The chapter ends with the
evaluation of the simulated service that runs in the developed CAAM environment.

As explained in chapter three, the main goal of the adaptation model is to propose a dynamic
and adaptable system for service interaction in mobile grid. The objectives to achieve this
were revisited in chapter three in order 1o ascertain how these were achieved in the model
design. The model consists of a context monitor that further contains context sensors, and a
persistent context storage that temporarily stores context values that are not consumed
immediately for determination of trends of context changes, and also for aggregation of
further context data from the original contexts. The Evaluator uses “evemting’ 1o
communicate its decision to the Reconfigurator. The MADAM (Mobility and Adaptation
enAbling Middleware) [25] provided us with the environment. APIs and libraries to

implement major parts of the model.

Chapter 4-Model Implementation

Grid Service

Grid Service

-
r Evaluator
|

i
|
1 LXK
i
|
|

L

AHOMIWYHA

CACIP =

Figure 4.1:The Implementation Framework

4.2 Implementation Framework

The design of the components of the adaptation framework has been discussed in chapter
three. However, the implementation of these components integrates the MADAM APIs and
libraries that provide useful implementation of some of these concepts. Figure 4.1 illustrates
the framework and how it integrates with the MADAM to achieve our set Goal and
objectives. Next, the integration of the adaptation model and MADAM is briefly explained
thus:

1. The context Monitor communicates with the MADAM ContextSensor interface in order
to retrieve actual context information from MADAM Context and Resource Managers
that generates these from low level device resources. This helps reduce the
implementation time and to avoid reinventing the wheel.

2. Making use of the MADAM component metal-model which helps to integrate MADAM

component types, connection plans, blueprints plans, and composition plans into our

96

Chapter 4-Model Implementation

component Model as presented in chapter three.

Adding MADAM component reconfiguration methods for the purpose of effecting

(9%

adaptation as decided by our model’s Evaluator and the utility based algorithm.
Some of the classes and interfaces that realised the implementation are presented in

subsequent sections.

4.2.1 Context Monitor Package

The context monitor is highly dependent on the environment which is the physical context of
the terminals and wireless network. Therefore, the dependencies are encapsulated in context
sensors from which context data as observed in the environment is generated. Some of these
context data is consumed directly as it is generated by the Context monitor. It then passes this
to the Context Evaluator. Those context data that are not utilized immediately are stored
temporarily in the persistent context store and are retrieved later by the Evaluator through

contextAccessinterface interface and used for proactive adaptation decision.

97

Chapter 4-Model Implementation

: <<jmerface>> i <<inferface>> <<interface>> i
! ComtextSensorinterface | | ContextAxcessinterface PersistentContextStore :
|
T | ! v .
: +storeContextValue):void
‘i | ——] +getContext():String : +getVa.IueO’Va!ueueo i
| +contextChangediistened) | | | +addContextiistener() | ' +getlastValue(:Value
| +contextChangedEvent) . | | +removeContexilistener) | | +getiastVale)Value |
: Pt f : | +purgeContextStore()void |
;’ P | i : +storelnfile():vaid i
{ i : ‘ ‘ | HoadFromFile():void ‘
: JAN
!
1 i <<imerface>>
‘ : ; ContextElement i
, ! I-h:
i t i U R S
i . y . -GontextName:String
|) t — —provides
| ContextSensor . _ ; _. PersistentContextStore
~Sensond Sting f | Coineac> i
contextElement!d:String _
metaData:MetaData - ; ; : ﬁt"t’ﬁ*’;‘f\?‘;a“&oim
! contextChnagedtistener ! Contextvai vod | +getValue(yValue
| contextListener | : *extvaiueChanged().void ~ +getlastValue(): Value
; 0 : -_— | +getlastValue):Value
contextSenson)void i " +purgeContextStore{)-void
\unsetContextChangmustEner _ <<interface>> . ! +stoneinFile):void
|:ContextAccessinterface . ' EveniManager t HoadFromFile():void
:coﬁtex!ChangedEvemO:Void
<<y = _.
InterfaceMetaData
— uses -
getaliAvailableValues(): Value
getEditableValue(), Value

Figure 4.2:Context Monitor Package
The context Monitor package as specified in chapter three will be responsible for monitoring
the context and resources in the service execution conmtexts using ContextSensor,
PersistentContexiStore, ContextAccessinterface, contextSensorlnterface, eventListener
interface, contextElemenmt class, the context metaDatalnterface and the
persistentContextinterface. These imterfaces and classes work together to provide context

monitoring functionalities and Figure 4.2 is the class diagram for the context monitor.

98

Chapter 4-Model Impiementation

421.1 ContextSensor Class

This is responsible for sensing contexts. The ContextSensor class provides context values to
the Evaluator package and also to the persistent context store. This ContextSensor class can
provide more than one context element. The Evaluator acts as clients to the ContextMonitor
package through the ContextAccessinterface. This class also implements the

ContextSensorinterface.

42.1.2 ContextSensorAccessinterface

The ContextSensorinterface is implemented by the ContextSensor class. It contains context
sensorlD field which identifies each context sensor in case there are more than one.
contextElement field is the context element(s) being monitored by the context sensor. The
contextValueChangedEvent() is fired whenever value of the context element being monitored
by the context sensor changes. ContextChangeListener is the interface on which
conrextValueChangedy) listens for context changes.

4.2.2 Evaluator

Section 3.3.2 of chapter three presented the design and function of the Evaluator as being
responsible for reasoning on the impact of context changes on the services, and for deciding
on the adaptation to effect if context evaluation necessitates adaptation. This it does by
planning and selecting the service variant that best fits the current context situation. Part of
the reasoning requires that the Evaluator accesses the utilities of the contexts of the service
variants. The Evaluator then produces a model of the service variant thai best fits the current
contexts using the decision algorithm. It then uses the configuration templates to resolve all

the variation points. The Evaluator uses the context Monitor interfaces to collect context

99

Chapter 4-Model Implementation

IContextl istener
ContextValueChan

ged
Evaluator
Madam Builder
currentService:Map And Planner
ContextAccessinter planners: Map -~
face currentContextListeners: set
gerContextValue(}
< +etConfiguration{}
+etContextAccess()
+setComponentManager(}
revaluateAndSelect()
[Reconfigurator | ~°V2
G +adjustContextListener() ComponentManager
< ~+updateStatus()
+adapy) >

Figure 4.3: Evaluator Class Diagram.

information on the networks and devices. The Evaluator class implements the
ContextAccessinterface 1o retrieve context information it requires from the persistent context
store or directly from ConrextMonitor package. The class diagram is given in Figure 4.3, it
illustrates classes and methods and interfaces that implement the FEvaluator. More
importantly. the Evaluator implements the CowntextListenerinierface so that it reacts at
runtime to context information for currently running services. It also implements the
ComponentManagerinterface to acquire relevant plans that constitute the service
architectural model. The main evemt that triggers the Evdluator s
comtextValueChangedEvent.

The Builder and Planner is the MADAM [25] API used to build the adaptation framework or
request necessary adaptation decision from Evaluator. The adapt() method triggers the

adaptation by making the reconfigurator to initiate the process of adaptation. This is

100

Chapter 4-Model Implementation

accomplished by first acquiring current comtext from the context Monitor using the
ContextAccessinterface. Then, evaluateAndSelect() method is called to iterate over all
possible configuration templates for the running services using buildTemplate() method of
MADAM BuilderAndPlanner AP1. Only combinations of service variants that fit best in the
current context and resource limits are considered and the best among these is selected by
calculating the combined utility of each of these combinations. When the choice has been
made, the Reconfigurator is triggered to adapt the running service and its selected variant is

composed and presented to the service consumer.

4.2.3 The Service Reconfigurator

The service Reconfigurator coordinates the initial configuration and the reconfiguration of
the service components. The Evaluator and the Reconfigurator operate on common
information which is the configuration template. In the course of adaptation, the
Reconfigurator normally proceeds according 1o the contents of the configuration template for
the selected service variant. Therefore, the Reconfigurator executes the adaptation that has
been decided upon by the Evaluator while it applies the configuration template. Furthermore,
the Reconfigurator uses the component framework interfaces to instantiate components and

connectors to disconnect from any other component.

The ServiceReconfigurationinterface provides the operation to request the configuration of a
service. A configuration template that models the variant to be instantiated is provided to the
Reconfigurator. The Reconfigurator uses the connector Interface to create and remove
connectors using its addConnectionf) and removeConnection{} methods. The new

configuration of the service is provided to the Service Reconfigurator has a set of

101

Chapter 4-Model Implementation

Category :Category

Cf :IConnectFactory
CompMan: comnpenentManager
initTimeOut: int

finit :int

init: int

start:int

suspend: int

Configurator

instatiates

e === o~]

+Configuraior()
+Configure()
+addConnection()
+RemoveConnection()
+configureDevice()

IReConfigurator
+nitComplete()
+suspendComplete() IC i
[Configurator onneciar
+addConnection()
Configure() +removeConnection(}
ServiceReConfigurator] l

ConnectorF actory

3€S8

+reconfigure()
+configFromCompPlan()
continueQperation()

+init()

+prepareConfig()
+setComponentParamerer(}
+setinstanceManagery()
+stopConfiguration()
+suspend()

uses

ConfigTemplate

Figure 4.4: Reconfigurator Class Diagram

configuration templates, one for each running service. The components for each service and

its structured subcomponents, their blueprints and connectors used for each component, and

parameter setting for each component are included in the configuration templates. The

service Reconfigurator maintains information of the currently running service variants.

Whenever a request for service reconfiguration is received, the new configuration templates

are compared with the information of the currently running services to derive the minimal

sequence of steps required to move from the current reconfiguration of the service 1o newly

102

Chapter 4-Model Implementation

—
[Co u ,} ServiceReconfigurator ecmﬁuramr, companentCore Imml'mmm_cmm
T J T
? prepareConﬁguraﬁon()I} : :f E
I |
[7 L resalve() M
I E
S suspend() !) {
| | 7.
i ’ suspendComplete() :
’&.— ____________ U N
| |
configure() \ i
—_—
‘ removeConnection()
! igetCannectorFactory()
| —
| | | |
g iJ J removeGonnection(} I
| 3 |
i f joad()
| | | —
‘ |
3 I [getComponentState() ! L . L
cortinueOperaton() | j | ﬁ ‘!
[i |
| j finit()] ' l
[T ; -
! B]
N | mitCompletel) | | -
| e SR A |
| I D
I - : |
4 | R N
| .) ||
L . a L &

Figure 4.3:Sequence Diagram for Reconfiguration Process Summary

described Configuration by the reconfiguration templates. When connecting components, the
service Reconfigurator uses information from the reconfiguration template to determine the
connector to use. The reconfiguration template contains the model’s component variants

which can be used to instantiate components. The service Reconfigurator also determines

Chapter 4-Model Implementation

whether to use existing connectors or to create new ones using the connector factory [25).
Figure 4.4 is the class diagram for the Reconfigurator illustrating its interfaces and classes.
The Configurator class is responsible for the initialisation of a service. The Reconfigurator
class receives configuration templates from Evaluator that contains all necessary information
needed to execute a proper reconfiguration. Its configure(} method uses the reconfiguration
template that is provided 1o the serviceReonfigurator class when it is instantiated by the

Configurator class in order to reconfigure the service.

prepareConfig() method prepares the running service for reconfiguration by suspending all
component of such service while configFromCompPlan() reconfigures the service from the
composition plan. stopConfiguration() is invoked to the current component variant of
currently running service. The serviceReconfigurator class keeps the states of the service
being reconfigured using the init, finit, start, suspend parameters. These are to store the
states of the service components when being started and suspended. Figure 4.5 summarised

the reconfiguration process.

4.3 Implementation Environment and Specifications

To realise implementation of the prototype. we made use of MADAM reconfiguration
framework, Resource and Context Management APIs as explained in section 4.1. In addition,
the prototype is implemented with Java programming language using the Netbeans Integrated
Development Environment version 5.5.1. The persistent context store was implemented as a
simple text file where context values can be written and read. This is because we intended to
keep this implementation as simple as possible and also 1o reduce the overheads of using

desktop database which is an implementation 1s carried out on a Pentium 4 Compagq Presario

104

Chapter 4-Mode! Implementation

The context elements described above will trigger adaptation for the service request we want

to simulate.

4322 Adaptation Strategy

Table 4.2 summarised the adaptation strategies based on the context elements in table 4.1. In

the table some context combination that may trigger specific adaptation are described. The

table described context situation where there is no network connectivity.

Strategyl: This describes a situation where there is no network connectivity.

Table 4.2: Summary of the First Adaptation Strategy

Context Context Adaptation Strategy Analysis
Element Range/Value
Device Context
DeviceMemory e Normal Not Applicable
Speaker Volume
+ Normal
CPU e Normal
Power Ievel s+ Nermal

Environment Context

Noise

This is a situation whereby there is not network

111

Chapter 4-Model Implementation

& Normal

to connect to the Grid infrastructure to request

or deliver services. This network might have

Available

Network

* No Network

been lost due to situation whereby the
consumer walks away from where there is
strong signal or moving from one cell to
another. In this situation, The adaptation
strategy is to make the consumer aware of this
situation. The utility values for all service

variants at this point will be 0.

Strategy 2. Table 4.3 described a situation whereby the network currently in use suddenly

becomes unavailable but with some other available network.

Table 4.3: Second Adaptation Strategy

Context Context Adaptation Strategy Analysis
Element Range/Value
Device Context
DeviceMemory e Normai Other context are normal for service
execution
Speaker Volume
* Normal
CPU s Normal

Chapter 4-Model Implementation

= Adapiation Manager
File About

l ti Required context elements

Context Monitor

) ¥ Resources
Adaptation Ouiput
User Contexts —P SpeakerResource

SimulationMode ON —% MemoryResource

—B ScreenResource

Exﬂ i
—B> MNetwaorkResource
—P WicrophoneResource
—B BatteryResource
—@ nodeType MASTER

Figure 4.6: Main Implementation Interface and Context Monitor

R3000 model laptop with the following configurations: CPU speed: 3.0 GHz, and 640MB

RAM and 60GB hard drive.

4.3.1 Starting the Adaptation Manager

The CACIP adaptation manager when launched, automatically begins context monitoring
and values of various contexts and resources monitored are refreshed every 5 seconds. The
major parts of the implementation are shown in Figure 4.6. Among these is the Context
Monitor that produces all available contexts and device resources with their values as can be
seen in Figure 4.6. Service management shown in Figure 4.7 is the menu where currently

running service is monitored and managed.

Chapter 4-Model Implementation

Java: Sun Microsystems Inc#1.50 12 -
OS Wndows KPi51 on 86

UserPreferenceSensor consirucied
Services Sensor constructed

Figure 4.7: Adaptation Output and Service Management Panel

Context Monitor menu is used to observe context that are being monitored and adaptation
output is the menu that shows result of the simulated example service is generated. When a
service variant is evaluated for selection a line of output is displayed showing its utility and
reports if it is selected.

Figure 4.8 also shows the prototype log that shows context and resource changes occurring
internally in the system. Once the service is launched, all context sensors for monitoring the

service execution contexts are automatically constructed.

4.3.2 Demonstration of the Model

Having presented the detail implementation of the adaptation, demonstration of the usage of
this model is now presented. In order to achieve this, a simple hypothetical service request

application is simulated. Next this section gives details of the multimedia service request

106

Chapter 4-Model Implementation

based on the scenario explained in section 3.2.1 of chapier three. This throws light on how
service developers are expected to design services that would be adapted by the model. It is
assumed that the Airport has a high speed WLAN that provides Internet connectivity 1o
travellers through either their smart phone or laptops. Also, the airport network is connected
to other service providers’ services through a service infrastructure in the country. So, as
soon as Eunice comes off the plane, various services jostle for Eunice’s attention as she
walks towards the arrival. Eunice can request for any of these services through her
blackberry device for downloading some of the latest music, or to watch [atest home videos.
She can also transfer these to her laptop if her device’s battery has run down or that its
memory is not large enough to deliver these music or video services. These two mobile

systems have their limitation and requirements as enumerated in chapters two and three.

However, we found that the following additional requiremenis are more critical to the

successful use of Eunice’s smart device for service delivery at the airport:

(1) The smart phone must have necessary hardware such as adapter for WMAN. GPRS OR
3G for connectivity to the main airport network and Bluetooth for connectivity of the
smart phone with her laptop. Even though they maybe expensive, the GPRS. or 3G
network is provided by the Telco companies.

(2) The smart phone must easily pair with the laptop whenever the contexts of execution
become unreliable in the smart phone, so that transfer can be made to the laptop with
more resources. The communication between the smart phone and the laptop can be

established by the Bluetooth.

The assumption here 13 that the smart phone has the network adapters for connecting to the

107

Chapter 4-Model Implementation

infrastructure. To simplify the demonstration, a multimedia service request is simulated for

the purpose of evaluating the model as described in the example scenario. The service is

assumed to have three main variants that represent three different quality of service in terms
of utility that is used to select one of the variants based on prevailing context situation.

These variants in reality could be more than three. We decided to use audio, black and white,

and full multimedia variants, The audio variant is expected to require less context or

resources to execute, followed by the black and white variant and finally by the full
multimedia. What follows is a detailed adaptation analysis of the above scenario that is given
and this is divided into three main sections.

{1) Context and Adaptation strategy Analysis: A summary of this process is given in
subsequent tables that identify the context parameters that influence the adaptation
strategies.

(2) A simple component model of the service is given in compliance with our component
model described in chapter three.

(3) A simple utility function based design for decision making is also given.

43.2.1 Context and Adaptation Strategy Analysis

As illustrated in section 3.3.1.2 of chapter three, three types of context are considered for the

purpose of the adaptations envisaged in the scenario. Table 4.1 summarised the context

parameters.

(a) Service Context: This describes types of available services or the variants of a given
service that service consumer can select from if necessary.

(b) The Device context: This is the context that affects the smart phone such as its memory

and processing speed.

108

Chapter 4-Mode! Implementation

Table 4.1.Context Parameter Summary

Analysis

This refers to the amount of device
memory available to exccuie th service.
The values normal and low describe the
specific value range that this parameter can
assurme at any given time. This depends on

the type of device and its memory.

The speaker volume describes the device
speaker which may influence audio variant
of the service. The value is assumed to be
high or low . This is the same for all

devices.

This describes the processing speed of the
device. This varies for different devices.
Its value could assume high or low
depending on the number currently

executing services.

Context Context Range/Value
Element
Device Context
DeviceMemory e Normal
« Low
Speaker Volume + High
¢ Normal
« Low
CPU s Normal
e Normal
o Low
Battery power e Nommal
level e Low

This describes the power level of device
battery. This may determine whether
already initiated service request should be
wansferred to a consumer’s laptop if it's
available or the service request be

suspended.

Environment Context

109

Chapter 4-Model Implementation

Noise High This describes one of the user contexts. If
Normal the user environment is noisy, this could
Low affect things like the audio and may
prompt the system for instance to increase
the speaker volume.
Available GPRS This describes all available netvwork types
Netrwork 3G in the user environment whether they are
WMAN connected or not.
NoNetwork
Network High This describes the network delay which
Latency Normal also affects service execution.
Low
Network High The executing services require some
Bandwidth Normal minimumn bandwidih to execute. This aiso
Low may determine what service variants to
load for the service consumers
Service Context
Service Available This describes for instance whether the
availability NotAvailable service is available or not
Request Mode Audio This describes a situation where service

Black and White

Full Multimedia

consurner decides what type of this service

she prefers.

(c) The Environment context: This is a type that describes possibly the user environment and

her needs or choice and also the network contexts.

110

Chapter 4-Model Implementation

Power Level » Normal
Environment Context
Noise This is a situation whereby a service request
e Normal has been initiated and suddenly the nerwork
becomes unavailable. However, since other
Available network is available, this is immediately
Network connected. The consumer has to be informed
ot this context situation. In this case, & 3G
e 3G network is available. | |

Strategy 3: This is a context situation whereby the available bandwidih of the connected

network becomes very low. This is summarised in Table 4.4.

Table 4.4: Third Adaptation Strategy

Context Context Adaptation Strategy Analysis

Element Range/Value

Device Context

DeviceMemory e Normal This is a situation whereby the bandwidth of
the available and connected network becomes

Speaker Volume low. This swrategy here is 10 find the service
variamt with less network bandwidth

* Normal consumption. For instance the choice will be

2

Chapter 4-Model Implementation

cpy s Normal between audio and black and white variams.
However, as soon as the bandwidth becomes
normal, the normal service variant which is full
o ey multimedia is resumed.
Bandwidth
Environment Context
Noise Wot Applicable
e Normal

Strategy 4: This is a situation whereby the battery power becomes very low and this is

summarised in Table 4.5,

Table 4. 3: Fourth Adaptation Strategy

Context Element | Contest Range/Value Adaptation Strategy Analysis

Device Context

DeviceMemory s Normal This is a situation whereby the battery power has
become very low in the process of service request.

Speaker Volume The strategy is to either suspend the service
request or transfer it to the consumer’s laptop ifit's

s Nomal avgilable.
CPU e Nomal

114

Chapter 4-Model Implementation

Battery power e Low

level

Environment Context

Noise Not Applicable
* Normal

Available « GPRS

Network . 3G
s WMAN
e Others

In summary, the list is not exhaustive; however, this gives a picture of how the context and

adaptation strategies are designed for all services that can be adapted by the model.

What follows, is a description of the component model of the service which is based on the

components model described in section 3.4.1 of chapter three.

4.3.2.3

Service Component Architecture

We start with the component types. There are four major component types.

(1) The Component Administrator: This serves such functions such as:

{a) Connecting and disconnecting other service components during execution,

(b) Keeps current state of the service,

(c) Facilitates component communication and

{(d) May also perform some component management functions.

Chapter 4-Model Implementation

Figure 4.8: Components of the Multimedia Service Example

(2) The audio variant component represents the audio variant of the service which is an
atomic component of the service composite component.

(3) Black and White Component: This is basically the same as above but represents the black
and white variant of the service

(4) Full Multimedia: This is also similar to the one above but represents the full multimedia
variant of the service.

Figure 4.9 illustrates these component types and their relationship using their connectors and

ports.

This figure illustrates a high level view of the simulated service request components. Each of

the service variants: audio, black and white and full multimedia has its own administrator

namely andioAdmin, BnWAdmin and Full Admin.

4.3.2.4 Specification of the Composition Plans and Architectural Constraints

The component model of the service presented in section 4.6.2 above is not complete without

116

Chapter 4-Model Implementation

the composition plan and the architectural constraints. The compositional plan helps to store
the description of the collaborations among several service components, while the
architectural constraints help to avoid meaningless service variants instantiation when
resolving variation points of the service component framework. The component types such as
Audio, Black and White may have several realisations which are dynamically created at
runtime.

In theory, all possible combinations of selected components at the variation points represent
valid service variants. However, in practice, this selection maybe meaningless as the selected
components may not form a feasible service variant in terms of their provided and required
properties. Therefore, the composition plan and the architectural constraints help to avoid
these situations. For instance, we will not want components that form Black and White
variant to be combined with those of full Multimedia components. Hence, the need to create
the composition plans for this composition along with the architectural constraints. The
architectural constrainis represent the connectors and ports that can be connected or those
that cannot be connected to form meaningful service. The concept of feature which is
borrowed from MADAM [25] is used to keep various components variations of the
multimedia service. This is necessary to avoid meaningless instantiation of service

components that form a given service variant at runtime.

17

Chapter 4-Model Implementation

F-Mode
AV BV FV
<<consiraints>> <<constraints>> <<constraints>>

Figure 4.9: Variation Point Stored in F-Mode

So the component that keeps information about various components of the multimedia
service, here is called F-Mode, which consequently has three subcomponents namely AV BV
and FV representing Audio, Black and White and Full Multimedia variants respectively. This
F-Mode keeps the variations and architectural constraints of the components of the service as

illustrated in Figure 4.10.

Following the presentation of the components of the service and the corresponding
component plan, we present in the following lines, how those components are associated
with properties that characterise their extra-functional behaviours. Context analysis presented
carlier helps to associate these properties with each of these components. Table 4.7

summatised this procedure,

Finally, as the component properties of the adaptive service model have been annotated. the

implementation of the utility function algorithm is presented.

118

Chapter 4-Model Implementation

Table 4.6:Summary of utilities for Context parameters

Pmperty
Type

Abbreviation

Analysis

Available
Mode

AvailMode

This property defines the offered service modes. It
can take the following values.
¢ AV — Aundio Variant
s BV-Black and White Variam
+ FV-Full multimedia Variant
The mode preferred by the service consumers is given
by the context element RequiredMode whose value is
compared with the AvailMode in the evaluation of the
utility function value. The service consumer will have
higher weight during utility value calculation.

Response
Time

ResponseTime

This property is related to the service quality and it
represents the maximum response time required by a
component to work correctly. It is measured in
milliseconds. The full multimedia needs better network
condition than the audio variant. This implies that
Response time value for audic will be lower than that
required by the Black and White variant, in the uility
function calculation, the value of Response Time is
compared with Response Time offered by the
environment. From this property. service variant that do
not work correctly as a result of bad network cordition,
even if preferred by the service consumer is discarded.

Sound level

AvailSound

This is an integer value that represents the sound level
offered by those components that emit sound. In this
case all our component emit sound and the value will
depend directly on the speaker volume which is a
setting to be provided by the service developers. In the
utility function. a speaker configuration that improves
the operation of the service in a noisy environment such
as in an airport environment wili be selected.

Power
Factor

ConsumedPower

This provides information about the power
consumption of the service variani. For this service, it’s
a function of the selecred nerwork segment or tvpe. This
is a device seming © be provided by the service
developers. For exampie. a GPRS nemwork consumes
less power than a WiFi network. So ConsumedPower
by GPRS < ConsumedPower by WiFi. Hence if
ConsumedPower by GPRS is 3 and that of a WiFiis 6,
then service component variant associated with GPRS
will be preferred 1o service vanant component
associated with WiFi network as this helps o predict
Hme activity of these service variant components,

Memory

Required

MemoReq

This stores the amount of memory required by each
component for it to work correctly.

119

Chapter 4-Model Implementation

Iff!AV Requested and AvaiiMode =
AV

Return {);
Jelse
Ift/BYRequested and AvailMode =
“BY")f

Return 0;
telse
I FVRequesteddndAvailAlode
="FI)

Return 0;

JElse
Ift! NetworkSegRequestedAnd

NetworkSeg = “"None ™)}

Retwn 0;

}
Else

fft!NetworkAvailabilitvinetworkUsed)}{

Return 0;

} else

lfidvailMode = RequestedMode){
UtilUserRequest = I

Else {
UtifUserReguest = 0;

}else

if (AVRequested and AVAvaili

§
i

Jldv = 1;

UiilBY = I;
Else!
UiilBV=0;
}
IfiOfferredResponse Time< Response
TimeRequested(
UtilResponse =1;
Jelse
{
UtilResponse =0;
:
Udliy'. = wi*UnlUserRequest
w2 LAV - wI*Unild)

—wid*UHIBY ~ wi*L'tilResponse;;

Figure 4.10: Utility Function Algorithm Pseudo Code

4325

Algorithm Implementation

Legend

AV = Audie Vanant
= Black and Whitg Vanant
F¥= Full Multimedia varant
AFRequested. BVRequested and FlReguested represent
requestad vanants respectively
UnilUserRequest = Uulity for user Request
Uril 41" = Utility for Audio Variant
CUrilBé = Unility for Black and Whire variam
UndF7 = Unlity for Full Multimedia varant

UnlResponse = Unlity for Response Time

The objectives of this algorithm are (1) To ease the implementation of the utility function

model and (2) to draft how the utility function is created. The number of service variants of a

given service determnes the number of times the utility function algorithm will be executed

during adaptation process.

120

Chapter 4-Model Implementation

= Adapiation Manager
File About '
Avsilability utility: 0.2 Response Utii &
Regquesting for Audio... Starling this ac
Audio activity complete

changing o full video :frue

Ayailability ulility 0.2 Response Utll
Requesting for Audio. . Starding this ac
iAudio activity complete L
network bandwidth now : 80

Availability ulility - 0.2 Responss Ut
equesting for Audio... Starting this ac
Audio activity complete : l

= Adapiation Manager
File About :

—

nefwork bandwidth now : 28
Availahility utility : 0.2 Response Util
Raguesting for Audio. .. Stariing this ac
Audio activity complete

3
v

et

Figure 4.11: Launching a Service and Adaptation Output

This means that in the implementation, variant with required context utility that does not
meet the available context utility is rejected first. In the remaining part of the evaluation,
different properties that are relevant in the decision making such as consumer’s preference,
network condition or the device memory are then evaluated. For each property, a partial
utility is calculated, and the final utility is the weighted sum of the partial values according to
the utility function model presented in section 3.3.2.2 of chapter three. The pseudo code in
Figure 4.11 below gives a glimpse of the utility function.

The service is implemented in java and the jar file was ported into the adaptation prototype
and Figure 4.12 illustrates output generated during the execution of the service in the

adaptation manager prototype.

Chapter 4-Model Implementation

4.3.3 Model Performance Evaluation

This section presents the evaluation and results of the performance of the proposed
adaptation model based on the multimedia service presented in the preceding section. In
order to demonsirate how the adaptation model performs, some experiments were conducted

on how the context-aware utility-based model influenced the adaptation triggering.

4.3.3.1 Effect of Service Variants and Service Consumer Choice (Weight) on
Adaptation Quality

Experiment on the quality of the adaptation process was carried out which basically was
meant to measure the level of satisfaction attained by the adaptation process as perceived by
the service consumers. Two factors influenced the choice of metrics we used to measure the
quality of adaptation. First, the service variant selected by the adaptation model is expected
to satisfy the execution contexts requirements. This means that the utilities for both required
and available context parameter values must be feasible in order to have a service variant
presented to the service consumers. Second, the choice of variant the service consumer
makes also needs to be satisfied in adverse context situation. In other words, it means that the
more the service consumer is satisfied with a service she is presented with, the better the
adaptation. Adaptation Quality Index (AQI): is defined as the measure of quality the
adaptation model achieves as perceived by the service consumers. This is calculated using
the following parameters.

Context Utility CI: This is calculated from the RequiredContextUsility and the

AvailableContextUtility given as:

Chapter 4-Model Implementation

Table 4.7: Experimental Results

Weight | No of Context IAQI Adaptation [Response | Response
Variants | Utilities Time Time Time
without
Adaptation
0.9 10 | 0.0588734 | 2.0301936 3t 94 125
20 | 0.061008 | 0.90557039 62 110 172
30 | 0.0620973 { 0.72924334 93 125 218
40 | 0.0592659 { 0.5254227 125 141 266
50 | 0.0562116 } 0.39442417 156 156 312
60 | 0.0580518 | 0.34486202 204 203 407
70 | 0.0586652 | 0.29726798 234 250 484
80 | 0.0595746 | 0.25794452 281 250 531
50 1 0.0594717 § ©.22433771 297 263 562
100 1 0.0582682 1 0.20593692 344 390 734
0.8 10 | 0.0689471 § 210433695 32 78 110
20 | 0.0627557 | 0.94061866 47 62 109
30 | 0.0669702 | 0.71260961 94 125 219
40 | 0.0657288 | 0.51441572 109 156 265
30 | 0.0670764 | 0.42509933 141 172 313
60 | 0.0663065 | 0.3357652 172 125 297
70 § 0.0672196 | 0.30232961 203 219 422
80 | 0.0660413 | 0.25056914 234 172 406
90] 0.0663307 | 0.23093067 266 281 347
100 1 0.0656323 | 0.19865548 296 329 623
0.7 10 { 0.0760788 | 2.111353652 31 16 47
20§ 0.0768899 | 1.11806309 46 32 78
30] 0.0771993 | 0.72466693 78 125 203
40 F 0.0784578 | 0.53362651 94 78 172
50 | 0.0773772 | 0.48563313 125 125 250
60 | 0.0797776 | 0.36164135 156 406 362
70 | 0.6782335 | 0.30169393 203 235 438
80 | 0.0788941 | 0.27069791 219 250 469
90 | 0.0781413 } 0.25153363 250 230 300
100 | 0076044 1 021273054 235 327 362

Cl= RequiredContextUtility

AvailableContextUtility (11

Adaptation Quality:

Chapter 4-Model Implementation

Cl= Rcu (12)

Where Rey denotes the required context utility and Acy denotes the Available Context Utility

Service Consumer choice Index SI= Total Choice satisfied (13)

Total choices made
A higher value of this parameter index implies that the selected service variant is more
important to the service consumer.

Finally, 04l = (CI + 8Ii/2 (average of CI and SI) (14)

It is assumed that the two factors considered in the experiment carry equal weight and this
weight is adjusted according to how much importance is attached to each of these factors.

In order to measure AQIL, the number of service variants for a given service request and the
weight were varied. The weight is a numeric value that determines service consumer’s
choice of service variant. The higher the weight for a given variant, the more the consumer
prefers that variant. The Bar chart plot of AQI against service variants for weights 0.9, 0.8,

0.7 is shown in Figure 4.12.

It can be inferred from figure 4.12 that the more relaxed the service consumer choice in terms
of weight. the better the quality, but this degrades as the number of service variants to select
from increased. This shows that when the weight was 0.7. there was better adaptation quality
of 2.11 compared with that of weights 0.9 and 0.8 which were 2.03 and 2.10 respeciively

when the number of service variants was 10,

Chapter 4-Model Implementation

Effects of service Variants on Adaptation Quality

25 -
24

5
£ 154 | —a—Weight 0.9
2 3 | ——Weight 0.8
= 1. | —— Weight 0.7
g \ &g

0.5 1 \%

[y
—‘-‘—--a—__.—.-__';

‘l
"% S T T
10 20 30 40 50 B0 70 80 90 100

Number of Variants

Figure 4.12: Effect of Service Consumer Choice and Service Variant On Adaptation Quality

43.3.2 Effect of Adaptation on Overall Response Time

Another experiment was conducted to evaluate the effect of adaptation on Response Time.
Two metrics were used; the context utility and response time. The context utility is defined as
the ratio of the required context to that of available context. The response time is defined as
the time in milliseconds between when a request for a given service was made and when it

was delivered.

Chapter 4-Model Implementation *

Effect of Adaptation On Service Response Time

‘ MY T
[=t NO Adaptation ===SeWith Adaptation |

Context Utility
o
o
w

0 200 400 600 800

Time(Milliseconds)

Figure 4.13: Effect of Adaptation on Service Response Time

During the experiment, the response time was measured between when a service request was
made and when a response from the system was received. Two versions of this experiment
were conducted. One was when the model was used to adapt the service and the other was
conducted without adaptation process. The experiment was carried out over some 30 minutes
of simulation time; the context utilities and corresponding service response time were
measured and observed behaviour was plotted as shown in Figure 4.13. We observed that the
context utilities did not show any trend but that it kept changing sometimes with increasing

and some other time decreasing.

Chapter 4-Model Implementation

Effect of Consumer Choice and Service Variants on Service ,
Response Time

—o— Weght =09 |

—=— Weight =0.8|
i!—f—Weigm=o.7\

s 2888
1,.__4] FUNSONIIY WSS FA S S | S— I T—

o 8 8 8

Service Response Time(ms)

|
|
|
|

T T

10 20 30 40 50 60

70 80 S0 100

Service Variants

,
|
|
'
| |
| |

Figure 4.14: Effect of Service Consumer Choice and Service Variants on Service Response

Time

This is very typical of the dynamic instability of the environmental contexts which cannot be

predicted. The plot shows that with time, the response time for both adaptation series and

none-adaptation series increased. However, the rate at which the response time increased for

adaptation series is lower compared with non- adaptation series.

4.33.3 Effect of Service Consumer Choice and Service Variants on Service Response
Time

A separate experiment was conducted to ascertain the impact of service consumer choice and

number of service variants on the service response time. In the experiment, we varied the

number of service variants and the service consumer choice which was measured in terms of

weights. The corresponding service response time was determined for three different

Chapter 4-Model Implementation

weights 9, 8, 7, respectively, and number of service variants varied between 10 and 100.

The essence of this experiment was to determine whether the increased preference for a given
service and its variant would either reduce or increase the service response time. The result
was plotted and is as depicted in Figure 4.14. It was found that when the service consumer
relaxed her choice (weight), the system performed better. For instance, when the weight was
0.7, though initial response time increased, it began to fall compared to weights 0.9 and 0.8

which rather kept climbing up.

4334 Comparing Adaptation time with Response time as number of variants
Increased

The third experiment was to evaluate the effect of consumer choice and service variants on
response and adaptation times. In the experiment, we varied the number of service variants
and then subjected the service request to adaptation. The time it took to evaluate and

reconfigure the service was measured; the overall response time was also measured.

Chapter 4-Model Implementation

Response Time ‘

|

o BB EEBERE

G —t—t—

10 20 30 40 50 a0 70 80 a0 100
Service Varianis

Figure 4.15: Effect of Service Variants on Adaptation Time and Service Response Time

The adaptation time, that is, the time it takes to evaluate the service variants is compared with
the overall response time which is the time between when a request for a service is received
and when a response is received or when the service is delivered. Figure 4.15 reveals that as
the number of service variants increased, the adaptation time and consequently the response
time increased. It was observed that as we increased the number of service variants, though
both response and adaptation time increased the adaptation time was steady. However, it was

observed that the response time increased at higher rate than the adaptation time.

4.3.4 Conclusion

In this chapter, the implementation and simulation of the proposed context-aware utility
function based adaptation model were presented as a demonstration. A performance
evaluation of the model showed that adaptation is very useful to provide considerable service

quality as experienced by service consumer through series of experiments that have been

Chapter 4-Model Impiementation

conducted. The experiments also showed clearly that there is need to improve the model to

provide better service quality.

Chapter 5-Conclusion and Future Work

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

5.1 Overview

This chapter concludes the dissertation with a summary of the investigation and the overview
of the contributions. A brief discussion of some of the open research questions unearthed in

the course of this investigation is then presented.

5.2 Conclusions

Adaptable Mobile Grid services should be able to maodify its own behaviors at run time to
adjust to changes in its execution contexts in order to optimize its performance and
availability in a transient environment. However. traditional services (be it Grid or Web)
performed their functions with explicit inputs and are not aware of their contexis. Access to
context information, therefore, provides an opportunity for using contexts in service
provisioning that may result in higher quality of service. This context can be used to reason
about adjustments the systems may have to make in response to changes in contexts that may
otherwise negatively impact on the quality of service delivery. Making services to reason and
modify their behaviors at runtime s a complex task that has been addressed in a number of
ways; from content adaptation to user interface adaptation even service function has been
adapted. All these adaptation mechanisms and strategies are yet to provide needed service
quality in terms of service response time which is still very high as a result of the dynamic

nature of mobile technology.

Chapter 5-Conciusion and Future Work

This work attempted to fill the gap found in the mobile Grid based E-service infrastructure
proposed in the centre. The e-Service technology is based on the emerging concept of utility
grid computing. In the GUISET infrastructure, the interaction between the mobile client
components and the server components posed serious challenges for two reasons. First, the
wireless network connecting these components is unstable. Second, the heterogeneity of the
mobile devices poses interaction problem. In depth analysis and study of this interaction
problem led to the discovery of the increased response time between a service request from
the mobile clients and when the server component (service providers} deliver the requested
services.

In order to address this problem, context-aware adaptation of service component interaction
was proposed in order 10 improve on the quality or satisfaction experienced by a mobile grid
service consumer. The study was founded on a methodical definition of interaction. and then
followed by fitting the existing interaction pattern (CACIP) into mobile grid setting, and
finally the birth of a context-aware utility function based adaptation model. A dynamic utility
function based decision algorithm was also proposed. All these served as the objectives to
achieving the main goal of proposing a model for dynamic and adaptable system of service
interaction in mobile grid. Context-aware in the model meets the need of the running
application services 10 be aware of the platforms and environment on which they are running.
Context-aware services are enabled to take both reactive and proactive decision on what to
do in case the contextual situation does not provide feasible execution context for their hitch-
free execution. This aspect was handled by the context monitor of the model. Furthermore,

there was need for the model to reason about monitored contexts in order 1o decide at runtime

Chapter 5-Conclusion and Future Work

what to do should the context fluctuate adversely. We designed a utility based decision

algorithm which decides on feasible adaptation options.

The algorithm works on the assumption that services are designed by the developers 1o have

alternative implementation called variants. A variant differs in context requirements. The
crafted modet selects at runtime which would be feasible under the current prevailing context
situations.
To effect adaptation, service reconfiguration pattern was adopted. The pattern is based on
component technology, executes adaptation decision reached by the Evaluator module. The
choice of this pattern was based on the fact that it is component based and facilitates easy
composition of services not only at design time but at runtime. The proposed model was
implemented with the integration of MADAM APIs and libraries [25] for context
management, and component reconfiguration.

These design fulfilled the goal and the objectives that were set for this investigation to
achieve as a simple service request was simulated in the framework to evaluate the proposed
model. A number of experiments were conducted to evaluate and to prove the concepts
adopted in the model design. One of the experiments was to determine the effect of number
of service variants and service consumer choice on the quality of adaptation which was
defined as the satisfaction or quality perceived by the service consumers. As expected, it was
observed that the more the number of variants, with increasing choice of service variants
(measured by weights), the more the adaptation quality degraded.

Another experiment was conducted to determine the effect of adaptation process on service
response time. In this experiment. runtime context utilities were plotted against the response

time measured when adaptation process was executed and when it was not applied. We found

Chapter 5-Conclusion and Future Work

out that the response time with adaptation is lower than that without adaptation at any given
context utility. This is very significant as it proved that adaptation can actually help reduce
response time. ‘The third experiment was to evaluate the effect of consumer choice and
service variants on response and adaptation times. In the experiment, we varied the number
of service variants and then subjected the service request to adaptation. The time it took to
evaluate and reconfigure the service was measured. Also, the overall response time was
measured as we varied the weights. The result showed that as we increased number of service

variants, though both response and adaptation time increased the adaptation time was steady.

Finally, the last experiment was to evaluate the effect of weights or service consumer choice
on response time, the result showed that when the consumer choice was relaxed, the response

time was not as high as when the choice was high as determined by the applied weight.

5.3 Future Work

The evaluation results of the proposed model unearthed some important questions that
formed the basis for future investigations. For example, in the first experiment, the adaptation
quality degraded faster with increasing number of variants and with high service consumer
choice. This means that if a service consumer insists on having a given service variant at the
expense of others, the quality experienced by such service consumers is very poor. There is
need to look critically into the utility-based model and decision algorithm to improve on
giving priority 1o service consumers choice and integrating this in to the model so as to
improve on the overall quality experienced by the service consumers.

Also, it was observed that there was very high disparity between the adaptation time and the

overall response time. The cause of this is yet to be ascertained but this point to the fact that

Chapter 5-Concluston and Future Work

there is some negative effect of service reconfiguration which time did not allow us to
investigate in this research. Hence, there is need to investigate message exchanges among the
components of the adaptation modei. Standard protocols for communication, for “eventing”,
messaging and addressing need to be looked into. Also, to facilitate runtime binding for
structured information exchange between adaptation elements, the interfaces and mode! have
to be defined in machine readable manner.

Another aspect of this work that needs further investigation is the integration of the
adaptation model into practical grid infrastructure as concluded in [81]. This we think can be
done by integrating adaptation as service that can be consumed by both service consumers
and providers guided by the service oriented architecture standards. This means that rather
than embedding adaptation techniques into the grid application services, it can be provided as
a service for the purpose of reusability and interoperability. [t means that service developers

will not bother about designing adaptation in the grid application services.

[
[V
[]

References

[t}

(2]

(3]

(4]

{31

6]

[7]

[8]

[91

REFERENCES

Gaddah A, and Kunz T., © A survey of middleware paradigms for mobile
computing”, Carleton University, Systems and Computing Engineering,2003
Technical Report (SCE-03):Available from:
http://www.sce.carleton.ca/wmc/middleware/middleware.pdf{accessed 28th June
(2006)

Katz R., *Adaptation and Mobility in Wireless Information Systems”, IEEE Personal
Communication, Vol. 1:pp6-17, 1994,

Chu D, and Humphrey M., "Mobile OGSLNET: Grid Computing on Mobile
Devices", 5th IEEE/ACM International Workshop on Grid Computing - Grid2004 (at
Supercomputing 2004). Nov 8 2004, Pittsburgh, PA.

Guan T, Zaaluska E. and Roure D.” A Grid Service Infrastructure for mobile
Devices”, Proceedings of the First International Conference on Semantics.
Knowledge and Grid, 2006.Available
from:http://doi.ieeecomputersociety.org/10.1109/SKG.2005.10

Zuma S., and Adigun M.,”CACIP: Context Aware Components Interfacing Pattern™,
In 2006 Proceedings IASTED Conference of Modelling and Simulation: Available
from hutp://www.actapress.com/Paperinfo.aspx?PaperID=26813006 [Accessed 29th
June 2006]

Adigun M.O., “Software Infrastructure for e-<Commerce and e-Business™ unpublished
Research Working paper, Res-CSD-01, Centre for Mobile e-Services, University of
Zululand, 2006

Chaari T.. Laforest F. and Celentano A. “Adaptation in Context Aware Pervasive
Information Systems”™ Journal of Pervasive Computing And Communication Vol. 2
No. 2, June, 2006

Kistler J, and Satvanarayanan M. ,"Disconnected Operation in the Coda File System™.
ACM Transactions on Computer Systems, vol. 10. no. 1. February.1992.

Foster, I.. Kesselman, C.. Nick. J. and Tuecke, S.. “The Physiology of the Grid: An
open Grid services Architecture for Distributed Systems™ Available from:

References

[8]

[11]

[12]

(14

[15]

[16]

(7]

[18]

[19]

http://www.globus.org/alliance/publications/papers/ogsa.pdf.

Goyal S. and Carter J., “A Lightweight Secure Cyber Foraging Infrastructure for
Resource-Constrained Devices”. Appears in Sixth I[EEE Workshop on Mobile
Computing Systems and Applications (WMCSA2004), pp. 186-195.

Bruno D., Scarpa M., Zaia A., and Puliafito A. "Communication Paradigms for
Mobile Grids Users”, 3 [EEE/ACM International Symposium on Cluster Computing
and the Grid, 2003, Available from:
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/icl5/8544/27003/0119943 1 pdf

KolaG, Kosar T. and Livny M., “ Run Time Adaptation of Grid Data Placement
Jobs”,Computer Sciences Department, University of Winconsin Madison, USA,
2004:Available from:
htip://www.cs.wisc.edu/condor/stork/papers/runtime_adaptation-pdcp2004.pdf

Al-bar A. and Wakeman I., “A survey of Adaptive Applications”, Proceedings of the
21" International Conference on Distributed Computing Systems Workshops™, 2001.
Available from: http://ieeexplore.ieee.org/iel5/7338/19870/00918713.pdf

Bradram J."The Java Context Awareness Framework (JCAF)-A Service Infrasiructure
and Programming Framework for Context Aware Applications Tutorial”, Available
from:hutp://www.daimi.au.dk/~bardram/jcaf/jcaf.v135.pdf

GT4: www. globus.org/toolkit/

OSGi: The OSGi Service Platform - Dynamic services for networked devices.
Available from:http://www.osgi.org/ [accessed: June 23, 2007].

OWL-S: www.w3 org/Submission/OWL-S/

Rossi P. and .Ryan C. ,"Emperical Evaluation of a Local Adaptation
Algorithm”, RMIT University, Melbourne, Australia,2003.Available from:
httpi//goanna.cs.rmit.edu.aw/~caspar/ATcre/1.2/papers/DOAPaper2005.pdf

Aksit M. and Choukair Z. ,"Dynamic. Adaptive and Reconfiguration Systems

Overview and Prospective Vision™, Proceedings of the 23™ International Conference

References

[20]

[21]

[22]

[23]

[24]

[25]

{26}

[27]

[28]

on Distributed Computing Systems Workshop,2003.Availablefrom:
hitp://ieeexplore.iece.org/ Xplore/login, jsp?url=/iel5/8560/27094/01203537 pdf

Kurkovsky S., Bhagyavati A. R., M.Yang. ‘Modeling a Grid-Based Problem Solving
Environment for Mobile Devices’, In Proceedings of the InternationalConference on
Information Technology: Coding and Computing (ITCC’04), Las Vegas, Nevada,
April 05 - 07, 2004.

Mikic-Rakic M. and Medvidovic N. ”Support for Disconnected Operation via
Architectural Reconfiguration”, International Conference on Autonomic Computing
(ICAC’04) New York, May, 2004.

Aksit M. and Choukair Z.”Dynamic, Adaptive and Reconfigurable Systems
Overview and Perspective Vision”, Proceedings of the 23 ™ IEEE International
Conference on Distributed Computing Systems Workshops, 2003

Geighs K., Khan M.U, Reichle R. Solberg A., Hallsteinsen S. and Merral .”Modelling
of Component based Adaptive Distributed Applications”, Proceedings of the ACM
21% Symposium on Applied Computing,2006. Bourgogne University, Dijon, France.

Buisson J., Andre F. and Pazat J. “Dynamic Adaptation for Grid
Computing”INRISA/INSA, Rennes, France. Available
from:http://www.irisa.fr/paris/Biblio/Paper/BuiAndPaz0SEGC pdf, Accessed: 5"
March, 2007

MADAM Deliverables: Available from: www.istmadam.org, accesed last 25" April,
2007.

Dey A. “Providing Architectural Support for Building Context-Aware Applications™.
PhD thesis. College of Computing, Georgia Institute of Technology. 2000.

Keeney J., and Cahill V. “Chisel: A policy-driven, context-aware, dynamic adaptation
framework™. In proceedings of the 4th International Workshop on Policies for
Distributed Systems and Networks. 2003. Lake Como, Italy.

Walsh W.E, Tesauro G, Kephart J.O and Das R. “Utility Functions in Autonomic
Systems”. In proceedings of First International Conference on Autonomic Computing
(ICAC'04). 2004. p. 70-77.

References

[29]

[30]

(31]

[3Z}

(351

[36]

371

Systems”. In proceedings of First International Conference on Autonomic Computing
(ICAC'04). 2004. p. 70-77.

Simula Research Laboratory. The QuA project. Available
From:http://bagadjimbiri.simula.no:8888/QuA [accessed: May 23, 2007].

McKinley, PK., Sadjadi S.M., Kasten E.P. and Cheng B.H."A taxonomy of
Compositional Adaptation”. Tech report, Software Engineering and Network
Systems Laboratory, Michigan state university. 2004. pp 56-64

Ranganathan A. and Campbell R.H.” An infrastructure for context-awareness based
on first order logic” International Journal of Personal and Ubiquitous Computing ,
Vol 7 Number 6, 2003, Springer Verlag London pp 353-364

University of lllinois at Urbana-Champaign. The Illinois GRACE Project (Global
Resource Adaptation through Cooperation). Available from:
http://rsim.cs.uiuc.edu/grace/index html{accessed: June 24, 2007].

Adelstein, F., Gupia S.K., Richard G. and Schwiebert L.. Fundamentals of Mobile and
Pervasive Computing. 2005. McGraw-Hill Professional. ISBN 0071412379.

Akbar, M.M., Manning E.G, Shoja G.C. and Khan S. Heuristic Solutions for the
Multiple-Choice Mukti-Dimension Knapsack Problem. In proceedings of International
Conference International Conference on Computational Science. 2001. San
Francisco, USA.

Hifi. M., M. Michrafy. and A. Sbihi. Heuristic algorithms for the multiple-choice
multidimensional knapsack problem. Journal of the Operational Research Society,
2004.55(12): p. 1323-1332.

Khan. S., Li K.F., Manning E.G and Akbar M.D. “Solving the Knapsack Problem for
Adaptive Multimedia System. Studia Informatica, Special Issue on Cutting, Packing
and Knapsack Problems. 2002. 2(1): p. 155-177.

Sousa, J.P., Poladian V., Garlan D.. Schmerl B and Shaw M. ~Task-Based Adaptation
for Ubiquitous Computing”. [EEE Trans. on Svstems, Man, and Cvbernetics, Part C:
Applications and Reviews, 2006. 36(3): p. 328- 340.

References

[38]

[39]

{40}

[41]

[42]

[43]

[44]

[43]

[46]

Belaramani N.M “A Component-based Software System With Functionality
Adaptation for Mobile Computing”. Master’s thesis, The University of Hong Kong,
2002.

Pillai P. and Shin K. G “Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems”. In Proceedings of the 18th ACM Symposium on
Operating System Principles, pp. 89-102, October 2001.

Han R., Bhagwat P, LaMaire R., Mummert T., Perret V. and Rubas J. Dynamic
Adaptation in an Image Transcoding Proxy for Maobile Web Bmwsmg In I[EEE
Personal Commumcanon vol. 5(6), pp.8-17, 1998.

Gross T., Steenkiste P. and Subhlok J. “Adaptive Distributed Applications on
Heterogeneous Networks”. In Proceedings of the 8th Heterogeneous
ComputingWorkshop, pp.209-218, April 1999.

Fox A., Gribble S, Chawathe Y. and Brewer E. A. “Adapting to Network and Client
Variation UsingActive Proxies Lessons and Perspectives”. In IEEE Personal
Communications, Special Issue onAdaptation. August 1998.

Flinn J.and Satyanarayanan M. “Energy-aware Adaptation for Mobile Applications™.
In Proceedings of the 17th ACM Symposium on Operating System Principies, pp. 48-
63, December 1999,

Corradi A., Montanari R. and Stefanelli C. *How to Support Adaptive Mobile
Applications”. InProceedings of WOA2001, September 2001.

Chandra S.,.Ellis C. S, and Vahdat A.” Mulitmedia Web Services for Mobile Clients
Using QualityAware Transcoding”. In Proceedings of the Second ACM International
Workshop on Wireless MobileMultimedia(WOWMOM *99), pp. 99-108, August
1999.

France, R.. Ray I., Georg G and Ghosh S.. An aspect-oriented approach to design
modeling. IEE Proceedings -Software, Special Issue on Farly Aspects: Aspect-
Oriented Requirements Engineering and Architecture Design. 2004. pp 151(41).

140

References

[47]

[48]

{49]

[50]

[541

[55]

156}

Otebolaku A M., Adigun M.O,, lyilade J.S. and Ekabua O.0O., "On Modelling
Adaptation in Context-Aware Mobile Grid Systems,” icas, Third International
Conference on Autonomic and Autonomous Systems (ICAS'07), 2007 p. 52, .

Chen, G and Kotz D. “A survey of context-aware mobile computing research”.
Department of Computer Science, Dartmouth College, Dartmouth. 2000. Technical
report TR2000-381.

Sousa J.P. and Garlan D. “Aura: An Architectural Framework for User Mobility in
ubiquitous Computing Environments”. In Proceedings of the 3rd Working [EEE/IFIP
Conference on Software Architecture, 2002. pp. 29-43

Alia M., Wold Eide V.S_,Paspallis N.,Hallsteinsen .O.,Papadopoulos GA. “A
Component-based Planning Framework for Adaptive Systems™. In proceedings of 8th
International Symposium on Distributed Objects and Applications (DOA). 2006.
Montpellier, France. Springer Verlag.

Huebscher, M.C. and J.A. McCann. “An adaptive middleware framework for context-
aware applications”. Personal and Ubiquitous Computing, 2006. 10(1): p. 12-20.

Alia M., Wold Eide V.S, Paspallis N., Eliassen F., Hallsteinsen S.0., Papadopoulos
GA ~ A Unlity-Based Adaptivity Model for Mobile Applications™. AINA Workshops
(2) 2007: pp5356-363.

Want R..Hopper A, Falcao V.. and Gibbons . “The Active Badge [ocation system™.
ACM Transactions on Information Systems, 1992. 10(1): p. 91-102.

Foreman Gi,and Zahorjan J. “The Challenges of Mobile Computing”, IEEE
Computer, April 1994, pp. 38-47.

Banavar Gi.. and Bernstein A.,” Challenges in design and software infrastructure for
ubiquitous computing applications™. Advances in Computers 62: pp180-203 (2004}

LiuH., Bhat V., Parashar M. and Klasky S., “An Autonomic Service Architecture
for Self-Managing Grid Applications," Proceedings of the 6th ITEEE/ACM
International Workshop on Grid Computing (Grid2003), Seattle. WA, USA, [EEE
Computer Society Press, November 2003.

141

References

[57]

(58]

{39]

[60]

[61]

{62

[63]

[64]

[65]

Rasche, A. and Polze A. “Configurable Services for Mobile Users™. In proceedings
of Seventh {EEE International Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS 2002). 2002. San Diego, California, USA. p. 163.

Parashar M. and Pierson J.M., “When the Grid becomes Pervasive: A Vision for
Pervasive Grids," Research Position Paper, 2007 Available from:
http://www.caip.rutgers.edw/TASSL/ [Accessed: 1st October 2007}

Parashar M. and Hariri S., “Autonomic Grid Computing — Concepts, Requirements,
Infrastructures,” “Autonomic Computing: Concepts, Infrastructure and Applications,”
Editors: M. Parashar and S. Hariri, CRC Press, 2006.

Ryan N., ConteXtML: Exchanging Contextual Information between a Mobile Client
and theFieldNote Server. Available

from:hutp://www.cs kent.ac.uk/projects/mobicomp/fnc/Conte XtML . htm! [accessed:
August, 2006].

Voelker, GM. and B.N. Bershad. Mobisaic, An Information System for a Mobile
Wireless Computing Environment & Engineering In proceedings of IEEE Workshop
on Mobile Computing Systems and Applications. 1994. Santa Cruz, CA, US.

Garlan, D., R.T. Monroe, and D. Wile. Acme: Architectural Description of
Component-Based Systems, in Foundations of Component-Based Systems, G.1.
Leavens and M. Sitaraman, Editors, 2000, Cambridge University Press. pp. 47-68

University of Illinois at Urbana-Champaign. The Illinois GRACE Project (Global
Resource Adaptation through CoopEration). Available from:
http://rsim.cs.uiuc.edw/grace/index.html [accessed: May 23, 2006].

Georgia Institute of Technology. The Cyberguide project. Available
from:www.cc.gatech.edu/fce/cyberguide/ [accessed: May 23, 2006].

Gu T., Wang X.H. Pung HK. and Zhang D.Q.,”An Ontology-Based Context Model
in Intelligent Environments™Available from:
hitp://citeseer.ist.psu.edu/cache/papers/cs/3 1620/http:zSzzSzwww.comp.nus.edu.sgzS
z~gutaozSzgutao NUSzSzCNDS2004_gutao PDF/an-ontology-based-

context.pdi] Accessed;June 27, 2007].

142

References

[66]

[67]

[68]

[69]

(701

[71]

[72]

{73]

Capra, L., Emmerich W, and Mascolo C. CARISMA: Context-Aware Reflective
middleware System for Mobile Applications. IEEE Transactions on Software
Engineering, 2603. 29(10): pp.929-945.

Han R., Bhagwat P., LaMaire R., Mummert T. Perret V., Rubas J.,”"Dynamic
Adaptation in an Image Transcoding Proxy for Mobile Web Browsing”. In IEEE
Personal Communication, Vol. 5(6), pp. 8-17, 1998. Available from

http://www.cs colorado.edu/~rhan/[EEEPersComm_Dec98 pdf[Accessed, 16™ August
2007]

David, P-C. and T. Ledoux. Towards a framework for self-adaptive component-based
applications. In proceedings of Distributed applications and Interoperable Systems
{DAIS’2003). 2003. Panis, France. Available from:

hng ://pcdavid.net/research/papers/2003/dais/david-ledoux_dais2003.pdffaccessed

10" October, 2007]

Zachariadis, S., C. Mascolo, and W. Emmerich. SATIN: a component model for
mobile self organization.In proceedings of Proceedings of CooplS, DOA and
ODBASE. Cyprus. 2004. Available from:

Doyie, R.P. and Chase J.S. Model-based resource provisioning in a web service
utility. In proceedings of Fourth USENIX Symposium on Internet Technologies and
Systems. 2003. Available from: hitp://issg.cs.duke.edu/publications/mbrp-
usits03.pdff Accessed 10" October, 2007]

FIP TC-2 Workshop on Architecture Description Languages (WADL), World
Computer Congress. 2004. Toulouse, France.

Raverdy, P-G And R. Lea. DART: A distributed adaptive run-time. In proceedings of
[FIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware '98). 1998.

Silva F.J.. Kon F.. Yonder J., and Johnson R.™ A Pattern Language for Adaptive
Distributed Systems”, Technical Report. The department of Informatics, Computer
Science Universities of Manhoa, Sao Paulo, and IHinois Urbana Champaign, Brazil
and USA respectively. 2004.

References

[74]

[75]

[76]

7

178}

{791

[80]

[81]

Alia M., Wold Eide V.S..Paspallis N.,Hallsteinsen .O.,Papadopoulos GA ,” A Utility-
based Adaptivity Model for Mobile Applications”, 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07) pp.
556-563, Available from:
http://doi.ieeecomputersociety.org/10.1109/AINAW.2007.64, [Accessed: 03
QOctober,2007]. '

Indulska J., Loke S. Rakotonirainy A., and Zaslavsky A.. "Adaptive Enterprise
Architecture for Mobile Computation". in Workshop on Reflective Middleware, at
Middleware 2000. 2000

Litiu R. and .Prakash A., “DACIA: A Mobile Component Framework for Building
Adaptive Distributed Applications”, ACM SIGOPS Operating Systems Review, Vol.
335, Issue 2, 2001.

Jain P. and Schmidt C.S., Service Configurator: “A Pattern for Dynamic
Configuration of Services” in proceedings of the third USENIX Conference on
Object-Oriented Technologies(COOTS) ,June 1997. Available From:
hup://citeseer.ist.psu.edu/cache/papers/cs/6 14/hitp:zSzzSzsiesta.cs.wustl .eduzSz~sch
midizSzService-Configurator.pdf/jain96service.pdffaccessed: 1 0th October, 2007].

Testing Models for helping Developing Country Entrepreneurs at ground level:
Lessons learned from the ECHO pilot in South Africa

Available from: hutp://www.bridges.org[accessed last 25™ May, 2007]

Otebolaku AM.,, Adigun M.O., and Emuoyibofarhe 1.0. A Dynamic and
Asynchronous Interface Pattern™ Southen Africa Telecommunications Networks And
Application Conference(SATNAC, 2006), Cape Town.

Volker ,GM. and Bershad B.N. Mobisaic : An Information System for a Mobile
Wireless Computing Environment and Engineering. In proceedings of the IEEE
Workshop on Mobile and Applications, 1994, Santa Cruz.

Otebolaku. AM,, Iyilade].S_. Adigun M.O., "CAAM: A Context Aware Adaptation
Model for Mobile Grid Service,” The 11™ IEEE International Conference on
Computational Science and Engineering (CSE'08), 2008 pp 419-425.

144

Appendix

APPENDIX A

Screenshot of the context monitoring log

op -1 a4

Fe it Fomat Yew Heb

CACIP|NetworkDescriptor |DEBUG| NetworkHolder class initialized '
CacTe| MeResourceservice|DEBUG| Finished £111ing networkbescripror object with connection id —
cacrp| miresourceservice|DeBUG| Returning networkDescripror with connection id 1

CACTP| MaResourceservice|DEBUG|Read raw signal str of 9

CACIP| MaResourceservice|DEBUG| Read Teasible value of signal strength to: 4
CACIP|ResourceManager | DEBUG|Resgurce changed! resource Service: NetworkResourceContext
CACIP|ResourceContextSensor |DEBUG|Received event: Resource name: NetworkResource Rest
CACIP|ResourceContextsensor | DEBUG|+- properties.size(): 11

CACIP|ResgurceContextSensor |DEBUG| +- name/value: meNetworkCapacity/11534336
CACTP|ResgurceContextSensor | DEBUG name/fvalue: nwClientState/STARTED
CACIP|ResourceContextSensor | DEBUG name/value: neMode/SIMULATED
CACIP|ResourceCaontextSensor | DEBUG name/value: nwavailability/avAILABLE

CACIP|Resour ceContextSensor | DEBUG name/value: rwNetworkSignalstrength/CRITICAL

CACTP| Resour ceContextSensor | DEBUG name/value: mwNetworksignalstrengrhRaw/4
CACIR|Resour ceContextsensor | DEBUG name/value: mwNetworksignalstrengthTrend/HEAVILY DEC
CACIP|RespurcaContextsensor | DEBUG name/value: nwNetworkName/SimulatedNetworkName
C2CTR|ResourcaCantextsensor | DEBUG name/value: mwNeTworkType/wiaN
CACIP|ResgurceContextSensor | DEBUG name/value: nwNetworkEncryption/NOT_ENCRYPTED
CACTP|ResgurceContextsensar | DEBUG name/value: nwhetworkState/CONNECTED
CACIP|ContextManager | DEBUG|Context value changed: NetworkResourceContext --> CONTEXT_ELEME!
CACIP|GUIMainwindow| DEBUG| nodeContextBrowsersize: 1

CACTP|GUIMa1nwindow| DEBUG|member shipsize: 1

CACTP| JveMamoryResourceservice| DEBUG| evaluatewithrilter: true

CACTIP|ResourceManager | DEBUG|Resource changed! resgurce service: JvMMemoryResourceContext
CACTP|RespurceContextSensor | DEBUG|Received event: RESOUrce name: MemoryResource RBS(
CACIP|ResourceCOntextSensor | DEBUG|+— properties.size(): 4

CACIP|ResgurceContextsensor |DEBUG| +- name/value: ToTIVMMemory/2031616

CACTP| ResoUrceConTexTSansor |DEBUG| +- name/value: usedIveMemory/1318032
CACIP|ResgurceContextsSensor |[DEBUG| +- name/value: reservablesmount/1115752

CACTP aeso:;g:cnnteriSensm[' DEBUG| +¥ na?he;‘va'lue: reservedamourt /0

CACIP|ComtextManager | DEBUG| Context value changed: JvMMemoryResourceContext —-> CONTEXT_ELE
CACTP|GUIMaTnwindow| DEBUG| nodeCantextBrowsersize: 1
CACTP|GUIMaTnwindow| DEBUG | membershipsize: 1
CACIP|windowsxPMemaryResour ceservice| DEBUG|Getting capacity. ..
CACIP|WingdowsxPMemoryResourceservice| DEBUG|memoryInfo obtained
CACIP|wWindowsxPMemoryResour ceService| DESUG | memoryInfo obtained
CACIP|WindowsXPMemoryResaur ceseryice| DEBUG| us : 492433408
CACIP|windowsXPMemoryResour ceservice| DEBUG|memoryInfo obtained
CACIP|ResourcaManager | DEBUG|Resource ch ! resource service: MemoryResourceComtext
CACIP|Resour ceCONTEexXTSensor | DEBUG| Received event: Resource name: MemoryResource Rest
CACTP|Resour ceCONteXtSensor | DEBUG|+— properties.size(): 5
CACIP|ResourceConTextSensor |DEBUG| +- name/value: deviceMamoryCapacity/670019584

CACTP|Resour ceContextSensor |DEBUG| +- namefvalue: devicmrwsage/492433408
CACIP|ResourceContextSensor [DEBUG| +- name/value: deviceMemoryiocad/73
CACTR{ResqurceContextSensor [DEBUG| +— namefvalue: reservableamount /177386176
CACIP|ResourceContextSensor |DEBUG| +- name/value: reservedimount/0 :
CACIP|ContextManager [DEBUG|Context value changed: MemoryResourceContext —> CONTEXT_ELEMEN

>

TITTI T

. ¥ Sl %
i e R -

Appendix

APPENDIX B

Some Sample Code

The codes listed here contain the implementation of major components of the work. Some of
the other codes are left out because of space.

(@) Adaptation Package: This is the package that is responsible for execution of Adaptation using
reconfiguration process.

package AdaptationManager.adapation;

import org.istmadam.configuration. JApplicationReconfiguration;
import org.istmadam.context.lContextAccess;

import org.istmadam.core.lComponentManagement;

import org.istmadam.connectable.IConnectable;

public ciass AdaptationManager implements {Connectable

!

static public final String COMPONENT_MANAGEMENT_PORT = "ComponentManagement_Port";
static public final String CONFIGURATION_PORT = "Configuration_Port”;
static public final String CONTEXT_ACCESS_PORT = "ContextAccess_Port”;

AdaptationCoordinator coordinator;

public AdaprarionManager(}
¥
1]
coordinator = new AdaptationCoordinator{};

3

public AdaptationCoordinator getAdaptationCoordinator(}
¥

]
refurn coordinator;

t
]

public void addConnection(String portName, [Connectable obiect)

—

if (portName.equalsf COMPONENT_MANAGEMENT _PORT))

H
[

coordinator.setComponentManager({ IComponentManagement) object):
]

¥
else if (portName.equals(CONFIGURATION_PORT))
)

coordinator.setConfigurator({(JApplicationReconfiguration) object);
13

I
else if {portName.equaisi CONTEXT_ACCESS_PORT)

§
]

coordinator selContextAccessi¢ IContextAccess} object);

146

Appendix

:
H

public void removeConnection(String portName, [Connectable object)

{
throw new UnsupportedOperationException("Not implemented”);

}
}
{b) The reconfiguration Package
package Reconfigurator;
import java.util. HashMap;

. : x.
import org.istmadam core.*:

public class Reconfigurator
{
/* The template use In the current running application, or null if no application is running yet
*/
ConfigurationTemplate template = nuil;

CACIPName componentlnstance = null;
HashMap configMap = new HashMap(};
Configuration coordinatorConfig = null;

publicReconfiguration{)
{
t
1

public void addConfigurationForRole{ String roleName. Configuration config)

]
t

configMap putiroleName, config);

L
!

pubtlic veid removeConfigurationForRole(String roleName})

L]
[}

configMap.remove{roleName);

1
b

public cacipName getlnstanceForRole(String roleName)
{
//return (CACIPName)role TolnstanceMap. get{roleName);

remurn getConfigurationF orRole(roleName).getComponentinsiance();
!
¥

public Configuration getConfigurationForRole{ Sring releNarne)

b
¥

reurnt {Configuration) configMap.gettroleName);

]
¥

147

Appendix

JEF
* @return Returns the componentinstance.
*/

public CACIPName getComponentInsiance()
' ;

1
return componentinstance;

b

public void setComponentinstance{ CACIPName complnstance, boolean clearRoleConfigurations)
{

this.componentlnstance = compinstance;
if (clearRoleConfigurations)
{

configMap clear();

H
H
/#*
* QGet the current template used for this configuration.
public ConfigurationTemplate getTemplate()
]

3
return template:

}
/#*

* i@ param temnplate The template to set.

*/

public void setTemplate(ConfigurationTemplate template)

{

this.tempiate = template;
1
i

public Configuration gerCoordinatorConfiguration(}

1
1

return coordinatorConfig;
i
)

public void setCoordinatorConfiguration{ Configuration config}

$
T

|
J

}

(¢) The eventManager Package: is responsible for communication among the model compenents
package context.eventManager:

import org.istmadam.context.ContextElement;

import java.util. EventObject:
import java.jo.Serializable;

public class ValueChangedEvent extends EvemObject implements $erializable
i

¥

148

Appendix

public static fipal int CONTEXT ELEMENT CHANGE_UNKNOWN = 0x00;

public static final int CONTEXT_ELEMENT ADDED ={x01;
public static final int CONTEXT_ELEMENT_UPDATED =0x02;
public static final int CONTEXT _ELEMENT_REMOVED = 0x03;

private final ContextElement comtextElement;//todo transient?
private final int changeType;

public ValueChangedFEvem{final Object source, final ContextElement contextElement)
{

3
this{source, contextElement, CONTEXT_ELEMENT _CHANGE_UNKNOWN):
h

public ValueChangedEvent(final Object source, final ContextElement contextElement, final int type)
{

super(source};

this.contextElement = contextEzlement;

this.changeType = type;
¥

public ContextElement getContextElement()

{

return contextElement;
1
b

public int getChangeTypef)
¢
t
return changeType;
}

public Siring getChangeTypeAsSiringy()
i

switch{changeType)

]
[

case CONTEXT_ELEMENT ADDED:
reurn "CONTEXT_ELEMENT ADDED";
case CONTEXT _ELEMENT _UPDATED:
rerurn "CONTEXT_ELEMENT UPDATED";
case CONTEXT_ELEMENT REMOQVED:
retwrn "CONTEXT_ELEMENT REMOVED™;
case CONTEXT_ELEMENT CHANGE UNKNOWN:
default: -
returnn "CONTEXT_ELEMENT _CHANGE_UNKNOWN";
h
H
public String toString{)
]
t
SwingBuffer siringBuffer = new StringBuffer{"ValueChangedEvent ftype:
*).append(getChange T vpeAsSiring{)):

swingButter append(”, element: ").appendi contextElement.toString(}).2ppend(” ! ")

retum swingBuffer toSwinglk

i
3

149

Appendix

}

(¢) Context Monitor :this package is responsible for context Monitoring, it contains the comexi sensors
package contextMonitor;

import context.event. ValueChangedEvent;
import org.jstmadam.context.]JContextListener;

public class DefaultContextSensor implements ContextSensor

f
[}

protected [ContextListener listener;
private final String sensorld;
protected final Metadata metadata;

public DefaultContextSensor(
final String id,
final String contextElementD,
final IContextListener listener,
final Metadata metadata)

iftid == nuil jj contextElement!D == null)

!

throw new NullPointerException(" Invalid null argument”);
i
i}

this.sensorld = id:

this.contexttlementld = contextElementID:
this.listener = listener;

this.metadaia = metadata;

\
]

public ContextSensor(
final String id,
final String contextElement!D,
final IContextListener listener)
{
this(id. contexiElementlD), listener, new DefaultMetadata()};

¥
3

public DefaultContextSensort{fina} String id, final String contextElementid)

]
)

this(id, contextElementid. nuil);

H

public synchronized void setContextChangeListener{IContexiListener listener)

i
[}

this.listener = listener;
!
1]

public synchronized void unseiComextChangel.istenert IContexil.istener listener)

Appendix

if (this.listener = listener)
{
this.listener = nuil;
H
¥

public String getSensorIDX)
{

return sensorld;
1
5

public String getContextElementlD{)
¥

3
return contextElementld;

}

public void fireContextChangeEvent(ValueChangedEvent valueChangedEvent)

3

if{listener '= null}

§
X

listener.contextValueChanged{valueChangedEvent);
}
H

public Metadata getMetadata(}
{
return metadata:
1
)

H

{d) The Evaluator Package
package Evaluator;

import java.util.Collection;

import java.util. HashMap:

import java.util. HashSet;

import java.util.Iterator:

import java.util. Set;

import Reconfiguration.Configuration Template;
tmport Reconfiguration. IConfiguration:

import context.IContextAccess;

import context.IContextListener;

import context. ContextBElement;

import context.event. ValueChangedEvent:

import org.istmadam.core.[ComponentManagement;
import org.istrnadam.plan. BlueprintPian;

tmport org.istmadam.plan. CompositionPlan;

import org.istmadam.plan.IPlan;

import org.istmadam.plan.Role:

import org.istmadam property.PropertvEvaluaror;
import org.istmadam.application. ApplicationManager:

public class AdaptationCoordinator implements IAdaptationManagement, IContextListener

¥
t

private [Configuration configurator;
//private BuilderaAndPianner planner;

Appendix

HashMap planners = new HashMap();
HashMap oldTemplates = new HashMap{);

HashMap currentServices = new HashMapy{):

/# private boolean needsRebuild = true;

private [ContextAccess contextAccess;

//public AdaptationCoordinater{ BuilderAndPlanner planner)
public AdaptationCoordinator()
f

t
/fthis.planner = planner;

B

public void setConfigurator{IConfiguration config)

{

configurator = config;
1
b

public void setComextAccess{IContextAccess access)

contextAccess = access;
1
1]

private IComponemtManagement core;
public void setComponentManager(IComponentManagement mngr)

{

coTe = mngr;
¥
1)

public CACIPName launch(CACIPName mainComponentType)
¥

L
#{ Create a planmer for the new component te launch

BuilderAndPlanmer p = new BuilderAndPlanner);
p.setComponentManageri core);
p-buildFrameworkModel{mainComponentTyvpe);
planners. put mainComponentType, p);

adjustContextListeners();
adjustContextListenersi p.getContexiDependencies());

CACIPName serv = evalualeAndSelect{mainComponentTvpe):
updateAppStatus(}:

return serv:

/ireturn currentService;

t
1

private void updateAppStarus() §

Set kevs = currentServices.kevSet;);
Swringf] typeSurings = new String[kevs.size()]:
int strindex = §;
for Iterator namelt = keys.iterator(); namelt hasNext(}:)
typeSmings[swrindex] = ((CACIPName jnamelr.next(}).toStringl);
strlndex—:

]
L

- Appendix

ApplicationManager. setRunningApplications(typeStrings);

L]
1
private Set crContexiListeners = new HashSet();

/i private void adjustContextListeners(Set elementNames)
private void adjustContextListeners()
{
Collection ps = planners.values();
L .Set elementNames = new HashSet(); L ERL
for {Iterator plannerlt = ps.iterator(); plannerlt hasNexi();) |
BuilderAndPlanner p = (BuiiderAndPlanner)planner(t.next(});
elementNames.addAll{p.getContextDependencies());

}

for (Iterator oldCtxt = erContextListeners.iterator{); oldCtxt. hasNext():) .
{
/f First. stop listening to elements on which we no longer depend
String old = (String) oldCoxt.next();

if {!elementNames.contains(old))

{

s e Sygrerm out.println(" Context listener removed: " + old);
contextAccess.removeComextListener(this, old);
)
1]

H

for (Iierator newCixt = elementNames.iterator{): newCixt.hasNext();)

£
1

/f Next, start listening to elements we do not already lisien to
String newEl = (String} newCtxt.next():

if (!erContextListeners.contains{newEl))

i
k)

System.out.printin{ "Context listener added: " + newEl);
contextAccess.addContextL istener{this, newEl);
:
[

i

crContextListeners = elementNames;
¥
3

/1 CACIPName curreniService = nuli;

private void evaluateAndSelectForAll()
%

for (Iterator names = planners.kevSet().iterator{); names.hasNext(};)

I
L

evaluaieAndSelect{ CACIPName)names.next());
H

1
1]

private CACIPName evaluateAndSelect{ CACIPName mainComponentType)
i

t
:/ First find planner and old template for component

BuilderAndPlanner planner = {BuilderAndPlanner)planners. get{mainComponentType);
ConfigurationTernplate oldTemplate = { ConfigurationTempiatejoldTemplates. gettmainComponentType).

p—
Lh
Lad

Appendix

IEnumerator WithReset templates = planner.buildTemplates{);
ConfigurationTemplate bestTemplate = nuli;
double bestUtil = 0.0;

ContextElement context = contextAccess.getRootContext();

// First, reevaluate the utility of the current service, if any
double oldUtil = 0.0;
if (oldTemplate = null)
oldUtil = {{Double) oldTemplate.evaluate(PropertyEvaluator. UTILITY PROPERTY,
context)).doubleValue();

/! Iterate through the available templates, and find the one with the best utility
while (templates.hasMoreElements())
t

ConfigurationTemplate crTemplate = (ConfigurationTemplate) templates.nextElement();

double crUtil = {{Double) crTemplate.evaluate(PropertyEvaluator UTILITY_PROPERTY,
context)).doubleValue():
if (crUtil > bestUtil)

I
i

bestUtil = erUtil;
bestTemplate = crTemplate:
¥
bl

b

if ({bestTemplate = null} && (bestUtil > oldUtil})
i
L}
System.out.println("~—————-NEW CONFIGURATION SELECTED - RECONFIGURATION
STARTING ",
/7 Display the plan
System.out.printin{"New configuration: ");
System.out.prin{" ")
displayTemplate(bestTemplate, * *);
// Change to new template
currentServices.put(mainComponentType. configurator.configure{ best Template)):;
oldUtil = bestUuil;
/ioldTemplate = besiTemplate;
oidTemplates.put(mainComponent Type. bestTemplate);
System.out.println(” RECONFIGURATION COMPLETE FOR: " +
mainComponentType.toSwring(} + " —");
H
else
i
System.out.prinin{"—=—=0LD CONFIGURATION STILL BEST - NO CHANGE FOR: " +
mainComponentT vpe toString() « " w—":
3

return {MadamName)curremServices.gei(mainComponemType);
1
J

public void displayTemplatﬁConﬁgurationl‘empla{e template, String indent)

f
1

[Plan plan = remplate.getPlani);
if {plan instanceof CompositionPlan)
¥

Appendix

System.out.println{"Component type: " + plan.getComponentType());
CompositionPlan cPlan = (CompositionPlan} plan;
Role[] roles = ¢Plan.getRoles();
System.out.println{indent + "Roles: ");
for (int i = 0; i < roles.length; i++)
£
1
String roleName = roles{ij.getName();
System.out.print(indent + " " + roleName);

displayTemplate{template.getChildTemplateForRole(roleNarme), indent + " ");

}
}
else if (plan instanceof BlueprintPlan)
i
t
BlueprintPlan bPlan = (BlueprintPlan) plan;
System.out.printin("Component type: " + plan.getComponentType() + " bp: " +
bPlan.getBlueprintName)):
1

¥
clse
{

System.out.println{"Compoenent type: " + plan.getComponentType());
3
13

}

public void contextVzlueChanged(ValueChangedEvent vEvent)

§
L4

evaluateAndSelectForAll{);
}
}

Package BuilderAndPlanner
import javautil. Callection;
import java.util. HashMap;
import java.uiil. HashSet;
import javautil lterator;
import java.util. Set;

import org.istmadam.configuration.ConfigurationTemplate;
import org.istmadam.core IComponentManagement;
import org.istmadam.plan CompositionPlan;

import org.istmadam.plan.[Plan:

import org.istmadam.plan.Role;

import org.istmadam property.PropertyEvaluator;

public class BuilderAndPlanner implements I'VariantManagement

¥
t

private CACIPName rootType:
private HashMap frameworkModel = new HashMap)
private HashSet contextDependencies = new HashSet();

private IComponentManagement core;

public void setComponentManager{IComponentManagement mngr)

H
1

core = Mngmn
¥
¥

LAy

Appendix

public void buildFrameworkModel{ CACIPName component)
f

t
roofType = component;

/{ First, clear old model
rameworkModel.clear();
contextDependencies.clear();

// Now, perform recursive buildup of model
filiModel{component):

:

public Set getContextDependencies()
4

return contextDependencies;
13
)
private HashMap emptyPropertyMap = new HashMap();

private void fillContextDependencies(IPlar plan)

1
iy

)

[}
// Find context dependencies
Collection vals = plan.getProperties{).values();
for {Iterator it = vals.iterator(); it.hasNexi(};)
A
PropertyEvaluator eval = (PropertyEvaluator) it.next{
String[] deps = eval.getContextDependencies();
for (int i = §: i < deps.lengih: i++)
4
¥
comextDependencies.add{deps]i]):
I
} 1]
}
catch {Exception ex}

Systern.out printin{ "Exeception during BuilderAndPlanner.fillContextDependencies()").
1
})

private void filModel(CACIPName compType)
¢

t
uy

1
1

Set allPlans = core. findComponentPlansicompType. emptvPropertyMap);
frameworkModel.put{compType. allPlans);

for (lierator 1 = allPlans.iterator(); i.hasNext();)

+
t

IPlan crPlan = {IPlan) inexii):

fitlContextDependencies(crPlan);

Appendix

if {crPlan instanceof CompositionPlan)

¢
t

CompositionPlan cPlan = (CompositionPlan) crPlan;
Rolef] allRoles = cPlan.getRoles();
for {int r = 0; r < allRoles.length; r++)
{
CACIPName roleTypeName = allRoles[r}.getComponentTvpe(};
// Continue recursivly if component tvpe not already handled
if (!frameworkModel.containsKey(roleTypeName))
{
fillModel(roleTypeName);
}
H
CACI[PName coord = cPlan.getCoordinatorTvpe():
if (HrameworkModel.containsKey(coord))
by
t
fillModel(coord);
h
H
}

H
catch {CACIPException ¢}

$
t

e.printStack Trace();
;
H

public IEnumeratorWithReset buildTemplates()
]

]
return new PlansForTypeEnumerator{rootType);

;

private boolean includes(Objectf] objMat. Object obj)

t
for (int i = 0; 1 < objMat.length; i++)

{
1

if ((objMat(i] != null) && (objMat[i}.equalstobi)}}
]
t
refumn true;
]
$
]

)

return faise;
I
¥

class PlansForTypeEnumerator implements IEnumeratorWithReset
]
T

IEnumerator WithReset planVarEnums|]
int erindex = .

public PlansForTypetnumeratorMadamName compType)

—
LAy

~J

Appendix

Set allPlans = (Set) frameworkModel.get(compType);
planVarEnums = new [EnumeratorWithReset[allPlans.size()];
intj=0;

for (Iterator i = allPlans.iterator(}; i.hasNext();)

{

[Plan crPlan = (IPlan) i.next(};
if (crPlan instanceof CompositionPlan)
¥
L
planVarEnums[j] = new CompositionPlan VariantEnumerator({ CompositionPlan} crPlan);

)
)

else

planVarEnums(j] = new SimplePlanVariantEnumerator{crPlan);
1
¥
jr
h

i
¥

public void reset()
I

X

for (int i = 0; i < planVarEnums.length; i++)
3
L

planVarEnums[i].reset();

1
¥

crindex =10,

;

public bootean hasMoreElements()
¥

i

for (int i = crindex: i < planVarEnums_length; i+=)
!

if (planVarEnums(i}.hasMoreElements(})

i

[}

return true;

H
1
3
return false;

;

public Object nextElements)
1

t

while (¢rindex < planVarEnums.length)

]
3

if (planVarEnums{erindex].hasMoreElementst))
§

L]
return planVarEnums{crindex].nextElementi);
1

1]
else

f
1

Appendix

crindexs—+;

}

1
E]
retwrn null;

H

1
i)

class SimplePlanVariantEnumerator implements IEnumeratorWithReset

¥
3

ConfigurationTemplate template;
boolean hasMore = true;

public SimplePlanVariantEnumerator{[Plan plan)
{

template = new ConfigurationTemplate(plan);

t
i

public void reset{}

¥
3

hasMore = true;
1
bl

public bootean hasMoreElements()
r

T
return hasMore;

3

public Object nextElement()

i
1

if (hasMore)

]
]

hasMore = false;
return template;
H
else
]
T

return nutl;

-

t
J

class CompositionPlan VariantEnumerator irnplements [EnumeratorWithReset

]
&

CompositionPlan plan:
Role roles[]:
PlansForTypeEnumerator roleEnums(}; /- An array containing an enumerator for each role

ConfigurationTemplate roleTemplates(]; #/ The last results from using nextElement() for each role
ConfigurationTemplate coordinatorTemplate = nuil;

Appendix

public CompeositionPlanVariantEnumerator{ CompositionPlan plan)
]

L
this.plan = plan;

roles = plan.getRoles();

roleEnums = new PlansForTypeEnumerator[roles.length];

roleTemplates = new ConfigurationTemplate[roles.length};

for ¢int i = 0; i < roles.length; i++)

i

3
roleEnumsfi] = new PlansForTypeEnumerator(roles[i].getComponentType());
roleTemplates[i] = (ConfigurationTemplate) roleEnums{i].nextElement():

!
if (roles.length > Q)
roleEnums[0].reset();

Object[] coordPlans = ({Set) frameworkModel.get(plan.getCoordinatorType{))).toArray():
if { coordPlans. length > 0}
§
[}
coordinatorTemplate = new ContigurationTemplate((IPlan) coordPlans{0]);

H

L]
¥

public void reset()

i
]

for (int i = 0; i < roleEnums.length; i++)
{

roleEnums{i].reset();
roleTemplates(i] = (ConfigurationTemplate) roleEnums{i] nextElement(}:

}
if {roles.length > 0}

roteEnums{0].reset{);
]
¥

public boolean hasMoreElements(

i
1

if (coordinator Template = null}

[
1

return false:
X
3

for (int i = 0; i < roleTempiates.length; i++)
1
13

if {roleTemplates[i] = mul)

retumn faise:

for (int 1= 0:1 < roleEnums.length; i++)

i (roleEnums[i]. hasMereFE lementst })

4

retum oue;

¥
1l

t

)
refurn false;

160

Appendix

H

public Object nextElement()

{

if (*thasMoreElements(})

L3
L3

return pull;

}

for {int i = 0; 1 < roleEnums.length; i++)
if (roleEnums{i}.hasMoreElements{))

roleTemplatesfi] = (ConfigurationTemplate) roleEnums[i].nextElement();
/# All ready, so break out of the iteration
break:

}

else
4
4

roleEnumsfi].reset();

roleTemplatesfi} = (ConfigurationTemplate) roleEnums{i].nextE lement();

L
——

HashMap map = new HashMap();
for (int i = 0; i < roleEnums.length; i++)

map.put{roles{i].getName(}. roleTemplates[i});
1
i

retern new ConfigurationTemplate(plan, map, coordinatorTemplate);

161

	Table of Contents
	Declaration
	Dedication
	List of Figures
	List of Tables
	Abstract
	Chapter One - Introduction
	Chapter Two - Background Concepts and Review of Literature
	Chapter Three - Model Design and Development
	Chapter Four - Model Implementation and Evalution
	Chapter Five - Conclusion and Future Work
	References
	Appendix A
	Appendix B

