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ABSTRACT

Energy-momentum is an important conserved quantity whose definition has
been a focus of many investigations in general relativity. Unfortunately, there
is still no generally accepted definition of energy and momentum in general
relativity. Attempts aimed at finding a quantity for describing distribution of
energy-momentum due to matter, non-gravitational and gravitational fields
only resulted in various energy-momentum complexes (these are nontensorial
under general coordinate transformations) whose physical meaning ha\-e been
questioned. The problems associated with energy-momentum complexes re­
sulted in some researchers even abandoning the concept of energy-momentum
localization in favor of the alternative concept of quasi-localization. However,
quasi-local masses have their inadequacies, while the remarkable work of
Virbhadra and some others, and recent results of Cooperstock and Chang et
al. have re\·ived an interest in various energy-momentum complexes. Hence
in this work we use energy-momentum complexes to obtain the energy dis­
tributions in various space-times.

\Ve elaborate on the problem of energy localization in general relativity
and use energy-momentum prescriptions of Einstein, Landau and Lifshitz,
Papapetrou, \Veinberg, and Moller to investigate energy distributions in var­
ious space-times. It is shown that several of these energy-momentum com­
plexes give the same and acceptable results for a given space-time. This shows
the importance of these energy-momentum complexes. Our results agree with
Virbhadra's conclusion that the Einstein's energy-momentum complex is still
the best tool for obtaining energy distribution in a given space-time. The
Cooperstock hypothesis (that energy and momentum in a curved space-time
are confined to the the regions of non-vanishing energy-momentum of matter
and the non-gravitational field) is also supported.
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Chapter 1

Introduction

The notions of energy-momentum together with conservation laws play a
fundamental role in any physical theory. The importance of conservation of
energy and momentum concepts was first clearly identified more than two
centuries ago within the Newtonian mechanics of a closed system of mass
points. In this case both the linear momentum and the sum of kinetic and
potential energies (for conservative forces) are conserved. The connection be­
tween these conservation laws and their invariance under Galilei group was
only detected around the year 1900 (see in Havas[30J). In continuum mechan­
ics of elastic bodies the formulation of energy conservation laws necessitated
the introduction of the concept of strain energy. Maxwell and Poynting had
to introduce the concepts of electric and magnetic energy densities in classi­
cal electrodynamics to retain energy conservation. Einstein's famous result
of the special theory of relativity (SR) that mass is equivalent to energy
is a consequence of the requirement that the law of conservation of energy
and momentum should hold in all inertial frames. As a matter of fact, this
process of introducing new forms of energy in order to retain conservation
laws characterizes the whole dewJopment of physics. However, this practice
involving the introduction of new kinds of energy ran into serious difficulties
with the arrival of the general theory of relativity (GR). The main difficulty
is with the expression defining the gravitational field energy part.

Now, after more than eighty years of the success story of the theory of
General Relativity (this includes, amongst other things, verification of the
deflection of light by the Sun, the perihelion advance of Mercury, the gravita­
tional red shift of light, and discoveries of quasars, cosmic fireball mdiation,
pulsars, X-my sources that might contain black holes, and the present inter-
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est in the imminent detection of gravitational u'aves), there is still no gen­
eral agreement on the definition of energy, and more generally, of conserved
quantities associated with the gravitational field. This dilemma in GR is
highlighted in an important paper by Penrose[53] in the following way: "It is
perhaps ironic that energy conservation . .. which now has found expression
in the (covariant) equation

VaTa• = 0, (Ll)

... should nevertheless have found no universally applicable formulation, within
Einstein's theory, incorporating the energy of gravity itself". Indeed, Ein­
stein's search for his generally covariant field equations was not only guided
by the principle of equivalence but also by conservation laws of energy­
momentum. Conservation laws of energy-momentum played a major role in
the development of Einstein and Grossmann's so-called Entwurf theory[49J.
Although the field equations of the Entwurf theory were only of limited co­
variance, the theory had all the essential features of Einstein's final theory
of GR. Einstein and Grossmann had considered the use of the Ricci tensor
in deriving almost covariant field equations but had rejected these equations
because of misconceptions which were based on Einstein's earlier work on
static gravitational fields (for details see in Norton [49]).

In his[23] derivation of the generally covariant gravitational field equa­
tions, Einstein formulated the energy-momentum conservation law in the
form:

(1.2)

\Vith ~ i representing the stress energy density of matter!, Einstein iden­
tified t/ as representing the stress energy density of gravitation. Einstein
noted that t/ was not a tensor, but concluded that the above equations
(1.2) hold good in all coordinate systems since they were directly obtained
from the principle of general relativity. The choice of a nontensorial quan­
tity to describe the gravitational field energy immediately attracted some
criticism. Levi-Civita not only attacked Einstein's use of a pseudotensor
quantity (which is only covariant under linear transformations) in describing
the gravitational field energy, but also suggested an alternative gravitational
energy tensor which required that Einstein's field equations be also inter­
preted as conservation laws (for details see in Cattani and De Maria [11],

l"I\latter'" includes the energy contribution of all non-gravitational fields.
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and in Pauli [52J ). Both Schrodinger and Bauer came up with counter ex­
amples to Einstein's choice of a nontensor. Schrodinger showed that by a
suitable choice of a coordinate system the pseudotensor of a Schwarzschild
solution vanishes everywhere outside the Schwarzschild radius. Bauer's ex­
ample illustrated that a mere introduction of polar coordinates instead of
quasi-Cartesian coordinates into a system of inertia without matter present
would create a nonvanishing energy density in space. By resorting to the
equivalence principle and physical arguments, Einstein vigorously defended
the use of his pseudotensor to represent gravitational field[ll]. The prob­
lems associated with Einstein's pseudotensor resulted in many alternative
definitions of energy, momentum and angular momentum being proposed
for a general relativistic system (see Aguirregabiria et al [IJ and references
therein).

The lack of a generally accepted definition of energy distribution in curved
space-times has led to doubts regarding the idea of energy localization. The
ambiguity in the localization of energy is not a new physics problem, pe­
culiar to the theory of GR, but is also present in classical electrodynamics
(Feynmann et al[25J. In GR there is a dispute with the importance of non­
tensorial energy-momentum complexes2 whose physical interpretation has
been questioned by a number of scientists, including Weyl, Pauli and Ed­
dington (see in Chandrasekhar and Ferrari [15]). There are suspicions that,
in a given space-time, different energy distributions would be obtained from
different energy-momentum complexes. However, Virbhadra and co-workers
investigated several examples of particular space-times (the Kerr-Newman,
the Einstein-Rosen, and the Bonnor-Vaidya) and found that different energy­
momentum complexes gi,-e the same energy distribution for a given space­
time. Several energy-momentum complexes have been shown to coincide for
any Kerr-Schild class metric [IJ. In this thesis we are extending the work of
Virbhadra and co-workers by considering further space-times in showing that
the energy-momentum complexes are useful in obtaining meaningful energy
distribution in a given geometry. In the rest of the chapter we give a brief
review of both the theory of special relativity and general relativity so as to
est.ablish both the notation and terminology which will be used in the rest of
our discussion. We also give a list of formulas needed in our lat.er discussion.

2\Ye use the term energy-momentum complex for one which satisfies the local conserva­
tion laws and gives the contribution from the matter (induding all nongravitational fields)
as well as the gravitational field.
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(1.5)

1.1 Tensor equations

Einstein's 1905 paper on the special theory of relativity which demanded a
complete change of attitude towards space and time prompted Alinkowski
to declare with great elegance, in his famous 1908 speech, that "Henceforth
space by itself and time by itself, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve an independent reality."
The importance of this is supported by the simplicity obtained by formulating
the physical laws in four-dimensional space-time. In special relativity this
simplicity is obtained by using the Minkowski space-time:

ds2
- '" dxPdxq (1.3)- 'fpq 1

where fJpq = diag(l, -, 1, -1, -1). (Throughout we use the convention that
summation occurs over dummy indices, Latin indices take values from 0 to
3 and Greek indices values from 1 to 3, and take G = 1 and c = 1 units.
The comma and semi-colon indicate ordinary and covariant differentiation,
respectively.) The presence of gravitation necessitates a generalization of the
Minkowski space-time into the four dimensional lliemannian space-time:

ds2 = gpqdxpdxq, (1.4)

where gab = gab(Xi ) is the metric tensor, symmetric in its indices, which
characterizes the space-time completely. In the rest of this section we present
important formulas/properties in Riemannian spaces required for our later
work.

A contravariant metric tensor gab is defined as

6 0b

gab _
~ ,

9

where 6 ab is a cofactor of gab, while 9 = det(gpq). From this definition it is
obvious that gab is also symmetric in its indices and that:

The relationship:

pa ,a
gbpg = Ub' (1.6)

dg = ggpq dgpq = -ggpq dgpq (1.7)

follows from (1.5) and (1.6). The metric tensor gab transforms under coordi­
nates transformation xa -+ xa' as:

iJxP oxq

go'b' = iJxG' iJx b' gpq, (1.8)



whereas its determinant g transforms under coordinates transformation as a
scalar density of weight +2:

" lax 1
2

g = ox' g,

where f:: Iis the Jacobian of the coordinates transformation.
quantity which transforms like:

l-V I

a' _I oX I ox
a

ox
q

p .lIi'b' - ox' oxP .•• oxb' ••• lIi'q .

(1.9)

In general, a

(1.10)

is called a tensor density of weight W. Using dxa' = ~X;: dxP and (1.9) we can

deduce that (_g)-w/2 lIi'~::: is an ordinary tensor if lIi'b:::: is a tensor density
of weight W. Thus for a four-dimensional volume element d4x the quantity
~d4x is an invariant. An important tensor density of weight +1, called
the Levi-Civita contravariant tensor density, is defined as:

+1, if abed is an even permutation of 0123
-1, if abed is an odd permutation of 0123

0, otherwise.
(loll)

cabcd is totally anti-symmetric and has the useful property that its compo­
nents are the same in all coordinate systems. Any totally skew-symmetric
tensor of order 4 is proportional to this tensorial quantity. The covariant
component Levi-Civita tensor density Cabcd may then be defined in terms of
the contravariant component by the usual lowering of indices as:

(1.12)

The tensor density Cabcd wiII be of weight -1. The above tensor densities
can also be used to define the following totally antisymmetric unit tensors of
rank four. The contravariant tensor £abcd is defined as:

cabed
{abed = __

V-g'

while the corresponding covariant tensor is defined by:

iabcd = .J- 9 £ abed·

5
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If A ij is an antisymmetric tensor, then using Eabed and ,abed we may define:

(1.15)

and

(1.16)

(1.17)

where'Aij and'Aij are said to be a dual pseudotensor and a dual tensor
respectively to A ij . Using Aij both'A;j and' A ij may be defined in a similar
way in terms of Eabed and 'abed respectively.

The motion of an infinitesimally small particle moving in a gravitational
field is described by the geodesic equation:

d?xa dxP dxq

ds2 + r;q ds ds = 0,

(1.18)

which can be deduced from (1.4) by taking the deviation of the action inte­
gral:

1= f ds,

where n:e are the Christoffel symbols of the second kind given by:

r a _ lap ( )be - "29 gbp,e + gep,b - gbe,p . (1.19)

(1.20)

By contracting the pair of indices a and c in the above (1.19) we obtain

p_lnPqr bp -"2Y gpq,b,

and combining this result "ith that of Eqn (1.7) we deduce that:

r P _ ~ ag _ alnR
bp - 2g axb - axb

The identity that the gab;e = 0 gives us the following relationship:

g ab = _gaprb _ gpbra
,c pc pC·

(1.21)

(1.22)

From the definition of covariant differentiation we may deduce the following
useful relation:

(1.23)
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conformal mapping of two Riemannian spaces. The Bianchi identities are
given by

VaRPqbe + VbRPqea + VeRPqab = O. (1.31)

These identities take a much simpler form if expressed in terms of the dual
• !lpqTS to the Riemann tensor R abed

VP •Rabcp = O. (1.32)

By using the fact that the covariant derivatives of the metric tensor vanishes
and contracting the Bianchi identities 1.31 we get the following important
relationship:

VpGaP = 0,

or the following equivalent identity:

1.2 Special relativity

(1.33)

(1.34)

The idea of relativity can be traced back to Galileo who was the first to
state clearly the concept of relative motion. His example of a boat which
is in uniform motion illustrates that no experiment performed in a sealed
cabin can be able to detect motion. According to the Galilean principle of
relativity all laws of mechanics are the same in all inertial reference frames.
The space XO --+ xO' and time t --+ t' coordinates transformations between
any two inertial frames, K and K', may be written as:

x Q
'

t'

Alp x fl + VO t + dO,

t + to, (1.35)

where constants Alp, vO, dO and to respectively represent rotations, uni­
form motion, space and time translations of origins of reference systems.
The so-called Galilean transformations (1.35) form a ten-parameters group
of, namely three rotation Euler angles in the orthogonal matrix 1'1'1, three
components in each of VO and d''', and lastly the constant to· Newton's fun­
damental equations of classical mechanics, based on the concepts of absolute
space and absolute time, are invariant in all inertial reference frames under
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Galilean coordinate transformations. If we consider three inertial coordi­
nates frames Kr, Kz, and K3 , then using the group property of Galilean
transformations we obtain the following velocity addition law:

(1.36)

where V~b is velocity of Kb relative to K a . This velocity addition law (1.36)
is valid in Newtonian mechanics. However, Maxwell's theory of classical
electrodynamics implied that light travels in vacuurn at a constant speed
c. Obviously, according to Galilean velocity addition law light could not
have the same speed c with respect to arbitrary inertial frames. One can
also verify that the wave equation for electrodynamics in free space is not
invariant under Galilean transformations. The fact that Newton's equations
of mechanics are invariant under Galilean transformations while the Maxwell
equations are not, leads one to enquire whether it is possible to find some
principle of relativity which holds for both mechanics and electrodynamics,
but where

• Newton's laws of mechanics are not correct, or

• Maxwell's laws of electrodynamics are not correct?

Experimental evidence indicating deviations from either the Newtonian or
Maxwellian theory is required in order to decide whether the laws of me­
chanics or electrodynamics need to be reformulated.

The famous Michelson-Morley experiment showed that the velocity of
light is the same for light traveJJing along the direction of the earth's orbital
motion and transverse to it. Numerous attempts were made to explain the
Michelson-Morley null result of the earth's motion through ether. Fitzgerald
and Lorentz independently suggested that material bodies contract in the
direction of the their motion by a factor VI - v2 / c2 . Lorentz explained the
contraction hypothesis in terms of an electromagnetic model of matter, and
introduced length transformation and the concept of a 'local time'. Poincan\
called for the development of a new mechanics to replace the Newtonian
mechanics (see in Schriider [57]). He showed that the Maxwell equations in
vacuo are invariant under the Lorentz transformations. He further showed
that Lorentz transformations form a group[57]. The inhomogeneous Lorentz
space-time x a -+ xa' coordinate transformations , also called the Poincare
group, are given by:

xa'=A;xP+da, (1.37)

9



where constants dO denote space and time translations, while Ab represent
rotations and uniform motion of the origins of inertial frames. The matrix A
must satisfy the following condition:

with
T/pq = ifq = diag(l, -1, -1, -1).

(1.38)

(1.39)

The so-called proper Lorentz group is obtained by imposing the following
additional conditions:

Ag ~ 1, det(A) = 1. (1.40)

If there are no translations, i.e. da = 0, we get the homogeneous Lorentz
group.

The incompatibility of mechanics with electrodynamics was finally re­
solved by Albert Einstein who proposed. a replacement of the Galilean trans­
formations by the Lorentz transformations. Einstein's theory of special rel­
ativity (STR) is based on the following postulates:

• The principle of relativity. The laws of physics are the same in all
inertial reference frames.

• The constancy of the speed of light. The speed of light in vacuum
is the same for all inertial observers irrespective of the motion of the
source.

Following Einstein's approach, then the above Lorentz transformations (1.37)
become a consequence of the constancy of the speed of light. As already men­
tioned, in special relativity physical laws are formulated in four-dimensional
Minkowski space-time. The interval J.4B between two events A and B, with
coordinates (tA, XA, YA, ZA) and (tB,xB, YB, ZB), given by:

(1.41)

is an invariant under Lorentz transformations. (Note that xQ = et and that
e = 1). JAB is said to be timelike if JAB> 0, spaeelike if JAB < 0, and lightlike
or null if !AB = o. For a timelike interval of two events, it is possible to do
a Lorentz transformation to an inertial frame where the two events occur at
the same point, but there is no inertial frame where they occur at the same
time. Therefore, for any two timelike events if x~ > x~ then A is said to

10
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x
Figure 1.1: t > 0 and t < 0 represent forward and backward null cones,

respectively.
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be in the absolute future of B, while if x~ < x~ then A is said to be in the
absolute past of B. In a spacelike interval for any two events it is always
possible to do a Lorentz transformation to an inertial frame where the two
events occur at the same time, but it is impossible to choose a frame where
they occur at the same point.

In Minkowski space-time the motion of a mass point is described by the
world line Xi = Xi(A), where A is parameter determining motion. Now, by
observing that the proper time dT, given by:

(1.42)

is an invariant under Lorentz coordinate transformations,the velocity four­
vector u i and the acceleration four-vector are defined with respect to the
proper time as:

and

. dxi,
U = dT' (1.43)

. dUi
u' = -. (1.44)

dT
Newton's equations, in their original form, are no longer invariant under
the Lorentz transformations, but using the above definitions the four-vector
relativistic force of Newton's second law takes the form:

cflxa

fa = m dT2 '

or in terms· of the relativistic energy-momentum: .

dxa
a __

p - m dT'

the relativistic force may be expressed by:

f
a = dpa

dT'

(1.45)

(1.46)

(1.47)

where pa is also a four-vector. r is commonly referred to as the Minkowski
force. The spatial components of the four-vector Minkowski force r = (f0, f)
are related to the Newtonian force F by the following:

f = l'F,

12
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and its time component is given by

(1.49)

where v :=~~ and'Y := (1 - V2)-1/2. The time component of p' is the energy:

and the space components pC< form the momentum vector:

p=miv.

(1.50)

(1.51)

Thus the four-vector p' is called the energy-momentum vector. This energy­
momentum vector is conserved in all inertial reference frames related by
Lorentz transformations. For a particle with rest mass m > 0 we have that:

(1.52)

which gives the following equation connecting the energy and momentum3:

(1.54)

Taking the ratio of equations (1.50) and (1.51) we get the following useful
expression:

p
E=v.

The Maxwell equations of electrodynamics in vacuum:

(1.55)

(1.53)

V·E - 41TP, (1.56)
aE

41Tj, (1.57)VxB--
at

V·B 0, (1.58)
aB

(1.59)VxE+ at 0,

SIf we now make use of the quantum mechanical correspondence between numbers
and operators: p r+ -i'll, E r+ -i g, in (1.54) then one obtains the Klein-Gordon wave
equation

for a scalar field <I> with mass m.

13



where E and B are respectively the electric and magnetic fields, are in­
variant under Lorentz coordinate transformations. This may be illustrated
by expressing the above equations in a covariant form in terms of an anti­
symmetric electromagnetic field tensor Fab which may be defined as:

(1.60)

Then using Eq. (1.60) the Maxwell equations (1.56,1.57,1.58,1.59) may now
be reduced to the following two tensorial equations:

aFab
-471ja, (1.61 )

axb

0* F ab
0, (1.62)

axb

where *Fab is the dual tensor of Fab, f is the four-vector of current density
with the components:

ja = (p, pv), (1.63)

with p being the charge density, and v the velocity of charge. The equation
of continuity for the current density:

aja
axa = 0, (1.64)

now follows directly from Eq.(1.61). Eq.(1.62) can also be expressed as:

8 8 a
,.,-Fbc + " bFca + -8Fab = o.
uxa uX XC

(1.65)

The relativistic electromagnetic force on a charged particle may be written
in terms of the Ma.,'cwell tensor as:

f a = Fa dxP
e P dT'

where e is the charge parameter.

14
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(1.67)

1.3 The Energy-momentum tensor

The energy-momentum of the electromagnetic field in free-space may be ob­
tained by considering the action integral formed with the Lagrangian density:

LF = -1~7f Pa6
pa6

,

which gives the following contravariant components of the energy-momentum
tensor:

T a6 = _~ aAP p6 + _1_'T/a6F. FPq (1.68)
47faxa p 167f pq ,

where Aa is the four-vector of the potentials. This tensor is then symmetrized
by adding the quantity J" ~:; pbp and using the fact that in the absence of
charges then Eq.(1.61) takes the form:

8pab
8x6 = 0,

which finally leads to the following symmetric energy-momentum tensor ex­
pressIOn:

Tab = ~(_pappb + ~'T/a6F. PPq). (1.69)
47f p 4 pq

This tensor (1.69) is gauge invariant and has a vanishing trace, Taa = 0 and
most importantly it satisfies:

T~a = o.
The fact that Ta6 is divergeless indicates that the four-vector:

pa = 1T a6dSb ,

(1.70)

(1.71)

(1.72)

is conserved, where a is an arbitrary spacelike hypersurface. Now since the
integral (1.71) is independent of the hypersurface a, choosing the hypersur­
face x Q = constant, i.e. a three-dimensional space, then:

pa =JT aOd3x,

may be identified as the total energy-momentum four-vector of the field. The
angular momentum tensor:

(1. 73)
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defined in terms of Tab, satisfies:

which shows that the total field angular momentum

r b
= / A1°ab d3x, (1.74)

is also conserved.
The energy-momentum tensor (1.69) is only defined for charge-free fields.

In the presence of charged objects then we should not only consider con­
tributions from the electromagnetic field but also from the charged objects
themselves. Thus the energy-momentum tensor of field together with charges
IS:

Tab = Tt + T:J!,

where subscripts F and M indicate field and matter contributions, respec­
tively. Now we should have that:

~(r,ab+ Tab) = 0
axaF M, (1. 75)

where TFb is given by (1.69). Now differentiating equation (1.69) and sim­
plifying, and making use of the inhomogeneous MaJnvell equations (1.61)
together with (1.62) we get

~rrab = _ Fbp)·axa iF p. (1.76)

For a system of non-interacting particles, the energy momentum tensor is
given by

where M defined as:

b dsr,a = UUaub_
M'" dt' (1.77)

(1.78)M=2: mnO(r - rn),
n

may be termed the 'mass density' since it indicates the continuous mass dis­
tribution in space. Noting that mass should be conserved for non-interacting
particles, we have:

~( dS) _ 0 (1.79)
axaMdt -,
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and making use of Eq. (1.66) we get

~y,ab = FbPJ·8x. M p.
(1.80)

Hence equations (1.76) and (1.80) show that equation (1.75) is indeed sat­
isfied. From this discussion it is clear that electromagnetic fields are de­
termined by the motion of charges, while on the other hand the motion of
charges is determined by the fields, i.e. the two systems are interdependent
on each other.

1.4 The Einstein field equations

In this section we give a derivation of the Einstein field equations for gravita­
tion from a variational principle, but before that we give both the equivalence
principle and the principle of general covariance which guided Einstein in his
search for equations of gravitation. The equivalence principle is based on
the equality of the gravitational mass and the inertial mass. Several experi­
ments have been performed, starting from Galileo, Newton, Bessel, Eiitviis,
and many others, to investigate whether or not there is a difference between
the gravitational and inertial masses of objects. The Eotvos torsion bal­
ance experiment showed with a high degree of accuracy the equality of the
inertial and gravitational mass. The principle of equivalence may be formu­
lated as[75J: At every spacetime point in an arbitrary gravitational field it is
possible to choose a "locally inertial coordinate system" such that, within a
sufficiently small region of the point in question, the laws of nature take the
same form as in a Minkowski spacetime , i.e. the gravitational field may be
eliminated locally by the use of a freely falling coordinate system.

The principle of general covariance may be stated in one of the following
forms[9], namely

1. All coordinate systems are equally good for stating the laws of physics.

2. The equations that describe the laws of physics should have tensorial
forms and be expressed in four-dimensional Riemannian spacetime.

3. The equations describing the laws of physics should have the same form
in all coordinate systems_
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One considers the Ricci scalar curvature R = gpqRpq as our Lagrangian to
derive the Einstein field equations. The action integral for the gravitational
field is then given by:

(1.81)

where the integration is taken over all space and over the time component
x Q between two given values. To encompass non-gravitational fields in a
physical system we include another Lagrangian L F for all the other fields, so
that our expression for the action integral is given by:

(1.82)

where K is Einstein's gravitational constant. We require that the variation
of the above be equal to zero,

5I=O.

The variation of the first part of I is:

(1.83)

By simplifying and applying Gauss theorem it can then be shown that:

(1.85)

Therefore

/jf RRd4x f RRpqogpq d4x+ f Ro,;=gvq~x

- f R (Rpq - ~gpg R ) ogpq d4x. (1.86)

Now the second part of action integral:
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where Tpq is the energy-momentum tensor defined as:

T. = _2_ [O(ALF ) _ ~ {O(ALF )}] .
pq J-g ogpq ox· o!li

Now using results of (1.86) and (1.87) then the variation of (1.82) is:

SI = I H (Rpq - ~9pgR - K-Tpq ) ogpq d4 x,

(1.88)

(1.89)

and since ogpq is an arbitrary variation this gives us the Einstein field equa­
tions:

(1.90)

1.5 Maxwell equations in presence of gravi­
tation

In the absence of gravitation, the Maxwell field equations are expressed by
(1.61) and (1.62). However, in the presence of gravitation these equations

. are generalized by the following equations by replacing partial derivatives to
covariant derivatives. Therefore one has now

and

and
Fa~p = -4·rrj".

The above two equations can easily be expressed as

Fab,c + Fbc,a + Fca,b = 0,

~ [J-gpaP] = -47fHja.
oxP

The continuity equation (1.64) now takes the form:

'a 0J iQ :::: I
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(1.92)

(1.93)

(1.94)

(1.95)



(1.96)

and the equation of motion of a charged particle in combined electromagnetic
and gravitational fields, given as:

(
du

a
)m - + r a UbUc = eF.ab

dT be b ,

is obtained from (1.66) by replacing dua/dr with the intrinsic derivative
Dua/dT. Equations (1.91) and (1.92) are the Maxwell equations in the pres­
ence of gravitation. We now consider the Einstein field equations:

(1.97)

in the presence of electromagnetic field, with the energy-momentum tensor
Tpq for the electromagnetic field given by

(1.98)

The Lagrangian L F is given by:

LF = ~ 1~7r y_ggaplqFabFpq, (1.99)

. with the indices of Maxwell tensor components (see (1.92) for definition)
Fab being raised or lowered by using metric components gab or gab. Using
the above, the energy-momentum tensor for electromagnetic field may be
simplified to:

Tab = 4~ (-FapF: + ~gabFpqpq) . (1.100)

As this tensor is traceless, the Ricci scalar curvature R vanishes. Therefore
the Einstein field equations in the presence of electromagnetic field are given
by:

(1.101)

1.6 Klein-Gordon equation in curved space­
time background

In the absence of gravitation the Lagrangian density for a massive scalar field
if> is given by

_ 1 (rfq 2 2)L - "2 if>,pif>,q - m if> .
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The field equation obtained from above by using variation procedure is then
given by

8L a 8L
-- =0o</J oxP0 (aNoxP) ,

which simplifies to
(1.102)

where the differential operator 0 := rfq{fl joxP8xq. This gives the familiar
Klein-Gordon equation in a flat space-time. To obtain the Klein-Gordon
equation in curved space-time we invoke the principle of equivalence and
general covariance. In the presence of gravitation the above equation (1.102)
can be written as:

</P ;P + m 2
<jJ = O.

This is the Klein-Gordon equation in curved space-time.

1.7 Conclusion

(1.103)

In this introductory chapter we gave a list formulas which will be required in
our later work. In the next chapter we will discuss the conservation laws and

. the dilemma associated with the definition of gravitational energy in general
relativity. The lack of a generally accepted definition of gravitational energy
has lead to doubts concerning energy localization in GR. The large num­
ber of available pseudotensorial expressions used for computing energy and
momentum distributions has even lead to suspicions that these nontensorial
quantities would give different energy distributions for a given space-time.
However, the pioneering work of Virbhadra on energy localization, on partic­
ular space-time manifolds, has consistently shown this to be fallacious. In this
work we are extending Virbhadra's work by considering further space-times
and showing that different energy-momentum complexes give the same en­
ergy distribution in a given space-time. Hence energy-momentum complexes
are useful expressions for computing energy distributions in GR.
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Chapter 2

Energy Localization

2.1 Introduction

The concept of total energy and momentum in asymptotically flat space-time
is unanimously accepted; however, the localization of these physical quan­
tities still remains an elusive problem when one includes the gravitational
field. In the special theory of relativity the energy-momentum conservation
laws of matter plus non-gravitational fields are given by:

T k
k = 0

" '
(2.1)

where T;k denotes the symmetric energy-momentum tensor in an inertial
frame, whereas general relativity leads to the following generalization of
Eq.(2.1):

T;\ = O. (2.2)

In this form Eq.(2.2) does not give rise to anyl integral conservation law
whatsoever. In fact, if this equation is written as:

with
K = ~ C;;OgkP Tkp

, ? V ~g " ; ,
~ ux

(2.3)

(2.4)

1HOVol€Ver, Eq.(2.2) is the statement of the energy-momentum conservation laws in
Special relativity in non-Cartesian and/or non-inertial coordinate systems.
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then it is clear that the quantity K; is not a general four-vector, therefore
in a local system of inertia· we can always make K i to vanish in a given
spacetime point and, in this case Eq.(2.3) simply reduces to Eq.(2.1). In
general, K i oF 0 and for i = 0 then Eq.(2.3) expresses the fact that matter
energy is not conserved.

Einstein formulated the conservation law in the form of a divergence
to include contribution from gravitational field energy by introducing the
energy-momentum pseudotensor if, so that:

(2.5)

The quantity tf is homogeneous quadratic in the first derivatives of the met­
ric tensor and thus it is obviously not a tensor. With a suitable choice of a
coordinates system if can be made to vanish at a particular point. It can also
be shown that if we form the integral f tgd3x in a flat spacetime using quasi­
Cartesian coordinates,then its value is zero while if we transform to spherical
coordinates the value of this integral is infinite (Bauer, 1918). Furthermore,
it is possible to find a coordinate system for the Schwarzschild solution such
that the pseudotensor vanishes everywhere outside the Schwarzschild radius
(Schrodinger, 1918). Einstein ascribed these shortcomings to the coordinates
used. However, the difficulties associated with Einstein's nontensorial quan­
tities posed serious problems concerning the localizability of energy in general
'relativity.

The problem of energy-momentum localization has been a subject of
many research activities dating back to the very onset of the theory of
general relativity but it still remains an open question. The numerous
attempts aimed at finding a more suitable quantity for describing distri­
bution of energy-momentum due to matter, non-gravitational and gravita­
tional fields resulted in more energy-momentum complexes, notably those
proposed by Landau and Lifshitz, Papapetrou, Ivh'iller, and Weinberg. The
physical meaning of these nontensorial (under general coordinate transforma­
tions) complexes have been questioned by some researchers (see references in
Chandrasekhar and Ferrari [15]). There are suspicions that different energy­
momentum complexes could give different energy distributions in a given
space-time. The problems associated with energy-momentum complexes re­
sulted in some researchers even doubting the concept of energy-momentum
localization in CR. According to Misner, Thorne and Wheeler [45J the energy
is localizable only for spherical systems. However, Cooperstock and Sarra-
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cino [22] refuted this viewpoint and stated that if the energy is localizable in
spherical systems then it is also localizable for all systems. Bondi [6J wrote
" In relativity a non-localizable form of energy is inadmissible, because any
form of energy contributes to gravitation and so its location can in principle
be found." It is rather unfortunate that the controversy surrounding energy
localization which first appeared in electromagnetism, where there is an am­
biguity concerning the choice of the Pointing vector, is also present in the
most beautiful theory of general relativity (see in Feynmann, Leighton and
Sands[25]). The ambiguity in electromagnetism is not nearly as great a prob­
lem as in general relativity because in the former, we are dealing with truly
tensorial quantities.

Over the past two decades considerable effort has been put in trying
to define an alternative concept of energy, the so-called quasilocal energy.
The idea in this case is to determine the effective energy of a source by
measurements on a two-surface. These masses are obtained over a two-surface
as opposed to an integral spanning over a three-surface of a local density as
is the case for pseudocomplexes. A large number of definitions of quasi-local
mass have been proposed, notable those by Hawkins, Penrose, and many
others (see in Brown and York [8], Hayward[31]). Although, these quasi­
local masses are conceptually very important (as Penrose emphasized) they
stilI have serious problems. Bergqvist [5J furnished computations with seven
different definitions of quasi-local masses for the Reissner-Nordstriim and
Kerr sIlace-times and came to the conclusion that no two of these definitions
gave the same result. Moreover, the seminal quasi-local mass definition of
Penrose is not adequate to handle even the Kerr metric (Beinsten and Tod
[4]). On the contrary, several authors studied energy-momentum complexes
and obtained stimulating results. The leading contributions of Virbhadra
and his collaborators (Rosen, Parikh, Chamorro, and Aguirregabiria) have
demonstrated with several examples that for a given spacetime, different
energy-momentum complexes show a high degree of consistency in giving
the same and acceptable energy and momentum distribution. In the rest of
this chapter we present a brief introduction to each of the following : the
Einstein, Landau and Lifshitz, Moller, Papapetrou, and Weinberg energy­
momentum complexes which are going to be used in our later work.
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2.2 Einstein energy-momentum complex

In order to arrive at Einstein's conservation laws for a system consisting
of both matter and gravitational field we start with the gravitational field
equations

Rik _ ~gikR = 8-lrTi\ (2.6)

and then using the contracted Bianchi identity (Rik - ~gikR).k - 0, Eq.
(2.2) becomes a consequence of the field equations. Eq. (2.4) can be written
as

K i = -~J-ggpq,iTpq, (2.7)

where gjq = '71::. Using the field equations (2.6) we eliminate Tik from (2.7)
and write K i as

K i

(2.8)

,,,here

r-:: k_ 1 (k fJL pq)
y -gti - 1611" cli L - fJgPq,k 9 ,i '

and L is the Lagrangian density

L = Ngik (f;kqq - f;qqp) .

(2.9)

(2.10)

Obviously ti k is a function of the metric tensor and its first derivatives. Now
combining (2.8) with (2.3) we get the following equation expressing Einstein's
conservation law:

(2.11)

where

(2.12)

(2.13)
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is the total energy-momentum complex for the combined matter plus grav­
itational field, while S/ = RT/ and v/ = y'-gt/. By introducing a
local system of inertia, the "gravitational" part v/ can always be reduced
to zero for any given space-time point. In general S/ is a function of matter
and gravitational tensor, and hence the division of Bi

k into "matter" part
and "gravitational" part is highly arbitrary. The matter part may even be
eliminated entirely from (2.12) and the e/ expressed only as a function of
the metric tensor together with its first and second derivatives, as:

(2.14)

with Si kp given in Tolman[61J as

(2.15)

(2.16)

M01Ier [46] suggested a more useful expression for ei
k . A quantity e/ which

satisfies Eq. (2.11) identically, must be writable in the form:

()k _ 1 ohi kp

i - 161f oxP ,

where hi kp = _h/k and hi kp is a function of the metric tensor and its first
derivatives. It is easy to verify that this is the case for

(2.17)

If the physical system under consideration is such that we can introduce
quasi-Cartesian coordinates xa for which the gik converge sufficiently rapidly
towards the constant values 7lik where:

7lik = diag(l, -1, -1, -1)

then it follows from Eq. (2.11) that the quantities:

Pi = / / / ()i °dx
1
dx

2
dx

3
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are constant in time, provided that (J/ are everywhere regular. The integral
in Eq. (2.19) is extended over all space for X O = const. Further, Gauss's
theorem furnishes

(2.20)

where 1'", = ~i is the outward unit normal vector over an infinitesimal surface
element dS

The main problem with interpreting the integrand (Jo0 in Po as the energy
density is that it does not behave like a three-scalar density under purely spa­
tial transformations. It can be shown that if we form the integral Jto

Od3x
then its value is zero in a flat spacetime using quasi-Cartesian coordinates,
while if we transform to spherical coordinates the value of this integral is
infinite [46J. Furthermore, Schr6dinger [46] showed that there exists a co­
ordinate system for the Schwarzschild solution such that the pseudotensor
vanishes everywhere outside the Schwarzschild radius. Many other prominent
scientists, including Weyl, Pauli, and Eddington, questioned the nontenso­
rial nature of tk

i because with a suitable choice of a coordinate system it
can be made to vanish at any point in spacetime, (for details see in Chan­
drasekhar and Ferrari [15]). Einstein (see in Goldberg [28]) pointed out that
these effects were artifacts of the coordinates used and that they were not
related to the physical system used. Einstein showed that for a spacetime
that approaches the Minkowski spacetime at spatial infinity then the energy­
momentum P; transforms as a four-vector under all linear transformations.
Consider the following example of a closed system at rest whose coordinates
x a are chosen so that at large distances the line element is given by

(2.21)

with r2 = ((XI)2 + (X2)2 + (X3)2), and where a = 2Mo could be regarded as

a constant connected to the total Newtonian gravitational mass Mo. Using
Eq. (2.20) the total energy-momentum components P; in this system will be
given by

,00' s;o ( )
Pi = -Ui 2" = -Ui AIo. 2.22

Now using a Lorentz transformation of the form

0' xO + vxl

X -
)1- v2 '

I'
X

Xl + vxo

)1- v2 '
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the total energy-momentum components p', in the new coordinates system
xa' have values

Pi' = { 0, o} (2.24)

in other words, in an inertial system the total energy-momentum components
have the same values as the components of the four-momentum of a particle
of proper mass Mo moving with velocity v along the x-axis. Another im­
portant result given by Einstein is that any two systems of quasi-Cartesian
coordinates S and SI which coincide at spatial infinity, but differ arbitrar­
ily elsewhere will have pi = pi'. Although Einstein was able to show that
the energy-momentum pseudo-complex (J/ provides satisfactory expressions
for the total energy and momentum of closed system in the form of three­
dimensional integrals (2.19), to get meaningful values for these integrals one
is restricted to the use of quasi-Cartesian coordinates.

An alternative form of Einstein's pseudo-complex, which we found useful
in some of our calculations, is gi,:,en by Tolman [61] as:

(Jk = ~ [_ kp~ ~Okr.!q~]
, 81r e '" 'p + 2' ar.!q ,vg m m ,m

(2.25)

where L is the Lagrangian given by (2.10) whereas {Jab := Agab while
(Jabc := Agab,c , so that:

(2.26)

Another useful expression, from Tolman [61], for obtaining energy for a static
or quasi-static system using quasi-Cartesian type of coordinates is:

(2.27)

The main advantage derived from using this expression is that it can be
evaluated by integrating only over the region actually occupied by matter or
electromagnetic energy, since 'Sba vanishes in empty space.
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2.3 Landau-Lifshitz energy-momentum com­
plex

One of the main objections to Einstein's energy-momentum complex was
that it is not even symmetric in its indices, so cannot be used to define con­
servation laws of angular momentum. In this section we discuss an energy­
momentum complex which satisfies this requirement. In deriving the con­
served total four-momentum for a gravitational field plus matter and all
non-gravitational fields, Landau and Lifshitz [40] introduced a geodesic co­
ordinate system at some particular point in spacetime in which all the first
derivatives of the metric tensor gik vanish. Then at this point Eq. (2.2) can
be reduced into a form:

OTik

8xk = 0, (2.28)

similar to Eq. (2.1). Further, it can be shown that quantities T ik , which
satisfy Eq. (2.28) identically, can be expressed in terms of the following

k 8S
ikl

T' = 8xl ' (2.29)

where the quantities Sikl are antisymmetric in their last two indices k and I.
At the point under consideration the Ricci tensor may be written as

Rik _ 1 ip kq rs ( ) ( 3 )- 2g g g gpr,qs + gqs,pr - gpq,rs - grs,pq , 2. 0

since the Christoffel symbols vanish. Now using the gravitational field equa­
tions (2.6) we may deduce that the energy-momentum tensor Tik can indeed
be expressed as

(2.31 )

where the expression inside curly brackets can be associated with Sikl. Defin­
ing the quantities:

(2.32)

then obviously h ikl = _hilkand since all the first derivatives of the metric
tensor vanish, Eq. (2.29) may be written as:

8hikl

oxl - (~g)Tik = O. (2.33)
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Eq. (2.33) will only hold in spacetime at some particular point of a special
coordinates system in which all the first derivatives of the metric tensor gik
vanish. In an arbitrary coordinate system, the difference iJhikl jiJxl- (~g) T ik

will no longer be zero. We denote this difference by: (-g) ti \ and thus in
general Eq. (2.33) will be of the form:

(2.34)

where the quantities tik are symmetric in their indices since both T ik and
iJhik1jiJxl are symmetric in the indices i and k. It is obvious that tik is not
a tensor quantity. T ik can be eliminated from Eq. (2.34) by making use of
the Einstein gravitational field equations, the above equation may then be
written as

(_g) tik = !L (Rik _ ~g'kR) +hikl . (2.35)81r 2 ,I

Now using the expression of hikl in Eq. (2.32) and that of the Ricci tensor,
and after a lot of simplifications the expression of tik reduces to the following

{ (giPgkq _ gik -'pq) (2ra rb _ rarb _ ra rb )
Y pqab pbqa paqb

+ g'pgqr (r;ar~r + r;rr;a - r;ar;q - r;qr;a)
+ kp qr (ri ra + ri ra r i ra ri ra )99 paqr qrpa-rapq-pqra

+ kp qr (ri ra + ri ra ri ra r i ra )9 9 pa qr qr pa - Ta pq - pq Ta

+ pq rs(ri r k r i r k )}9 9 pr qs - pq rs .

Also, since hikl is antisymmetric in indices k and I, it follows from equation
(2.34) that

iJ~k [(_g)(yik+tik)] =0,

which means that there is a conservation law for the quantities

(2.36)

(2.37)

where the integration may be taken over any infinite hypersurface includ­
ing all of three dimensional space. In the absence of gravitation, in quasi­
Cartesian coordinates system, the set of quantities tik vanishes and pi re­
duces to J(~g) TikdSk which is the four-momentum of the physical system
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without gravitation. Therefore pi in (2.37) is identified with the total four­
momentum of the whole physical system including gravitation. So we refer
to t ik as the energy-momentum pseudo-tensor and to

(2.38)

as the energy-momentum complex. Now choosing the hypersurface XO =

const, then pi can be written in the form of a three dimensional space
integral

pi = / / / LiOdxldx2dx3. (2.39)

Hence we might interpret the quantity LOO as representing the energy density
of the whole physical system including gravitation, and interpret the quantity
LOk as representing the components of the total momentum density.

Unlike the Einstein energy-momentum complex Of, the main advantage
with the Landau-Lifshitz energy-momentum complex L ik is that it is sym­
metric with respect to its indices, and therefore it can be used to define a
conservation law for the angular momentum. We define it as

Alik = / (xidpk _ xkdpi)

/ (xiLmk _ x kLmi ) dSm · (2.40)

By using an argument similar to one used by Einstein, it can be shown that:

1. For asymptotically flat spacetime the quantities pi are constant in time.

2. For any two systems of quasi-Cartesian coordinates S and Sf which
coincide at spatial infinity, but differ arbitrarily elsewhere we have pi =
pi'.

3. pi transforms like contravariant components of a four-vector under all
linear transformations, including Lorentz transformations. Therefore
using (2.34) the energy-momentum densities (2.37) may be written as

pi = /hikm dS = ~/ (hikm dS _ hikm dS ),m k 2 ,m k ,k m
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(2.43)

so that the above integral can then be written as an integral over an
ordinary surface giving

pi =f hikmd*nkm, (2.42)

where d*nkm is the normal to the surface element related to tangen­
tial element dnkm by d*T4k = !Eikmqdnmq. Choosing the hypersurface
X O = const for the surface of integration in (2.37) then the surface of
integration in (2.42) becomes an ordinary space, thus we obtain

pi = f hiOmdnm,

where dnm = d*nom is a three-dimensional element of an ordinary space.
Similarly, an analogous formula for angular momentum is given by

M ik = J(xihkOm - xkhiOm + AiOmk ) dnm.

2.4 M011er energy-momentum complex

Moller [46J argued that although the Einstein energy-momentum complex
provides useful expressions for the total energy and momentum of closed
physical systems, the singling out of quasi-Cartesian coordinates is somehow
unsatisfactory from the general relativity viewpoint. Most of the criticism of
Einstein's prescription centred around the nontensorial nature of the quan­
tity t/. A mere change of a coordinates system from quasi-Cartesian into
spherical polar coordinates creates energy in vacuum. So Moller searched
for an expression of energy and momentum which is not dependent on any
particular coordinates system. If e/ is Einstein's energy-momentum com­
plex and Si k is another quantity with an identically vanishing divergence,
then their sum ei k + Si k will also vanish identically. Therefore the energy­
momentum complex is not uniquely determined by the condition that its
divergence vanishes. Moller [46J exploited this freedom by searching for a
quantity S/ that can be added to e/ so that it transforms as tensor for spa­
tial transformations. In order to retain the satisfactory features of Einstein's
theory Si k had to be chosen in such a way that it was form invariant function
which depends on the metric tensor and on its first and second derivatives.
Under linear transformations it had to behave like a tensor density satisfying
the following conditions:
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(2.44)

1. Si ~k = 0 identically, therefore it must be expressible in terms of 'It/~p

where 'lt i kp = -'It/kis an affine tensor of rank 3.

2. J Si °d3x = 0 over total three-space for a closed system if we use quasi­
Cartesian coordinates.

3. 80 k + S/ behaves like a four-vector density under all transformations
of the type:

Thus for

condition (2) implies that

JJJ'Siodxldx2dx3 = JJJ8/dx1dx2dx3,

(2.45)

(2.46)

for a closed physical system. In order to find an Si k satisfying the above
conditions M0ller [46] first investigated transformation properties of 80° un­
der arbitrary infinitesimal transformations of the type Eq. (2.44) so as to
establish the deviation of the variation of 80°from a scalar density. Following
this procedure he finally arrived at:

where

(2.47)

Xi kl (2.48)

(2.49)

Because of the antisymmetry, X/I = -X/k
, it now follows that:

i.J':Sk
-;-=0.

X

M0ller was able to show that the quantities:

Pi = JJJ':Siodxldx2dx3,
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for a closed system at rest in quasi-Cartesian coordinates coincide with the
corresponding ones for the Einstein pseudo-complex, and hence equation
(2.46) is satisfied and then following an argument similar to Einstein's he then
deduced that P; transform like four-vectors under Lorentz transformations,
and thus the integrals have the same values as the corresponding integrals of
Einstein in all cases where the latter are meaningful at all. Finally, he showed
that 'i5~ transforms like a four-vector under the transformations of the form
(2.44). Using Gauss's theorem the total energy-momentum components are
given by

(2.52)

where J.lQ is the outward unit normal vector over an infinitesimal surface
element dB

Ml<1l1er's coordinate independent prescription appeared to have finally
solved the problem of energy localization until three years later when Ml<111er
[47] performed a Lorentz transformation for a closed system at rest using
the line element (2.21). As shown above (2.24), the Einstein pseudo-complex
exhibited the correct transformation properties. Ml<1l1er [47J first obtained
the total energy-momentum components P; such that

(2.53)

in the coordinates system x a , using Eq. (2.51), which agrees with those
obtained in Eq. (2.22) using Einstein's prescription. Now using a Lorentz
transformation, Eq. (2.23), to obtain the total energy-momentum compo­
nents p;, in the new coordinates system xa' he got the following values

{
Mo ( 2 2)p;, = - 1 + -3V ,

)1- v2
0, o} (2.54)

which did not seem to give expected transformation properties under the
Lorentz transformation, and hence showing that Pi does not transform like
a four-vector under Lorentz transformations. After a critical analysis of
Ml<1l1er's result, Kovacs [39] claimed to have found a defect in M0ller's cal­
culation. However, Novotny [50J has shown that Ml<1ller[47J was right in
concluding that Pi does not transform like a four-vector under Lorentz trans­
formations. Lessner [41] finally showed that the problem lies with the inter­
pretation of the result from a special relativistic point of view instead of
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a general relativistic point of view. According to Lessner [41]: The energy­
momentum four-vector can only transform according to special relativity only
if it is transformed to a reference system with an everywhere constant velocity.
This cannot be achieved by a global Lorentz transformation. He concludes by
stating that M0ller's energy-momentum complex is a powerful expression of
energy and momentum in general relativity.

2.5 Papapetrou energy-momentum complex

Amongst the five energy-momentum complexes under discussion, the Pa­
papetrou energy-momentum complex is the least known and as a result it
has been rediscovered several times, first in 1948 by Papapetrou. Gupta,
a high energy physicist well-known for the Gupta-BIuer formalism in quan­
tizing the electromagnetic field, in 1954 also obtained this complex using a
slightly different method (see Gupta [29]). This is the reason Misner refers
to this complex as the Papapetrou-Gupta energy-momentum complex. In
1994, a renowned particle physicist, R. Jackiw of MIT - USA, with his col­
laborators re-obtained the same energy-momentum complex using the same
method used by Papapetrou (see Bak, Cangemi, and Jackiw [2J.) This fact
was pointed out to them by Virbhadra and then they sent an errata to PRD.
Papapetrou [51] formulated this conservation law of general relativity by ex­
plicitly introducing in calculations and in the final formulae the flat-space
metric tensor r/ik. The formula was obtained following the generalized Be­
linfante method. First, from Eq. (2.18) Einstein's pseudocomplex may be
written as:

ek=~~RkP
, 8IT oxP , , (2.55)

where

R km .= [_ kp~+ ~Jk,.,pq~] (2.56),- e Clip ?'!! "r!q ,vg m'" U m

and L is the Lagrangian given by (2.10), lPand eip
m are the same as defined

previously. Now to symmetrize the above total energy-momentum complex
using Belinfante method we start by assuming the existence of a quantity
llik so that llik = llki which differs from ryiPe/ only by a divergence:

(2.57)
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so that its divergence vanishes:

~nik =0
Bxk " •

(2.58)

The above equation will only be satisfied if B ikl is antisymmetric in its last
two indices, i.e. if B ikl = _Bilk. By making use of the Belinfante method
B ikl may be expressed by the relation:

(2.59)

where i'kl is the spin density of the field given by:

(2.60)

which, using Eq. (2.56), may also be written as

(2.61)

Now using this in Eq. (2.57) and (2.59), we get:

l1ik
= 1~7l" B~P [1/a (RaPk + R/p) +.,-r (R/i + R:p) - ifa (Ra

ik + Ra
b)]
(2.62)

then using (2.26) in (2.56) we get

R be + R cb = (op nbc _ ~oc n bp _ ~Ob n Cp )
a a a~ 2 a~ ? a~

- ,p

which is used to simplify (2.62) to

(2.63)

where
Nikab = ,;=g (gikTJab _ giaTJkb + gabTJik _lbTJia) . (2.64)

Note that the quantities Nikob are symmetric with respect to the first two
indices i and k. The energy-momentum complex l1 ik of Papapetrou satis­
fies the local conservation laws (2.58). This locally conserved quantity l1ik
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contains contributions from the matter, non-gravitational and gravitational
fields. noo and nao are the energy and momentum (energy current) density
components. The energy and momentum components are giYen by

(2.65)

and for the time-independent metrics Gauss's theorem furnishes

pi = _1_ JJ~oafJ nadB
161r ,{3

where na is the outward unit normal vector oyer an infinitesimal surface
element dS. •

The energy-momentum density nik is symmetric with respect to the two
indices i and k, therefore it can be used to define angular momentum density

2.6 Weinberg energy-momentum complex

Weinberg[75] obtained an energy-momentum complex by considering a quasi­
Minkowskian coordinate systern2 . In this quasi-Minkowskian coordinate sys­
tem gab may be viewed as the sum of the components of the ~\'linkowskimetric
TJab and that part h ab which vanishes at infinity, i.e.

gab = TJab + hab. (2.66)

hab is only assumed to yanish at infinity but may take arbitrarily large values
elsewhere. Using this notation the Ricci tensor may then be written as:

R = R(l) + R(2) + O(h3 )
ab ab ab 7

where the linear part R(l) ab in h ab is given by:

(2.67)

(2.68)

2We refer to a coordinate system as being quasi-Minkowskian if the metric gab ap­
proaches the ~IinkO\vski metric TJab far away from a given finite material system.
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and the second-order part R(2) ab in hab is given by:

R(2) _ ~ 1hpq [ o2hpq o2haq o2hpb o2hab ]
ab - 2 8xb8xa - 8xb8xp - 8xq8xa + 8xq 8xp

+ ~ [Oh
q
a + oh

q
b _ Ohab ] [2 oh

Pq _ Oh
Pp]

4 oxb oxa oXq oxP oxq

~ [Oh
Pa + oh

pq
_ Oh

q
a] [Ohpb + ohpq _ Ohqb ] .

4 oXq ox· oXp oxq oxb oxP

In the above expressions of R(I) ab and R(2)ab' indices on hik and Ofoxi are
raised and lowered with TJ'S, whereas indices on true tensors such as ~k are
raised and lowered with 9'S as usual. Using the above notation, Einstein's
field equations may now be written as:

where

R(I) 1 (1)p - [T 1
ab - zTJabR p - -87r ab + tab ,.

_ 1 [ 1 P (1) 1 (1)p ]
tab - 87r R ab - Z9abR p - R ab - ZTJab R p'

Note that the left hand side of Eq. (2.69) may also be written as

R(1)ik _ ~TJikR(1)p = wpik
2 p ,p

where

(2.69)

(2.70)

(2.71)

(2.72)WPik = oh~ ifk _ oh~ TJik _ oh
ai

ifk + oh
ap

TJik + oh
ik

_ oh
pk

OXi oXp oxa oxa oXp OXi

is antisymmetric in its first two indices i and p, that is, WPik = _wipk so that
it now follows that:

(2.73)

After analyzing Eq.(2.69) and comparing its form with that of the wave
equation of a field spin of 2, and further noting that, since the quantities
R(1) ab obey the Iinearized Bianchi identities Eq.(2.73) Weinberg concluded
that the quantity W ab given by:

IFab - TJaPTJbq [T + t ]- pq pq,
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(2.75)

which by Eqs. (2.69) and (2.73) satisfies the following local conservation law:

~WPb=O
GXP ,

may be interpreted as consisting of the total energy-momentum pseudocom­
plex of matter and gravitation, with tik indicating the energy-momentum
pseudotensor of gravitation. Therefore for any finite system of volume V
bounded by the surface S, we have:

(2.76)

where n is the unit outward normal to the surface. Analogously, the quanti­
ties pi given by:

pi = !! f WOidxldx2dx3, (2.77)

may therefore be interpreted as representing the total energy-momentum
components of the system including matter, electromagnetism, and gravita­
tion.

Since h.b -+ 0 as r -+ 00, the energy-momentum tensor of matter plus
non-gravitational field Tab also vanishes at infinity. From

h ab DU),
hab c °(:2) ,

hub,cd = °(:3) , (2.78)

then using Eqs. (2.67,2.68,2.70) and noting that the quantity tab is of the
second order in h, it follows that

(2.79)

approaches zero at infinity. This shows that the source term on the left hand
side of (2.69) is effectiwly confined to a finite region. Therefore the quantities
pi in (2.77) that give the total energy and momentum converge.
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Weinberg further justifies his choice of the quantities pi by showing that
these quantities are four-vectors and are additive. We illustrate below that
pi are invariant under any transformation that reduces to an identity trans­
formation at infinity

1. First consider the transformation of the form

(2.80)

where j"(x) -+ 0 as r -+ 00. Then to first order in both fa and hab,
the metric tensor ga'b' in the new coordinate system xa' will then be
given by

where

af b' ab ha'b'9 = 1) - (2.81)

(2.83)

ha'b' = hab _ Br _ Bfb (2.82)
BXb BXa

since as r -+ 00 both j" and hab are small. This change in coordinate
transformation will lead to the following change in quantity wPik defined
by (2.72)

where

Let us express pk in terms of wPik as

(2.85)

which, using Gauss's theorem, gives

(2.86)

where /la = Xi is the outward unit normal vector over an infinitesimal
T .

surface element dS = r 2 sin OdOdcp. Now noting that Dabik is totally
antisymmetric with respect to its first three indices a, band i, then the
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above change tlwbik will result in the following change in the surface
integral

+~JJD""Ok fl"dB871" ,a

+~JJD"jJOk fl dB871" ," jJ

which, using Gauss's theorem, gives

(2.87)

(2.88)

thus showing that pi is invariant under any transformation that reduces
to an identity transformation at infinity. An important consequence of
this result is that pi transforms as a four-vector under any transfor­
mation that leaves the Minkowski metric TJab at infinity unchanged,
because any such transformation can be expressed as the product of a
Lorentz transformation under which pi transforms as a four-vector.

2. We now show the additive property of pi. Dividing the matter in our
system into distant subsystems B(n), we can approximate the gravita­

tional field hab as the sum of h~~) 's that would be produced by each
subsystem acting alone. Thus, from the above calculation of pi, it fol­
lows that the total energy and momentum are equal to the sum of the
values Pc'n) for each subsystem alone.

Now from the above, it has been shown that pi is conserved, is a four-vector,
and is additive. In addition to these properties, the total energy-momentum
complex j,Vik is conserved and symmetric in its indices, therefore we can use
it to define a conservation law for angular momentum

where

Mpik = 0
,p (2.89)

Alpik = XiWPk _ xklVpi

so that Aflik and kl"ik can be taken as representing the density and flux of
a total angular momentum

Jik =JJJ.1v10ikdxldx2dx3
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which is constant if Maik vanishes on the surface of the volume of integration.
Both "~1pik and Jik are antisymmetric with respect to indices i and k. As
above, the total angular momentum complex can be written in terms of WPik

as

(2.90)

which, using Gauss's theorem, gives

161rJat3 =

(2.91)

We only give the physically meaningful components of Jik which are the three
independent space-space components J1 = ]23 , J2 = J31 and j3 = jl2 In
order to calculate the total momentum, energy, and angular momentum of
an arbitrary system, one only needs to know the asymptotic behavior of hab

at great distances. Though the quantities tab, W ab and Jo.1pik are not tensors,
they are at least Lorentz covariant. Thus for a closed system pi and l ik will
not only be constant but Lorentz-covariant.

2.7 Present study of energy localization

Rosen and Virbhadra [56] investigated the energy and momentum of the
Einstein-Rosen metric using the Einstein energy-momentum complex. The
Einstein-Rosen metric is a non-static vacuum solution of Einstein's field equa­
tions that describes the gravitational field of cylindrical gravitational waves
given in cylindrical polar coordinates (p, 1>, z) by the line element

(2.92)

2pw,pW,t,

P (W~p + W:t ) .

where 'Y = 'Y (p, t) and W= W(p, t) and

1
Wtt-Wpp--Wp - 0,, , p'

'Y,t

'"'ift -
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These authors carried out their calculations in quasi-Cartesian coordinates,
and reported that the energy and momentum density components are non­
vanishing and reasonable. Rosen (see in [54]) had earlier computed, in cylin­
drical polar coordinates, the energy and momentum components in this met­
ric using the energy-momentum complexes of Einstein and Landau and Lif­
shitz. For both prescriptions the energy and momentum density components
vanished. Initially, the vanishing of these components seemed to confirm
Scheidegger's conjecture that a physical system cannot radiate gravitational
energy. However, two years later Rosen [54J realized his mistake and recal­
culated energy and momentum density components in quasi-Cartesian coor­
dinates and found finite and reasonable results, which were later reported
by himself and Virbhadra [56J. Virbhadra [70] showed that the energy­
momentum complexes of Einstein and Landau and Lifshitz give the same
energy and momentum densities when calculations are carried out in quasi­
Cartesian coordinates. The energy density of the cylindrical gravitational
waves was found to be finite and positive definite. The momentum density
components was found to reflect the symmetry of the spacetime.

In a recent paper Virbhadra [74J showed that the energy-momentum com­
plexes of Einstein, Landau and Lifshitz, Papapetrou, and \Veinberg, and the
Penrose quasi-local definition give the same result for a general nonstatic
spherically symmetric metric of the Kerr-Schild class. The well-known space­
times of the Kerr-Schild class are for example the Schwarzschild, Reissner­
Nordstriim, Kerr, Kerr-Newman, Vaidya, Dybney et al., Kinnersley, Bonnor­
Vaidya and Vaidya-Patel. These spacetimes are defined in terms of the fol­
lowing metrics:

(2.93)

where 1)ab is the Minkowski metric, H is a scalar field, and ka is a null,
geodesic and shear free vector field in the Minkowski spacetime. Each of
these are given by

rrkpkq

rrki,pkq

(kM + kq,p) k~T1)qT - (kP,p)2

0,

0,

o.

(2.94)

(2.95)

(2.96)

The vector ka of the Kerr-Schild class metric 9Qb remains null, geodesic and
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shear free with the metric gab. Eqs. (2.94)-(2.96) lead to

gPqkpkq 0,

gPqki;pkq - 0,

(kp;q + kq;p) k~TgqT - (k~p)2 O.

Aguirregabiria et. ai.[l] obtained the following results

_1_..... ATkpq
161f .HT ,pq

L ik = Wik = _l_Nkpq
161f ,pq

where

(2.97)

(2.98)

Aabcd = H (ryabkckd+ rycdkakb_ TJackbkd _rybdkakc)

therefore the energy-momentum complexes of Einstein Of, Landau and Lif­
shitz Uk, Papapetrou flik, and vVeinberg VVik 'coincide' for any Kerr-Schild
class metric. Only the null conditions of equations (2.94) - (2.96) was used
to obtain the above results in terms of the scalar function H and the vector
ka for the Landau and Lifshitz, Papapetrou, and Weinberg complexes was
used, while for the Einstein complex the null as well as geodesic conditions
were used. These energy-momentum complexes 'coincide' for a class of solu­
tions more general than the Kerr-Schild class since the shear-free conditions
were not required to obtain the above equations. The energy and momentum
components are given by

pi =_1_f f AiOo<q no<dS.
161f ,q

Since the energy-momentum complexes of Landau and Lifshitz, Papapetrou,
and \Veinberg are symmetric in their indices the corresponding spatial com­
ponents of angular momentum are defined as

Jo<{J = _1_ / f (xo< A{J()-yq - x{JAalJ-rq + AaO-y{J) n dS.
161f ,q ,q -y

2.8 Conclusion

In this chapter we elaborated on the problem of energy localization in gen­
eral relativity, a concept which still remains a puzzle. There have been many
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attempts at finding an appropriate method for obtaining energy-momentum
distribution in a curved space-time, which resulted in various energy-momentum
complexes. These complexes are restricted to the use particular coordinates.
The problem associated with energy-momentum complexes resulted in some
researchers doubting the concept of energy localization. However, the lead­
ing contributions of Virbhadra and his collaborators have demonstrated with
several examples that some of these complexes consistently give the same and
acceptable energy and momentum distribution for a particular spacetime. We
elaborated on only a few energy-momentum complexes used in our work. We
also highlighted alternative attempts aimed at finding the alternative con­
cept of quasilocal energy-momentum. The coordinate-independent quasilocal
mass definitions are important conceptually; however, serious problems have
been found with these. Chang, Nester and Chen[14] have also shown that the
Einstein, Landau and Lifshitz, M011er, Papapetrou, and vVeinberg energy­
momentum complexes may each be associated with a legitimate Hamilto­
nian boundary term, and because quasilocal energy-momentum are obtain­
able from a Hamiltonian then each of these complexes may also said to be
quasilocal.
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Chapter 3

Energy Distribution of Charged
Dilaton Black Hole Spacetime

3.1 Charged dilaton black hole spacetime

Properties of the well-known Reissner-Norstrom black holes have been stud­
ied extensively. If one couples the dilaton field to the Maxwell field of the
black holes many of these properties are known to change (see in Holzhey
and Wilczek [32]; Home and Horowitz[33]). Charged dilaton black holes
have been a subject of study in many recent investigations [32J-[34J. Garfin­
kle, Horowitz and Strominger (GHS) [27] considered the action

(3.1)

where R is the Ricci scalar, <P is the dilaton field, F2 = FabFab where F ab

is the electromagnetic field tensor, and '"I is an arbitrary parameter which
governs the strength of the coupling between the dilaton and the Maxwell
fields. We shall consider only nonnegative values of'Y since a change in the
sign of the parameter 'Y will have the same effect as a change in the sign of
the dilaton field <P. The action (3.1) reduces to the Einstein-Maxwell scalar
theory for 'Y = O. V/hen 'Y = 1 then (3.1) gives an action which is part of
the low-energy action of string theory. For 'Y = J3 we get the action for
the Kaluza-Klein theory. By varying the action (3.1) we obtain the following
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equations of motion:

(3.2)R;k =

Vi (e-2~<I'F ik ) = 0,

V2if> + 2e- 27<1'F 2 = 0
2 '

2" n." n. 2 -27<1' D FP 1 -2~<I'F2Vi",vk",+e ripk--gike .
2

Garfinkle, Horowitz and Strominger [27] obtained static spherically symmet­
ric asymptotically flat black-hole solution described by the line element

ds2 = (1- r+)(l_ r_)Udt2 _ (1- r+)-l(l_ r_)-Udr2
r r r r

-(1 - r - )1-ur2(dB2+ sin2()drj}) (3.3)
r

with the dilaton field <I> given by

2<1' ( r_) '~ue = 1--
T '

(3.4)

and the electromagnetic field tensor component

(3.5)

where
1 -1'2

U=l+~· ~.6)

r_ and r+ are related to mass lYl and charge Q parameters as follows:

T++UT_

2
r+r_

(1 + 1'2)"
(3.7)

Virbhadra[72] proved that for Q = 0 the GHS solution yields the Janis­
Newman-Winicour solution [36] to the Einstein massless scalar equations.
Virbhadra, Jhingan and Joshi[73] showed that the Janis-Newman-Winicour
solution has a globally naked strong curvature singularity.

For l' = 0 the solution yields the standard Reissner-Nordstrom of the
Einstein-Maxwell theory, but for l' # 0 the solution is qualitatively different.
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Certain qualitative features of the solutions of non-rotating charged dila­
ton black-holes are independent of the parameter T For instance, the sur­
face r = r + is an event horizon for all values of ,. A number of interesting
properties of charged dilaton black holes critically depend on the dimension­
less parameter, which controls the coupling between the dilaton and the
Maxwell fields. The maximum charge, for a given mass, that can be carried
by a charged dilaton black-hole depends on , [32]. When, i= 0, the surface
r = r_ is a curvature singularity while at , = 0 the surface r = r_ is a non­
singular inner horizon [33]. Both the entropy and temperature of these black
holes depend on, [32]. The gyromagnetic ratio, i.e. the ratio of the magnetic
dipole moment to the angular momentum, for charged slowly rotating dila­
ton black holes depends on parameter, [32]. Chamorro and Virbhadra [12J
showed, using Einstein's prescription, that the energy distribution of charged
dilaton black holes depends on the value of ,.

3.2 Energy distribution in charged dilaton black
holes

Virbhadra and Parikh[67] calculated, using the energy-momentum complex
of Einstein, the energy distribution with stringy charged black holes (r = 1)
and found that

E=M.

Thus the entire energy of a charged black-hole in low-energy string theory is
confined to the interior of the black-hole. We[77] found the same result using
the Tolman definition. For the Reissner-Nordstrom metric, several definitions
of energy give

Q2
E=M--

2r
(Tod [59J; Hayward [31J; Aguirregabiria et al. [1]). Thus the energy is both
in its interior and exterior. Chamorro and Virbhadra [12] studied, using the
energy-momentum complex of Einstein, the energy distribution associated
with static spherically symmetric charged dilaton black holes for an arbi­
trary value of the coupling parameter, which controls the strength of the
dilaton to the Maxwell field. We [78] investigated the energy distribution
in the same spacetime in Tolman's prescription and got the same result as
obtained by Chamorro and Virbhadra. The energy distribution of charged
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dilaton black holes depends on the value of I and the total energy is in­
dependent of this parameter. In this chapter we present the computations
of the energy distribution for the Garfinkle-Horowitz-Strominger spacetime
performed using the Tolman energy-momentum complex!.

3.3 Tolman energy distribution

We start by transforming the line element (3.3) to quasi-Cartesian coordi­
nates:

according to

r -

e

rP =

(3.9)

Tolman's[61J energy-momentum complex is

- 1 -­
Tk' = -u;,J,SIT ,]

where

(3.10)

u!.i
k

(3.11)

I Virbhadra[74] pointed out that though the Tolman energy-momentum complex differs
in form from the energy-momentum complex obtained by Einstein, both are equivalent in
import. Therefore, the Tolman energy-momentum complex should be correctly referred to
as the ToIman form of Einstein's energy-momentum complex. The author was not aware
of this fact at the time of writing papers [77, 781_

49



Trf' is the energy density, To" are the components of energy current density, T:;
are the momentum density components. Therefore, energy E for a stationary
metric is given by the expression

E = 8~ J JJUg,,,,, dxdydz.

After applying the Gauss theorem one has

(3.12)

(3.13)

where /1" = (xfr, yfr, zfr) are the three components of a normal vector over
an infinitesimal surface element dS = r 2sinlJdlJd<jJ.

The determinant of the metric tensor is given by

g=_( r )2("-1)
r-r_

and its non-vanishing contravariant components are:

(3.14)

(3.15)

To compute the energy distribution using Eq. (3.13) we also require the
following list of nonvanishing components of the Christoffel symbol of the
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second kind.

rl , X(CI + C2XZ),

q2 Y(CI + C2y2),

r~3 Z(Cl + C2z2),

qz X(C3 + C2y2) ,

ri, Y(C3 + C2 XZ ),

rj3 x(C3 + C2ZZ),

r{I z(a3 + azx2),

r~3 y(C3 + CZZZ),
r~2 Z(C3 + C2yZ) ,

rl2 y(C4 + CZXZ),

ri3 Z(C4 + C2 XZ ),

r~, X(C4 + c2l),

r~3 Z(C4 + CZy2) ,

r~, x(C4 + czz
z),

r~z y(C4 + czzZ
),

r~o XCs,

r~o YCs,

rgo zCs,

rg, XC6,

rgz yC6,

rg3 ZGt;,

r~3 ri3 riz czxyz, (3.16)

where
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C5

1 2 2
2 4 ( )[21'+1' +3LT -3T~T+T

l' 1'- T~

+1'_21'+ - 1'_21'+ (1'_1'+ - T~T -1'+1' ~ T2)T_aj,

~ [21'+21' + 61'~T+T - 31'_1'2 - 31'+1'2 - 31'~T+2

21'4 l' - 1'+

(2L - La)(TJ+ - LT - 1'+1')]+ ,
l' - 1'_

1
21'4[1'_1' + 21'+1' - 1'_1'+ + (1' - T+)T~a],

_1 [1'_ - T~a]
21'2 l' - 1'_ '

(1' - l' j2"~!

2T2~+4 (1' - 1'+)[(1' - 1'+)1'+ + (1' - T+)T~aJ,

1 [ 1'+ l'_a ]
-2 + .
21' 1'-1'+ T~T~

(3.17)

Using Eqs. (3.11) and (3.16) we obtain required components of ut These
are

UO!

°
(3.18)

Now using (3.18) with (3.6) in (3.13) we get

Q2 2
E(T) = M - 21' (1 - i ). (3.19)

Thus, we get the same result as Chamorro and Virbhadra[12] obtained us­
ing the Einstein energy-momentum complex. This is against the "folklore"
that different energy-momentum complexes could give different and hence
unacceptable energy distribution in a given spacetime. For the Reissner­
Nordstrom metric ({ = 0) one gets E = M - Q2/2T, which is the same as
obtained by using several other energy-momentum complexes(Aguirregabiria,
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Figure 3.1: E/M on Z-axis is plotted against r/M on X-axis and -y on Y-axis
for Q/M = 0.1.

Chamorro and Virbhadra)[l] and definitions of Penrose as well as Hayward
[59]'[31J. E(r), given by (3.19), can be interpreted as the "effective gravita­
tional mass" that a neutral test particle "feels" in the GHS sparetirne. The
"effective gravitational mass" becomes negative at radial distances less than
Q2(1 - -y2)/2M.
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Chapter 4

Energy Distribution in Ernst
Space-time

4.1 Introduction

The well-known Melvin's magnetic universe[42J is a solution of the Einstein­
Maxwell equations corresponding to a collection of parallel magnetic lines
of force held together by mutual gravitation. Thorne[58] studied extensively
the physical structure of the magnetic universe and investigated its dynam­
ical behaviour under arbitrarily large radial perturbations. He showed that
no radial perturbation can cause the magnetic field to undergo gravitational
collapse to a space-time singularity or electromagnetic explosion to infinite
dispersion. We[81] investigated the energy distribution in Melvin's magnetic
universe and found encouraging results. The energy-momentum complexes
of Einstein, Landau and Lifshitz, and Papapetrou give the same and accept­
able energy distribution in Melvin's magnetic universe. A discussion of the
Melvin's magnetic universe together with its energy distribution is given in
sections (4.2) and (4.3), below.

Ernst[24] obtained the a-'Cially symmetric exact solution to the Einstein­
Maxwell equations representing the Schwarzschild black hole immersed in
the Melvin's uniform magnetic universe. Virbhadra and Prasanna [69] stud­
ied the spin dynamics of charged particles in the Ernst space-time. We[79]
investigated energy distribution in the Ernst space-time and calculated the
energy distribution using the Einstein energy-momentum complex. The first
term of the energy expression is the rest-mass energy of the Schwarzschild
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black hole, the second term is the classical value for the energy of the uniform
magnetic field and the remaining terms in the expression are due to the gen­
eral relativistic effect. The presence of the magnetic field is found to increase
the energy of the system. Both the Ernst solution and a discuscussion of
energy associated with a Schwarzschild black hole are given in sections (4.4)
and (4.5).

4.2 Melvin's magnetic universe

The Einstein-Maxwell equations are

k 1 k k
Ri - 2 9i R = 87rT; ,

Fij,k + Fjk,i + Fki,j = 0,

where the energy-momentum tensor of the electromagnetic field is

(4.1)

(4.2)

(4.3)

(4.4)

R/ is the Ricci tensor and Ji is the electric current density vector.
Melvin [42] obtained the electrovac solution (Ji = 0) to these equations

which is expressed by the line element

and the Cartan components of the magnetic field are

A-2BD cos e,
-A-2 BosinO,

(4.5)

(4.6)

where

(4.7)

Bo (= BoVG/2) is the magnetic field parameter and this is a constant in
the solution given above.
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The above solution had been obtained earlier by Misra and Radhakrishna1

[44]. This space-time is invariant under rotation about, and translation along,
an axis of symmetry. This is also invariant under reflection in planes com­
prising that axis or perpendicular to it. Wheeler[76] demonstrated that a
magnetic universe could also be obtained in Newton's theory of gravitation
and showed that it is unstable according to elementary Newtonian analysis.
However, Melvin[43] showed his universe to be stable against small radial
perturbations and Thome [58] proved the stability of the magnetic universe
against arbitrary large perturbations. Thome [58J further pointed out that
the Melvin magnetic universe might be of great value in understanding the
nature of extragalactic sources of radio waves and thus the Melvin solution to
the Einstein-Maxwell equations is of immense astrophysical interest. We [79],
[81] computed energy distribution in Melvin's universe using the definitions
of Einstein, Landau and Lifshitz, and Papapetrou. For this space-time we
found that these definitions of energy give the same and convincing results.
The energy distribution obtained here is the same for all these energy mo­
mentum complexes. In the next section we give the computations of energy
distribution for this spacetime performed using energy-momentum complexes
of Landau and Lifshitz, and Papapetrou.

4.3 Energy distribution in Melvin magnetic.unIverse

The non-zero components of the energy-momentum tensor are

T 1
1

T,0

°
(4.8)

To get meaningful results using these energy-momentum complexes one is
compelled to use "Cartesian" coordinates (see [46] and [74]). We use the

1Melvin[43] mentioned that this solution is contained implicitly as a special case among
the solutions obtained by Misra and Radhakrishna.
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following transformation:

r

B

<P = (4.9)

The line element (4.5) in t, x, y, z coordinates becomes

(4.10)

The determinant of the metric tensor is given by

9 = -A4, (4.11)

and the non-zero contravariant components of the metric tensor are

gOO A-z,

g"
A-zxz + AZy2

XZ +yZ

g" _(A2 _ ~) xy
A2 X2 +y2'

g"
A-zyz + AZxz

XZ + y2

g33 _A-2 (4.12)

4_3.1 The Landau and Lifshitz energy-momentum com­
plex

(4.13)L'j = _1_ikjt
161T ,kt'

The symmetric energy-momentum complex of Landau and Lifshitz[40] may
be written as

where
(4.14)
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LOO is the energy density and LO" are the momentum (energy current) density
components. F'jnk has symmetries of the Riemann curvature tensor. The
energy E is given by the expression

ELL = _1_ / / eo"o~ Ilfi dS,
1671" '

(4.15)

where J1j3 is the outward unit normal vector over an infinitesimal surface
element dS. In order to calculate the energy component for Melvin's uni­
verse expressed by the line element (4.10) we need the following non-zero
components of pikjl

£1101 x2+ y2A4

x2 +y2
,

£1102
xy(A4 -1)

x2 + y2
,

£1202
y2 + x2A4

-
x2 +y2

,

p0303 -l. (4.16)

Equation (4.13) with equations (4.14) and (4.16) gives

LOO = ~B2A3.
871"

(4.17)

For a surface given by parametric equations x = T sin () cos cP, y = T sin () sin cP,
Z = TCOS() (where T is constant) one has J1fi = {X/T, y/T, Z/T} and dS =
T

2sin()d()dcP· Using equations (4.16) in (4.15) over a surface T = constant, we
obtain

(4.18)

4.3.2 The Energy-momentum complex of Papapetrou

The Papapetrou energy-momentum complex[51J:

where

llii = _l_Nijkl
1671" ,kl'
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is also symmetric in its indices, as discussed in chapter 2. niO are the energy
and momentum density components. The energy E for a stationary metric
is given by the expression

Ep = 1~1f!! jJ'X'af! ,f! {La dB. (4.21)

To find the energy component of the line element (4.10), we require the
following non-zero components of Nijkl

N0012

x2 +y2A4

-(1 + 2 2)'x +y
xy(A4 -1)

x2 + y2 '
y2 + x2A4

-(1 + 2 2)'x +y
-2. (4.22)

Equations (4.22) in equation (4.19) give the energy density component

(4.23)

Thus we find the same energy density as we obtained in Section 4.3.1. We
now use Eq. (4.22) in (4.21) over a 2-surface (as in the last Section) and
obtain

1 1 1 1
E = ~B2T3 + _B4T5 + _B6T 7 + __B 8T 9 .

P 6 0 20 0 140 0 2520 0

This result is expressed in geometrized units (G = 1 and c =
following we restore G and c and get

1 23 1G 45 1G2
67 1G3

89
Ep = (iBoT + 20 c4 BoT + 140 ---;}3Bo T + 2520 c12BoT .

(4.24)

1). In the

(4.25)

B2." I fThe first term T is the known classica value 0 energy and the rest of
the terms are general relativistic corrections. The general relativistic terms
increase the value of energy.

59



flat and the magnetic field approximately uniform, when IEoMI << 1. If the
magnetic field is strong, i.e. 1B0 1\;1 1 is of the order unity, then it tends to be
more concentrated near the poles e= 0 and e= 7r.

4.5 The energy associated with Schwarzschild
black hole in a magnetic universe.

In this section we obtain the energy distribution of this spacetime using Ein­
stein's energy-momentum complex. As in the case of the energy-momentum
complexes of Landau and Lifshitz, and Papapetrou, to get meaningful re­
sults for energy distribution in the prescription of Einstein one is compelled
to use "Cartesian" coordinates. The line element (4.26) is easily transformed
to "Cartesian" coordinates t,x,Y,z using the standard transformation (4.9).
We get

ds2 = A2(1 _ 2M )dt2 _ [A2(ax
2

) + A-2 ( y
2

)] dx2
r r 2 x 2 + y2

[A2(a~2) + A-2 C2:: y2 ) ] dy2

A2[1 + 2Mz
2

] dz2 _ [A2(2aXY) + A-2 ( 2
2xy 2)] dxdy

r 2 (r - 2M) r 2 x + y

2 [ 4MXZ] 2 [ 4Myz ]
A r2(r _ 2M) dxdz - A r 2(r _ 2M) dydz, (4.29)

where

where

2M r 2

a = + ----;;-~___;;_
r - 2M x2 + y2

Using the Einstein energy-momentum complex

h71 = _h:k = 3:g [-g (lnglm - glnlm)],m

the energy E for a stationary metric is given by the expression
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and after applying the Gauss theorem, one has

4.5.1 Calculations

The determinant of the metric tensor is given bv

The non-zero contravariant components of the metric tensor are

(4.35)

(4.36)

The only required components of h1 in the calculation of energy are the
following:

4Mx 4 [x]
-3- + (1\ - 1) 2 2'

r x +y

4My 4 [y]
-3- + (1\ - 1) 2 2'

r x +y
4_Mz
-3-·

r
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Now using (4.37) with (4.34) we obtain the energy distribution in the Ernst
space-time.

1 1" 12

"E=l>1+ - (;\4-1)Tsinl:idl:id1>.
167r 0=0 4>=0

We substitute the value of A in the above and then integrate. We get

(4.38)

(4.39)

(4.40)

The above result is expressed in geometrized units (gravitational constant
G = 1 and the speed of light in vacuum c = 1). In the following we restore
G and c and get

Z 1 2 3 1 G 4 5 1 G2
6 7 1 G3 8 9

E = Mc + (jBoT + 20c4BoT + 140 -;}JBoT + 2520ClZBoT .

The first term M 2 is the rest-mass energy of the Schwarzschild black hole,
the second term tB;T3 is the well-known classical value of the energy of the
magnetic field under consideration, and the rest of the terms are general rel­
ativistic corrections. For very large BoT, the general relativistic contribution
dominates over the classical value for the magnetic field energy. As men­
tioned in Section 2, the gravitational field is weak for 2M < < r << B;;' (in
G = 1, c = 1 units). Thus in the weak gravitational field we have Bor « 1
; therefore, the classical value for the magnetic field energy will be greater
than the general relativistic correction in these cases.

4.5.2 Discussion of Results

In the above section we considered the Ernst space-time and calculated the
energy distribution using the Einstein energy-momentum complex. It beauti­
fully yields the expected result: The first term is the Schwarzschild rest-mass
energy, the second term is the classical value for energy due to the uniform
magnetic field (E = ;" JJJB;dV, where dV is the infinitesimal volume el­
ement, yields exactly the same value as the second term of (4.40) ), and the
rest of the terms are general relativistic corrections. The general relativistic
terms increase the value of the energy.
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4.6 Conclusion·

In this chapter we calculated energy distributions in Melvin's magnetic uni­
verse and Ernst space-time using prescriptions of Landau and Lifshitz, Pa­
papetrou, and Einstein. We got encouraging results for the asymptotically
non-flat space-times considered above. We also note that the results ob­
tained indicate that the energy-momentum complexes of Einstein, Landau
and Lifshitz, and Papapetrou give the same energy distribution for the Melvin
magnetic universe. It was believed that the results are meaningful for en­
ergy distribution in the prescription of Einstein only when the space-time
studied is asymptotically Minkowskian. However, recent investigations of
Rosen and Virbhadra [56], Virbhadra [70], Aguirregabiria et al. [1], and
Xulu [79], [81] showed that many energy-momentum complexes can give
the same and appealing results even for asymptotically non-flat space-times.
Aguirregabiria et al. showed that many energy-momentum complexes give
the same results for any Kerr-Schild class metric. There are many known
solutions of the Kerr-Schild class which are asymptotically not flat. For ex­
ample, Schwarzschild metric with cosmological constant. The general energy
expression for any Kerr-Schild class metric obtained by them immediately
gives E = JvI - {A/3)r3 where A is the cosmological constant. This result
is very much convincing. A > 0 gives repulsive effect whereas A < 0 gives
attractive effect.
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Chapter 5

Total Energy of the Bianchi
Type I Universes

5.1 Introduction

A wide range of cosmological models may be deduced from Einstein's field
equations. The 1965 observation of the cosmic microwave background radia­
tion, by Penzias and Wilson, was the most important cosmological discovery
since Hubble's 1929 announcement that all galaxies recede from us at veloc­
ities proportional to their distance from us. This discovery of background
radiation strongly support that some version of the big bang theory is cor­
rect and it also resulted in some conjectures regarding the total energy of
the universe. Tryon[62], assuming that our Universe appeared from nowhere
about 1010 years ago, remarked that the conventional laws of physics need
not have been violated at the time of creation of the Universe. He proposed
that our Universe must have a zero net value for all conserved quantities.
The arguments he presented indicate that the net energy of our Universe
may be indeed zero. His big bang model (in which our Universe is a fluctua­
tion of the vacuum) predicted a homogeneous, isotropic and closed Universe
consisting of matter and anti-matter equally. Tryon [62] also cited an elegant
topological argument by Bergmann that any closed universe has zero energy.

Two decades later, the work of Cooperstock [18J and Rosen [55J revived
the interest in the investigations of the energy of the Universe. Cooperstock
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[18] considered the conformal Friedmann-Robertson-Walker (FRW) metric

(5.1)

By making use of calculations involving killing vectors, Cooperstock and
Israelit (see in [18]) were able to express the covariant conservation laws
yik ;k = 0, in the form of an ordinary divergence:

(5.2)

From (5.2), Cooperstock [18]was able to conclude .that the total density of
the universe is zero.

Rosen [55] considered a closed homogeneous isotropic universe described
by the Friedmann-Robertson-Walker (FRW) metric:

(5.3)

Then using Einstein's prescription, he obtained the following energy-momentum
complexl

eg = 8: [(1 +:2/4)2 - (1 +::/4)3] . (5.4)

. By integrating the above over all space, one finds that the total energy E
of the universe is zero. These interesting results fascinated some general
relativists, for instance, Johri et al. [37], Banerjee and Sen [3J and Xulu [80J.
Johri et al. [37J, using the Landau and Lifshitz energy-momentum complex,
showed that the total energy of an FRW spatially closed universe is zero at all
times irrespective of equations of state of the cosmic fluid. They also showed
that the total energy enclosed within any finite volume of the spatially flat
FRW universe is zero at all times. In this chapter we investigate the total
energy of the Bianchi type I universes.

ITa avoid any confusion we mention that we use the term energy-momentum complex
for one which satisfies the local conservation laws and gives the contribution from the
matter (including all non-gravitational fields) as well as the gravitational field. Rosen [55J
used the term pseudo-tensor for this purpose. We reserve the term energy-momentum
pseudotensOf for the part of the energy-momentum complex which comes due to the grav­
itational field only.
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5.2 Bianchi type I space-times

The Bianchi type I space-times are expressed by the line element

(5.5)

where I, m, n are functions of t alone. The nonvanishing components of the
energy-momentum tensor 1'/ ( == 8~G/, where G/ is the Einstein tensor)
are

1',0 1 ( im + nui + id ) ,-0 87f

1'1 1 ( m2 +n2 + mn + m+ ii ) ,-1 87f

1',2
1 ( n2 +P + ni + ii + r) ,-2 87f

1',3
1 (i2 +m2 +im+r+m) . (5.6)-3 87f

The dot over I, m, n stands for the derivative with respect to the coordinate
t. The metric given by Eq. (5.5) reduces to the spatially fiat Friedmann­
Robertson-Walker metric in a special case. With let) = met) = net), defining
R (t) = el(t) and transforming the line element (5.5) to t, x, y, z coordinates
according to x = r sin () cos <P, y = r sin () sin <p, Z = r cos () gives

which describes the well-known spatially flat Friedmann-Robertson-Walker
space-time.

5.3 Energy distribution in Bianchi type I space­
times

The Bianchi type I solutions, under a special case, reduce to the spatially flat
FRW solutions. Banerjeeand Sen [3] studied the Bianchi type I solutions, us­
ing the Einstein energy-momentum complex, and found that the total (mat­
ter plus field) energy density is zero everywhere. As the spatially flat FRW
solution is a special case of the Bianchi type I solutions, one observes that
the energy-momentum complexes of Einstein and Landau and Lifshitz give
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the same result for the spatially flat FRW solutions. Because there is a per­
ception that different complexes could give different and hence meaningless
results for a given metric, we [80J investigated energy-momentum distribution
in Bianchi type I space-times using energy-momentum complexes of Landau
and Lifshitz, Papapetrou, and Weinberg. The results of these investigations
are presented in this section.

5.3.1 The Landau and Lifshitz energy-momentum com­
plex

In order to calculate the energy and momentum density components of the
line element (5.5) using the symmetric energy-momentum complex of Landau
and Lifshitz [40J:

(5.8)

where
sjkl = _g(gijll _ gikgjl),

the required nonvanishing components of Sijkl are

(5.9)

5°101 _e2m+2n ,
5°110 - e2m+2n ,
5°202 _e2l+2n ,
S0220 e2l+2n ,
5°303 - _e21+2m ,
5°330 e2l+2rn . (5.10)

Using the above results in (5.8) and (5.9) we obtain the energy density and
energy current (momentum) density components, respectively as:

(5.11 )

Hence the energy and momentum components

(5.12)

vanish.
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5.3.2 The Energy-momentum complex of Papapetrou

In order to calculate the energy and momentum density components of the
line element (5.5) using the symmetric energy-momentum complex of Papa­
petrou [51]:

where

flY _ _1_~jkl
- 161f ,kl (5.13)

Nijkl = )-g (g'jrr - gikrf! + ll'f/ij - gjVk) (5.14)

and ryik is the Minkowski metric, we require the following nonvanishjng com­
ponents of Nijkl:

N'l0ll - ~(1 + e-21 )e!+m+n,

N'lIlO e-l+m+n ,
N0022 - -(1 + e-2m)el+m+n,

N'l220 - el - m+n
,

N'l033 - -(1 + e-2n)el+m+n,

N'l330 - el+m - n ,
N'l101 = N'l202 = N'l303 =cc el+m+n . (5.15)

Using the above results in (5.13) and (5.14) we obtain the energy density
component nOo and momentum (energy current) density componentsflOo as:

flOG = noo = o.

Again, we find that the energy and momentum components

vanish.

5.3.3 The Weinberg energy-momentum complex

(5.16)

(5.17)

The energy and momentum density components of the line element (5.5) were
calculated using the symmetric energy-momentum complex of Weinberg [75]:

HTij = _l_!:",Yk .

161f "
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where

(5.19)

and
hij == 9ii -Tfij- (5.20)

Tfij is the Minkowski metric. In this case, using the equations (5.5) and
(5.19), we find that all the components of f'..ijk vanish. Thus Eq. (5.18)
yields

lVik == o.
Therefore the energy and momentum components

also vanish.

5.4 Conclusion

(5.21)

(5.22)

In recent years some researchers showed interest in studying the energy con­
tent of the universe in different models (see Cooperstock [18] , Rosen [55],
Johri et al. [37J, Banerjee and Sen [3] . Cooperstock [18] investigated energy
density for conformal Friedmann-Robertson-Walker metric and by making
use of calculations involving killing vectors he was able to deduce that the
total energy density is equal to zero. Rosen [55] studied the total energy of
a closed homogeneous isotropic universe described by the FRW metric using
the Einstein energy-momentum complex, and found that to be zero. Using
the Landau and Lifshitz prescription of euergy and momentum Johri et al.
[37] demonstrated that (a) the total energy of an FRW spatially closed uni­
verse is zero at all times irrespective of equations of state of the cosmic fluid
and (b) the total energy enclosed within any finite volume of the spatially
flat FRW universe is zero at all times. Banerjee and Sen [3] showed that
the energy and momentum density components vanish in the Bianchi type I
space-times (they used the energy-momentum complex of Einstein).

It is usually suspected that different energy-momentum complexes could
give different results for a given geometry. Therefore, we[80] extended the
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investigations of Banerjee and Sen with three more energy-momentum com­
plexes (proposed by Landau and Lifshitz, Papapetrou, and Weinberg) and
found the same results (see equations (5.11), (5.16) and (5.21» as reported
by them. Note that the energy density component of the energy-momentum
tensor is not zero for the Bianchi type I solutions (see Eq. (5.6»); however, it
is clear from equations (5.11), (5.16) and (5.21) that the total energy density
(due to matter plus field, as given by the energy-momentum complexes) van­
ishes everywhere. This is because the energy contributions from the matter
and field inside an arbitrary two-surface in Bianchi type I space-times can­
cel each other. These results illustrate the importance of energy-momentum
complexes (as opposed to the perception against them that different corn·
plexes could give different and hence meaningless results for a given metric)
and also supports the viewpoint of Tryon.
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Chapter 6

Mpller Energy for the
Kerr-Newman Metric

6.1 Introduction

The investigations of Hawking, Israel, Carter, Robinson and others on the
properties of black holes built-up to the proof of the so-called "No Hair" the­
orem which shows that black holes are completely described by only three
quantities namely mass }'I, charge e, and angular momentum a (see in Israel
[35]). Hence, the stationary axially symmetric and asymptotically flat Kerr­
Newman solution which is parameterized by mass !vI, charge e, and angular
momentum a, is the most general black hole solution to the Einstein-Maxwell
equations. This solution describes the exterior gravitational and electromag­
netic fields of a charged rotating object. When e =c= 0, it describes the Kerr
family of axially symmetric solutions that give the geometry of space-time
surrounding rotating uncharged objects. When a =c= 0, it describes the spher­
ically symmetric Reissner-Nordstrom solution of charged non-rotating black
holes. For both a = 0 and e = 0 the solution reduces to the spherically
symmetric SchwarzschiId solution of the simplest type of black hole which
is only characterized by the mass M. The Kerr-Newman solution, as the
most general black hole solution, is therefore of vital importance in studying
the geometry surrounding compact objects. In this chapter we investigate
energy distribution in Kerr-Newman space-time.

The energy distribution in the Kerr-Newman (KN) space-time was ear­
lier computed by Cohen and de Felice [16] using Komar's prescription. Virb--
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hadra ([63],[64]) showed that, up to the third order of the rotation parameter,
the energy-momentum complexes of Einstein and Landau-Lifshitz give the
same and reasonable energy distribution in the KN space-time when calcu­
lations are carried out in Kerr-Schild Cartesian coordinates. Cooperstock
and Richardson [21J extended the Virbhadra energy calculations up to the
seventh order of the rotation parameter and found that these definitions give
the same energy distribution for the KN metric. Aguirregabiria et al. [1]
performed exact computations for the energy distribution in KN space-time
in Kerr-Schild Cartesian coordinates. They showed that the energy distri­
bution in the prescriptions of Einstein, Landau-Lifshitz, Papapetrou, and
Weinberg (ELLPW) gave the same result. In a recent paper Lessner[41J in
his analysis of Moller's energy-momentum expression concludes that it is a
powerful concept of energy and momentum in general relativity. We[82J eval­
uated the energy distribution in KN field using the Moller energy-momentum
prescription. The results of our investigation [82J are given below.

In a series of papers ([17]'[19]'[20]), Cooperstock has propounded a hy­
pothesis which essentially states that the energy and momentum in a curved
space-time are confined to the regions of non-vanishing energy-momentum
tensor 1; k of the matter and all non-gravitational fields. It is of interest to
investigate whether or not the Cooperstock hypothesis holds good. Our re­
suIts ([82],[83]) and the recent results of Bringley [7] support this hypothesis.
In this chapter we use the Kerr-Newman space-time for testing the Coop­
erstock hypothesis. We first give the KN metric, followed by Moller energy
distribution and a discussion of results.

6.2 The Kerr-Newman metric

The Kerr-Newman metric in Boyer-Lindquist coordinates (i, p, e, <p) is ex­
pressed by the line element:

Ll. s~e ~
ds2 = 2[dt-asin2 0d<pJ2--2-[(p2 +a2) d<p-adty- ~d/-r5de2, (6.1)

TO TO U

where L'l. := p2-2lvlp+e2+a2 and r~ := p2+ a2cos2 e. 1<1, e and a are respec­
tively mass, electric charge and rotation parameters and the corresponding
electromagnetic field tensor is:

F = ero4
[(/- a2cos2 (J)dp /\ dv - 2a2pcos (JdO /\ dv

- a sin2 (J(l - a2cos2 (J)dp /\ dq, + 2ap(p2 + a2) cos (J sin (Jde /\ dq,]. (6.2)
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(For details see in Carter[lO].) The KN space-time has {p = constant} null
hypersurfaces for gPP = 0, which are given by

p± = M ± v'M2 - e2 - a2 . (6.3)

There is a ring curvature singularity p = 0 in the KN space-time. This space­
time has an event horizon at p = p+. It describes a black hole if and only if
M 2 2: e2 + a2

The Boyer-Lindquist coordinates are singular at p = P±. Therefore, to
remove this coordinate singularity t is replaced with a null coordinate v, and 1>
with an 'untwisting' angular coordinate <p using the following transformation:

p2 + a2
dt dv - L'l dp,

a
dq, d<p - .6 dp, (6.4)

and thus we express the KN metric in advanced Eddington-Finkelstein co­
ordinates (Misner et. al. [45] refer to these as Kerr coordinates) (v, p, 11, <p)
as:

(
2Mp e2

) . 2asin2 0
ds2 1 - -2- + 2 dv2

- 2dv dp + 2 (2Mp - e2
) dv d<p - TJd(i

TO TO To

+2a sin2 Odpd<p - [(p2 + a2
) sin2 11 + 2M:0; e

2

a2sin4 0] d<p2 (6.5)

The energy-momentum complexes of Einstein, Landau-Lifshitz, Papapetrou
and Weinberg are coordinate-dependent and require the use of quasi-Cartesian
coordinates. Thus we transform the above to Kerr-Schild Cartesian coordi­
nates (T, x, y, z) according to:

T

x

y

z

v- p,

sin 11 (p cos <p + a sin <p) ,

sinO(psin<p - acos<p) ,

pcosll, (6.6)

and one has the line element

ds2 = dT2 _ dx2 _ dy2 _ dz2 _ (2mp - e
2
) p2 x

p4 + a2z2

(
p a z )2

dT + 2 p2 (xdx + ydy) + 2 p2 (ydx - xdy) + -dz (6.7)
a + a + p
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The components of the energy-momentum tensor T~b, in quasi-Cartesian co-­
ordinates, are given by

where

2ay
_(R2 + a2 - 2x2 )

2xy
2xz

-2ax
2xy

_(R2 + a2 _ 2y2)

2yz

r~ = (R2
_ a2

)2 + 4a2 z2

(for details see in Cooperstock and Richardson[21J).

(6.9)

(6.10)

6.3 Energy distribution in Kerr-Newman met-.
rlC.

In this Section we first give the energy distribution in the KN space-time ob­
tained by some authors and then using the M011er energy-momentum complex
we obtain the energy distribution for the same space-time.

6.3.1 Previous results

The energy distribution in Komar's prescription obtained by eohen and de
Felice[16]' using the KN metric (6.1) in Boyer-Lindquist coordinates, is given
by

e2
[ (a2 + p2) (a)]EK = M - - 1 + arctan - .

2p ap p

(The subscript K on the left hand side of the equation refers to Komar.)
Aguirregabiria et al.[l] studied the energy-momentum complexes of Einstein,
Landau-Lifshitz, Papapetrou and Weinberg for the KN metric. They showed
that these definitions give the same results for the energy and energy current
densities. They used the KN metric (6.7) in Kerr-Schild Cartesian coordi­
nates. They found that these definitions give the same result for the energy
distributon for the KN metric, which is expressed as

e
2

[ (a
2

+ {l-) (a)]EELLPW = fl..1 - - 1 + arctan - .
4p ap p
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(The subscript ELLPV/ on the left hand side of the above equation refers
to the Einstein, Landau-Lifshitz, Papapetrou and Weinberg prescriptions)
It is obvious that the Komar definition gives a different result for the Kerr­
Newman metric as compared to those obtained using energy-momentum com­
plexes of ELLPW. However, for the Kerr metric (e = 0) all these definitions
yield the same results. These results obviously support the Cooperstock
hypothesis.

6.3.2 The Mpller energy distribution

In order to calculate the energy and momentum density components of the
Kerr-Newman metric using the Mpller energy-momentum complex [46J CS/
given by

1
CS k = -Xkl

t 87f t ,1

where the antisymmetric superpotential X/I is

kl Ik r-:: [ J km nlXi = -Xi = V -g gin,m - gim,n g g ,

the only required non-vanishing component of X/I is

Ol - 2(p2 + a2
) sin 0 ( 2 2 2 2)

Xo = (-:J. 2 20)2 M a cos 0 - Mp + e p .
p +a cos

Using the above expression in

1 II o~E = 81f Xo 11(3 dB,

(6.12)

(6.13)

(6.14)

(6.15)

for the energy E of a stationary metric, (where 11~ is the outward unit normal
vector over an infinitesimal surface element dB), we then obtain the energy
E inside a surface with {p = constant} given

e
2

[ (a2
+ p2) (a)]E M• l = /0,[ - - 1 + arctan - .

2p ap p
(6.16)

(The subscript Mpl on the left hand side of this equation refers to Mpller's
prescription.)
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6.3.3 Discussion of Results

The above result (Eq. 7.5), obtained using M0ller's complex, agrees with
the energy distribution (Eq. 6.10) obtained by Cohen and de Felice[16] in
Komar's prescription. It differs by a factor of two in the second term of
the energy distribution from that (Eq. 6.11) computed by Aguirregabiria et
al. using ELLPW complexes. However, in both cases the energy is shared
by both the interior and exterior of the KN black hole. It is clear that
the definitions of ELLPW, Komar, and now that of M011er also upholds the
Cooperstock hypothesis for the KN metric. The total energy (p -> 00 in all
these energy expressions) give the same result M.

0.9998

ii: 9996

o 25 50

x

7S 100

y

Figure 6.1: £ELLPW and £10;1 on Z-axis are plotted against n on X-axis and
S on Y-axis for Q = 0.1. The upper (transparent one) and lower surfaces
are for £ELLPW and £KM respectively.

Now defining

EELLPW
£ELLPW:= M '

a e
S:= M' Q:= Al'

EELLPW
£ELLPW := Af '

p
n:= M
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the equations (6.10), (6.11) and (7.5) may be expressed as

£ELLPW =.1 ~ ~ [1 + (~ + ~) arctan (~)] ,

and

(6.18)

(6.19)

The ring curvature singularity in the KN metric is covered by the event
horizon for (Q2 + 52) <:: 1 and is naked for (Q2 + 52) > 1. In Fig. 1 we plot
£ELLPW and £KM against Rand 5 for Q = 0.1. As the value of R increases
the two surfaces shown in the figure come closer.

6.4 Conclusions

The prescriptions of Einstein, Landau and Lifshitz, Papapetrou, and Wein­
berg used for calculating the energy-momentum distribution in a general
relativistic system restrict one to make calculations in quasi-Cartesian co­
ordinates. This shortcoming of singling out a particular coordinate system
prompted M0IIer[46] to construct an expression which enables one to eval­
uate energy in any coordinate system. According to M0ller[46] this expres­
sion should give the same values for the total energy and momentum as
the Einstein's energy-momentum complex for a closed system. However,
M0ller's energy-momentum complex was subjected to some criticism (see in
M01Ier[47], Kovacs[39J, Novotny[5DJ). Further Komar[38] formulated a new
definition of energy in a curved space-time. This prescription, though not
restricted to the use of "Cartesian coordinates", is applicable only to the
stationary space-times. The M0ller energy-momentum complex is neither
restricted to the use of particular coordinates nor to the stationary space­
times. Recently, Lessner[41] pointed out that the M0ller definition is a pow­
erful concept of energy and momentum in general relativity. However, it is
worth noting that for the Reissner-Nordstrom metric EELLPW = M _e2 j(2p)
(the Penrose definition also gives the same result[74] and this provides the
weak field limit) whereas EKM01 = M - e2 j p does not give the weak field
lirilit. This question must be investigated carefully. In the next chapter we
investigate the Cooperstock hypothesis for the non-static space-times with
M0ller's energy-momentum complex.
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Chapter 7

Energy of the Nonstatic
Spherically Symmetric Metrics

7.1 Introduction

In a recent paper, Virbhadra[74] investigated whether or not the energy­
momentum complexes of Einstein, Landau and Lifshitz (LL) , Papapetrou,
and Weinberg give the same energy distribution for the most general non­
static spherically symmetric metric and, contrary to previous results of many
asymptotically flat spacetimes [1, 12, 13, 21, 63, 64, 65, 66, 67, 68, 70, 72,
77, 78J and asymptotically non-flat spacetimes [56, 70, 79, 80J, he found that
these definitions disagree. He observed that the energy-momentum complex
of Einstein gave a consistent result for the Schwarzschild metric whether one
calculates in Kerr-Schild Cartesian coordinates or Schwarzschild Cartesian
coordinates. The prescriptions of LL, Papapetrou and Weinberg furnish the
same result as in the Einstein prescription if computations are carried out
in Kerr-Schild Cartesian coordinates; however, they disagree with the Ein­
stein definition if computations are done in Schwarzschild Cartesian coordi­
nates. Thus, the definitions of LL, Papapetrou and Weinberg do not furnish
a consistent result. Based on this and some other investigations (see also in
Bergqvist[5], Bernstein and Tod [4]' Virbhadra concluded that the Einstein
method seems to be the best among all known (including quasi-local mass
definitions) for energy distribution in a space-time.

In the previous chapter we highlighted Lessner's arguments indicating the
importance of the MiiJller energy-momentum expression. So in the present
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chapter we wish to revisit the MiOller energy-momentum prescription by
presenting the result of our investigation [83] of the energy distribution in
the most general nonstatic spherically symmetric space-time using MiOller's
energy-momentum complex. This result is compared with the Virbhadra
energy expression obtained by using the energy-momentum complex of Ein­
stein. We also discuss some examples of energy distributions in different
prescriptions. In the next section we give the energy expression obtained by
Virbhadra[74J.

7.2 Virbhadra's energy result

The most general nonstatic spherically symmetric space-time is described by
the line element

This has, amongst others, the following well-known space-times as special
cases: The Schwarzschild metric, Reissner-Nordstr6m metric, Vaidya met­
ric, Janis-Newman-Winicour metric, Garfinkle-Horowitz-Strominger metric,
a general non-static spherically symmetric metric of the Kerr-Schild class
(discussed in Virbhadra's paper[74]). Virbhadra[74] explored the energy dis­
tribution in the most general nonstatic spherically symmetric space-time
(7.1) using the energy-momentum complex of Einstein (2.16). To com­
pute the energy E (= Po) using the 8 0

0 component of the Einstein energy­
momentum complex Virbhadra transformed the line element (7.1) to "Carte-­
sian coordinates" (t, x, y, z) using x = rsin {} cos r/>, y = rsin{}sin r/>, z = rcos {}
and t remaining the same. Then using (2.20) he obtained the energy distri­
bution which is given below:

(7.2)

where comma indicates partial differentiation. In the next Section we obtain
the energy distribution for the same metric in Moller's formulation.
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7.3 Energy distribution in M011er's formula­
tion

In this Section we use the energy-momentum complex of MQlller to obtain
energy distribution in the most general nonstatic spherically symmetric met­
ric given by the equation (7.1). Since the MQlller complex is not restricted to
the use of "Cartesian coordinates" we perform the computations in t, r, IJ, <jJ

coordinates, because computations in these coordinates are easier compared
to those in t, x, y, z coordinates.

The MQlller energy-momentum complex S'/ is given by (2.47), with the
anti-symmetric superpotential X/I given by (2.48). To compute the energy
distribution

E = 8~ !JXOO
fl

J1.fldS,

for the line element (7.1) under consideration we calculate

01 (n,T + 1',t) ar2 sin IJ
Xo = (n/3 + 1'2)1/2 '

(7.3)

(7.4)

(7.5)

which is the only required component of X~I for our purpose.
Using the above expression in equation (6.15) we obtain the energy dis­

tribution

E
_ (n,T + 1',t) ar2

M0! -
2 (n/3 + 1'2) 1/2

It is evident that the energy distribution for the most general nonstatic spher­
ically symmetric metric the definitions of Einstein and MQlller disagree in gen­
eral (compare (7.2) with (7.5)). However, these furnish the same results for
some space-times, for instance, the Schwarzschild and Vaidya space-times[66].
In the next Section we will compute energy distribution in a few space-times
using (7.2) and (7.5).

7.4 Examples

In this Section we discuss a few examples of space-times in the Einstein as
well as the MQlller prescriptions. We also test the Cooperstock hypothesis
with these examples.
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1. The Schwarzschild solution
This solution is expressed by the line element

Equations (7.2) and (7.5) furnish (see also in [46, 72])

(7.7)

showing that these two definitions of energy distribution agree for the
Schwarzschild space-time and the above results support the Cooper­
stock hypothesis.

2. The Reissner-Nordstrom solution
The Reissner-Nordstrom solution is given by

2 ( 2M e
2

) 2 ( 21v! e
2

) -1 2 2 (2 . 2 2)ds = 1 - 7 + r2 dt - 1 - 7 + r 2 dr -r dB + Sill Bdr/J ,

(7.8)
and the antisymmetric electromagnetic field tensor

e
Ftr =2'r

(7.9)

where M and e are respectively the mass and electric charge parame­
ters.

For this space-time equations (7.2) and (7.5) furnish (see also in [64, 21])

and

(7.10)

(7.11)

Both of these results obviously support the Cooperstock hypothesis.

3. The Janis-Newman-Winicour solution

This solution has been usually incorrectly referred to in the literature
as the Wyman solution. Virbhadra[72] proved that the Wyman solu­
tion is the same as the Janis-Newman-\Vinicour solution. As Janis,
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Newman and Winicour obtained this solution much before Wyman,
Virbhadra[74] rightly referred to this as the Janis-Newman-Winicour
solution. This solution is given by

( B)" ( B)-" ( B)l-"2 ? 2 2 2 -2 2ds = 1 ~ -:;: dt-~ 1 - -:;: dr - 1 - -:;: r (dO + sm 0 dt/J )

(7.12)
and the scalar field

where

<I> = q In (1 _B) ,
B.,f4; r

(7.13)

J1

B (7.14)

11.1 and q are the mass and scalar charge parameters respectively. For
q = 0 this solution furnishes the Schwarzschild solution.

Virbhadra[74] computed the energy expression for this metric using Eq.
(7.2). We do the same here using equation (7.5). Thus we find that

(7.15)

which shows that these two definitions of energy distribution agree for
the Janis-Newman-Winicour space-time.

4. Garfinkle-Horowitz-Strominger solution

The Garfinkle-Horowitz-Strominger static spherically symmetric asymp­
totically flat solution (see in [27]) is described by the line element (3.3).
In order to compute the energy distribution in Garfinkle-Horowitz­
Strominger space-time using the energy-momentum complex of Ein­
stein, Chamorro and Virbhadra[12] transformed (3.3) to quasi-Cartesian
coordinates (3.8) . Then, by making use of (2.16) they found the fol­
lowing expression in Einstein prescription:

(7.16)
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We compute the energy distribution for the Garfinkle-Horowitz-Strominger
space-time using equation (7.5) and obtain

(7.17)

Thus, these two definitions give different results (there is a difference
of a factor 2 in the second term) but they obviously support the Coop­
erstock hypothesis.

Now defining

E. ._ EEins,
Emst·- lv! '

e
Q:= AI'

r
R'=-'M

(7.18)

the equations (7.16) and (7.17) may be expressed as

Q:< 2
EEins, = 1 - 2R (1 ~ ). ) (7.19)

and
Q2 2

EMo! = 1 - n (1 -). ) (7.20)

For ).2 = 1, EEins< = EM•I = A!; however, they differ for any other values
of).2 For any values of ).2 < 1, EEins, as well as EM.' decrease with
an increase in Q2 and increase with increase in R. EEins, > EM.' and
they asymptotically (R -t 00) reach the value 1. The situation is just
opposite for any values of ).2 > 1 : EEins, as well as EMo' increase with
an increase in Q2 and decrease with increase in R. EEinst < EMo' and
they asymptotically (R -t 00) reach the value 1.

We plot the energy distributions EEins, and EMo' for). = 0 (Reissner­
Nordstrom space-time) in the figure 1 and for ).2 = 1.2 in figure 2.
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Figure 7.1: £Einst and £Mo' on Z-axis are plotted against R on X-axis and Q
on Y-axis for A = 0 (Reissner-Nordstriim metric). The upper (grid-like) and
lower surfaces are for [Eh'" and £Mc' respectively.

7.5 Conclusion

Based on some analysis of the results known with many prescriptions for en­
ergy distribution (including some well-known quasi-local mass definitions) in
a given space-time Virbhadra[74] remarked that the formulation by Einstein
is still the best one. Lessner[41] argued that the M!1Iller energy-momentum
expression is a powerful concept of energy and momentum in general rel­
ativity, which motivated us to study this further. We obtained the energy
distribution for the most general nonstatic spherically symmetric metric using
M!1Iller's definition. The result we found differs in general from that obtained
using the Einstein energy-momentum complex. However, these agree for the
Schwarzschild, Vaidya and Janis-Newman-Winicour space-times. They dis­
agree for the Reissner-Nordstriim space-time. For the Reissner-Nordstriim
space-time EEiost = M - e2((2r) (the seminal Penrose quasi-local mass def-
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Figure 7.2: £Einst and £M01 on Z-rods are plotted against n on X-rods and Q
on Y-rods for ).2 = 1.2. The upper (grid-like) and lower surfaces are for £M01

and £Ems' respectively.

inition also yields the same result agreeing with linear theory[59]) whereas
EM.' = M - r?fr. This question must 'be considered inlportant. M~ller's

energy- momentum complex is not constrained to the use of any particular
coordinates (unlike the case of the Einstein complex); however, as we have
shown above, it does not furnish expected result for the Reissner-Nordstriim
space-tinle. We agree with Virbhadra's conclusion that the Einstein energy­
momentum complex is still the best tool for obtaining energy distribution in
a given space-tinle.
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Chapter 8

Summary and Conclusion

An important feature of conserved quantities such as the energy, momen­
tum and angular momentum is that they play a very fundamental role in
any physical theory as they provide a first integral of equations of motion
(Nahmad-Achar and Schutz[48]). These help to solve, what would other­
wise be, intractable problems, for instance, collisions, stability properties
of physical systems etc. Conservation laws of energy-momentum, together
with the equivalence principle, played a significant role in guiding Einstein's
search for generally covariant field equations. Evidently, it is desirable to
incorporate conserved quantities in general relativity. Energy-momentum is
an important conserved quantity whose definition has been a focus of many
investigations. Unfortunately, there is still no generally agreed definition of
energy and momentum in general relativity.

Einstein's formulation of energy-momentum conservation laws in the form
of a divergence to include contribution from gravitational field involved the
introduction of a pseudotensor quantity t/. Owing to the fact that t/ is not
a true tensor (although covariant under linear transformations), Levi-Civita,
Schriidinger, and Bauer expressed some doubts at the validity of Einstein's
energy-momentum conservation laws. Although, Einstein defended the use
of a pseudotensor quantity to represent gravitational field and showed that
his energy-momentum pseudocomplex provides satisfactory expressions for
the total energy and momentum of closed systems, the problems associated
with Einstein's energy-momentum complex, used for calculating the energy
and momentum distribution in a general relativistic system, was followed by
many definitions, some of which are coordinate dependent and others are
not. The physical meaning of these was questioned, and the large number
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of the definitions of energy-momentum complexes only fuelled scepticism
that different energy-momentum complexes could give unacceptable different
energy distribution for a given space-time. The problems associated with
energy-momentum complexes resulted in some researchers even doubting the
concept of energy-momentum localization.

Misner et al [45] argued that to look for a local energy-momentum is look­
ing for the right answer to the wrong question. They further argued that en­
ergy is only localizable for spherical systems. Cooperstock and Sarracino [22J
countered this point of view, arguing that if energy is locaIizable in spherical
systems then it is localizable in any space-times. Bondi[6rnoted that a nonlo­
calizable form of energy is not admissible in general relativity. The viewpoints
of Misner et al discouraged further study of energy localization and on the
other hand an alternative concept of energy, the so-called quasi-local energy,
was developed. To date, a large number of definitions of quasi-local mass have
been proposed. The uses of quasi-local masses to obtain energy in a curved
space-time are not limited to a particular coordinates system whereas many
energy-momentum complexes are restricted to the use of "Cartesian coordi­
nates." Penrose[53] emphasized that quasi-local masses are conceptually very
important. Nevertheless, the present quasi-local mass definitions stilI have
inadequacies. For instance, Bergqvist[5] considered quasi-local mass defini­
tions of Komar, Hawking, Penrose, Ludvigsen-Vickers, Bergqvist-Ludvigsen,
Kulkarni-Chellathurai-Dadhich, and Dougan-Mason and concluded that no
two of these definitions give agreed results for the Reissner-Nordstr0m and
Kerr space-times. The shortcomings of the seminal quasi-local mass defini­
tion of Penrose in handling the Kerr metric are discussed in Bernstein and
Tod[4], and in Virbhadra[74]. On the contrary, the remarkable work ofVirb­
hadra, and some others, and recent results of Chang, Nester and Chen have
revived the interest in various energy-momentum complexes.

Virbhadra, and co-workers considered many space-times and have shown
that several energy-momentum complexes give the same and acceptable re­
sults for a given space-time. Aguirregabiria et al. [1] proved that several
energy-momentum complexes "coincide" for any Kerr-SchiId class metric.
Virbhadra [74] showed that for a general non-static spherically symmetric
metric of the Kerr-Schild class, the energy-momentum complexes of Einstein,
Landau and Lifshitz, \Veinberg and Papapetrou furnish the same result as
Tod obtained using the Penrose quasi-local mass definition. These are fasci­
nating results. Recently, Chang, Nester and Chen [14] demonstrated that by
associating each of the energy-momentum complexes of Einstein, Landau and
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Lifshitz, M0ller, Papapetrou, and Weinberg with a legitimate Hamiltonian
boundary term, then each of these complexes may be said to be quasi-local.
Quasi-local energy-momentum are obtainable from a Hamiltonian. Hence
energy-momentum complexes are useful expressions for computing energy
distributions.

Virbhadra and Parikh [67] calculated, using the energy-momentum com­
plex of Einstein, the energy distribution for a spherically symmetrically
charged black hole in low-energy string theory and found that the energy
is confined to the interior of the holes. Using Einstein's energy-momentum
complex, Chamorro and Virbhadra [12J studied the energy distribution as­
sociated with static spherically symmetric charged dilaton black holes for an
arbitrary value of the coupling parameter which controls the strength of the
dilaton to the Maxwell field, and got an acceptable result. We [77, 78J, (for a
discussion see chapter 3) computed energy distributions in these space-times
using the Tolman form of the Einstein's complex and confirmed both of the
above computations. In the case of static spherically symmetric charged dila­
ton black holes the energy distribution depends on the value of the coupling
parameter while the total energy does not depend on this parameter.

Earlier investigations [12, 13, 21, 63, 64, 65, 66, 67, 68, 72] with many
asymptotically flat space-times indicated that several energy-momentum com­
plexes give the same and acceptable result for a given space-time. Rosen and
Virbhadra [56, 71] showed, using the Einstein-Rosen space-time, that even
for an asymptotically nonflat space-time many energy-momentum complexes
could give the same and persuading results. We[79] computed the energy
distribution in the Ernst space-time, using the Einstein energy-momentum
complex and got encouraging results. This prompted us to investigate energy
distribution in Melvin's magnetic universe (which is a special case of Ernst
space-time) using several different energy-momentum complexes. We[81J
found that the energy-momentum complexes of Einstein, Landau and Lif­
shitz, and Papapetrou give the same and acceptable energy distribution in
Melvin's magnetic universe(for a discussion see chapter 4) . These results
uphold the importance of energy-momentum complexes.

The work of Rosen[55J and Cooperstock [18J on the energy of the universe
was followed by the investigations of Johri et al [37J, and Banerjee and Sen [3J.
These researchers studied the energy content of the universe using different
models. Using the Einstein energy-momentum complex, Rosen [55J studied
the total energy of a closed homogeneous isotropic universe described by
the Friedmann-Robertson-Walker (FRW) metric and found that to be zero.
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Cooperstock [18] concluded, after making use of calculations involving killing
vectors, that for a conformal Friedmann-Robertson-Walker metric the total
energy density is equal to zero. Johri et al. [37] showed, using the Landau
and Lifshitz definition, that the total energy of an FRW spatially closed
universe is zero at all times irrespective of equations of state of the cosmic
fluid. They also showed that the total energy enclosed within any finite
volume of the spatially flat Fm-\' universe is zero at all times. Using the
energy-momentum complex of Einstein, Banerjee and Sen [3J showed that
the energy and momentum density components vanish in the Bianchi type
I space-times. We[80] extended the investigations of Banerjee and Sen with
the energy-momentum complexes of Landau and Lifshitz, Papapetrou, and
Weinberg to check whether these complexes could give different results for
the Bianchi type I space-times. We got the same results as obtained by
Banerjee and Sen [3] (for a discussion see chapter 5).

The Kerr-Newman (KN) solution is the most general black hole solution
to the Einstein-Maxwell equations. Cohen and de Felice [16] investigated
energy distribution in this space-time using Komar's prescription. This was
followed by the investigations of Virbhadra [63, 64] and Cooperstock and
Richardson [21] who showed (up to the third order and seventh order, respec­
tively;of rotation parameter) that the energy-momentum complexes of Ein­
stein and Landau-Lifshitz give the same and reasonable energy distribution
in KN space-time. Aguirregabiria et al. [1] performed exact computations for
the KN energy distribution,in the prescriptions of Einstein, Landau-Lifshitz,
Papapetrou, and Weinberg (ELLPW) in Kerr-Schild Cartesian coordinates.
They showed that the ELLPW complexes again gave the same energy dis­
tribution, but the second term of their result differs by a factor of two from
that obtained by Cohen and de Felice. Seeing the results that the ELLPW all
give the same energy distribution, and Lessner's[41] conclusion that M0l1er's
energy-momentum expression is a powerful representation of energy and mo­
mentum we found it tempting to obtain energy using this prescription. We
first note that Florides [26] showed that for all static or quasi-static space­
times, the M0l1er's energy formula is equivalent to the Tolman's energy for­
mula (Eq. 2.27). We[82] evaluated the energy distribution for the KN space­
time in M0l1er's prescription. We found that the energy distribution in KN
space-time computed using 1I0l1er energy-momentum complex agrees with
Komar mass obtained by Cohen and de Felice[16]. We also found that our
results support the Cooperstock hypothesis (for a discussion see chapter 6).

As already discussed, it has been shown with examples of many space-
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times that several energy-momentum complexes give the same and acceptable
energy distribution for a given space-time. Recently Virbhadra[74J investi­
gated whether or not several energy-momentum complexes give the same
result for the most general nonstatic sphericaIly symmetric metric, and con­
trary to previous results, he found that the prescriptions of Einstein, Landau
and Lifshitz, Papapetrou, and Weinberg all give different results. Based on
some analysis of the results known with many prescriptions for energy dis­
tribution (including some well-known quasi-local mass definitions) in a given
space-time Virbhadra[74J concluded that the formulation by Einstein is still
the best one. In order to test the validity of Virbhadra's conclusion and
to further investigate the Cooperstock hypothesis we[83] used the M0Iler's
energy-momentum complex to study the energy distribution in the most
general nonstatic sphericaIly symmetric space-time considered by Virbhadra
[74]. The M0ller energy distribution differs in general from that obtained
using the Einstein energy-momentum complex. Both prescriptions agree for
the Schwarzschild, Vaidya and Jani&-Newman-Winicour space-times, but dis­
agree for the Reissner-Nordstrom space-time. For the Reissner-Nordstrom
space-time both the Einstein prescription and the Penrose quasi-local mass
definition yields the same result which agrees with linear theory. This con­
firms Virbhadra's conclusion that Einstein's prescription is still the best tool
for finding energy distribution in a given space-time.

The main weaknesses of energy-momentum complexes is that most of
these restrict one to make calculations in "Cartesian coordinates", and the
large number of these energy-momentum complexes makes it difficult to de­
cide as to which one to use to compute energy-momentum distribution - given
the suspicion these would give different energy-momentum distributions for
a given space-time. The alternative concept of quasi-local mass is more at­
tractive because these are not restricted to the use of any special coordinate
system. There is a large number of definitions of quasi-local masses. It has
been shown[5] that for a given space-time many quasi-local mass definitions
do not give agreed results. On the other hand previous results[l] and our
results [79, 80, 81] show that for many space-times several energy-momentum
complexes give the same and acceptable energy-momentum for a given space­
time. The important paper of Chang, et al[14] dispels doubts expressed about
the physical meaning of these energy-momentum complexes. Our results
[82, 83] support Virbhadra's conclusion that Einstein's energy-momentum
complex is still the best available method for computing energy-momentum
in a given space-time. These results also support the Cooperstock hypothesis
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that the energy and momentum in a curved space-time are confined to the
regions of non-vanishing energy-momentum tensor Ti k of the matter and all
non-gravitational fields.
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