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ABSTRACT

Breast cancer, which often occurs in the inner lining of milk ducts, is the deadliest and

most common form of invasive cancer among females according to a 2017 report of the

World Health Organization. The purpose of this study was to develop a four compart-

mental mathematical model using a system of nonlinear Ordinary Differential Equations

(ODEs) which investigates the impact of anti-cancer drugs, ketogenic-diets and immune

boosters on the dynamics of breast cancer. The study focused on the dynamical interac-

tion of normal and tumor cells as well as the invasion of tumor cells during the metastasis

stage of breast cancer. The systems of ODEs were analytically solved for the equilibria.

Using the next generation matrix method, a threshold quantity called the treatment in-

duced invasion reproduction number (R∗i ) was computed. Center manifold theory was used

to investigate the possibility of the bifurcation analysis of R∗i being greater than unity.

Using a suitable Lyapunov functions, the global stability of the tumor-free equilibrium

was achieved in conjuction with LaSalle’s invariance principle. Uncertainty and sensitivity

analyses were performed on R∗i using Latin Hypercube Sampling (LHS) and Partial Rank

Correlation Coefficient (PRCC). R∗i was used as the response function while investigating

the most significant parameters (such as: α1, α2, µ1, d, and φ1 ) that affects disease

progression and cell invasion. Optimal control theory was applied using the Pontryagins’

Maximum Principle to investigate optimal strategies for controlling and eliminating tumor

cells using time dependent controls such as u1(t) (anti-cancer drugs) and u2(t) (ketogenic

diets). Numerical simulation results using a set of parameter values were provided to

validate the analytical results. It was found that the tumor-free equilibrium points for

ix



breast cancer was locally asymptotically stable when the associated invasion reproduction

number was less than unity and that it was otherwise unstable. The tumor-free equilib-

rium was found to be globally asymptotically stable if (Ri) < 1 . Sensitivity analysis

showed that the natural death rate of normal cells has the most positive sensitivity index.

However, increasing the death rate as a control measure is unreasonable biologically. The

level of ketogenic diet rate was found to be most negatively sensitive to Ri. Therefore, the

formulated model showed that reduction of the invasion reproduction number (R∗i ) below

unity can be achieved by maintaining the level of ketogenic diet and by reducing tumor

progression rate. It was shown from this study that the breast cancer model exhibited

backward bifurcation with bifurcation parameter φ1 which implies that the reduction R∗i

below unity alone is not sufficient to eradicate tumor cells from the body system while in

the case of forward bifurcation, the reduction of R∗i above unity is sufficient to eradicate

tumor cells from the body system . The incremental cost-effectiveness analysis of control

strategies adapted in treating breast cancer has shown that the integration of ketogenic

diet and anti-cancer drugs as intervention strategy is the most cost-effective in fighting

tumor cells.
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Chapter 1

Introduction

Cancer, though noted for its high mortality rate, can be treated. The focus of this study

is to make use of a mathematical model and optimal control techniques to investigate

the dynamics of breast cancer cells noting the impact of certain control measures on the

proliferation of such cancerous cells. Of particular focus was the use of ketogenic diet and

anti-cancer drugs in the formulation of the breast cancer mathematical model. In this

chapter, we describe the background of the study, the questions guiding the research, re-

search aim and objectives, what motivated the study and the mathematical preliminaries.

1.1 Background of the study.

Cancer generally develops progressively from multiple changes in the cell genetic structure.

Cancers are usually classified according to the cells involved, the type of tissues from which

they arise and the extent of the disease [91]. For example, Carcinoma originates from

Epithelial cells, Lymphoma from lymphatic cells and Ependymoma from the Ependyma

with a tissue of the central nervous system [140]. Some tumors such as benign tumors

are, however, not cancerous and do not spread to different parts of the body.
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Figure 1.1: The most common types of cancer. [Adapted and available online at

www.keepurhealth.net] (Accessed April, 2018)

Cancer is a leading cause of morbidity and mortality worldwide, yet a lot remains

unknown about its mechanisms of establishment and destruction. Figure 1.1 shows the

most common types of cancer. According to the World Health Organization (WHO) [140],

approximately 14.1 million new cancer cases, excluding non-melanoma skin cancer, were

diagnosed and 8.2 million cancer-related deaths were recorded (2017) [140]. The same

report indicated that more than 60% of cancer cases occurred in Africa, Asia, Central

and South America. Sub-Saharan Africa recorded the highest morbidity (25.5%) and

mortality (25.2% ) of breast cancer cases in women compared to the rest of the world.

This research focuses on breast cancer, common among women as a result of imbalances

of the estrogen hormone, which is responsible for tumor growths.

In South Africa, more than 10,000 people are diagnosed with cancer every year and

the survival rate is very low according to the National Cancer Registry (NCR)[91] which

also states that 1 out of 9 South African women is diagnosed with breast cancer. The

occurrences of the new breast cancer cases worldwide is shown in Figure 1.2.

2



Figure 1.2: The number of new breast cancer cases occurring worldwide [Adapted and

available online at : webcache.googleusercontent.com/search?] (Accessed June, 2108)

3



1.2 Research questions

The study set out to answer the following questions:

(i) What are the influences of the ketogenic diet, immune booster and anti-cancer drugs

on the formulation of breast cancer mathematical model?

(ii) What are the equilibrium points of the model and how can the possible impact of

the key parameters of the model be investigated?

(iii) What are the conditions for which the obtained equilibrium points are locally and

globally asymptotically stable?

(iv) What are the effects of time dependent control variables on an optimal control model

for breast cancer?

(v) What optimal control strategy will yield optimal results for the model using Pon-

tryagin’s Maximum Principle with the most cost-effective control measure(s)?

1.3 Research aim and objectives

1.3.1 Research aim

This study was designed to formulate a mathematical model, analyses and use optimal

control theory with cost-effective techniques to investigate breast cancer treatment.

4



1.3.2 Research objectives

The aim of this study will be achieved through the following objectives which are to:

(i) Formulate a mathematical model of breast cancer by incorporating the ketogenic

diet, immune booster and anti-cancer drugs into the existing model;

(ii) Determine the model equilibrium points and significance of the key parameters of

the formulated model;

(iii) Investigate both local and global stabilities of tumor-free equilibrium points and

co-existing equilibrium points of the formulated model;

(iv) Formulate an optimal control model for breast cancer using anti-cancer drugs and

a ketogenic diet as control variables;

(v) analyse the optimal control for breast cancer model using Pontryagin’s Maximum

Principle and Cost-effectiveness Analysis

1.3.3 Motivation for the study

Cancer is one of the leading causes of death worldwide but it can be treated using surgery,

chemotherapy, radiation, hormones, hyperthermia and immune therapy. It is projected

that by 2030, the global burden would have grown to 21.7 million new cases, 13 million of

which will result in death [140]. This has been attributed to many factors which include

population growth, aging, genetics and family history, hormonal imbalances (estrogen and

progesterone), environmental factors and unhealthy lifestyles [116]. According to a WHO

report [141], there are four major types of cancer worldwide – lung, breast, prostate

and colon cancer with breast cancer being the second leading cause of cancer related
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mortality among women. Breast cancer has been attributed to several factors with high

levels of hormonal imbalance as the major factor. It is therefore necessary to develop a

mathematical model to examine cell dynamics during breast cancer treatment to study

the impacts of the various forms of therapy (anti-cancer drugs and ketogenic diet) in terms

of dynamical behaviour, optimal control and side effects. The goal is to determine suitable

cost-effective strategies for tumor decrement and the minimisation of drug toxicity.

1.4 Mathematical preliminaries

The mathematical preliminaries used to carry out the findings in this thesis are hereby

discussed: basic reproduction number, bifurcation analysis, optimal control method, the

general optimal control problem, Pontryagin’s maximum principle, necessary and suffi-

cient conditions of the optimal control of breast cancer.

1.4.1 Basic reproduction number

The basic reproduction number, R0, is defined as the average number of secondary in-

fection generated by an infective individual during its course of disease in the case that

all members of the population are susceptible [142]. In this study, invasion reproduction

number, Ri, was adopted to represents average number of secondary cases caused by a

typical invaded cells over an invasion period in a completely normal cells population. The

invasion reproduction number helps in determining whether or not a disease (cancer) will

spread through a population (normal cells). If Ri < 1, each cancerous cell produces, on

average less than one new infected cell and the cancer therefore dies out of the population.

When Ri > 1, each cancer cell produces more than one new cancerous cells, so that the

disease persists in the population. The next generation technique which was studied by

6



Van den driessche and Watmough [132] is a general method for Ri in cases where one or

more classes of infections are involved.

Let Xc be the set of all tumor-free state, that is

Xc = {x ≥ 0 : xi = 0, i = 1, 2, 3, ...,m} where m is the number of tumor class in the

population.

Let: Fi(x) be the rate of appearance of new arrival in tumor compartment i

ν+i (x) be the rate of transfer of individual cells into compartment i by all other means

ν−i (x) be the rate of transfer of individuals out of compartment i by all other means and

P0 is the tumor- free equilibrium.

The disease transmission model consists of non-negative initial conditions xi(0),

together with the following system of equations analogous to system.

xi = Fi(x)− νi(x), i = 1, 2, ..., n (1.4.1)

where: νi = ν−i (x) - ν+i (x) and n is the number of compartments in the population. If x̄

is the tumor-free equilibrium point, then the derivatives of F and ν calculated at x̄ are

represented by m×m matrices F and ν respectively. That is

F =
[
∂Fi

∂xi
x̄
]

and ν =
[
∂νi
∂xi
x̄
]

with 1 ≤ i ≤ m.

Thus, the basic reproduction number, Ri, is given by

Ri = ρ(Fν−1) (1.4.2)

where ρ is the spectral radius of the product, Fν−1, that is spectral radius is also known

as the dominant eigenvalue of Fν−1 known as the next generation matrix.
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1.4.2 Bifurcation analysis

The mathematical examination of changes in the qualitative behaviour of a dynamical

system as its parameter passes through a critical value called a bifurcation point which

is also known as Bifurcation Analysis. These sudden changes in the solutions of the sys-

tem are known as bifurcations and the parameter values responsible for these changes

are called bifurcation parameters [9]. In mathematical epidemiology, transcritical bifur-

cation, an example of a local bifurcation, is used to analyse the changes in the stability

of equilibria as a model parameter varies. A key parameter in this regard is the basic

reproduction number R0.

At R0 = 1, the direction of the bifurcation (subcritical or supercritical ) can be deter-

mined. A subcritical (backward) bifurcation occurs when a stable disease-free equilibrium

coexists with an unstable endemic equilibrium at R0 less than unity near the threshold

R0 = 1. However, the disease-free equilibrium loses its stability when R0 is slightly

greater than unity while a stable endemic equilibrium exists. Conversely, a supercritical

(forward) bifurcation is said to occur only when a locally asymptotically stable positive

equilibrium appears at R0 slightly above unity. At this point, the disease-free equilibrium

loses its stability near R0 = 1. Castillo-Chavez and Song [25] have proposed a general

center manifold theory to determine the existence of forward and backward bifurcations

in epidemiological models. This theory can be used to establish the local asymptotic sta-

bility of the endemic equilibrium near the threshold parameter R0 = 1, while a different

approach can be seen in Chitnis et al. [28].
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1.4.3 Optimal control method

Optimal control theory is a mathematical technique derived from the calculus of variation

and is very useful in decision making regarding complex biological situations where the

behaviour of a dynamical system is described by state variable(s) [75]. The assumption

is that there is a way to control the state variable(s) x by acting upon it with a suitable

control. Thus the dynamics of the system (state x) depends on the control u [95-98].

The ultimate goal is to adjust the control u to minimize or maximize a given objective

functional, J(u(t), x(t), t) that attains the desired goal and the required cost to achieve it

[41]. The optimal solution is then obtained when the most desired goal is achieved at the

least cost. The functional depends on the control and state variables. There are num-

ber of different methods for calculating the optimal control for a specific model [95-98].

Pontryagin’s Maximum Principle [112], for example, allows the calculation of the optimal

control for an ordinary differential equations model system with given constraints. How-

ever, other powerful optimal control techniques have been derived for partial differential

equations and difference equations [112].

1.4.3.1 Importance of optimal control theory

Optimal control can be used for the following:

(i) Stabilization: It helps to implement controls to force stability;

(ii) Controllability: Applying controls to steer a system from one position to another,

(iii) Observability: It aids the system to deduce information from control inputs and to

observe output.
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1.4.3.2 The general optimal control problem

We consider optimal control problems of the form

min
u

{
φ(tf , x(tf ) +

∫ tf

0

g0(t, x(t), u(t))dt

}
where

f(x(t)) = [x1(t), x2(t), ..., xns(t)]
T ∈ Rn

is the state vector and

f(u(t)) = [u1(t), u2(t), ..., unc(t)]
T ∈ Rm

is the control vector.

The state and control variables are governed by the dynamics described by a set of

first order ordinary differential equations:

dx

dt
= f(t,x(t),u(t)); x0 = x(0), 0 ≤ t ≤ tf . (1.4.3)

The functions:

f(h0) : T ×Rn ×Rm → Rn

f(g0) : T ×Rn ×Rm → Rn

are continuously differentiable with respect to each component of x and u, and piece-wise

continuous with respect to t

1.4.3.3 Pontryagin’s Maximum Principle

This principle converts the maximisation or minimisation of the objective functional, J ,

coupled with the state variable into maximising or minimising pointwise, the Hamiltonian,

with respect to the control. In this thesis, an optimal control problem is formulated

10



with the goal of minimizing the tumor cells and estrogen level. We incorporate into the

model time dependent control measures for preventive interventions such as anti-cancer

drugs and ketogenic diets. Then, we applied optimal control method using Pontryagin’s

Maximum Principle to determine the necessary and sufficient conditions for the optimal

control of the breast cancer. This approach may lead to therapeutic strategy that is

relevant to clinical studies.

Theorem 1.4.1.

If u∗(t) and x∗(t) are optimal for problem (1.4.3), then there exists a piecewise differential

adjoint variable θ(t) such that

H(t, x∗(t), u(t), θ(t)) ≤ H(t, x∗(t), u∗(t), θ(t)) (1.4.4)

for all controls u at each time t, where the Hamiltonian H is

H = f(t, x(t), u(t)) + θ(t)g(t, x(t), u(t)) (1.4.5)

and

λ(t)

dt
= −∂H(t, x∗(t), u∗(t), θ(t))

∂x
, θ(tf ) = 0. (1.4.6)

1.4.3.4 Necessary conditions

If u∗(t) and x∗(t) are optimal, then the following conditions hold:

θ(t)

dt
= −∂H(t, x∗(t), u∗(t), θ(t))

∂x
,

θ(tf ) = 0,

∂H(t, x∗(t), u∗(t), θ(t))

∂u
= 0.

(1.4.7)
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1.4.3.5 Sufficient conditions

If u∗(t), x∗(t) and θ(tf ) satisfy the following conditions

θ(t)

dt
= −∂H(t, x∗(t), u∗(t), θ(t))

∂x
,

θ(tf ) = 0,

∂H(t, x∗(t), u∗(t), θ(t))

∂u
= 0.

(1.4.8)

Then u∗(t) and x∗(t) are optimal where θ(t) is the shadow price or co-state variable.

This denotes the increase of the objective function due to a marginal increase of the

state variable. At any time the decision maker can use the control variable to generate

direct contributions to the objective function (represented by the term f(t, x(t), u(t))

in the Hamiltonian, or it can use the control variable to change the value of the state

variable in order to generate contributions to the objective function in the future. These

indirect contributions are measured by the term θ(t)g(t, x(t), u(t)) in the Hamiltonian

[4-6,13,61,95-99,112].

1.4.4 Structure of the thesis

The thesis is organized as follows: In Chapter 1, we outline the overview of the study,

background to the study, research questions, aim and objectives, rationale for the study as

well as research methodology. Chapter 2 is devoted to a literature review on mathematical

models of cancer growth and progression, treatment responses with application of optimal

control methods in mathematical biology, and application of ketogenic diet to cancer

disease. In Chapter 3, we develop and analyse deterministic models with anti-cancer

treatment drugs, ketogenic diet and immune booster. The existence and stabilities of

equilibria without tumor (tumor-free equilibrium), dead equilibria, co-existing equilibria

points, global stability using Lyapunov function (at tumor-free equilibrium), bifurcation
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analysis, sensitivity analysis and numerical simulations are also presented. In Chapter

4, we incorporate into the breast cancer model, two control variables such as anti-cancer

drugs and ketogenic diets. We apply optimal control methods to determine the most cost

effective strategy from the combination of anti-cancer drugs only, ketogenic diet alone, as

well as anti-cancer drugs with ketogenic diet. Furthermore, we find optimal conditions

for the elimination of tumor cells rather than control. However, when elimination is not

possible, we find the necessary conditions for the optimal control of tumor cells’ metastasis.

In Chapter 5, we provide a conclusion and summary of the entire study while outlining

possible areas for further research.
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Chapter 2

Literature Review

2.1 Introduction

The occurrence of cancer may require the build-up of multiple mutations which allow cells

to breakout from regulatory networks that ensure cooperation, a process termed multi-

stage tumorigenesis [94, 102]. Usually, the death of the organism is not as a result of a

single or primary cancer. This is because cancer cells have the ability to travel within

the blood supply mechanism to distant sites leading to metastasis which is growth in dif-

ferent organs. It is this metastatic growth that leads to the death of the organism [116].

In this section, we review existing literature on the formation and progression of cancer

cells, ketogenic diet, tumor growth models, treatment response models and breast cancer

models in the treatment of medical ailments.

The literature search was performed using the following databases: PubMed,

MEDLINE, Scopus and ScienceDirect; from inception to 2018. The search strategy con-

sisted of four separate components, each containing key words related to ”mathematical

modeling”, ”breast cancer”, ” ketogenic diet”, and ”optimal control theory”. The key

words in each component were linked using Boolean function ”AND” in the final search.
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However, the search was limited to original articles, clinical studies, epidemiological stud-

ies and mathematical modeling. Studies in languages other than English language were

excluded. The titles and abstracts of retrieved studies were screened to select the relevant

articles.

2.2 Cancer and its managements

2.2.1 The genesis of cancer growth and progression

Tumor cells undergo proliferation like normal cells until they out-grow and crowd out the

normal cells (see Figure 2.1). This irregular division and increase is facilitated by some

genes that are either effective or ineffective [71] as well as by the mutation and epimutation

of genetic material at the molecular level. Sbeity and Younes [116] have explained that

tumor growth process involves several degrees of change within the cells of the cancer

colony leading to rapid growth. The off-springs inside mutating cells then fill the colony.

This affects the cells’ manner of growth and digestive enzymes. Tumor growth also has

the capacity to enlarge blood vessels and blood supply as well as facilitate the supply of

nutrients to cancer cells [116, 84].
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Figure 2.1: The genesis of cancer formation from a single mutated cell and progression

[84].

Estrogen and Progestins are known to be involved in breast cell proliferation and the

progressive stages of Hormone-Responsive Therapy (HRT). Postmenopausal women are

prone to breast cancer when exposed to endogenous steriod hormones such as estrogen

[42]. In fact, using HRT for 5 years is known to predispose a postmenopausal woman

to breast cancer and also increases breast density [21]. The combination of estrogen

replacement therapy (ERT) and progestin increases the chances of acquiring breast cancer

than estrogen alone [115,117]. However, long time use of HRT brings about reduced breast

cancer death and enhance survival [19,51,139].

2.2.2 Ketogenic Diet (KD)

In the early 1920s, Otto Warburg noticed that most cancer cells, regardless of oxygen

availability and functional mitochondria, capture and metabolise large amounts of glu-
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cose and convert it to lactate rather than fully oxidizing it to carbon(iv)oxide like healthy

respiring cells [65, 135, 136]. This process , called the Warburg effect, is associated with

fuel oxidation such that dietary manipulations become hypothesised as important ways to

prevent and treat cancer. Thus, the ketogenic diet has emerged as a potential metabolic

therapy with the purpose of achieving the above-mentioned metabolic vulnerability of

cancer cells; that is, excessive reliance on glycolysis [64]. Even though an assertion of the

influence of ketogenic diet as an anti-cancer agent is limited, a ketogenic diet approach

has been widely studied for the treatment of epileptic seizures [47]. In general, a ketogenic

diet (KD) is characterised by high-fat, moderate-to-low protein and very-low carbohydrate

content. The conventional fat to carbohydrate and protein ratio of this diet is 4 : 1 and

3 : 1 respectively, which gives a macronutrient distribution of approximately 90% fat, 2%

carbohydrate and 8% protein [8]. However, its therapeutic mechanisms may be beyond

the concern in clinical settings. Its effects have been monitored in different circumstances

such as epilepsy and other neurologic diseases [123], obesity, diabetes, polycystic ovary

syndrome cancer, respiratory disease and cardiovascular disease [8, 20, 59, 79, 105, 106].

In light of the potential influence of a KD on breast cancer prognosis or treatment and

the lack of focus on diet, Oliveira et al. [94] support its use in cancer therapy study either

as independent treatment or in conjunction with other therapies due to its nutritional

advantages. Schroeder et al. [118] demonstrate that there is a decrease in lactate levels in

tumor tissue when compared with tumor-free mucosa after five days following a KD. High

lactate levels in tumor cells are related to negative prognoses in patients with head and

neck squamous cell carcinoma. This finding highlights on the one hand, how nutrition

can influence cancer cell metabolism, and on the other hand, that KD may be a promis-

ing therapeutic dietary approach for this cancer type. However, there are limitations on

their study which include lack of optimal control level, lack of information regarding diet
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composition, level of ketosis and effect on disease progression.

Furthermore, there is limited work done on clinical trials and direct observations on

the use of KD as a potential therapeutic agent in patients with breast cancer. Moreover,

O’Flanagan et al. [92] worked on calorie restriction (CR), focusing on the preclinical stud-

ies of CR mimetic drugs and other dietary interventions (such as the ketogenic diet) on

non-obese patients and rodents. It was observed that there are promising improvements

in the efficacy of anti-cancer therapies and also reduced side effects of cytotoxic treat-

ments. It was also established by O’Flanagan et al. [92] that calorie restriction is a good

anti-tumor agent with the potential to reduce systemic inflammation and growth factor

signalling, as well as improve metabolic markers. In this connection, Schwartz et al. [119]

showed that diet is well permitted in cancer patients either as monotherapy or adjuvant.

The use of diet as a monotherapy is promising in that it is known to halt the growth rate

of cancerous cells. Toth and Clemens [129] further explained that, in some situations, a

ketogenic diet alone may be adequate for cancer management. However, some preclinical

studies have shown better outcomes for low-carbohydrate ketogenic diets in decreasing

tumor growth in breast cancer and gastric cancer models [24, 40, 56, 101, 124]. In addi-

tion, Erickson et al [40] advised that before recommending the use of a ketogeic diet for

oncology patients, it is essential to understand the different macronutrient compounds of

the main form of the KD.

However, Arendset al. [14] argued that if long-term application of the KD has been

correlated with calcium deficiency and the metabolic state of acidosis can aggravate bone

loss in the presence of osteoporosis or osteopenia which could be essential when recom-

mending its use among patients with higher risks of osteoporosis. It may therefore not be a

suitable option for a patient with a history of renal tubular acidosis or nephrolithiasis and

can also increase the incidence of kidney stone formation (Neuropadiatrie & S1-Leitline)
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[66, 67]. Furthermore, Hyde et al. [57] have explored the fundamental principle in Figure

2.2 for nutritional ketosis as a pleiotropic treatment modality relevant to breast cancer

and the potential for keto-adaptation to serve as an adjunct or independent therapy in

breast cancer. However, Seyfried et al. [120] claimed that restricted KD, calorie restriction

and water-only fasting reduce circulating glucose and insulin levels, although it promotes

ketone bodies’ circulation.

Thomson et al. [130] investigated placebo-controlled trial of diidolylmethane (DIM)

for breast cancer biomarker dynamics in patients treated with Tamoxifene and concluded

that DIM increases the level of Sex Hormone Binding Globulin (SHBG) and ratio of 2-

hydroxyestrone (2−OHE1) to 16α-hydroestrone which are known to be anti-cancerous and

pro-cancerous respectively. However, DIM was known to decrease endoxifen (a metabolite

of tamoxifen metabolism) but has no effect on breast density.

Figure 2.2: Mechanism through which ketogenic diet affected tumor and patient outcomes

[57]

.
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2.3 Mathematical modeling reviews

This underlines the interest of this study in the use of mathematical models to control

breast cancer. Since they are capable of providing insight into different phenomena, math-

ematical models are extremely useful in proving theoretical frameworks across

various disciplines. Several mathematical models have been used to explore the geneti-

cal (obesity) and environmental (alcohol, smoking, etc) dimensions of breast cancer [95].

Furthermore, different attempts have been made to propose useful mathematical models

for the dynamics of breast cancer. Some of these include Matzaivos et al., [82] as well as

Davies et al., [30]. However, only a few studies have attempted to propose a mathemat-

ical model that examines the hormonal risk factors of the disease ( Mufudza et al., [87];

Michelle [85]). Previous studies [30, 82, 85, 87], have also not considered ketogenic diet as

well as the use of optimal control theory as likely cost effective strategies for the treatment

of breast cancer. This study therefore seeks to investigate the dynamical behaviour of

breast cancer models with anti- cancer drug therapy, an immune booster and a ketogenic

diet. The use of anti-cancer drugs, immune boosters and a ketogenic diet as constant pa-

rameters will enhance positive results by reducing cancer cells in the body and enhancing

survival rates [118, 129]. Numerous treatment choices exist for cancer with chemotherapy

and surgery being the most widely used. While chemotherapy is often the main treatment

method preferred, it is conceivable that the patient will likewise get different medications.

Synergistic impacts have additionally been overused on accounts of various medications

(e.g 5-Fluorouracil and Tamoxifen in breast cancer) with blended treatments to enhance

efficacy and lessen resistance to medications [32, 38].

Mathematical oncology is emerging as a foundational discipline for modern cancer

treatment innovations. Kuang et al., [68] explained that mathematical models are for-
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mulated to provide tools for both theory and practice, for patient-specific drugs and

customised cancer treatment. There is no doubt that mathematical models, in mathe-

matical oncology research, are approved as vital tools that can shed more light on cancer

treatment. The present study used optimal control techniques to analyse minimisation

of treatment cost. The researcher will model the impacts of therapy in the form of drug-

specific models, which address the efficacy of the anti-cancer drugs and ketogenic diet.

This research constructs the local sensitivity analysis index with uncertainty analysis for

the model parameters, in order to determine parameters that are important for cancer

cells invasion. The study also examined and compared the cost-effectiveness of these in-

terventions to determine the optimal control strategy for eradication or control of the

disease.

The importance of mathematical models and their application to the investigation

of cancer cannot be over-emphasized. Mathematical models have thus been increasingly

used in different fields including in the study of tumor progression and medication target

forecasting [108]. Cancer biology models range from general models (e.g tumor growth,

angiogenesis), to specific models (e.g behaviour in response to specific stimuli). These are

discussed in the sections to follow.

2.3.1 Tumor growth models

According to Patel and Nagl [108], the total increase in the mass of an organism is re-

ferred to as growth. Tumor growth can be studied in terms of exponential growth, logistic

growth and Gompertz growth law for example, malignant tumor [50]. The development of

the tumor core has been modeled in a continuous setting using differential equations with

explicit spatial dependence. Adam [3] used an ordinary differential equations to model

a phenomenon which shows the mass conservation of tumor cells, coupled with reaction-
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diffusion equations reflecting the distribution of nutrients within the tumor. Cruywagen

and his coworker [29] used Jansson-Revesz equations to model tumor growth in colon

cancer. This resulted in competitive effects between tumor cells and normal cells. These

equations are mainly the classical Lotka-Volterra equations of logistic growth with an

inclusive term to account for the conversion of one specie into the other. Also, to account

for passive cellular motion, Cruywagen and Coworker included a diffusive term to each

equation.

Wasserman et al [137] used a finite element analysis technique to describe the macro-

scopic behavior of tumor growth based on stresses imposed by various factors. This ap-

proach is similar to that of Chaplain and Sleeman [27] who used nonlinear elasticity theory

to model a tumor, arguing that the growth of a tumor is governed by a strain-energy func-

tion. According to Ward and King [134], nonlinear partial differential equations can be

used to generate profiles for an avascular tumor based on nutrient distribution. Byrne and

Chaplain [23] proposed a mathematical model which differentiates necrosis from apoptosis

using analytical and numerical techniques. They argue that as tumors develop apoptosis

and necrosis experience changes.

Andersonet al. [12] derived a discrete model of cancer cell invasion for tumor growth

from the continuum partial differential equations model. The simulation results of this

model reinforced the suggestion that individual cancer cells can metastasis above a visible

margin of tumor cells. Furthermore, the study is considered as the first to examine the

issue of stochastic events and probability in tumor growth. It revealed that individual

cancer cells possess the ability to penetrate normal tissues at a greater depth than would

be predicted by a deterministic ODEs model.

Kansal et al.[60] developed a simulated brain tumor growth dynamics using a three-

dimensional cellular automaton and simulating Gompertzian growth for a tumor growing
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over nearly three orders of magnitude in radius. The model predicts the composition

and dynamics of tumor growth at selected points using random processes of probability.

Recently, Haeno et al. [52] adopted a stochastic process to model tumor growth, death,

mutation and dissemination events parameterised using pancreatic cancer patient data.

It was shown in their finding that therapies which efficiently reduce the growth rate of

cancer cells earlier in the course of treatment appear to be superior to upfront tumor

resection. This model functions on the probability of metastasis formation before tumor

diagnosis as well as the number and size distribution of cancerous cells.

2.3.2 Angiogenesis models

Angiogenesis is a process of developing new blood vessels which are critically important

during the normal development of the embryo and foetus. Early cancer growth is known

as the avascular stage of growth with newly formed tumors being dependent on nutrient

supply by diffusion from the surrounding tissues. However, according to Michor et al

[86], tumor cells are unable to get sufficient nutrients for continued exponential growth

before the development of blood supply. In support of this, Owen et al [102] explained

that the development of new blood vessels is necessary to guarantee the steady supply of

nutrients to the tumor which enhances its limitless growth. Anderson and Chaplain [11]

used a hybrid approach which focused on three important variables to design a tumor

induced angiogenesis model with the capability to follow the motion of endothelial cells

(ECs) at the capillary tips and to control vital activities like proliferation, anastomosis

and branching. The variables include EC density, proangiogenetic proteins (PAP) and

fibronectin concentrations (FC).

Other scholars such as McDougall et al [83] have developed hybrid models relating

to offsprings resulting from the breeding of two genetically distinct individuals. These
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will usually result in high degrees of heterozygosity (cells or organisms) which focus on

vascular adaptation and angiogenesis without considering tumor development. Similarly,

Bartha and Rieger [17], Gevertz with Torquato [48], have developed mathematical models

of angiogenesis in which individual vessels form a network that delivers nutrients and

drugs to tissues. Owen and Coworker [103] examined angiogenesis and vascular modeling

in normal and cancer cells. In their work, a multiscale model of vascular tissue growth

which combines blood flow, angiogenesis, vascular modeling, subcellular and tissue scale

dynamics of multiple cell populations was developed. The mathematical analysis based

on their work shows that vessel removal is due to low wall shear stress, and is highly

sensitive to pressure drop across a vascular network, while the degree of elimination of

tumor increases as the pressure decreases. They pointed out that low tissue oxygen levels

change the internal dynamics of healthy cells, causing them to produce vascular endothelia

growth factor (VEGF) which promotes angiogenic sprouting. Subsequently, the level of

blood oxygenation regulates the extent of angiogenesis with higher oxygenation leading

to fewer vessels.

2.3.3 Treatment response models

Cancer treatment is aimed at eliminating or reducing cancerous cells from the body. How-

ever, the high toxicity of anti-cancer drugs used during chemotherapy damages healthy

cells in the body as the drugs circulate in the bloodstream. Using a lattice Boltzmann

approach, Bellomo et al. [18] developed a theoretical framework which deals with the

relationship between the immune system and discrete cells population. This approach

employs the single scale computational techniques known from fluid dynamics to study

cancerous cells. They argue that for a cautious application of this statistical physics

approach to tumors due to the fact that the behaviour of tumors is changes or alters in
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intercellular and intracellular biochemical signalling networks. Owen et al. [103] modelled

the application of macrophages in drug delivery to hypoxic (i.e subnormal concentration of

oxygen in arterial blood) tumors. The model was designed on the basis of a growing avas-

cular tumor spheroids that is filled by tumor cells, extracellular components, macrophages

and tumor metastasis.

Similarly, Ledzewicz and Schattler [74] worked on anti-angiogenic therapy as a thera-

peutic technique of cancer therapy to prevent the development of tumors through blood

supply. They used geometric analyses of optimal control theory to validate and analyse

how to plan specific amounts of angiogenic inhibitors in order to achieve optimal reduction

of cancerous cells. Baish et al. [16] also developed a mathematical model using fluores-

cent vascular images (fluorescence imaging is generally employed in the measuring of the

functional and structural specifications) that cannot be easily imaged using endogenous

sources of contrast. The application of fluorescent vascular imaging includes molecular

imaging, cancer imaging and the functional imaging of hemodynamic properties. Fur-

thermore, Davieset al [30] used partial differential equations to formulate a mathematical

model that determines the effect of the architectural and physiological irregularities of

tumor vasculature on the delivery of therapeutic agents and nutrients.

The application of optimal control to several disease conditions started in the mid-

1970s, and ever since, it has been the subject of much research. In Bahrami and Kim [15],

engineering optimal control theory is employed to determine the drug regimen for reducing

an experimental tumor cell population. Studies by Swan [126-128] are crucial for the fun-

damental comprehension of the early mathematical modeling methods of chemotherapy

treatment planning problem. Kimmel and Swierniak [62] confirmed that the two main

problems facing successful chemotherapy of cancer are cell-cycle-phase treatment depen-

dence and the development of resistance of tumor to cytotoxic agents. The obstacles can

25



be tackled by using optimal control theory to model cell dynamics.

Recent studies that discuss the application of optimal control theory to solve diverse

epidemiological problems include Ledzewicz and Schattler [74], Agusto [4], Ding et al. [36],

Ding et al. [37] and Nana-Kyere et al. [89]. The Taguchi Immune Algorithm (TIA) was

proposed by Tsai et al. [131] for improving multi-dose drug schedules, treatment times

and drug toxicities in cancer chemotherapy. The aim was to maximize the efficiency of

a drug schedule for a given time of chemotherapy. The use of TIA is combined with

Artificial Immune Algorithm (AIA) for exploring the optimal feasible region in macro-

space. However, the experimental simulation results show that the application of the

TIA is more effective in providing solution to multi-dose drug timing for chemotherapy

problems. The simulations also show that cumulative drug toxicity is an important factor

in the reduction of tumor cells.

Tamoxifene and Raloxifene are types of Selective Estrogen Receptor Modulators (SERMs)

that serve as an alternative to HRT with fewer side effects compared to ERT [53]. They

were originally designed to prevent breast cancer and osteoporosis but in-vitro studies

have shown that Tamoxifene has selective estrogen properties in sites such as bone and

anti-estrogenic potentials in the mammary tissues [133]. In post-menopausal women,

Tamoxifene raises the chances of endomentrial cancer, reduces the level of circulating

cholesterol and maintains bone density [39]. In addition, long term use of Tamoxifene

in ER-positive breast cancer patients lowers the risk of death and the occurrence of con-

tralaleral breast cancer [107]. For its part, Raloxifene is excreted quickly and has low

bioavailability unlike Tamoxifene which accumulates [70]. However, Raloxifene is still at

the clinical trial stage and is thus not a substitute for Tamoxifene [122].

Chemotherapy, as a conventional treatment, has become a part of therapy regimen for

most tumor patients and aims at shrinking primary tumors, slowing their growth, and
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killing tumor cells that may have metastasized to other parts of the body from the original,

primary tumor. However, one of the defects of chemotherapy is that it also kills normal

cells and has serious side effects. Recently, clinical evidence has shown that combined

conventional treatment (such as chemotherapy and radiotherapy) with ketogenic diet is

more efficient in inhibiting tumor growth and elongating the survival times of patients

[119,129].

Pang et al. [104] investigated the implementation of immunotherapy and chemother-

apy over a certain period to reduce the number of tumor cells while minimising the total

cost of the implementation of the two therapeutic strategies. They developed a model for

combined immunotherapy and chemotherapy and considered the infusion dose of immune

cells and the increment of drug concentration caused by chemotherapy as control variables.

They further attempted to explore the existence of an optimally combined immunotherapy

and chemotherapy strategy and applied numerical simulations find out which strategy is

the most cost-effective. Similarly, De Pillis and Radunskaya [31] applied optimal control

to design a therapeutic regimen with immunotherapy or chemotherapy. Castiglione and

Piccoli [26] considered dendritic cell transfection immunotherapy to describe the immune-

cancer interaction and characterised the optimal infusion dose of dendritic cells. In the

same vein, Bratus et al. [22] applied an optimal control method to obtain a chemotherapy

regimen which makes tumor cells clear-out over time.

2.3.4 Breast cancer models

Mufudza et al. [87], considered a Lotka-Volterra type system of four ordinary differential

equations to describe the interactions among healthy, tumor and immune cells, as well

as excess estrogen levels in breast cancer dynamics that is responsible for tumor growth.

The authors were able to establish equilibrium points, as well as conditions for local and
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global stabilities of the models with and without excess estrogen. Abernathy et al. [1],

extended on model in [87] by including the cancer stem cell hypothesis, limited rates of

estrogen-induced proliferation and mutation, and estrogen absorption rates for each of

their cell populations. In their study, the authors in [1] were able to divide the model

into basic competition submodel and immune-free submodel. They analysed the stability

of both basic competition submodel and immune-free submodel to show better under-

standing of the dynamics among cell population of the role of estrogen. The authors in

[1], determined the global attractivity of cancer persistence in each case. The full model

was analysed and conditions for a globally attractive cure state was established. Michelle

[85], developed a mathematical model of cancer network, which described the growth

of an estrogen-receptive cancer linear network. In their study, cancer stem cells, tumor

cells, healthy cells and estrogen level formed their compartmental model. The authors

established the equilibrium points, sensitivity analysis, as well as the conditions for local

stability for each equilibrium point. In addition, Gregory et al. [50], designed a mathe-

matical model to describe and quantify the mechanisms and dynamics of tumor growth,

cell-kill and resistance as they affect the period of benefits after cancer development. The

authors in [50] explored the treatment efficacy that may be related to primary tumor

characteristics, with the potential to guide future trial design and appropriate selection

of therapy. Log-normal distribution of both resistant disease and tumor doubling times

generates disease-free survival (DFS) or invasive DFS was assumed.

From the literature, it is clear that epidemiological models have been used to discuss

the dynamics of breast cancer and tumor cells elimination. However, only a few mathe-

matical models that investigating estrogen as a risk factor for breast cancer are available

from existing literature. In addition, to the best of the knowledge of this author, as at the

time of this write-up, there is no existing mathematical biology study that incorporates
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ketogenic-diet with anti-cancer drug in the treatment of breast cancer. Based on the prob-

lem we have described so far, our objective is to formulate a mathematical model that can

specifically investigate the dynamics of the breast cancer in different regions, with special

interest in its treatment and control strategies. We will employ relevant techniques to

analyse the model with the aim of decreasing or eradicating tumor cells from the body

system. The next chapter discusses the formulation of the mathematical model.
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Chapter 3

Model Formulation and Analysis

3.1 Introduction

In this chapter, a mathematical model for breast cancer is presented. The model does not

only describe tumor growth and anti-cancer drug dynamics, it also captures the influence

of nutritional diet (the ketogenic diet) on tumor cells. The cell population is divided into

four compartments, namely normal cells compartment N(t), tumor cells compartment

T (t), immune response compartment M(t), and estrogen compartment E(t). The normal

cells compartment refers to healthy cells that have not been invaded by the cancer but that

are at risk of invasion. The tumor cells compartment refers to cancer-invaded cells while

the immune response compartment refers to natural killer cells, NK and CD+ T-cells.

The estrogen compartment E(t), refers to levels of estrogen which result in hormonal

imbalances that lead to hormone-receptor-positive breast cancer. The major section of

this chapter consists of the analysis of the model. The next generation matrix method

by Van Driessche and Watmough [132] will be used to calculate the treatment induced

invasion reproduction number, R∗i , of the formulated model. A suitable Lyapunov function

is constructed to investigate the global asymptotic stability of the treatment tumor-free
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equilibrium (TTFE). Subsequently, the uncertainty and sensitivity analysis are done to

determine the most sensitive parameters of the model. can be determined. The possibility

of the occurrence of bifurcation where both equilibria co-exist as the invasion reproduction

number crosses unity is then analysed using the center manifold theory.

3.1.1 Model formulation

Mufudza et al. [87] considered the following model on breast cancer with estrogen:

dH

dt
= H (α1 − β1H − δ1T )− σ1HE

dT

dt
= T (α3 − β2T )− γ2IT + σ2HE

dI

dt
= s+

ρIT

ω + T
− γ3IT − µI −

σ3IE

ν + E

dE

dt
= π − θE

where: H(t) = Normal cells class, T(t) = Tumor cells class, I(t) = Immune cells class,

E(t) = Estrogen class.

The breast cancer model presented in this work was built on that of Mufudza et al. [87]

by incorporating anti-cancer drug, ketogenic-diet and immune booster.Following scientific

evidence, our model formulation was driven by Allen et al. [8]; it was established in

their study that parameter d (ketogenic-diet) is the conventional fat to carbohydrate

and protein ratio of 4:1 and 3:1 respectively, which means macro-nutrient distribution of

approximately 90% fat, 2% carbohydrate and 8% protein.

Therefore, for the purpose of this study, the normal cells N(t) compartment is based on

modified logistic growth with the carrying capacity set to one in relation to the size N

and the general growth rate for parameters broken into two, namely α1 and µ1 where

α1 is exponential growth rate for N while µ1 is the depletion rate due to competitive

factors. They compete for space and resources such as nutrients and oxygen supplied by
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blood vessels to tumor cells T (t). Thus, the growth rate of normal cells population, N(t)

maybe negatively affected by a factor φ1NT , where φ1 represent the probabilistic rate of

normal cells mutation into tumor cells [7,121], while damaged normal cells will now form

the compartment of tumor cells . The final term describes gene transactivation that can

be a contributing growth factor responsible for the estrogen stimulated by breast cancer,

which can result in damage of deoxyribonucleic acid (DNA). There will be a reduction

in the population of normal cells being transformed into tumor cells by λ1NE where λ1

represents tumor formation rate resulting from DNA mutation caused by the presence of

excess estrogen [1, 87]. The effectiveness of anti-cancer drugs (Tamoxifen) is represented

by k, where 0 ≤ k ≤ 1. Tamoxifen is a selective estrogen receptor modulator (SERM)

used in the treatment and prevention of estrogen receptor-positive (ER+) breast cancers.

The primary action of tamoxifen is competition with estradiol for binding ER in breast

tissue. The efficacy of tamoxifen is well established [130, 133]. The equation for tumor

cells is similar:

dN

dt
=

normal cells growth︷︸︸︷
Nα1 −

natural death︷ ︸︸ ︷
µ1N

2 −
mutation into tumor︷ ︸︸ ︷

φ1NT −
transition to tumor︷ ︸︸ ︷
(1− k)λ1NE

(3.1.1)

The tumor cells compartment can be denoted by T (t) in the form an abnormal mass

of tissue. Cancer names usually reflect the kind of tissue (where there is alteration of

DNA) that they arise form such as breast cancer,cervical cancer and skill cancer. The

145 identified primary breast tumors reflect 51 cancer cell lines which are classified into

two main strands-one with estrogen receptors (ESR1 + ve) known as the luminal, and

the other without which are basal-like [1, 50]. The first term of the tumor compartment

is a logistic growth term for tumor cells which depends on the rate of the parameter α2

(tumor cells growth rate), d is constant rate of ketogenic diet while µ2 depletion rate due

32



to competition . However, φ1NT is a construct that captures the erratic nature of cancer

mutation in which tumor cell numbers could increase higher than normal cells. This could

produce an advantageous effects on tumor cells over normal cells, since the production of

normal cells could cease while tumor cells production progresses over abnormally longtime

intervals [7,121]. Although, if d = 0, the tumor cells growth rate will be reduced, any

DNA mutation caused by excess estrogen continue to repopulate tumor cells by a factor

of λ1NE. The induced death rate µ5 is as a result of tumors being starved of nutrients,

glucose and other resources by the body system during nutrition altered by a ketogenic

diet. We assume that γ2 is the rate at which tumor cells are removed as a result of immune

responses.

dT

dt
=

ketogenic diet inhibit tumor cells growth︷ ︸︸ ︷
Tα2d −

natural death︷ ︸︸ ︷
µ2T

2 −
immune inhibition︷ ︸︸ ︷

γ2MT −
tumor death due to ketogenic︷︸︸︷

µ5T +

tumor mutants︷ ︸︸ ︷
φ1NT +

arrival in tumor︷ ︸︸ ︷
(1− k)λ1NE

(3.1.2)

The immune cells compartment is represented by M(t) which comprises of Natural

Killer cells (NK) and CD8+T-cells. The growth of immune response cells may be stim-

ulated by the presence of the tumor and they can destroy tumor cells through a kinetics

process. We also assume that the presence of a detectable tumor in a body system does

not necessarily imply that the tumor has completely escaped active immunosurveillance.

However, if a tumor is immunogenic, it is possible that the immune response may not

be sufficient on its own to completely combat the rapid growth of tumor cells and the

eventual development of a tumor [26, 82, 139]. As is the case in Mufudza et al. [87],

a similar equation was used to model the immune response dynamic by introducing im-

mune booster (ketone bodies) and anti-cancer drug efficacy. The immune response is

represented by the following equation:
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dM

dt
=

immune source︷︸︸︷
sβ +

immune growth︷ ︸︸ ︷
ρMT

ω + T
−

death of immunecells due to interaction with tumor︷ ︸︸ ︷
γ3MT − µ3M −

decay factor due to anticacer drug efficacy︷ ︸︸ ︷(
(1− k)

λ3ME

g + E

) (3.1.3)

The constant source parameter s denotes the source rate of immune response fully infused

daily into the body and we introduced immune booster β (supplement such as ketone

bodies) to assist immune response whenever tumor cells overpower immune cells. This is

done to activate immune response and fight the cancer cells. The next term is a nonlinear

growth term for immune response where ρ is the rate of immune response and ω is the

immune cell threshold [31]. We use γ3 to denote the rate at which immune response is

activated upon interacting with tumor cells while µ3 represents the natural death rate as

a result of immune cells due necrosis. The final term explains the limited rate at which

estrogen suppresses immune cells activation where λ3 is the rate of immune suppression

and g is the estrogen threshold [87].

Finally, we use E(t) to denote estrogen, a female steroid hormone produced in lesser

amounts by ovaries, the adrenal cortex, plancenta and male testes. Estrogen helps to

control and guide sexual development, including the physical changes associated with

puberty [19, 51]. However, increases in estrogen levels can lead to the growth of tumor

cells. It also serves as a mitogen by triggering cell division in breast tissue [71]. Estrogen

acts as a carcinogen by directly damaging DNA, making healthy epithelial cells to have

a higher likelihood of malignant conversion [19,30,51,71]:

dE

dt
=

estrogen source︷︸︸︷
ε −

estrogen natural death︷︸︸︷
µ4E (3.1.4)

The constant replenishment of excess estrogen is denoted by ε. However, beyond the

production by the ovaries, excess estrogen is released into the system as a result of the
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use of oral contraceptive, and during hormone and estrogen replacement therapy. We

therefore assumed a constant source, ε of 17− β estradiol, the primary biologically most

active estrogen which is all the estrogen in the system at any particular time. The majority

of cancer cells are assumed to be estrogen-receptor positive. We also assume that only

a small proportion of epithelial cells are estrogen-receptor positive which can only be

blocked. µ4 is the rate at which estrogen is being washed out from the body system.

Thus, the following ordinary differential equations is considered to be the breast cancer

model for the study:

dN

dt
= N (α1 − µ1N − φ1T )− (1− k)λ1NE

dT

dt
= T (α2d− µ2T )− γ2MT − µ5T + φ1NT + (1− k)λ1NE

dM

dt
= sβ +

ρMT

ω + T
− γ3MT − µ3M − (1− k)

λ3ME

g + E

dE

dt
= ε− µ4E

(3.1.5)

It is important to state that the model presented in (3.1.5) is unique, in that, it pro-

vides more treatment options (anti-cancer drug and ketogenic-diet), and immune booster

compared to the models in [1, 50, 85, 87]. In addition, the optimal control theory and

cost-effectiveness analysis of our model in (3.1.5) were considered.
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3.2 Model analysis

3.2.1 Positivity of solutions and boundedness

The system of equations (3.1.5) has an initial condition by

N(0) = N0 ≥ 0, T (0) = T0 ≥ 0, M(0) = M0 ≥ 0, and E(0) = E0 ≥ 0

Since our model is to investigate cellular populations, all the variables and parameters

of the model are non-negative. The system of equations (3.1.5) will be studied in the

following region : ∆ = {(N, T,M,E) ∈ <4
+}

The following theorem assures that the system of equations (3.1.5) is well-posed such that

solutions with non-negative initial conditions remain non-negative for all 0 < t <∞ and

therefore is biologically meaningful [6, 55, 80, 81]. Hence , we have the following result:

Theorem 3.2.1. : The region ∆ ⊂ <4
+ is positively invariant with respect to the system

of equations(3.1.5) and non-negative solution exists for all time 0 < t <∞

Proof: Let ∆ = ∆c ⊂ <4
+ with ∆ = {(N, T,M,E) ∈ <4

+ : N ≤ α1

µ1
,

T (t) ≤ µ1(α2d−µ5)+φ1α2

µ1µ2
, M(t) ≤ 1

sβ(ω+T )
(γ3T (ω + T ) + µ3(ω + T )− ρT ) , E(t) ≤ µ4

ε
}

Then the solutions (N(t),T(t),M(t),E(t)) of system (3.1.5) are therefore positive ∀ t ≥ 0.

It is obvious from the first compartment of system (3.1.5) that in the absence of tumor,

dN

dt
≤ N(t)α1 − µ1N

2(t)

Solving with the Bernoulli method and taking N(0) = N0,

we have,

N(t) ≤ α1

µ1 + kα1e−α1t

with

k =
α1 −N0µ1

N0α1
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N0 =
α1

µ1 + kα1

Then,

N(t) ≤ α1

µ1 +
(
α1−N0µ1

N0

)
e−α1t

N(t) ≤ α1

µ1

as t→∞

Therefore, N(t) > 0, ∀ t > 0 since α1, µ1 are nonnegative.

Consequently,

T (t) ≤ µ1(α2d− µ5) + φ1α2

µ1µ2

as t→∞,

Therefore, T (t) > 0,∀ t > 0 since α2d > µ5 are nonnegative.

It can be shown by similar reasoning that

M(t) ≤ 1

sβ(ω + T )
(γ3T (ω + T ) + µ3(ω + T )− ρT )

Therefore, M(t) > 0,∀ t > 0 since γ3T (ω + T ) + µ3(ω + T ) > ρT are nonnegative.

M(t) > 0, M(t) > 0, and E(t) > 0 ∀t > 0 if and only if (1− k) ≥ 0.

Lastly,

E(t) ≤ µ4

ε
as t→∞

E(t) > 0 ∀t > 0 . This complete the proof.

3.3 Equilibrium points

The equilibrium points of the system (3.1.5) are determined by solving the resulting equa-

tion obtained by equating the derivatives of the system (3.1.5) to zero and setting

N = N∗, T = T ∗,M = M∗, E = E∗
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Thus,

N∗ (α1 − µ1N
∗ − φ1T

∗)− (1− k) (λ1N
∗E∗) = 0 (3.3.6)

T ∗ (α2d− µ2T
∗)− γ2M∗T ∗ − µ5T

∗ + φ1N
∗T ∗ + (1− k) (λ1N

∗E∗) = 0 (3.3.7)

sβ +
ρM∗T ∗

ω + T ∗
− γ3M∗T ∗ − µ3M

∗ −
(

(1− k)
λ3M

∗E∗

g + E∗

)
= 0 (3.3.8)

ε− µ4E
∗ = 0 (3.3.9)

At equilibrium points, we have equation (3.3.9)

E∗ =
ε

µ4

substitute E∗ into equation (3.3.6), we have

N∗ = 0, or (α1 − µ1N
∗ − φ1T

∗)− (1− k) (λ1E
∗) = 0

N∗ =
α1 − φ1T

∗ − (1− k)λ1E
∗

µ1

N∗ =
α1 − (1− k)λ1ε

µ1µ4

Therefore,

N∗ = 0 or N∗ = α1−(1−k)λ1ε
µ1µ4

substitute, N∗ = 0, E∗ = ε
µ4

into (3.3.7), we have

T ∗ = 0 or dα2−γ2M∗−µ5
µ2

substitute, N∗ = 0, T ∗ = 0 and E∗ = ε
µ4

into equation (3.3.8), we have

sβ = M∗
(
µ3(g + E∗) + (1− k)λ3M

∗E∗

(g + E∗)

)
where,

M∗ =

(
sβ(gµ4 + ε)

µ3(gµ4 + ε) + λ3(1− k)

)
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Therefore,

P0 = (N∗1 , T
∗
0 ,M

∗, E∗) =

(
α1µ4 − (1− k)λ1ε

µ1µ4

, 0,
sβ(gµ4 + ε)

µ3(gµ4 + ε) + λ3ε(1− k)
,
ε

µ4

)

Tumor-Free Equilibrium (TFE) occurs when the tumor cells can no longer proliferate and

are terminated from the population due to competition with tumor suppressing proteins

P53, immune response, normal cells and driven by effective anti-cancer drugs.

Solving equations (3.3.6), (3.3.7), (3.3.8),and (3.3.9) simultaneously give rise to the

polynomial

b0(M
∗)3 + b1(M

∗)2 + b2M
∗ + b3 = 0 (3.3.10)

where;

b0 = γ32(gµ4 + ε)

b1 = (2γ22µ5 − 2γ22α2d− γ22ωµ2)(gµ4 + ε)

b2 = (γ2α2dωµ2 − 2γ2α2dµ5 − γ2α2
2d

2 − γ2µ2µ5 + γ2µ
2
5 − γ2µ2 − sβµ2γ2)(gµ4 + ε)

b3 = (sβµ2
2ω + sβµ2α

2
2d− sβµ2µ5 + α2µ2d− µ2µ5)(gµ4 + ε)
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M∗

1 =

3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2

3 3
√

2b0




−


 b1

3b0
−

3
√

2 (3b0b2 − b21)

3b0
3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2


 ,

M∗
2 = −

(
1− i

√
3
)

3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2

6 3
√

2b0


−

 b1
3b0

+

(
1 + i

√
3
)

(3b0b2 − b21)

3 22/3b0
3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2

 ,

M∗
3 = −

(
1 + i

√
3
)

3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2

6 3
√

2b0


−

 b1
3b0

+

(
1− i

√
3
)

(3b0b2 − b21)

3 22/3b0
3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2


Using our parameter values as presented in Table (3.1) M∗

1 > 0 and positive real root.


M∗

1 =

3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2

3 3
√

2b0




−


 b1

3b0
−

3
√

2 (3b0b2 − b21)

3b0
3

√
−2b31 + 9b0b2b1 − 27b20b3 +

√
4 (3b0b2 − b21) 3 + (−2b31 + 9b0b2b1 − 27b20b3)

2




However, M∗
2 and M∗

3 are complex roots and not admissible.

Also, we have different types of dead equilibrium points that emerges.

Type 1-dead equilibrium points:

Pd1 = (N∗0 , T
∗
0 ,M

∗, E∗) =

(
0, 0,

sβ(gµ4 + ε)

µ3(gµ4 + ε) + λ3ε(1− k)
,
ε

µ4

)
The presence of Type 1-dead equilibrium is as a results of both tumor cells and normal

cells population being dead. This maybe due to breast tissue removal through death or

mastectomy surgery.
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Type 2-dead equilibrium points happen when normal cells are overpowered by tumor

cells at different time, is the situation that results in the lost of normal cells. However,

this assumption means that the population of normal cells can no longer be recovered due

to the damage or death caused by tumor cells.

Pd2 = (N∗0 , T
∗
1 ,M

∗
1 , E

∗) =

(
0,
α2d− µ5 − γ2M∗

1

µ2

,M∗
1 ,

ε

µ4

)
And, the following are the co-existing equilibrium point:

ξ∗1 = (N∗1 , T
∗
1 ,M

∗
1 , E

∗) =

(
α1µ4 − φ1µ4T

∗
1 − (1− k)λ1ε

µ1µ4

,
α2d− µ5 − γ2M∗

1

µ2

,M∗
1 ,

ε

µ4

)
Co-existing equilibrium points occur when the population of all the cells survive in

the competition for the nutrients, thereby resulting in progression of all cells population.

3.4 The invasion reproduction number

Invasion reproduction number, Ri, was adopted to represents average number of secondary

cases caused by a typical invaded cells over an invasion period in a completely normal

cells population. Invasion reproduction number helps in determining whether or not a

disease (cancer) will spread through a population (normal cells).

3.4.1 Analysis of invasion reproduction number

The breast cancer model (3.1.5) has a TFE, which determined through the modification

of the right-hand sides of the model’s equations to zero:

P0 = (N∗1 , T
∗
0 ,M

∗, E∗) =

(
α1µ4 − (1− k)λ1ε

µ1µ4

, 0,
sβ(gµ4 + ε)

µ3(gµ4 + ε) + λ3ε(1− k)
,
ε

µ4

)
The linear stability of P0 can be established using the next generation operator of the

system (3.1.5). We take T as our infected compartment, then using the notation in [132],
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the Jacobian matrices F and V for the new tumor cell invasion terms and the remaining

transfer terms are respectively given by,

F =

φ1N
∗ 0

0 0



and

V =

γ2M∗ + µ2 − α2d 0

γ3M∗ω−ρM∗

ρ
µ3(g+E∗)+(1−k)λ3E∗

g+E∗


where

N∗ =
α1µ4 − (1− k)λ1ε

µ1µ4

, M∗ =
sβ(gµ4 + ε)

µ3(gµ4 + ε) + λ3ε(1− k)
, E∗ =

ε

µ4

It follows that the invasion reproduction number of the breast cancer system (3.1.5),

denoted by Ri, is given by Ri = ρ(FV −1),and according to Theorem 2 in [132], the

following result is established. The dominant eigenvalue is thus the invasion reproduction

number for breast cancer denoted by Ri:

Ri =
(φ1α1µ3 − φ1λ1ε(1− k))(µ3(gµ4 + ε) + λ3ε(1− k))

µ1µ4(γ2sβ(gµ4 + ε) + (µ2 − α2d)(µ3(gµ4 + ε) + λ3ε(1− k)))
(3.4.11)

3.4.2 Local stability of equilibrium points

The tumor-free equilibrium of the model (3.1.5) exists and is given by

P0 = (N∗1 , T
∗
0 ,M

∗, E∗) =

(
α1µ4 − (1− k)λ1ε

µ1µ4

, 0,
sβ(gµ4 + ε)

µ3(gµ4 + ε) + λ3ε(1− k)
,
ε

µ4

)

We can consider a point as tumor-free equilibrium when only tumor cells has died-off as

a result of administration of anti-cancer drug (Tamoxifene), ketogenic diet and immune
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booster. It is reasonable to set k = 1 since there no tumor in the body system. We

assumed that the anti-cancer drug is very effective at Treatment Tumor-Free Equilibrium

(TTFE). Therefore, we have treatment induced invasion reproduction number R∗i

P ∗0 = (N∗1 , T
∗
0 ,M

∗, E∗) =

(
α1

µ1

, 0,
sβ

µ3

,
ε

µ4

)

and,

R∗i =
φ1α1µ3

µ1 (γ2sβ + µ3(µ5 − α2d))
, at k = 1

In this section, we mainly analysed the stability behaviours of system (3.1.5) by means

of eigenvalues. We apply the Hartman Grobman Theorem which states that in the neigh-

bourhood of a hyperbolic equilibrium point, a nonlinear dynamical system is topologically

equivalent to its linearisation [109].

Theorem 3.4.1. : The treatment tumor-free equilibrium point of the breast cancer model

(3.1.5), given by P0, is locally asymptotically stable (LAS) if R∗i < 1 otherwise unstable.

Proof: Linearising system (3.1.5) around Treatment Tumor-free equilibrium (TTFE)

P ∗0 , we obtained the following Jacobian matrix J(P ∗0 ).

J(P ∗0 ) =



α1 − 2µ1N
∗ −φ1N

∗ 0 0

0 (α2d− γ2M∗ − µ5 + φ1N
∗ 0 0

0 ρM∗

ω
− γ3M∗ −µ3 0

0 0 0 −µ4
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J(P ∗0 ) =



ψ0 ψ1 0 0

0 ψ2 0 0

0 ψ3 −µ3 0

0 0 0 −µ4



|J(P ∗0 )| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ0 − δ ψ1 0 0

0 ψ2 − δ 0 0

0 ψ3 −µ3 − δ 0

0 0 0 −µ4 − δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

Then the characteristic equation at P ∗0 of the linearised system of the model (3.1.5) is

given below.

Obviously , there exists two negative characteristic roots

δ1 = −µ4, δ2 = −µ3

However, we only need to consider

δ2 − (ψ0 + ψ2)δ + ψ0ψ2 = 0

But, ψ0 = −α1 and

ψ2 =
µ1[α2µ3d− (γ2sβ + µ3µ5)] + φ1α1µ3

µ1µ3

ψ2 =
µ1[µ3(α2d− µ5)− γ2sβ] + φ1α1µ3)]

µ1µ3

= µ1

(
µ3(α2d− µ5)− γ2sβ

µ1µ3

)[
1 +

φ1α1µ3

µ1[µ3(α2d− µ5)− γ2sβ]

]
= −

(
γ2sβ + µ3(α2d− µ5)

µ3

)[
1− φ1α1µ3

µ1[µ3(α2d− µ5)− γ2sβ]

]
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ψ2 = −
(
γ2sβ + µ3(α2d− µ5)

µ3

)
(1−R∗i )

where

R∗i =
φ1α1µ3

µ1 (γ2sβ + µ3(µ5 − α2d))
, at k = 1

Since all the eigenvalues are negative i.e. δ3 < 0 and δ4 < 0. The Treatment Tumor-

free equilibrium (TTFE) point of system (3.1.5) is locally asymptotically stable (LAS) if

R∗i < 1 otherwise unstable.

The treatment induced invasion reproduction number (R∗i ) measures the average number

of new invasion generated by a single tumor cell in an entirely normal cell population.

Theorem 3.4.1 thus implies that tumor cells can be eliminated from the population of

normal cells if the invasion rate by invaded cell individual is small enough so that (Ri < 1).

Theorem 3.4.2. : The type 1-dead equilibrium point Pd1 of the system (3.1.5) is locally

asymptotically stable if (1−k)λ1εµ4
α1

> 1 and α2dQ3−µ5Q3

γ2sβ(gµ4+ε)
< 1, otherwise unstable.

Proof: We consider the case of the absence of normal and tumor cells (i.e N∗0 =

T ∗0 = 0) for the system (3.1.5), and then obtain a type 1 dead-equilibrium points.

Pd1 = (N∗0 , T
∗
0 ,M

∗, E∗) =

(
0, 0,

sβ(gµ4 + ε)

µ3(gµ4 + ε) + λ3ε(1− k)
,
ε

µ4

)
(3.4.12)

At type 1 dead-equilibrium Pd1, the Jacobian matrix becomes

J(Pd1) =



α1 − (1− k)λ1E
∗ 0 0 0

0 (α2d− γ2M∗ − µ5) 0 0

0 ρM∗−γ3M∗ω
ω

−
(
µ3 + (1−k)λ3E∗

g+E∗

)
−gλ3M∗(1−k)

(g+E∗)2

0 0 0 −µ4
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|J(Pd1)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0 − δ 0 0 0

0 B1 − δ 0 0

0 B2 −B3 − δ −B4

0 0 0 −µ4 − δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Obviously, δ1 = µ4 < 0 & δ2 = −B3 < 0 The remaining eigenvalues is given by

δ3 = B0 < 0 if,

(1− k)λ1εµ4

α1

> 1, k < 1

Also,

δ4 = B1 < 0 provided that

Q3(α2d− µ5)

γ2sβ(gµ4 + ε)
< 1, α2d < µ5, or α2 <

µ5

d

where

Q3 = (µ3(µ4 + ε) + λ3ε(1− k))

Therefore, the type 1 -dead equilibrium point Pd1 of the system (3.1.5) is locally asymp-

totically stable if δ3 and δ4 holds otherwise unstable.

Biologically, this implies that the net growth of tumor cells must be more than the

value of immune cells in order to have the tumor cells overpower the normal cells. How-

ever, no fixed tissue is present and this can be as a result of whole breast tissue removal

due to mastectomy or death.

Theorem 3.4.3. The type 2-dead equilibrium point Pd2 of the system (3.1.5) is locally

asymptotically stable provided that following conditions holds:

(
φ1µ4α2d+ (1− k)λ1µ1ε

α1µ1µ4 + φ1µ4µ5 + φ1µ4γ2M∗
1

)
> 1, η0 < 0

(
ρM∗

1ω

γ3M∗
1G
∗

)
< 1, η2 < 0
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(
α2dµ1 + 2µ2µ5 + 2µ2γ2M

∗
1

2µ2α2d+ γ2M∗
1µ1 + µ1µ5

)
< 1, η1 < 0(

γ22M
∗
1 + µ5γ2
γ2α2d

)
< 1, η3 < 0(

ρµ4A2

A1 + A2µ3 + A3

)
< 1, η4 < 0

otherwise unstable.

Proof: We linearised system (3.1.5) around the type 2-dead free equilibrium points

and, the following Jacobian matrix J(Pd2) was obtained:

Pd2 = (N∗0 , T
∗
1 ,M

∗
1 , E

∗) =

(
0,
α2d− µ5 − γ2M∗

1

µ2

,M∗
1 ,

ε

µ4

)
(3.4.13)

J(Pd2) =



(α1 − φ1T
∗ − (1− k)λ1E

∗) 0 0 0

0 (α2d− 2µ2T
∗ − γ2M∗

1 − µ5) −µ2T
∗ 0

0
ρM∗

1ω

(ω+T ∗)2
− γ3M∗

1 η4
−gλ3M∗

1 (1−k)
(g+E∗)2

0 0 0 −µ4



|J(Pd2)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η0 − δ 0 0 0

0 η1 − δ η3 0

0 η2 η4 − δ −η5

0 0 0 −µ4 − δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Obviously, δ1 = µ4 < 0 & δ2 = η0 < 0 even though a simple calculation can be used

to analyse the remainder as follows:

δ2 − (η1 + η4)δ + η1η4 − η2η3 = 0 (3.4.14)

The eigenvalues are all real and negative (by Descartes’ of positive solutions) if

(η1 + η4) < 0 and (η1η4 − η2η3) > 0, that is
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η1 < −η4 and η1η4 > η2η3

The remaining eigenvalues are all real and negative if the following conditions holds:

(
φ1µ4α2d+ (1− k)λ1µ1ε

α1µ1µ4 + φ1µ4µ5 + φ1µ4γ2M∗
1

)
> 1, η0 < 0 δ2 < 0

(
ρM∗

1ω

γ3M∗
1G
∗

)
< 1, η2 < 0

(
α2dµ1 + 2µ2µ5 + 2µ2γ2M

∗
1

2µ2α2d+ γ2M∗
1µ1 + µ1µ5

)
< 1 then, η1 < 0, δ3 < 0,

(
ρµ4A2

A1 + A2µ3 + A3

)
< 1, then η4 < 0, δ4 < 0(

γ22M
∗
1 + µ5γ2
γ2α2d

)
< 1, η3 < 0

where; A1 = γ3 (ωµ2 + (α2d− µ5 − γ2M∗
1 )2) , A2 = (gµ4 + ε) (ωµ2 + α2d− µ5 − γ2M∗

1 )

A3 = (1− k)λ3εµ2 (ωµ2 + α2d− µ5 − γ2M∗
1 )

G∗ = ω2µ2
2+α2

2d
2
2+µ2

5+γ22(M∗
1 )2+2ωµ2α2d+2γ2M

∗
1µ5−2ωµ2µ5−2ωµ2γ2M

∗
1−2α2dγ2M

∗
1

Biologically, for our solutions of system (3.1.5) around the type 2-dead equilibrium to

be real and non-negative the above conditions must holds. This implies that the difference

in the rates of immune response initiation and reduction should be greater than the rate

at which they are lost. However, this explains that Pd2 only occurs when there is no

immune response which is rare. It is therefore uncommon to reach such an equilibrium

point except when the patient is dead.

3.4.3 Co-existing equilibrium point

Theorem 3.4.4. The co-existing equilibrium point ξ∗e of system (3.1.5) is stable if the

following Routh-Hurwitz criteria are satisfied:
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i Trace(A) = (ϕ0 + ϕ3 + ϕ6 − µ4) < 0

ii Det(A) = (−µ4 (ϕ0ϕ6ϕ3 + ϕ0ϕ4ϕ5 + ϕ1ϕ2ϕ6)) > 0

otherwise unstable.

Proof : We analysed and linearised system (3.1.5) around the co-existing equilibrium

point ξ∗e , we obtained the following Jacobian matrix J(ξ∗e ) at ξ∗e = (N∗4 , T
∗
4 ,M

∗
4 , E

∗
4)

A co-existing equilibrium state exists when all cells population would have survived the

competition, where N∗4 , T
∗
4 ,M

∗
4 & E∗4 respectively represent coexisting equilibrium values

for normal cells, tumor cells, immune cells and estrogen levels.

N∗4 =
2(1− k)4λ41µ1µ4ε

2 + φ1α
2
1µ

2
4µ1 − 2(1− k)2µ1µ

2
4α1λ1φ1ε− 2α1φ

2
1µ1µ

3
4 − 2(1− k)2α1µ1µ

2
4λ1ε

2φ1α1µ2
1µ

3
4 − 2(1− k)2µ2

1µ
2
4λ1φ1ε

T ∗4 =
α2
1µ1µ

2
4 + 2α1µ1µ

2
4φ1

2φ1α1µ1µ2
4 − 2(1− k)2µ1µ4λ1φ1ε

M∗
4 =

G∗2Z∗(1−k)2λ1ε+(α2
1α2µ1µ34d+2α1α2µ1µ34φ1d−µ34µ5α2

1−2µ34µ1µ5α1φ1)G∗2−µ3α4
1µ

2
1µ

5
4−4α2

1µ
2
1µ2µ

5
4φ1−4φ21α2

1µ
2
1µ

5
4µ2

G∗2Q∗µ4

E∗4 = ε
µ4

Where;

G∗
2

= 2φ1α1µ1µ
2
4 − 2(1− k)2µ1µ4λ1φ1ε

Z∗ =
2(1− k)4λ21µ1µ4ε

2 + φ1α
2
1µ

2
4µ1 − 2(1− k)2µ1µ

2
4α1λ1φ1ε− 2α1φ

2
1µ1µ

3
4 − 2(1− k)2α1µ1µ

2
4λ1ε

2φ1α1µ2
1µ

3
4 − 2(1− k)2µ2

1µ
2
4λ1φ1ε

Q∗ =
α2
1µ1µ

2
4γ2 − 2α1µ1µ

2
4φ1γ2

2φ1α1µ1µ2
4 − 2(1− k)2µ1µ4λ1φ1ε

J =



(α1 − 2µ1N
∗
4 − (1− k)λ1E

∗
4) −N∗4φ1 0 −V7

(1− k)λ1E
∗
4 (dα2 − 2µ2T

∗
4 − γ2M∗

4 − µ5) −γ2T ∗4 ϕ7

0 ϕ4 ϕ6
λ3gM∗

4 (1−k)
(g+E∗

4 )
2

0 0 0 −µ4
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A =



ϕ0 −ϕ2 0 −ϕ7

ϕ1 ϕ3 −ϕ5 ϕ7

0 ϕ4 ϕ6 ϕ8

0 0 0 −µ4



|A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ0 −ϕ2 0 −ϕ7

ϕ1 ϕ3 −ϕ5 ϕ7

0 ϕ4 ϕ6 ϕ8

0 0 0 −µ4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

We need to show that Trace(A) < 0; that is

Tr(A) = (ϕ0 + ϕ3 + ϕ6 − µ4) < 0

= α1(1− A0)− 2µ1N
∗
4 + dα2(1− µ5)− µ4 +

T ∗4 (ρ− γ3(ω − T ∗4 ))

ω + T ∗4
− µ3 −

(1− k)4λ3ε

(gµ4 + (1− k)ε

Thus,

Tr(A) < 0, if A0 > 1, µ5 > 1, ρ < γ3(ω − T ∗4 ) with A0 = (1−k)2λ3ε
α1µ4

, N∗4 > 0

To show that,

|A| = (−µ4 (ϕ0ϕ3ϕ6 + ϕ0ϕ4ϕ5 + ϕ1ϕ2ϕ6)) > 0

Let ζ1 = −µ4ϕ0ϕ3ϕ6, ζ2 = −µ4ϕ0ϕ4ϕ5, ζ3 = −µ4ϕ1ϕ2ϕ6

ζ1 = (α1(1− A0)− 2µ1N
∗
4 ) (dα2(1− µ5)− 2µ2T

∗
4 − γ2µ∗4)) Ω∗

where; Ω∗ =

(
T ∗
4 (ρ−γ3(ω−T ∗

4 ))
ω+T ∗

4
− µ3 − (1−k)4λ3ε

(gµ4+(1−k)ε

)
this implies that, ζ1 > 0 is a positive, if A0 > 1, µ5 > 1, ρ < γ3(ω − T ∗4 )

with A0 = (1−k)2λ3ε
α1µ4

, N∗4 > 0

ζ2 = (α1(1− A0)− 2µ1N
∗
4 )

(
M∗

4

(ω + T ∗4 )2
(ρω − γ3(ω − T ∗4 ))

)
(−γ2T ∗4 )
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Implies that, ζ2 > 0 is a positive , if A0 > 1, µ5 > 1, ρω < γ3(ω − T ∗4 )2, with A0 =

(1−k)2λ3ε
α1µ4

ζ3 = −µ4(A0)(−φ1N
∗
4 )

(
T ∗4 (ρ− γ3(ω − T ∗4 ))

ω − T ∗4
− µ3 −

(1− k)4λ3ε

(gµ4 + (1− k)ε

)
This implies that ζ3 < 0 is negative and by Routh-Hurwitz’s criteria, the system cannot

be stable. The co-existing equilibrium point is always unstable with coexisting cells.

Biologically, all cell populations survive in the competition for nutrients, resulting in the

progression of all cell population where

ϕ0 =
α1µ4 − 2µ1µ4N

∗
4 − (1− k)2λ1ε

µ4

, ϕ1 =
(1− k)2λ1ε

µ4

, ϕ2 = −φ1N
∗
4 ,

ϕ3 = (dα2 − 2µ2T
∗
4 − γ2M∗

4 − µ5) , ϕ4 =
ρM∗

4ω − γ3M∗
4 (ω − T ∗4 )2

(ω − T ∗4 )2
, ϕ5 = −γ2T ∗4

ϕ6 =
ρT ∗

4 (gµ4+(1−k)ε)−γ3T ∗
4 (ω−T ∗

4 )(gµ4+(1−k)ε)−µ3(ω−T ∗
4 )(gµ4+(1−k)ε)−(1−k)2(ω−T ∗

4 )λ3ε

(ω−T ∗
4 )(gµ4+(1−k)ε)

−ϕ7 = −(1− k)λ1N
∗
4 , ϕ7 = (1− k)λ1N

∗
4 , ϕ8 =

λ3µ
2
4gM

∗
4 (1− k)

(gµ4 + (1− k)ε)2

3.4.4 Global stability analysis: for special case

Here, we explore the global asymptotic stability of the treatment tumor-free equilibrium

(TTFE) for special case when R∗i |k=1≤ 1 with assumption that anti-cancer drug is very

effective with the help of ketogenic diet as adjuvant therapy for the clearance of the tumor

cells from the body system. However, it was established in [72] that, no global stability

will exist whenever there is multiple steady states of equilibria point.

Theorem 3.4.5.

The treatment tumor-free equilibrium (TTFE), P ∗0 of the breast cancer model (3.1.5)

is globally asymptotically stable whenever the treatment invasion reproduction number

R∗i |k=1≤ 1 otherwise unstable.
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Proof : We consider the suitable combination of quadratic and linear Lyapunov func-

tions [93,100] of the form:

L :
{

(N, T,M,E) ∈ <4
+ : N, T,M,E > 0

}
→ < defined by

L =
(N −N∗)2

2N∗
+ T (3.4.15)

The time derivative of the Lyapunov function (3.4.16) along with the solution of the breast

cancer model (3.1.5) is given by

L =

(
N −N∗

N∗

)
dN

dt
+
dT

dt

L =
N

N∗

(
1− N∗

N

)
dN

dt
+
dT

dt
(3.4.16)

put dN
dt

and dT
dt

of model (3.1.5) into equation (3.4.17), we have

L′ =
N

N∗

(
1− N∗

N

)[
Nα1 − µ1N

2 − φ1NT − (1− k)λ1NE
]

+
[
Tα2d− µ2T

2 − γ2MT − µ5T + φ1NT + (1− k) (λ1NE)
]

Further expansion gives

L′ =
N

N∗

[(
1− N∗

N

)(
Nα1 − µ1N

2
)
− (φ1NT + (1− k)λ1NE) + φ1N

∗T + (1− k)λ1N
∗E

]
+
[
Tα2d− µ2T

2 − γ2MT − µ5T + φ1NT + (1− k) (λ1NE)
]

L′ =
N

N∗

[
µ1 (N −N∗)

(
α1

µ1 −N

)(
Nα1 − µ1N

2
)
− (φ1NT + (1− k)λ1NE)

]
+ (φ1N

∗T + (1− k)λ1N
∗E) +

[
Tα2d− µ2T

2 − γ2MT − µ5T + φ1NT + (1− k) (λ1NE)
]

(3.4.17)

Since

N ≤ α1

µ1

, it follows that N ≤ N∗, where N∗ ≤ α1

µ1

at k = 1

Consequently,

N

N∗
≤ 1 and M ≤M∗ (boundedness of solution)
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Similarly,

M∗ =
sβ

µ3

, at k = 1

Hence, equation (3.4.18) becomes:

L′ ≤ µ1 (N −N∗) (N∗ −N)− φ1NT + φ1N
∗T + α2dT − µ2T

2 − γ2M∗T − µ5T + φ1NT

= −µ1 (N −N∗)2 − (γ2M
∗ + µ5 − φ1N

∗ − α2d)T − µ2T
2

L′ = −µ1 (N −N∗)2 −
(
γ2
sβ

µ3

+ µ5 − φ1
α1

µ1

− α2d

)
T − µ2T

2

L′ = −µ1 (N −N∗)2 −
(
γ2sβ + µ3µ5 − α2dµ3

µ3

− φ1α1

µ1

)
T − µ2T

2

L′ = −µ1 (N −N∗)2−
(
γ2sβ + µ3µ5 − α2dµ3

µ3

)(
1− φ1α1µ3

µ1 (γ2sβ + µ3(µ5 − α2d))

)
T−µ2T

2

L′ = −µ1 (N −N∗)2 −
(
γ2sβ + µ3µ5 − α2dµ3

µ3

)
(1−R∗i )T − µ2T

2 (3.4.18)

where;

R∗i =
φ1α1µ3

µ1 (γ2sβ + µ3(µ5 − α2d))
, at k = 1

Therefore, from (3.4.18), L′ ≤ 1 whenever R∗i ≤ 1 and that L′ = 0 if and only if R∗i = 1,

N = N∗ and T = 0 if and only if N = N∗ and T = 0. It follows that the largest invariant

set in {(N, T,M,E) : L′ = 0} is the treatment tumor-free equilibrium P ∗0 . This means

that P ∗0 is globally asymptotically stable by Lasalle’s Invariant Principle [72]. However,

if the above condition did not hold for global stability of the TTFE, it may give rise to

the phenomenon called bifurcation.
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3.5 Bifurcation analysis

It is important to investigate the existence of the backward bifurcation phenomena as

this can go a long way in determining parameter that could make it difficult to eradicate

cancer cells when the invasion reproduction number is less than unity. Some models such

as cancer models are known to exhibit the phenomenon of backward bifurcation, where

the stable tumor-free equilibrium co-exists with a stable endemic equilibrium with the

epidemiological requirement of having the invasion reproduction number less than unity

being established. This phenomenon has been established in a number of epidemiological

settings ( Van Driessche and Watmough [132] and Garba et al., [45]). In a backward

bifurcation setting, disease control is only feasible if Ri is reduced to values below another

sub-threshold less than unity. The implication of this phenomenon on public health is

that the requirement of having the reproduction number less than unity, although neces-

sary, is no longer sufficient for cancer control.

To demonstrate the possibility of the co-existence of the equilibria of the model (3.1.5) at

Ri < 1 but near Ri = 1, the Center Manifold Theory is described by Castillo-Chavez and

Song [25].

Theorem 3.5.1. Castillo-Chavez and Song [25] consider the following general system of

ordinary differential equations with a parameter φ

dx

dt
= f(x, φ), (3.5.19)

Where f : <n ×< → <n is C2 with f(0, φ) = 0 for all φ and satisfying the following:

1. The Jacobian matrix has Dxf(0, 0) zero simple eigenvalue and the other eigenvalues

have negative real parts;
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2. Dxf(0, 0) has a nonnegative right eigenvector w and a left eigenvector v correspond-

ing to the zero eigenvalue.

Let fk be the kth component of f and

a =
∑n

k,i,j=1 vkwiwj
∂2fk
∂xi∂xj

(0, 0)

b =
∑n

k,i=1 vkwi
∂2fk
∂xi∂φ

(0, 0).

The local dynamics of system (3.5.19) around 0, are totally determined by a and b. More

precisely, we have following cases

1. If a > 0, and b > 0, then

i. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable and there exists a

positive unstable equilibrium

ii. When 0 < φ � 1, 0 is unstable and there exists a negative and locally asymp-

totically stable equilibrium.

2. If a < 0, and b < 0, then

i. When φ < 0 with |φ| � 1, 0 is unstable;

ii. When 0 < φ � 1, 0 is locally asymptotically stable and there exists a positive

unstable equilibrium.

3. If a > 0, and b < 0, then

i. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally asymptotically

stable negative equilibrium.

ii. When 0 < φ� 1, 0 is stable, and a positive unstable equilibrium appears.
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4. If a < 0, and b > 0, then as φ changes from negative to positive, 0, changes

from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

If a > 0 and b > 0, a backward bifurcation occurs at φ = 0. We use the

Center Manifold theorem by Castillo-Chavez and Song [25], to carry out a bifurcation

analysis. First, we consider the tumor progression rate φ1 as a bifurcation parameter so

that Ri = 1 if and only if

φ1 = φ∗1 =
µ1µ4(γ2sβ(gµ4 + ε) + (µ2 − α2d)(µ3(µ4 + ε) + λ3ε(1− k)))

α1µ4 − λ1ε(1− k)(µ3(µ4 + ε) + λ3ε(1− k))

Then we make the following change of variables N∗ = x1, T
∗ = x2, M

∗ = x3, E
∗ = x4

Furthermore, by using the vector notation x = (x1, x2, x3, x4)
T the breast cancer model

(3.1.5) can be written in the following form: Let the breast cancer (3.1.5) be written in

the vector form

dx
dt

= F (x),

where

x = (x1, x2, x3, x4)
T and F = (f1, f2, f3, f4)

T

Then

dx1
dt

= f1 = α1x1 − µ1x
2
1 − φ1x1x2 − (1− k)λ1x1x4

dx2
dt

= f2 = α2x2d− µ2x
2
2 − γ2x2x3 − µ5x2 + φ1x1x2 + (1− k)λ1x1x4

dx3
dt

= f3 = sβ +
ρx2x3
w + x2

− γ3x2x3 − µ3x3
(1− k)λ3x3x4

g + x4

dx4
dt

= f4 = ε− µ4x4

(3.5.20)

If the bifurcation parameter φ1 be chosen so that at Ri = 1 in (3.4.12), we obtain

φ∗1 =
µ1µ4(γ2sβ(gµ4 + ε) + (µ2 − α2d)(µ3(µ4 + ε) + λ3ε(1− k)))

α1µ4 − λ1ε(1− k)(µ3(µ4 + ε) + λ3ε(1− k))
(3.5.21)
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The linearised matrix of the model (3.1.5) around the tumor-free equilibrium with P0 and

evaluated at φ1 = φ∗1 is given by

J(ε0, φ
∗
1) =



C∗0 −C∗2 0 −C∗6

C∗1 C∗3 0 C∗7

0 C∗4 −C∗5 C∗8

0 0 0 −µ4


where

C∗0 =
α1µ1µ4 − 2µ2

1α1 + 2µ1(1− k)λ1ε− (1− k)λ1µ1ε

µ1µ4

C∗1 =
(1− k)λ1ε

µ4

C∗2 =
φ1(1− k)λ1ε− φ1α1µ1

µ1µ4

C∗3 =
α2dµ1µ4(µ3ξ

∗
2 + ξ∗ − γ2(sβ(gµ4 + ε))µ1µ4 − µ5ξ

∗
1 + ξ∗) + φ1(µ3ξ

∗
2 + ξ∗)(α1µ1 − λ1ε(1− k))

µ1µ4(µ3ξ∗2 + ξ∗))

where ξ∗ = λ3ε(1− k)), ξ∗1 = µ1µ4(µ3(µ4 + ε), ξ∗2 = (µ4 + ε)

C∗4 =
ρ

ω

(
sβ(gµ4 + ε)

(µ3(µ4 + ε) + λ3ε(1− k))

)

C∗5 = −
(
µ2
4 + (1− k)λ3ε

gµ4 + ε

)
C∗6 = −(1− k)λ1

µ1µ4

(α1µ1 − (1− k)λ1ε)

C∗7 =
(1− k)λ1
µ1µ4

(α1µ1 − (1− k)λ1ε)

C∗8 =
gµ2

4λ3
(gµ4 + ε)2

(
sβ(gµ4 + ε)

(µ3(µ4 + ε) + λ3ε(1− k))

)
The Jacobian J(P0, φ

∗
1) of the linearized system has a simple zero eigenvalues with all

other eigenvalues having negative real parts. It can be shown that, the associated left

eigenvector, Vi = (V1, V2, V3, V4), corresponding to the simple zero eigenvalue of J(P0, φ
∗
1)

is obtained as:
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V3 = 0, V2 > 0 (positive constant)

V1 = −C1V2
C0

V4 =

(
C6C1 + C0C7

µ4C0

)
V2

Furthermore, the associated right eigenvector corresponding to this simple zero eigenvalue

denoted by Wj = (W1,W2,W3,W4)
T so J(ε0, φ

∗
1)W = 0

Therefore we have W4 = 0, W2 > 0

W1 =
C2W2

C0

W3 =
C4W2

C5

Computation of a: It is clear, that all the second-order partial derivatives at P0 and

φ∗1 are zero except the following:

a =
k∑

i,j=1

VkWiWj
∂2fk
∂xi∂xj

where i, j, k = 1, 2, 3, 4

a = V1W
2
1

∂2f1
∂x21

+ V1W1W2
∂2f1
∂x1∂x2

+ V1W1W3
∂2f1
∂x1∂x3

+ V1W2W1
∂2f1
∂x2∂x1

+ V1W
2
2

∂2f1
∂x22

+

V1W2W3
∂2f1
∂x2∂x3

+ V1W3W1
∂2f1
∂x3∂x1

+ V1W3W2
∂2f1
∂x3∂x2

+ V1W
2
3

∂2f1
∂x23

+ V2W
2
1

∂2f2
∂x21

+

V2W1W2
∂2f2
∂x1∂x2

+ V2W1W3
∂2f2
∂x1∂x3

+ V2W2W1
∂2f2
∂x2∂x1

+ V2W
2
2

∂2f2
∂x22

+ V2W2W3
∂2f2
∂x2∂x3

+

V2W3W1
∂2f2
∂x3∂x1

+ V2W3W2
∂2f2
∂x3∂x2

+ V2W
2
3

∂2f2
∂x23

+ V4W1
∂2f4
∂x21

+ V4W1W2
∂2f4
∂x1∂x2

+

V4W1W3
∂2f4
∂x1∂x3

+ V4W2W1
∂2f4
∂x2∂x1

+ V4W
2
2

∂2f4
∂x22

+ V4W2W3
∂2f4
∂x2∂x3

+ V4W3W1
∂2f4
∂x3∂x1

+

V4W3W2
∂2f4
∂x3∂x2

+ V4W
2
3

∂2f4
∂x23

(3.5.22)

We can directly compute a at Tumor-free equilibrium, for i = 1, 2, 3, 4, and we have
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∂2f1
∂x1∂x3

=
∂2f1
∂x22

=
∂2f1
∂x2∂x3

=
∂2f1
∂x3∂x1

=
∂2f1
∂x3∂x2

=
∂2f1
∂x23

=
∂2f2
∂x21

=
∂2f2
∂x1∂x2

=
∂2f2
∂x3∂x1

=
∂2f2
∂x23

=
∂2f4
∂x2i

=
∂2f4
∂x1∂xi

= 0

while,

∂2f1
∂x21

= −2µ1,

∂2f1
∂x1∂x2

=
∂2f1
∂x2∂x1

= −φ1,

∂2f2
∂x1∂x2

=
∂2f2
∂x2∂x1

= φ1,

∂2f2
∂x22

= −2µ2,

∂2f2
∂x2∂x3

=
∂2f2
∂x3∂x2

= −γ2

Thereafter, the value of a is given by:

a =
4∑

k,i,j=1

VkWiWj
∂2fk
∂xi∂xj

(P0, 0) = 2µ1

{(
C1V2
C0

)(
C2V2
C0

)2
}

+ 2φ1W2

(
C1V2
B0

)(
C2W2

C0

)

+2φ1W2V2

(
C2V2
C0

)
− 2µ2V2W

2
2 − 2γ2V2W2

(
C4W2

C5

)
Computation of b : To compute b, we need the second order partial derivatives of f2

with respect to xi and φ1 as the second variable, at tumor-free equilibrium P0

b =
4∑

i,j=1

VkWi
∂2fk
∂xi∂φ1

(P0, φ
∗
1)

where φ1 is a bifurcation parameter

b = V1W1
∂2f1
∂x1∂φ1

+ V1W2
∂2f1
∂x3∂φ1

+ V1W3
∂2f1
∂x3∂φ1

+ V2W1
∂2f2
∂x1∂φ1

+ V2W2
∂2f2
∂x2∂φ1

+

V2W3
∂2f2
∂x3∂φ1

+ V4W1
∂2f4
∂x1∂φ1

+ V4W2
∂2f4
∂x2∂φ1

+ V4W3
∂2f4
∂x3∂φ1

∂2f1
∂xi∂φ1

=
∂2f4
∂xi∂φ1

= 0
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for i = 1, 2, 3, 4 while,

∂2f2
∂x2∂φ1

= x2,

∂2f2
∂x2∂φ1

= x1,

the value of b is given by:

b =
n∑

k,i=1

VkWi
∂2fk
∂xi∂φ1

(P0, φ
∗
1) = V2W1x2 + V2W2x1

Theorem 3.5.2. The breast cancer model (3.1.5) has backward bifurcation if a is positive.

Proof: In line with Castillo-Chavez [25] and Diekmann et al. [35], the direction of

the bifurcation is forward when a < 0 and b > 0, while it is backward when a > 0 and

b > 0 as well. From the analysis of b above coupled with the fact that W1 & W2 are all

positive which imply that b > 0, the direction of the bifurcation is governed by the sign

of a such that if a > 0 it is backward, otherwise it is forward.

In conclusion,

a =
2C2

2C1V2W 2
2 µ1

C3
0

− 2C2W 2
2

C2
0

(−C1V2φ1 − V2φ1C0)− 2V2W2

C5
(W2µ2C5 + C4W2γ2)

a = 2

[
C2

2C1V2W
2
2 µ1

C3
0

+
C2W

2
2

C2
0

(C1V2φ1 + V2φ1C0)−
V2W2

C5

(W2µ2C5 + C4W2γ2)

]
(3.5.23)

If

C2
2C1V2W

2
2 µ1

C3
0

+
C2W

2
2

C2
0

(C1V2φ1 + V2φ1C0) >
V2W2

C5

(W2µ2C5 + C4W2γ2) (3.5.24)

then a > 0. Also, if

C2
2C1V2W

2
2 µ1

C3
0

+
C2W

2
2

C2
0

(C1V2φ1 + V2φ1C0) <
V2W2

C5

(W2µ2C5 + C4W2γ2) (3.5.25)
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then a < 0 while

b = V2W2Nn

= V2W2

(
α1µ1 − (1− k)λ1ε

µ1µ4

)
> 0

. If k = 1, b > 0, if k < 1, b > 0, if and only if α1µ1 > (1− k)λ1ε and b < 0, if α1µ1 < λ1ε

Since the coefficient b is automatically positive, the breast cancer model (3.1.5) will un-

dergo backward bifurcation as given by (3.5.24). The implication of the above result is

represented in Figure 3.1, which shows that the reduction of R∗i below unity alone is not

sufficient to eradicate tumor cells from the body system. However, to rule-out this oc-

currence, the global dynamics of TTFE was investigated in section (3.4.4) for the special

case with k = 1.
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Figure 3.1: Description of the backward bifurcation of the system (3.1.5) with φ∗1.

Additionally, the coefficient b is automatically positive and a < 0 , the breast cancer

model (3.1.5) will undergo forward bifurcation as given by (3.5.25). The implication of

the above result is represented in Figure 3.2, which shows that the reduction of R∗i above

unity is sufficient to eradicate tumor cells from the body system. However, to rule-out

this occurrence, the global dynamics of TTFE was investigated in section (3.4.4) for the
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special case with k = 1.
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Figure 3.2: Description of the forward bifurcation of the system (3.1.5) with φ∗1.
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3.6 Sensitivity analysis of model parameters

We carried out a sensitivity analysis to determine the model’s robustness to parameter

values. This is to help us determine the parameters that have a high impact on tumor

invasion, namely the invasion reproduction number (Ri). In carrying out the sensitivity

analysis, we used the normalised forward sensitivity index of a variable to a parameter

approach described in Chitins et al. [28]. This is defined as the ratio of relative change in

the variable to relative change in the parameter. The sensitivity index may also be defined

using partial derivatives when the variable is a differentiable function of the parameter.

3.6.1 Local sensitivity indices for Ri

Definition. The normalised forward sensitivity index of a variable, h, that depends dif-

ferentiably on a parameter, l, is defined as:

Υh
l :=

∂h

∂l
x

l

h
.

In particular, sensitivity indices of the invasion reproduction number Ri with respect to

the model parameter are computed as follows:
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∂Ri

∂φ1

x
φ1

Ri

=
φ1(α1µ4 − λ1εµ3(1− k)(gµ4 + ε))

φ1α1µ4 − φ1λ1εµ3(1− k)(gµ4 + ε) + λ3ε(1− k)
,

∂Ri

∂α1

x
α1

Ri

=
α1µ4φ1

φ1α1µ4 − φ1λ1εµ3(1− k)(gµ4 + ε) + λ3ε(1− k)
,

∂Ri

∂λ1
x

λ1
Ri

= −
(

λ1φ1µ3ε(1− k)(gµ4 + ε)

φ1α1µ4 − φ2λ1εµ3(1− k)(gµ4 + ε) + λ3ε(1− k)

)
,

∂Ri

∂µ3

x
µ3

Ri

=
µ3(µ5 − dα2)(gµ4 + ε)

γ2sβ(gµ4 + ε) + (µ5 − dα2)(µ3(gµ4 + ε) + λ3ε(1− k)
,

∂Ri

∂s
x

s

Ri

=
sγ2(gµ4 + ε)

γ2sβ(gµ4 + ε) + (µ5 − dα2)(µ3(gµ4 + ε) + λ3ε(1− k)
,

∂Ri

∂β
x

β

Ri

=
sγ2(gµ4 + ε)

γ2sβ(gµ4 + ε) + (µ5 − dα2)(µ3(gµ4 + ε) + λ3ε(1− k)
,

∂Ri

∂γ2
x

γ2
Ri

=
sγ2(gµ4 + ε)

γ2sβ(gµ4 + ε) + (µ5 − dα2)(µ3(gµ4 + ε) + λ3ε(1− k)
,

∂Ri

∂α2

x
α2

Ri

= −
(

dα2(µ3(gµ4 + ε) + λ3ε(1− k)

γ2sβ(gµ4 + ε) + (µ5 − dα2)(µ3(gµ4 + ε) + λ3ε(1− k)

)
,

∂Ri

∂d
x

d

Ri

= −
(

dα2(µ3(gµ4 + ε) + λ3ε(1− k)

γ2sβ(gµ4 + ε) + (µ5 − dα2)(µ3(gµ4 + ε) + λ3ε(1− k)

)
,

∂Ri

∂µ1

x
µ1

Ri

= −1,

(3.6.26)
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It is obvious from Table (3.2) above that the natural death rate of estrogen has the

highest sensitivity index (S.I = 2.86) which indicates that increasing (or decreasing) the

natural death rate of estrogen µ4 by 10% decreases (or increases) the Ri by 28.61%. The

second most sensitivity index (S.I =1.0406) is related to α2 and d, which are the tumor

growth rate and ketogenic-diet parameter respectively. These parameters can be increased

(or decreased) by 10% each, then the Ri by 10.406%. Similarly, increasing(or decreasing)

the rate at which normal cells grow α1 and progression rate of tumor cells φ1 by 10%

decreases (or increases) the Ri by 9.55%. In the same way, increasing (or decreasing) the

natural death rate for normal cells,µ1 by 10% decreases (or increases) the Ri by 10%.

Also, increasing (or decreasing) the source of estrogen, ε by 10% decreases(or increases)

the Ri by 1.39%. However, increasing (or decreasing) the anti-cancer drugs efficacy, k

by 10% decrease (or increases) the Ri by 0.45%. Nevertheless, the sensitivity indexes for

the other parameters are very small, which indicates that they have no effect on Ri. In

addition, our results show that the natural death rate has the most sensitivity index but

increasing the death rate as a control measure is unreasonable biologically. The sensitivity

index of the anti-cancer drugs of breast cancer is -0.0457, which indicates that to reduce

Ri we need to increase the treatment rate. In fact, the constant rate of ketogenic-diet is

also important in reducing Ri because it has sensitivity index of 1.0406.

In addition, the most effective control strategy is a strategy that involves control of

tumor growth by increasing anti-cancer drugs or working on ketogenic-diet moderation.

The positive sign of the sensitivity index of the invasion reproduction number to the model

parameters indicated that an increase ( or decrease) in the value of each of the parameter

in this category will lead to an increase ( or decrease) in the invasion reproduction number.

For example, from Table 3.2,
∂Ri

∂µ1

x
µ1

Ri

= −1 suggests that decreasing( or increas-

ing) the natural death rate by 10 % decreases (or increases) the invasion reproduction
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number, Ri, by 10%. However, the negative sign of the sensitivity index of the invasion

reproduction number to the model parameters implies that an increase (or decrease) in

the value of each of the parameter in this category leads to a corresponding decrease (or

increase) in the invasion reproduction number of the tumor. Thus, sensitivity analysis

of the breast cancer model (3.1.5) provides a very good insight the into the dynamics of

tumor invasion of the disease. In particular, it helps public health authorities to focus on

an intervention strategy for preventing and controlling the invasion of tumor cells to the

other parts of the body.

3.6.2 Uncertainty analysis

We explored the dependence of the model solutions on the parameter values and we were

able to figure out a feasible range of parameter values. We were also able to ascertain

the most critical parameters in the model using a similar model to the Latin Hypercube

Sampling (LHS) and the Partial Rank Coefficient (PRCC). The former is used in uncer-

tainty analysis (the global sensitivity analysis method) while the latter is for analysing

the sensitivity indexes of the parameters (see Malinzi et al [77] and Marino et al [78]).

These were ran and analysed with a sample size of 100. The choice of this sample size is

due to the fact that PRCC produces accurate results for a lower sample size compared to

other technique like eFAST [78].

The parameter baseline values in Table 3.1 were varied in the range of 25%. Figure

3.2, displays a tornado plot of PRCCs plotted against the homogeneous parameter value

with tumor compartment as the baseline dependent variable.

The parameter which are significantly positively correlated with tumor cells, at p < 0.05

level of significance, are α1, g while µ1, γ3, and ω are significantly negatively correlated.

An increase in the production of normal cells α1, leads to higher numbers of normal cells.

66



This means that the higher the α1, the higher the normal cells while the most sensitive

parameters are shown to be p− values of s, γ2, µ3 and ρ in Figure 3.3.
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Figure 3.3: PRCCs of homogeneous model parameters with the tumor cells as the baseline

variable. All parameter values were varied in 25% of their baseline values in Table 3.1.

The most sensitive parameters are shown to be p − values of α1, g, µ1, γ3 and ω are less

than 0.01

.
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Figure 3.4: PRCCs of homogeneous model parameters with the tumor cells as the baseline

variable. All parameter values were varied in 25% of their baseline values in Table 1. The

most sensitive parameters are shown to be p− values of s, γ2, µ3 and ρ are less than 0.05

.
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Table 3.1: Description of parameters in the model

Parameter description Symbol Value Units References

Per capita growth rate of normal cells α1 0.70 day−1 [31]

Per capita growth rate of tumor cells α2 0.514 day−1 [108]

Natural death rate of normal cells µ1 0.00003 day−1 Assumed

Natural death rate of tumor cells µ2 0.01 day−1 [7]

Probabilistic rate of normal

cells mutation into tumor cells φ1 6× 10−8 day−1 [7]

Tumor cells death rate due to immune response γ2 3× 10−6 day−1 [31]

Interaction coefficient rate with immune response γ3 1× 10−7 day−1 [5]

Source rate of immune cells s 1.3× 104 day−1 [31]

Source rate of estrogen ε 1.3× 104 day−1 Estimated

Immune threshold rate ω 3× 105 day−1 [108]

Immune response rate ρ 0.20 day−1 [34]

Natural death rate of immune cells µ3 0.29 day−1 [108]

Efficacy of anti-cancer drug k 0− 1 day−1 Assumed

Supplement for immune booster β 0.01 day−1 Estimated

Tumor formation rate as a result

of DNA damage by excess estrogen λ1 0.20 (Pg/mL)−1 Estimated

Immune suppression rate due to excess estrogen λ3 0.002 day−1 Estimated

Assume constant of value of decay factor g 0.1 day−1 Estimated

Natural death rate of estrogen µ4 0.97 day−1 [19]

Death rate due to ketogenic diet µ5 2.0 day−1 Estimated

Constant rate of ketogenic diet d 0.5 day−1 Estimated
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Table 3.2: Sensitivity Indexes of the model’s parameters with respect to Ri

Parameter Description Sensitivity Index

α1 Per capita growth rate of normal cells 0.9547

α2 Per capita growth rate of tumor cells 1.0406

µ1 Natural death rate of normal cells -1.0000

µ2 Natural death rate of tumor cells - 0.0405

γ2 Death rate of tumor cells as a result of immune response -0.0001

s Source rate of immune cells -0.0001

ε Source rate of estrogen 0.1391

µ3 Natural death rate of immune cells 0.9998

k Efficacy of anti-cancer drug -0.0457

β Supplement for immune booster -0.0001

λ1 Rate of tumor formation due to DNA damage by excess estrogen -0.000004

λ3 Immune suppression rate due to excess estrogen 0.0457

g Assume constant of value of decay factor -0.00005

µ4 Natural death rate of estrogen 2.8609

φ1 Probabilistic rate of normal cells mutation into tumor cells 0.9546

d Constant rate of ketogenic diet 1.0406
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Sensitivity Analysis Case II when k = 1

∂R∗i
∂φ1

x
φ1

R∗i
=

1
φ1α1

{
µ1(sβγ2 + µ3(µ5 − dα2))

(
φ1α1

µ1(sβγ2+µ3(µ5−dα2))
− φ1α1µ3(µ5−dα2

µ1(sβγ2+µ3(µ5−dα2))2

)}
,

∂R∗i
∂α1

x
α1

R∗i
= 1,

∂Ri

∂µ1

x
µ1

Ri

= −1,

∂R∗i
∂α2

x
α2

R∗i
=

α2µ3d

(sβγ2 + µ3(µ5 − dα2)
,

∂Ri

∂µ5

x
µ5

Ri

= − µ3µ5

(sβγ2 + µ3(µ5 − dα2)
,

∂Ri

∂β
x

β

Ri

= − γ2sβ

(sβγ2 + µ3(µ5 − dα2)
,

∂Ri

∂γ2
x

γ2
Ri

= − γ2sβ

(sβγ2 + µ3(µ5 − dα2)
,

∂Ri

∂s
x

s

Ri

= − γ2sβ

(sβγ2 + µ3(µ5 − dα2)
,

∂Ri

∂d
x

d

Ri

=
α2sβ

(sβγ2 + µ3(µ5 − dα2)
,

∂Ri

∂φ1

x
φ1

Ri

= 0,

(3.6.27)
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Table 3.3: Case II for Sensitivity Indexes of the model’s parameters with respect to R∗i

Parameter Description Sensitivity Index

α1 Per capita growth rate of normal cells 1.0000

α2 Per capita growth rate of tumor cells 0.1474356

µ1 Natural death rate of normal cells -1.0000

γ2 Tumor cells death rate due to immune response -0.000077

s Source rate of immune cells -0.000077

µ3 Natural death rate of immune cells 0.000077

β Supplement for immune booster -0.000077

µ5 Death rate due to ketogenic diet -1.147358

φ1 Probabilistic rate of normal cells mutation into tumor cells 0.0000

d Constant rate of ketogenic diet 0.1474355

Some parameters value have been taken from literature, as noted in the Table 3.1,

others have been estimated, assumed in order to showcase the possible dynamics of our

model. However, the focus of our work is to examine the mathematical implications of

the model, we recognise that some of our parameters are not based on experimental data

[34].
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Figure 3.5: The variation of proportion of Tumor cell population for different values of d

with other parameters fixed

Figure 3.6: The variation of proportion of Estrogen level for different values of k with

other parameters fixed

3.6.3 Numerical simulations

Key parameters are also noted in stabilising the model in system (3.1.5) such as ketogenic

diet, anti-cancer drugs and immune booster. The initial values of variables are N(0)=

2000, T(0)= 800, M(0)= 500, E(0)= 20 and s = 1.3× 104 adopted from Abernathy et al

[1]. All parameter values used for the numerical simulation are stated in Table 3.1.
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Figure 3.7: The variation of proportion of Tumor cells population for different values of

k with other parameters fixed

Figure 3.8: The variation of proportion of Immune booster for different values of β with

other parameters fixed

3.6.4 Discussion

Figure 3.5 indicates that the introduction of a ketogenic diet results in the reduction

of the activities of cancer cells. On the other hand, when ketogenic diet is in excess it

can result into ketoacidosis, a combination of ketosis and acidosis. The former is the

accumulation of ketone bodies while acidosis is increased acidity of the blood which can
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cause frequent urination Polyuria, poor appetite and loss of consciousness. Therefore, our

ketogenic diet’s parameter rate is at its best at d = 0.6 and can compliment the activity

of the anti-cancer drug (Tamoxifen). Figure 3.6, shows the impact of an anti-cancer drug

in reducing the production of excess estrogen in the system, but when there is reduced

production of estrogen there will not be the kind of rapid growth that is a characteristic of

normal breast cells. However, the rapid production of estrogen results in abnormal breast

cells expression which will lead to breast cancer. Figure 3.7 shows the obvious effects of

anti-cancer drugs on tumor cells because there is no supply of nutrient or glucose (energy)

to the cancer cells.

Figure 3.8 shows that the red line β = 0, during cancer formation when both innate

and adaptive activities reduce drastically due to the expression of proteins other than

those responsible for the activation of immune response. But the introduction of the

immune booster into the system, reactivates the immune response to the cancer cells.

The presence of abnormal estrogen levels without anti-cancer drugs or ketogenic diet will

make the system unstable as shown in Figure 3.9.

Figure 3.9: The variation of proportion of Normal cells population for different values of

λ1 with other parameters fixed
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Figure 3.10: The variation of Total cells population of the system (3.1.5)

The system however becomes stable as we introduced chemotherapy and a ketogenic

diet as represented in Figure 3.10. In addition, Figure 3.11, indicates that there is DNA

damage at λ1 = 0 which occurs naturally as a result of metabolic or hydrolytic processes.

It is as a result of a Tumor Suppressor Gene (TSG) which is able to control the activity

of DNA gene repair successfully. λ1 = 0.2, 0.4, 0.6 shows that TSG (such as BRCA 1,

BRCA 2, P53) compromises the pathway which leads to uncontrollable cell growth, the

formation of tumors or accelerated aging.

The mathematical analysis of the model produced six equilibrium points all with epi-

demiological implications in relation to explaining the dynamics of breast cancer growth.

P0 represents a state of tumor-free equilibrium when only tumor cells died from compe-

tition with other cells.
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Figure 3.11: The variation of Total cells population of the system (3.1.5)

Pd1 represents a type 1-dead equilibrium point where both normal and tumor cells

die off as a result of breast tissue removal through mastectomy or death. Pd2 could be

described by a type 2-dead equilibrium point where only normal cells are forced into

extinction leaving tumor cells surviving. Pd3 represents a type 3-dead equilibrium point

which means the immune system is weak and it cannot fight the tumor cells which even-

tually overpower normal cells and force them into extinction. Pd4 shows that type 4-dead

equilibrium point where the ketogenic diet is not effective, the immune booster is not ac-

tive, and which leads to tumor cell overpowering normal cells as a result of the infusion of

excess estrogen into the body system. We categorized this as ”dead” because biologically,

damaged normal cells do not recover. This could from the anti-cancer drug that destroys

red blood cells that affected normal cells.

3.6.5 Summary

A four-dimensional compartmental deterministic model was designed and used to monitor

the dynamics of breast cancer. The existing model in [87] was extended to incorporate

treatments, ketogenic diet and immune booster. The system (3.1.5) was rigorously anal-
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ysed to gain insight into their dynamical behaviours. The study shows the following:

i conditions of stability of the Treatment Tumor-Free Equilibrium (TTFE) was es-

tablished and the system is for both Local Asymptotically Stable (LAS) if a cer-

tain threshold quantity, known as treatment induced invasion reproduction number

is less than unity (R∗i < 1) and Global Stability Analysis (GAS) for special case

R∗i |k=1≤ 1. It implies that the number of tumor cells in the body will be brought

to zero if proper treatments and ketogenic diet which can make the threshold to a

value less than unity are monitored.

ii An individual has the chance of developing breast cancer depending on the level

of immune system (s), efficacy of anti-cancer drug (k) and rate at which ketogenic

diet (d) is being taken to fight tumor cells. This implies that any additional es-

trogen quantity introduced into the body through birth control pills and Hormone

Replacement Therapy (HRT) enhances the rate of tumor formation [42]. Thus, the

development of breast cancer is certain.

iii The transition from normal cells class to tumor cells class plays a crucial role in

the breast cancer dynamics (λ1). More tumor is formed if the DNA is damaged or

altered as a result of excess estrogen; which reduces the number of normal cells that

will be produced by red blood cells [82].

iv Furthermore, the results show that tumor cell formation depends on the level of

excess estrogen introduced into the body system; an individual’s DNA ability to

resist changes in structure; and the amount of estrogen released during natural

biological processes such as premenopause and menopause stages.

Other risk factors may also be incorporated in the model for future work.
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Chapter 4

Application of optimal control

4.1 Introduction

Optimal control theory is a mathematical tool in decision making that includes the ap-

propriate use of several strategies to reduce the occurrence of diseases in cost-effective

ways. The application of optimal control theory to solve diverse epidemiological problems

has been reported in several studies [69, 96, 104, 131]. Tsai [131] explored this tech-

niques for improving multi-dose drug schedules, treatment times and drug toxicities in

cancer chemotherapy. Also, Pang and Coworker [104] used the optimal control theory

approach to investigate the implementation of immunotherapy and chemotherapy for a

certain period to reduce the number of tumor cells and to minimise the implementation

costs of the two therapeutic strategies. However, a quadratic objective function will be

employed to measure the control cost for cancer treatment and application of anti-cancer

drug control given the nonlinearity of costs of the relationships between the cost of in-

tervention of the tumor cells population and the effects of intervention. These quadratic

costs have been applied by several authors [4, 95, 96]. Lastly, we evaluate the incremental

cost-effectiveness ratios to analyse the cost-effectiveness of all possible combinations of
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the different treatments.

4.2 Formulation of optimal control model for breast

cancer

In the previous section, the different forms of disease controls (ketogenic diet, immune

booster and anti-cancer treatment) are considered as constants. This means there is no

cost determination associated with their implementation. We formulate a corresponding

optimal control problem for the model in system (3.1.5) using the ketogenic diet and

chemotherapy as control interventions to reduce prevalence and economic burdens. This

technique has been used successfully to determine the relevant control strategies with op-

timal cost [69]. We use a quadratic term for the rate of application of a anti-cancer drug

control. Our goal is to minimize the number of tumor cells T (t) and the cost control of

u1 (anti-cancer drug) & u2 (ketogenic-diet) while maximising the tumor-free population.

Mathematically, the objective functional J1 formulates the optimisation problem of inter-

est, namely that of identifying the most effective strategies. A few of the studies relevant

to control problem are described in the following notes [43, 69, 90, 96].

As tumor formation rate increases due to DNA damage by excess estrogen, the tumor

cells population increases as the density of normal cells population (that is prone to be

cancerous). We implement a measure that will reduce the interaction by (1−u1(t)), where

u1(t) measures the level of successful treatment efforts, which has practical advantages

in the reduction of cancer prevalence during the dead-free tumor or co-existing free tu-

mor metastasis. The control variable u1(t) denotes the use of anti-cancer drugs, such as

Tamoxifen of Taxol = Paclitaxel which are alternative preventive measures to minimise

growth or eliminate tumors from the body system.
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However, the ketogenic diet to tumor cells u2 is chosen at a time dependent control

intervention as u2(t). A control variable that represents the level of ketogenic diet in

which cancer patient is placed on is u2(t). The ketogenic diet will aid the starvation of

tumors the body system. It follows that the growth rate of the tumor population will be

reduced by a factor (1 − u2(t)), where u2 also serves as a measures of the level of suc-

cessful prevention (personal protection efforts). Thus, our main objective is to investigate

optimal control policies which can minimise costs while limiting the disease. It is also our

aim to determine the total costs of implementing control policies. The weighted sum of

the total cost incurred is described as follows:

i) Cost incurred due to breast cancer: It is the weighted cost due to the patient’s loss

of opportunities [69] and is given as:∫ Tf

0

(A1T (t) + A2E(t)) dt

Patients lose opportunities in several ways such as loss in efficiency due to sickness,

loss of manpower, loss realised in searching for treatment and protection and care

etc [44]; where Tf is final time .

ii) Cost incurred in treatment: This is the cost that providing treatment to tumor cells

population during the metastasis stage and is given as:∫ Tf

0

(
1

2
A3u

2
1(t)

)
dt

The total weighted cost incurred in treatment includes the costs involved in the

efforts and processes of treatment including mammography or X-rays scans, medi-

cation, diagnosis and hospital stays.

iii) Costs incurred in adopting a ketogenic diet: The weighted sum of costs realised in

adopting a ketogenic diet includes the cost of a restricted diet that will starve tumor
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cells from getting necessary nutrient from the body system and is given as:

∫ Tf

0

(
1

2
A4u

2
2(t)

)
dt

Based on the severity and effect of treatment on tumor cells populations, we consider a

nonlinear relationship between cost and the efforts made towards treatment and the use

of a ketogenic diet.

We therefore define the control problem as per the above discussion for control policies

and costs incurred, as follows:

J1(u1, u2) =

∫ Tf

0

(
A1T (t) + A2E(t) +

1

2
A3u

2
1(t) +

1

2
A4u

2
2(t)

)
dt (4.2.1)

min
J1(u1,u2)

(u1, u2 ∈ U) U = {u1(t) & u2(t) : 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, t ∈ [0, Tf ]}

and u1 and u2 are Lebesgue measurable subject to the model system (3.5):

dN

dt
= Nα1 − µ1N

2 − φ1TN − (1− u1(t)) (λ1NE)

dT

dt
= (1− u2(t))Tα2 − µ2T

2 − γ2MT − µ5T + φ1TN + (1− u1(t)) (λ1NE)

dM

dt
= sβ +

ρMT

ω + T
− γ3MT − µ3M −

(
(1− u1(t))

λ3ME

g + E

)
dE

dt
= ε− µ4E

(4.2.2)

Following the initial conditions

N(0) ≥ 0, T (0) ≥ 0, M(0) ≥ 0, & E(0) ≥ 0.

The objective function J1 represents the total cost incurred as a result of the application

of control plans and the burden of the disease.

L(N, T,M,E, u1, u2) = A1T (t) + A2E(t) +
1

2
A3u

2
1(t) +

1

2
A4u

2
2(t) (4.2.3)

where A1, A2, A3 & A4 are positive weight constants related to the cost in unit effort and

also balance the units integrand. For convenience, we consider u1(t) = u1 & u2(t) = u2.

The system (4.2.2) which involves a system of coupled non-linear differential equation and
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two controls will be introduced with initial conditions given at t=0. In order, to deal with

the tumor-to-therapy trade-off, we used the approach in [34,49,109] to ensure optimal

control. This requires the upper bounds on the system’s (3.1.5) solutions to be analysed.

Once it was established that the systems are bounded, the existence of an optimal control

was done based on Madhi and Mohamed’s [76] results. We proved, furthermore, the

existence of an optimal control which reduces the objective function. This was done via

established approaches ( De Pillis et al.[34], Ghaddar [49], De Pilliset al. [33], Acar and

Aplak [2], and Kirschner et al. [63]). We use the fact that super-solutions N , T , M , E of

dN

dt
= Nα1,

dT

dt
= Tα2(1− u2),

dM

dt
= sβ +

ρMT

ω + T
,

dE

dt
= 1

(4.2.4)

are bounded on a finite time interval. Given that the sub-solutions are zero, the result

obtained shows that our system is bounded. Also, our next mission was to ensure the

existence of the optimal control using a result from Fleming and Rishel [41] as well as

Oke et al. [95] in view of the fact that we had a bounded system.

4.2.1 Existence of an optimal control

Theorem 4.2.1. : Given the objective functional in (4.2.1), where

U = {u∗i (t), Lebesgue measure : 0 ≤ u∗i (t) ≤ 1,∀t ∈ [0, t]} subject to system (4.2.2) with

N(0) = N0, T (0) = T0, M(0) = M0, and E(0) = E0, there exists an optimal control u∗i

such that minu∗i (t)∈[0,1] J1(u
∗
i ) = J1(u

∗
i (t)) if the following conditions holds:

(i) f is not empty

(ii) The admissible control set U is closed and convex

(iii) Each right hand side of the state system is continuous, is bounded above by the sum

of the bounded control and the state, and can be written as a linear function of u∗i (t)
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with coefficients depending on time and the state.

(iv) The integrand of J1(u∗i ) is convex on U and is bounded below by −c2 + c1u
2 with

c1 > 0

Proof : Since the system (4.2.2) has bounded coefficients and the solutions are

bounded on the finite time interval, we can apply the result of Helton et al. [54]

(Theorem 9.2.1, page 182), to obtain the existence of the solution of the system (4.2.2).

Furthermore, we note that U is closed and convex by definition. For the third conditions,

the right hand side of the system (4.2.2) must be continuous. The right hand side is

continuous since the denominators of all fractions from the right hand side of the system

consists solely of positive entities. We let −→ϕ (t,
−→
X ) be right hand side of the system (4.2.2)

except for the terms of u∗i and define.

|
−→
f (t,
−→
X, u∗i ) |= −→ϕ (t,

−→
X ) +



0

λ1NE

0

u1


, with

−→
X =



N

T

M

E


using the boundedness of the solutions (4.4), we have

|
−→
f (t,
−→
X, u∗i ) |≤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



α1 0 0 0

0 α2(1− u2) 0 0

0 0 ρ 0

0 0 0 0





N

T

M

E



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0

(1− u1)λ1NE

sβ

−u1ε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ c1

(
|
−→
X | + |

−→
u∗i |
)

where c1 depends on the coefficients of the system. For the fourth condition, we need to

show

J (t, T, E, (1− Pi)ui + PiVi) ≤ (1− Pi)J (t, T, E, ui) + Pi(t, T, E, Vi)
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we analyze the difference of

J (t, T, E, (1− Pi)ui + PiVi)− [(1− Pi)J (t, T, E, ui) + Pi(t, T, E, Vi)]

= T (t) + E(t) +
ε

2

(
u2i − 2Piu

2
i + P 2

i u
2
i + P 2

i V
2
i − 2P 2

i V
2
i u

2
i + 2PiViui

)
−
(
T (t) + E(t) +

ε

2
u2i −

ε

2
Piu

2
i +

ε

2
PiV

2
i

)

=
ε

2
(P 2

i − Pi)(ui − Vi)2

since, Pi ∈ (0, 1) implies (P 2
i − Pi) < 0 and (ui − Vi)2 > 0 but

(P 2
i − Pi) < 0, which implies ε

2
(P 2

i − Pi)(ui − Vi)2 is negative. This implies that,

J (t, T, E, (1− Pi)ui + PiVi) ≤ (1− Pi)J (t, T, E, ui) + Pi(t, T, E, Vi)

Lastly,

T (t) + E(t) +
ε

2
u2i (t) ≥

ε

2
u2i (t) ≥ −c+

ε

2
u2i (t)

which gives −c + ε
2
u2i (t) as the lower bound. With the existence of the optimal con-

trol established, we now characterize the optimal control using Pontryagin’s Maximum

Principle [112]. However, we only examined these three alternative strategies:

• Strategy A : Anti-cancer drug treatment control on tumor cells (control u1(t) only)

• Strategy B : Anti-cancer drug and ketogenic diet treatment combined control on

tumor cells growth and excess estrogen (controls u1(t) and u2(t))

• Strategy C : Ketogenic diet control on excess estrogen and tumor cells (control u2(t)

only)

Thus, strategies use the objective functionals (4.2.1).

We assumed that there are practical limitations on the maximum rate at which the

anti-cancer treatment may be applied in a given period. We defined the positive constant
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umax accordingly. We also defined the set U of admissible controls to be all Lebesgue

measurable functions which take on values in the control set [4,64,98,99,110,111,125] u =

[0, umax] almost everywhere on [0, T ]. We looked for an optimal control u∗ ∈ U in (4.1.1)

[38]. To find the optimal solutions, we first traced the Lagrangian and Hamiltonian for

the optimal control problem (4.2.5) and (4.1.2). The Lagrangian of the optimal control

problem is given by:

L(N, T,M,E, u1, u2) = A1T (t) + A2E(t) +
1

2
A3u

2
1(t) +

1

2
A4u

2
2(t) (4.2.5)

H =



A1T (t) + A2E(t) + 1
2
A3u

2
1(t) + 1

2
A4u

2
2(t)

+θ1 (Nα1 − µ1N
2 − φ1TN − (1− u1(t)) (λ1NE))

+θ2 ((1− u2(t))Tα2 − µ2T
2 − γ2MT − µ5T + φ1NT + (1− u1(t)) (λ1NE))

+ θ3

(
sβ + ρMT

ω+T
− γ3MT − µ3M −

(
(1− u1(t)) λ3ME

g+E

))
+θ4 (ε− µ4E)

where θ1, θ2, θ3, θ4

are adjoints variable for the states N,T,M,E. Using Pontryagin’s Maximum Principle, we

can obtain minimised Hamiltonian that minimizes objective function or cost functional.

4.2.2 Characterisation of optimal control

We describe the optimal control pair u∗1 & u∗2 using Pontryagin’s Maximum Principle [112]

as follows.

Theorem 4.2.2.

Given that optimal control variables u∗1 & u∗2 and N∗, T ∗,M∗&E∗ are corresponding op-

timal state variables of the control system (4.2.1) and (4.2.2), there exists an adjoint
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variable

θ = (θ1, θ2, θ3, θ4) ∈ <4
+ that satisfies the following equations.

−dθ1
dt

= 2θ1µ1N + (φ1θ1 + φ1θ2)T + (θ1 + θ2) (1− u2(t))λ1E − α1θ1

−dθ2
dt

= −A1 + θ1φ1N + θ2 (2Tµ2 + γ2M + µ5 − α2(1− u2)) + θ3

(
γ3M −

ρωM

(ω + T )2

)

−dθ3
dt

= θ2γ2T + θ3

(
γ3T + µ3 −

ρT

ω + T
+ (1− u1)

λ1E

g + E

)

−dθ4
dt

= −A2 + (θ1 − θ2)(1− u1)λ1N + θ3

(
(1− u1)

λ3Mg

(g + E)2

)
+ θ4µ4

with transversality conditions

θ1(Tf ) = θ2(Tf ) = θ3(Tf ) = θ4(Tf ) = 0

The corresponding optimal controls u∗1 & u∗2 are given as,

u∗1 = min

{
max

{
0,

1

A3

(
θ2λ1N

∗E∗ − θ1λ1N∗E∗ −
θ3λ3M

∗E∗

g + E∗

)}
, 1

}
and

u∗2 = min

{
max

{
0,

1

A4

(θ2α2T
∗)

}
, 1

}
Proof: Let u∗1 & u∗2 be the given optimal control functions and N∗, T ∗,M∗&E∗ be

the corresponding optimal state variables of the system (4.2.2) which minimise the cost

functional or objective (4.2.1). Then by Pontryagin’s Maximum Principle [112], there

exist adjoint variables θ1, θ2, θ3, & θ4 which satisfy following equations:
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−dθ1
dt

=
∂H

∂N
= 2θ1µ1N + (φ1θ1 + φ1θ2)T + (θ1 + θ2) (1− u2(t))λ1E − α1θ1

−dθ2
dt

=
∂H

∂T
= −A1 + θ1φ1N + θ2 (2Tµ2 + γ2M + µ5 − α2(1− u2)) + θ3

(
γ3M −

ρωM

(ω + T )2

)

−dθ3
dt

=
∂H

∂M
= θ2γ2T + θ3

(
γ3T + µ3 −

ρT

ω + T
+ (1− u1)

λ1E

g + E

)

−dθ4
dt

=
∂H

∂E
= −A2 + (θ1 − θ2)(1− u1)λ1N + θ3

(
(1− u1)

λ3Mg

(g + E)2

)
+ θ4µ4

and with transversality conditions

θ1(Tf ) = θ2(Tf ) = θ3(Tf ) = θ4(Tf ) = 0

Therefore, we obtain (see [75])

0 =
∂H

∂u1
= A3u1 + θ1λ1NE − θ2λ1NE + θ3

λ3ME

g + E

0 =
∂H

∂u1
= A4u2 − θ2α2T

which in a more explicit form becomes

−dθ1
dt

= 2θ1µ1N + (φ1θ1 + φ1θ2)T + (θ1 + θ2) (1− u2(t))λ1E − α1θ1

−dθ2
dt

= −A1 + θ1φ1N + θ2 (2Tµ2 + γ2M + µ5 − α2(1− u2)) + θ3

(
γ3M −

ρωM

(ω + T )2

)

−dθ3
dt

= θ2γ2T + θ3

(
γ3T + µ3 −

ρT

ω + T
+ (1− u1)

λ1E

g + E

)

−dθ4
dt

= −A2 + (θ1 − θ2)(1− u1)λ1N + θ3

(
(1− u1)

λ3Mg

(g + E)2

)
+ θ4µ4

Thus, we obtain
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u∗1 =
1

A3

{
θ1λ1NE − θ1λ1NE − θ3

λ3ME

g + E

}
(4.2.6)

u∗2 =
1

A4

{θ2α2T} (4.2.7)

And we have, (4.2.6) and (4.2.7) which can also be writing as

u∗1 = min

{
max

{
0,

1

A3

(
θ2λ1N

∗E∗ − θ1λ1N∗E∗ −
θ3λ3M

∗E∗

g + E∗

)}
, 1

}
and

u∗2 = min

{
max

{
0,

1

A4

(θ2α2T
∗)

}
, 1

}
By standard control arguments involving the bounds on the controls, we conclude that

u∗1 =



0 if Z∗1 ≤ 0,

Z∗1 if 0 < Z∗1 < 1,

1 if Z∗1 ≥ 1,

and

u∗2 =



0 if G∗1 ≤ 0,

G∗1 if 0 < G∗1 < 1,

1 if G∗1 ≥ 1,

where;

Z∗1 =
1

A3

(
θ1λ1N

∗E∗ − θ1λ1N∗E∗ − θ3
λ3M

∗E∗

g + E∗

)
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G∗1 =
1

A4

(θ2α2T
∗)

4.3 Cost-Effectiveness Analysis (CEA)

This is used to determine the cost implication of the benefit derived from the use of

restricted diets (ketogenic - diet) and anti-cancer drugs. There are three types of cost-

effectiveness ratios (CER) namely:

(i) Marginal Cost-Effectiveness Ratio (MCER): Which is used to determine the partic-

ular changes in cost and effect when a programme is extended.

(ii) Average Cost-Effectiveness Ratio (ACER): This is a single intervention against its

baseline option (for example: no intervention or current practice). It is calculated

by the ACER numerator which includes total cost produced by strategy A (anti-

cancer drugs) while the ACER denominator includes total decrement of tumor cells

caused by anti-cancer drugs.

(iii) Incremental Cost-Effectiveness Ratio (ICER): It is the differences between the costs

and health outcomes of two different intervention strategies that compete for the

same resources and it is generally described as the additional cost per additional

health outcome.

In order to achieve our aim, a comparison was done between the cost and health benefit

of these strategies by calculating the incremental cost-effectiveness ratio (ICER) which

is known as additional cost per additional health benefit. However for the purpose of

comparison, one less effective strategy is compared with a more potent intervention. The

ICER numerator includes the differences in intervention costs, averted disease costs, costs

of prevented cases and averted productivity losses if applicable. The ICER denominator
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is the differences in health outcomes (e.g total decrement of tumor cells). It is assumed

that the cost of the controls are directly proportional to the number of controls used. In

addition to the model simulation outputs, the control strategies are ranked in increasing

order of effectiveness in averting infection, which include: anti-cancer drugs only (Strategy

A), ketogenic-diet combined with anti-cancer drugs (Strategy B) and ketogenic-diet only

as a treatment (Strategy C)[4-7, 47, 96-98, 104].

4.3.1 Strategy A: Using anti-cancer drugs only.

Strategy A, involving the use of anti-cancer drugs (chemotherapy) only that is, u1(t) while

setting u2(t) = 0. In Figure 4.1(a), we observe that the optimal therapeutic strategy A

adopts low-dose chemotherapy in the first 20 weeks and it controls the level of invaded

cells population. Similarly, Figure 4.1(b) shows that the number of immune cells increases

in the first 60 weeks and then starts to decrease gradually after 95 weeks while Figure

4.1(c) indicate that the level of estrogen decreases gradually after 40 weeks of anti-cancer

drugs administration. We observed that, in the Figure 4.1(d) the number of normal cells

population increases significantly in the first 15 weeks of the introduction of anti-cancer

drugs.

However, in order to show clearly the efficacy of strategy A clearly, we define the

efficacy function of treatment strategy A as

EFA =
Y0(0)− Y ∗1 (t)

Y0(0)
(4.3.8)

where

Y0(0) is the initial condition (that is number of tumor cells in the tumor-present equilib-

rium)

Y ∗1 (0) is the corresponding optimal state associated with optimal controls u∗1(t) and u∗2(t).
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This function measures the proportional decrease in the number of tumor cells caused by

the intervention with optimal controls of strategy A.

To perform the cost-effectiveness analysis, we first determine the total decrement of tumor

cells caused by strategy A during the treatment period T as

Da = Y ∗0 (0)− Y ∗1 (T ) (4.3.9)

where;

Y ∗1 (T ) represent the number of tumor cells at the end of treatment period.

Following the method in [4, 46, 95, 97,104] we define the average cost-effectiveness ratio

of treatment strategy A by:

ACERA =
Total cost produced by strategy A (Anti− cancer drugs only)

Total decrement of tumor cells caused by (Anti− cancer drugs)
(4.3.10)

Figure 4.5 shows that the most cost-effective strategy B, followed by strategy A and,

strategy C (see Table 4.2).
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Figure 4.1: Diagram depicting the strategy A (The use of anti-cancer drugs only as control)

4.3.2 Strategy B: Combination of anti-cancer drugs and ketogenic-

diet.

Strategy B, which involves the use of anti-cancer drugs and ketogenic-diet (i.e u∗1(t) and

u∗2(t)) is a gradual increase in the population of normal cells from the first week to the

twentieth weeks after the introduction of both a ketogenic-diet and anti-cancer drugs as

shown in Figure 4.2(a). In Figure 4.2(b), there is a drastic reduction in the population

of tumor cells due to the activity of both control variables. As shown in Figure 4.2(c),
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Figure 4.2: Diagram depicting the strategy B (The combination of both anti-cancer drugs

and ketogenic diet as control)

we observed significant decrease in the activity of estrogen levels after the introduction of

both control strategies in the first 20 weeks. However, in Figure 4.2(d) there is a steady

increase in the activity of immune response in the first 20 weeks after the introduction

of combined control variables. We noticed a drastic increase in the activity of immune

response around week 55 and a steady decrease after 60 weeks to prevent auto-immune

diseases which may later results in such as Neurodegenerative diseases like Diabetes Type

I , Alzheimer and so on.
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4.3.3 Strategy C: Ketogenic-diet only.

Strategy C, involves the use of ketogenic diet i.e u2(t) as a control strategy reduces the

population of invaded cells within the first 20 weeks as shown in Figure 4.3(a). It slightly

increases the activity of normal cells as shown in Figure 4.3(b) which indicates that

the, ketogenic-diet alone has a little or no effects on normal cells. In Figure 3(c), the

introduction of a ketogenic-diet has a significant influence on tumor cells. The control

profiles for strategies A, B and C is shown in Figure 4.3(d) and 4.3(e) and the ICER is

calculated as
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Figure 4.3: Diagram depicting the strategy C (The use of ketogenic diet only as control)

ICER =
Difference in infection averted costs in strategies i and j

Difference in total number of decrement of tumor cells in strategies i and j

(4.3.11)
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Figure 4.4: IAR plots indicating the effect of the control strategies A, B and C

Based on the model simulation results, we rank the strategies in order of increasing

effectiveness

Table 4.1: Total decrement of tumor cells, the total cost, IAR, ACER

Strategies Total decrement

of tumor cells (Ai) Total costs ($) (Ji) IAR ACER

Strategy A(u1) 327.70 $6001.80 688.73 18.3149

Strategy B(u1, u2) 337.10 $5997.90 708.79 17.7926

Strategy C(u2) 310.90 $6002.00 654.11 19.3052

Figure 4.4 shows the IAR for the three strategies implemented (see Table 4.2). Strategy

B which is the use of anti-cancer drugs and ketogenic-diet (u1(t) and u2(t)) combined was

the most effective. This is followed by strategy A which involves the use of anti-cancer

drugs alone u1(t) with u2(t) = 0. Strategy C involving the use of ketogenic-diet only was
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Figure 4.5: ACER plots indicating the effect of the control strategies A, B and C

the least effective having the lowest number of infections averted(see also Table 4.2).

Table 4.2: Incremental cost-effectiveness ratio in increasing order of total decrement of

tumor cells I

Strategies Total decrement

of tumor cells (Ai) Total costs ($) (Ji) IAR ICER

No Strategy 0 0 0 −

Strategy C(u2) 310.90 $6002.00 654.11 19.3052

Strategy A(u1) 327.70 $6001.80 688.73 -0.0119

Strategy B(u1, u2) 337.10 $5997.90 708.79 -0.4149

The use of incremental cost-effectiveness ratio mentioned in Pang et al.[104]; Okosun

et al. [97], and Agusto et al.[5] to determine the cost-effectiveness of the three different

strategies. The difference between the total decrements of tumor cells and total cost for

the alternative control strategies was determined using the cost-effectiveness ratio which
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predicts the additional cost per additional tumor cells decrements. To find the ranking

of strategies used in the increasing order of their effectiveness, we measured the total

decrements of tumor cells caused by strategy i where (i = A,B,C) as shown in( Table 4.3).

The ICER, is calculated as follows:

ICER(C) =
Jc
Ac

=
6002.00

310.90
= 19.3052

ICER(A) =
Ja − Jc
Aa − Ac

=
6001.80− 6002.00

327.70− 310.90
= −0.0119

The comparison between strategies A and C shows a cost saving of $11.9 for strategy

A over strategy C and indicates that strategy C is more costly and less effective than

strategy A. Therefore, strategy C is excluded from the set of alternatives. We exclude

strategy C and similarly compare strategy A and B to get the following values of the

ICER
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Table 4.3: �Incremental cost-effectiveness ratio in increasing order of total decrements of

tumor cells II

Strategies Total decrements

of tumor cells (Ai) Total costs ($) (Ji) IAR ICER

Strategy A(u1) 327.70 $6001.80 688.73 -0.0119

Strategy B(u1, u2) 337.10 $5997.90 708.79 -0.4149

ICER(A) =
Ja
Aa

=
6001.80

327.70
= 18.3149

ICER(B) =
Jb − Ja
Ab − Aa

=
5997.90− 6001.80

337.10− 327.70
= −0.4149

Comparing between strategies A and B shows a cost saving of $414.8936 for strategy

B over strategy A. Similarly, the negative ICER for strategy B indicates that strategy

B is strongly dominant. That is, strategy A is more expensive and less effective than

strategy B. Therefore, strategy A, is excluded from the set of alternatives so that it does

not consume limited resources. (see Table 4.3 and 4.4)
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Table 4.4: Incremental cost-effectiveness ratio in increasing order of total decrements of

tumor cells III

Strategies Total decrements

of tumor cells (Ai) Total costs ($) (Ji) IAR ICER

Strategy B(u1, u2) 337.10 $5997.90 708.79 - 0.41489

Strategy A(u1) 327.70 $6001.80 688.73 18.3149

With this result, we therefore conclude that strategy B (a combination of treatment

of anti-cancer drugs (u1) and Ketogenic-diet (u2)) with the least ICER is a more cost-

effective strategy than strategy A for treating breast cancer. This result agree with the

results obtained in Figure 4.6

Figure 4.6: The objective functional indicating the effect of the control strategies A, B and

C

It is clearly shown that strategies A and B had the highest number of tumor decrements

while strategy C performed less (see Figure 4.7 below).
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Figure 4.7: The objective functional indicating the effect of the control strategies A, B and

C

The weights on cost considered here are for illustration purposes. More realistic re-

sults will be obtained if real data on the cost of the implementation of control strategies

are available because time to treatment and some direct and indirect costs need to be

considered in real life scenario.
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Chapter 5

Conclusion

In this study, we investigated the impact of a nutritional diet (ketogenic diet) and anti-

cancer drugs such as Tamoxifen in the treatment breast cancer. We determined a cost-

effective and appropriate optimal control strategy for tumor cells elimination or control.

We also derived and analysed a deterministic model for breast cancer and performed an

optimal control analysis of the model. We began with a detailed background on breast

cancer and cancer biology in Chapter 1. We then discussed the most common types of

cancer and presented graphics showing the numbers of new breast cancer cases occurring

worldwide. Chapter 2 highlighted some factors responsible for breast cancer and offered

a limited of the literature reviews on the breast cancer models such as the tumor growth

model, Angiogenesis model, and the treatment response model. A figure depicting the

genesis of cancer formation was presented. Furthermore, the study explored the use of

Tamoxifene as an anti-cancer drug as well as the use of a ketogenic diet as (adjuvant

therapy).

The formulation of the breast cancer model was presented in Chapter 3. The qualita-

tive analysis of the four compartment model was shown to be epidemiologically feasible

and mathematically well-posed. The researcher investigated the existence and stability of
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the treatment tumor-free equilibrium points (TTFE) and the next generation matrix tech-

nique was applied to drive the invasion reproduction number Ri and used it to show the

treatment tumor-free equilibrium (TTFE) which is locally asymptotically stable whenever

Ri < 1, and unstable otherwise. However, the possibility of the occurrence of backward

bifurcation where both equilibria co-exists as the invasion reproduction number crosses

unity was investigated using the center manifold theory. Moreover, to extend the stability

analysis of the model beyond small region near the equilibria, we explored the global dy-

namical behavior of the model around the equilibria. At this point, a suitable Lyapunov

function was constructed at TTFE to prove that the model is globally asymptotically

stable at a threshold parameter less than unity and k = 1. Furthermore, a sensitivity

analysis was carried out with a view to examining the factors most responsible for the

tumor cells growth and the spread of cancer disease. The sensitivity index of the invasion

reproduction number relative to the associated parameters were obtained. It was revealed

that the natural death rate of estrogen, among other parameters with positive sensitivity

index, has major effects on the cancer cells. On the other hand, the natural death rate of

the normal cells was shown to be most sensitive to the invasion reproduction number of

the model among the parameters with negative sensitivity indices.

To complement the sensitivity analysis index, we ran an uncertainty analysis on all

non-dimensional system parameters in the system using the Latin Hypercube Sampling

(LHS) and Partial Rank Correlation Coefficient (PRCC). Numerical simulations of the

model was carried-out to validate the analytical results. In Chapter 4, two time dependent

controls namely, anti-cancer drugs (u1(t)) and ketogenic diets (u2(t)) were introduced into

the model for the treatment. The existence of an optimal control was established with

the application of Pontryagin’s Maximum Principle. This was used to explain the tumor-

to-therapy trade-off following the approach adopted by Perko [109] and De pillis et al.
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[34]. It required an analysis of the super-solutions (the upper bounds on solutions) of the

system (3.1.5). Furthermore, we derived the conditions for the cancer cells eradication

as well as the necessary conditions for disease control when eradication is not achievable.

We also investigated the cost-effectiveness of the controls to determine the most effective

strategy to eradicate tumor cells with minimum costs. However, the weights on cost con-

sidered here are for illustration purposes. Using the decrement of tumor cells and the

incremental cost-effectiveness ratio (ICER), the total costs for using anti-cancer drugs

only to treat a breast cancer patient was found to be $6001.80 requiring 20 weeks to be

sustained, even though it is not effective for tumor cells clearance from the body. Also,

the total costs of using a ketogenic diet alone is $6002.00, with a time requirement of, 55

weeks. However, the costs for using all controls at the same time, $5997.90 and it needs

about 100% of the anti-cancer drugs and 50% of ketogenic diet for 15 weeks. This implies,

hypothetically, that the strategy will be effective in eradicating the disease. It should be

noted, as earlier stated, that more realistic results will be obtained if real data on the cost

of the implementation of control strategies are available because time to treatment and

some direct and indirect costs need to be considered in real life scenario.

5.1 Recommendations

Based on the quantitative and qualitative results of the breast cancer model analysis, the

following recommendations are made towards increasing a tumor-free cell population:

• Efforts should be made to reduce the treatment induced invasion reproduction num-

ber of breast cancer model since the sensitivity analysis has helped to identify that

α2 (tumor growth rate) and d (ketogenic-diet) are the most sensitive parameters.

Medically, it is advisable to find a way of reducing the tumor growth by monitoring
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level of estrogen in the body system; and to encourage the patients on ketogenic-diet

for inhibition on tumor cells population.

• The combination of the therapies will reduce or eliminate the tumor cells from the

body system, hence use of ketogenic diet and anti-cancer drugs should be encour-

aged;

• Ketoacidosis must be avoided when taking ketogenic-diet; hence the patients must

adhere to advice of nutritionist advice;

• The ministry of health and other policy makers should create awareness and sensitize

the public, especially breast cancer patients, on the use of diet (especially ketogenic

diet) in the treatment of cancer. It is hoped that this will foster recovery and in

turn reduce national economic burden in treating breast cancer.

5.2 Limitations of the study

The present study did not explore the possibility of the resistance of tumor cells to therapy.

We assumed that Tamoxifen is highly effective when combined with a ketogenic diet in

the treatment of breast cancer. Also, the study, in order to reduce the complexity of the

model, did not take all the possible dynamics of breast cancer into account. For instance,

such other risk factors as genetics and the environmental were not considered. The major

challenge we encountered during this study was the fact that we were unable to obtain

data for breast cancer treatment to validate the model.
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5.3 Areas of further study

In view of the limitations outlined above, it is suggested that the stochastic version of the

breast cancer model may be considered to explore the possibility of randomness which may

exist in the dynamics and spread of tumor cells in the population. The role and treatment

of co-infections (for example, breast cancer and cardiovascular diseases or diabetes) in

the dynamics of non-communicable diseases have become of global concern and should

be considered for future research. The study also suggests that linear control, using

the switching function to investigate Bang-bang control (i.e Bang-bang solutions also

arise when the Hamiltonian is linear in the control variable; application of Pontryagin’s

minimum or maximum principle will then lead to pushing the control to its upper or lower

bound depending on the sign of the co-efficient of U in the Hamiltonia) be considered for

future study.
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