
Design of a Communication Infrastructure for GUISET Services

based on Multiple Enterprise Service Buses

Themba Shezi

(200702908)

A dissertation submitted in fulfilment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science, Faculty of Science and Agriculture

University of Zululand

KwaDlangezwa 3886

 RSA

Supervisor: E. Jembere

Co-Supervisor: Dr. J Oladosu

2013

i

DECLARATION

I, Themba Shezi, declare that this dissertation represents my own work and that this work has not

been previously submitted at any university or other institution of tertiary education. All sources

of information used in this work have been acknowledged.

Themba Shezi

Signature__________________

ii

DEDICATION

To my late father, John Shezi

iii

ACKNOWLEDGEMENT

First, I would like to thank the Almighty God, without his enduring mercy I could not have

achieved anything.

Secondly, I would like to express my gratitude to supervisors Mr E. Jembere and Dr J Oladosu

for their support and guidance throughout to make this research work a reality. I was very

fortunate to have them as my supervisors. I would also like to extend my special thanks to my

Prof. M.O Adigun and Prof. S.S Xulu for their fatherly support. I would also like to thank my

fellow researchers and friends L. Nkosi, S.C Makhaye, S.K.S Ngwenya, M. T Nene,S. W

Dlamini, S. Cebekhulu, P.T. Cwele and N.M Gumbi, thank you for all the support and

motivation you gave me during the course of this work. Thanks to all members of the Centre for

their support and assistance. In particular, P. Mudali, P.Tarwirei, B. Mutanga, A. Alaba, E. K

Olatunji, M.V Shabalala, S. Fatyi, O Kayode, N. Sibeko, Z. Ndlela and N. Mdletshe.

I would also like to thank my mother and the whole family for their love, understanding and

support.

Last, but not least, I would like to express my sincere appreciation to Miss P. Z Gumbi for her

support throughout this study.

iv

TABLE OF CONTENTS

DECLARATION ... i

DEDICATION .. ii

ACKNOWLEDGEMENT ... iii

ABSTRACT .. xii

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 Introductory Background .. 1

1.2 Statement of the Problem .. 4

1.3 Research Goal ... 6

1.4 Research Objectives .. 6

1.5Research methodology ... 6

1.5.1 Research Design ... 6

1.5.2 Research Methods and Techniques .. 9

1.6Dissertation Synopsis ... 11

CHAPTER TWO .. 12

BACKGROUND OF ENTERPRISE SERVICE BUS CONCEPT .. 12

2.1 Introduction .. 12

2.2 The GUISET Project .. 13

2.2.1 The GUISET Architecture .. 14

2.2.2 GUISET Integration Requirements ... 15

2.3 Enterprise Integration ... 16

2.3.1 Enterprise Resource Planning (ERP) .. 17

2.3.2 Enterprise Application Integration (EAI) ... 18

2.3.3 Enterprise Service Bus (ESB) ... 19

2.4 Service Oriented Architecture (SOA) .. 20

2.4.1 The Web Services ... 21

2.4.2 SOAP .. 21

2.4.3 Web Services Description Language (WSDL) ... 22

2.4.4 Service Discovery ... 22

2.4.5 UDDI Service registry .. 23

v

2.4.6 Service Selection ... 24

2.4.7 Web Service Composition .. 25

2.5 Enterprise Service Bus and Service Oriented Architecture .. 28

2.6 Comparison of Enterprise Integration Approaches .. 30

2.7 ESB Solutions .. 31

2.7.1 Assessing the ESBs ... 33

2.8 Overview of the selected ESBs .. 34

2.8.1 JBoss ESB ... 34

2.8.2 Mule ESB .. 38

2.8.3 Apache ServiceMix ESB .. 40

2.9 Chapter Summary ... 42

CHAPTER THREE .. 43

THEORETICAL EVALUATION OF ESBs .. 43

3.1 Introduction .. 43

3.2 General ESB Evaluations ... 44

3.3 Core GUISET ESB Evaluation .. 44

3.3.1 ESB High Availability .. 46

3.3.2 Data Transformation ... 47

3.3.3 Intelligent Message Routing (Content-based routing) .. 48

3.3.4 Dynamic Service Discovery ... 49

3.3.5 Service Composition ... 50

3.4 Analysis Methodology ... 50

3.4.1 Pair-wise comparison process .. 51

3.4.2 Priority Assignment and Judgments ... 55

3.4.3 The Overall Criteria Rankings .. 58

3.4.4 The Overall ESB Ranking .. 59

3.5 A discussion on Analysis of Results .. 60

3.6 Chapter Summary ... 61

CHAPTER FOUR ... 63

EMPIRICAL EVALUATIONOF ESBs ... 63

4.1. Introduction .. 63

vi

4.2. ESB with Service Orchestration ... 64

4.2.1 BPEL Engine and WS-BPEL.. 64

4.3. ESB and UDDI ... 65

4.3.1 The UDDI Registry .. 66

4.3.2 Dynamic service discovery and Selection .. 67

4.4. Motivating Scenario: Loan Broker Application ... 68

4.4.1 Implementation Overview .. 69

4.4.2 Walk-through of the Loan Broker Application .. 70

4.5. Integration Model Design for our ESB Performance Evaluation 71

4.5.1 Simple ESB – Direct Service Orchestration ... 71

4.5.2 ESB integrated with BPEL engine for service orchestration 74

4.5.3 ESB integrated with UDDI for dynamic service discovery ... 76

4.6. Performance Evaluation of ESBs ... 80

4.6.1 Scalability ... 80

4.6.2Average Response Time .. 81

4.6.3Throughput .. 81

4.6.4 Statistical Analysis Method .. 81

4.6.5 Experimental Setup and Results Analysis .. 83

4.7Chapter Summary ... 95

CHAPTER FIVE .. 96

ESB FEDERATION PATTERNS ANDPERFORMANCE EVALUATION 96

5.1 Introduction .. 96

5.2 Directly Connected ESB Federation Pattern .. 98

5.3 Brokered ESB Federation pattern ... 99

5.4 Hub and Spoke ESB Federation Pattern ... 99

5.5 Design of Federated ESB .. 100

5.6 Implementation of LoanBroker Scenario .. 104

5.6.1 Apache jUDDI Registry hosting LoanBroker Services .. 105

5.6.2 BPEL LoanBroker Processes.. 106

5.6.3 Implementation of Federated ESB Patterns.. 107

5.6.3.1 Directly Connected ESB Federation Pattern ... 108

vii

5.6.3.2 Hub and Spokes ESB Federation Pattern .. 109

5.6.3.3 Brokered ESB Federation Patterns .. 109

5.7 Performance Evaluation of Federated ESB Patterns .. 110

5.7.1Basic Assumption of the Simulation Model .. 111

5.7.2 Simulation Setup and Environment .. 111

5.7.4 Experimental Results and Discussion ... 112

5.7.5 Results Discussion .. 116

5.8 Performance Comparison of a single ESB and Directly Connected ESBs 119

5.8.1Configuration of each ESB with Apache ODE and jUDDI .. 120

5.8.2Performance evaluation of ESB integrated with UDDI and BPEL Engine 123

5.8.3 Comparing Performance Resultsfor ServiceMix and Directly Connected ESB ... 127

5.8.2.1 Increasing number of services discovered ... 128

5.8.2.2Increasing number of services published .. 129

5.8.2.3 Increasing number of concurrent requests with respect services published 129

5.8.3 Results Discussion for ServiceMix and Directly Connected ESBs 130

5.9 Chapter Summary .. 133

CHAPTER SIX ... 134

SUMMARY AND FUTURE DIRECTIONS ... 134

6.1 Summary ... 134

6.2 Limitations and Future Directions... 137

REFERENCES ... 139

Appendix A: ESB Configuration and Installations ... 145

Appendix B: Source Code .. 147

BPEL LoanBroker Process Implemented for ESB Federation ... 147

Dynamic Service Discovery Mechanism .. 153

viii

LIST OF FIGURES

Figure 1.1: The path from business agility to the ESB (Cape Clear, 2005) 3

Figure 2.1: GUISET Architecture (Adigun et al., 2006) .. 14

Figure 2.2: SOA publish-find-bind architecture ... 20

Figure 2.3: Web service standards (Papazoglou, 2008) .. 21

Figure 2.4: UDDI core data structure (Clement et al., 2004) ... 23

Figure 2.5: QoS information stored on UDDI tModel data structure (Blum and Fred, 2004) 24

Figure 2.6: BPEL Components ... 26

Figure 2.7: Sample BPEL process .. 28

Figure 2.8: JBoss ESB Architecture using example ... 37

Figure 2.9: Mule ESB Architecture .. 38

Figure 2.10: Apache ServiceMix ESB Architecture ... 42

Figure 3.1: AHP steps for Analysis of ESBs for GUISET ... 52

Figure 3.2: Average weights and Ranking for all criteria ... 59

Figure 4.1: LoanBroker Sequence diagram .. 71

Figure 4.2: ServiceMix configuration for Direct Service Orchestration 72

Figure 4.3: Mule configuration for Direct Service Orchestration ... 73

Figure 4.4: JBoss configuration for Direct Service Orchestration .. 73

Figure 4.5: ServiceMix configuration for BPEL Orchestration.. 74

Figure 4.6: Mule configuration for BPEL Orchestration .. 75

Figure 4.7: JBoss configuration for BPEL Orchestration ... 75

Figure 4.8: Overview of ESB integrated with UDDI ... 77

Figure 4.9: ServiceMix ESB integrated with UDDI ... 78

Figure 4.10: Mule ESB integrated with jUDDI .. 79

Figure 4.11: JBoss ESB integrated with UDDI .. 80

Figure 4.12: Response Time vs. No of Requests …………….………………………………………………………………84

Figure 4.13: Throughput vs. No of Requests…………………… .. 85

Figure 4.14: Response time vs. No of Requests…………………………………………………85
Figure 4.15: Throughput vs. No of Requests……………. ... 86

Figure 4.16: Response Time vs. No of services discovered……………………………………..88

Figure 4.17: Throughput vs. No of services discovered ... 90

Figure 4.18: Response time vs. No of services published……………………………………….89

Figure 4.19: Throughput vs. No of services published ... 91

Figure 4.20: Response time vs. no of requests…………………………………………………..90

Figure 4.21: Throughput vs. no of requests………. ... 92

ix

Figure 5.1: Overview Design solution for Federated ESB ... 100

Figure 5.2: Service Provider Component .. 101

Figure 5.3: Interaction between Federated ESB and other Components 102

Figure 5.4: BPEL Engine Component .. 103

Figure 5.5: The UDDI Registry Component... 104

Figure 5.6: Snapshot of the Apache jUDDI showing LoanBroker services published 106

Figure 5.7: BPEL defined LoanBroker process .. 107

Figure 5.8: Directly Connected ESB Federation implements of LoanBroker 108

Figure 5.9: Hub-Spoke Federation pattern implements LoanBroker .. 109

Figure 5.10: Brokered ESB Federation Pattern implements LoanBroker 110

Figure 5.11: Response Time vs. No of service discovered…………………………………….112

Figure 5.12: Throughput vs. No of service discovered ... 114

Figure 5.13: Response Time vs. No of service published ……...……………………………...113

Figure 5.14: Throughput vs. No of service published .. 115

Figure 5.15: Response time vs. increasing no of requests……………………………………...114

Figure 5.16: Throughput vs. increasing no of requests……………………………………...…114

Figure 5.17: Mule Integrated with UDDI and BPEL Engine ... 121

Figure 5.18: ServiceMix ESB integrated with UDDI and BPEL Engine 122

Figure 5.19: JBoss ESB integrated with UDDI and BPEL Engine .. 122

Figure 5.20: Response time vs. No. of services discovered…………………………………...112

Figure 5.21: Throughput vs. No. of services discovered .. 124

Figure 5.22: Response time vs. no of services published………………………………………112

Figure 5.23: Throughput vs. no of services published .. 124

Figure 5.24: Response time vs. No of Requests………………………………………………122

Figure 5.25: Throughput vs. No of Requests .. 125

Figure 5.26: Response time vs. no of services discovered……………………………………..127

Figure 5.27: Throughput vs. no of services discovered .. 129

Figure 5.28: Response time vs. no of services published……………...……………………….127
Figure 5.29: Throughput vs. no of services published……………………. 129

Figure 5.30: Response time vs. increasing no of requests……………………………………...128

Figure 5.31: Throughput vs. increasing no of requests………………………………………...128

x

LIST OF TABLES

Table 2.1: Comparisons of Enterprise Integration pattern .. 31

Table 2.2: ESB evaluations against general criteria ... 33

Table 3.1: Intensity Scale and Definition ... 52

Table 3.2: ESB technologies towards supporting GUISET integration requirements 53

Table 3.3: Pairwise comparison matrix for High Availability (HA) .. 55

Table 3.4: Normalized table for High availability .. 56

Table 3.5: Average Random Consistency (Al-Harbi, 2001) ... 57

Table 3.6: Pairwise Comparison matrix for the remaining criteria .. 58

Table 3.7: Pairwise comparison matrix for all five criteria .. 58

Table 3.8: Overall ESB Rankings ... 59

Table 4.1: P-Values for Direct and BPEL Service orchestration.. 87

Table 4.2: Means and grouping of ESBs for Direct and BPEL Service Orchestration 87

Table 4.3: P-Values for Dynamic Service Discovery ... 93

Table 4.4: Means and grouping of ESBs for Dynamic Service discovery 93

Table 5.1: P-Values for comparison of ESB Federation patterns ... 117

Table 5.2: Means and grouping for ESB Federation patterns ... 118

Table 5.3: P-Values for ESB integrated with UDDI and BPEL Engine 126

Table 5.4: Means and grouping of ESBs integrated with UDDI and BPEL Engine 127

Table 5.5: P-Values for Directly Connected ESBs and ServiceMix ESB 131

Table 5.6: Computed mean values for Directly Connected ESBs and ServiceMix ESB 132

xi

List ofPublications

 Shezi T., Jembere E., Adigun M.O., Nene M.T. (2013). Enabling Dynamic Service

Discovery and Composition in the Enterprise Service Bus. In Proceedings of SATNAC

2013 Conference, Stellenbosch, September 2013.

 Shezi T., Jembere E., Adigun M.O., Nene M.T. (2012). Analysis Of Open Source

Enterprise Service Buses Toward Supporting Integration In Dynamic Service Oriented

Environments. In Springer Link (LNICST series)for EAI Conference on e‐Infrastructure

and e‐Services for Developing Countries

 Shezi T., Jembere E., Adigun M.O. (2012). Performance Evaluation of Enterprise

Service Buses Towards Support of Service Orchestration. Proceedings, PSR Centre:

International Conference on Computer Engineering and Network Security (ICCENS),

Dec 26-27, 2012, Dubai, pp. 260- 264.

 Shezi T., Jembere E., Adigun M.O (2011). Towards Developing Failure Tolerant

Communication Framework for GUISET Services. In Proceedings of SATNAC

Conference, East London, Sept 2011.

xii

ABSTRACT

In recent years, Service Oriented Architecture (SOA) has become a paradigm for enabling more

efficient and flexible business processes in a service-based economy. The significance of this

paradigm results in many organizations moving their businesses and making them available as

online services so that they can be accessed ubiquitously by anyone connected to the network.

The idea is to increase level of resource sharing and collaboration among geographically

dispersed individuals/organizations. One of the successful SOA implementation that has recently

received a lot of attention is the Enterprise Service Bus (ESB). ESB provides a key infrastructure

that support guaranteed event handling, durable messaging, and data transformation capabilities

that are needed by SOA environments. The success of ESB resulted in many ESB products being

implemented and offered as both commercial and open source integration solutions. However,

these products offer different approaches towards achieving ESB capabilities. Therefore,

selecting the most suitable ESB becomes a challenging task, not only because there are many

factors to consider in this selection, but also owing to the relationships between these factors and

requirements of a particular integration scenario.

There are many research efforts that have attempted to assist in ESB selection. They only

consider evaluation of ESB products against given integration requirements. These evaluations

are only useful when there is an ESB product that best support all the integration requirements of

a given environment. This is hardly the case because ESBs perform well in some capabilities and

worst in others. It is, therefore, believed that multiple ESBs can be integrated to get the best of

individual ESBs that can give better performance compared to a single ESB. On the backdrop of

the foregoing, this work considered GUISET integration requirements and investigated the

validity of the above mentioned belief by integrating multiple ESBs to work together as a

xiii

federation. Federation of ESBs allows each ESB to be used for the capability it best supports.

Key capabilities investigated in this study are Service Discovery and Composition. An

investigation was carried to find out which among the three (3) ESBs (ServiceMix, Mule and

JBoss) considered best supports each of the afore-mentioned capabilities. The results showed

that ServiceMix has the best support for Service Composition while JBoss has the best support

for Service Discovery. These findings were then used for empirical evaluation of Directly

Connected, Hub-Spoke and Brokered ESB Federation patterns, with each ESB providing the

capability it best supports to the federation. Directly Connected ESB federation pattern

outperformed the other patterns. We then compared the performance of Directly Connected ESB

Federation and ServiceMix ESB to determine whether ESB federation has better performance

compared to a single ESB. The results showed that ESB federation has better performance in

terms of response time and throughput compared to a single ESB.

1

CHAPTER ONE

INTRODUCTION

1.1 Introductory Background

In today’s world, businesses either small or large are striving for growth and competitiveness in

order to be on the cutting edge. As a results business requirements and processes change

frequently. To retain its agility and adaptability, businesses must ensure that their supporting IT

systems and resources respond quickly to the changing business needs. The most basic needs of

any business include cutting costs, quicker response to customer needs, integration of different

systems across, the organization collaboration with other businesses through Business to

Business (B2B) and Business to Consumer (B2C) interactions and achieving greater Return on

Investment (ROI) (Fakorede,2007).

In response to the dynamic business needs, companies are required to build technologies from

scratch, integrate applications across incompatible platforms and manually coordinate business

process execution. None of these solutions are efficient because they are prone to error, very

costly, difficult to maintain and could result to duplication of effort. While this is the case,

business climate requires business processes to be automated to enable easy composition and

integration of different systems. In addition, systems must be developed in such a way that they

are supported across heterogeneous environment such as various operating systems, hardware,

programing languages and middleware. One solution that meets these requirements is Service

Oriented Architecture (SOA) (Papazoglu and Heuvel, 2007).

SOA has become a paradigm that allows interoperability between heterogeneous systems. SOA

is acknowledged as architecture for integrating more complex systems at reduced cost and

developing loosely coupled applications by means of services. Services are self-contained, well

2

defined and independent software component that defines a certain business function. Web

service standards are the key enabling technologies for SOA. These standards include Web

Service Definition Language (WSDL) which is an XML-based language for defining web

services, Universal Description, Discovery and Integration (UDDI), which act as a repository for

storing information about web services and SOAP which defines message structure for

communication exchange over the Internet.

The significance of SOA paradigm in enabling efficient and effective business processes in the

service-based economy results in many organizations moving their businesses to making them

available as online services so that they can be accessed ubiquitously by any entity connected to

the network (Serhani, 2010). The idea is to increase level of resource sharing and collaboration

among geographically dispersed individuals and organizations. However this shift has partially

reached Small, Medium and Micro Enterprises (SMMEs) especially in African countries due to

the cost associated with the underlying infrastructure that realize this new way of doing business

(Adigun et al., 2006; Bauler et al., 2006; Zdravkovic et al., 2007). Therefore, to address this

issue and others, an open dynamic service oriented and grid environment called Grid-based

Utility Infrastructure for SMME Enabling Technologies (GUISET) was proposed in (Adigun et

al., 2006).

GUISET aims to leverage on the existing computing paradigm such as Service Oriented, Grid

and Utility computing to provide affordable technologies to SMMEs. The idea is to provide a

platform that would allow SMMEs to share information and resources thereby helping them to

sell their products online and increase their trading territory without spending much on the

technology. Chapter Two presents more details about GUISET.

3

The SOA implementation based on endpoints alone falls short of the key enabling infrastructure

that support data transformation, guaranteed event handling, durable messaging and orchestration

of multiple services using workflows (Genender, 2006). The importance of these additional

requirements led to the concept of Enterprise Service Bus (ESB).Figure 1.1 shows the path from

business needs to the ESB product. As previously mentioned, SOA is an architecture that

delivers flexible, interoperable and cost saving approach towards achieving business needs.

While, on the other hand, Web service is the key enabling technology for SOA architecture. ESB

is an open, standard-based integration infrastructure designed to enable the implementation,

deployment and management of SOA-based solutions with a focus on assembling, deploying and

managing distributed SOA (Papazoglu and Heuvel, 2007).

Figure 1.1: The path from business agility to the ESB (Cape Clear, 2005)

ESB integrate heterogeneous applications by providing a standard-based integration platform

that combines web service, messaging routing, data transformation and service virtualization.

Message routing is the core capability of ESB and it is based upon a number of factors, such as

message content, message header and transport type. Data transformation is another capability of

4

ESB that enables data to be changed from source format to the one required by the destination

application. Data transformation support loose coupling of communicating applications. Thus an

ESB is responsible for transporting data, transforming it and routing it to the appropriate

endpoint service (Goldshlager and Zhang, 2005; Ziyaeva et al., 2008).The industrial success of

ESB technology resulted in many products being implemented and offered as both commercial

and open source products. Commercial products include Biztalk server, BEA Aquatic Service

Bus, IBM WebSphere, Tibco, and Oracle ESB. Open source market includes Mule, ServiceMx,

WSO2, JBoss, Petals and Open ESB (Vollmer et al., 2011). These product implementations

provide different approaches towards realizing ESB capabilities so the problem of how to select

the most suitable ESB product for a given business requirements is critical (Kruessmann et al.,

2009). Not only because there are many factors to consider in the selection, but also owing to the

relationships between these factors and the requirements of a particular integration scenario. This

work argues that a centralized single ESB cannot best support all the GUISET integration needs

owing to the fact that ESBs use different approaches towards achieving a certain integration

capability. In view of the foregoing, this work aimed to do the following:

i). Evaluate the existing ESB implementations towards supporting GUISET integration

requirements.

ii). Based on the results obtained from the evaluation, the work further determines an

infrastructure that would best support GUISET integration requirements.

1.2 Statement of the Problem

Currently, there exist many ESB implementations on the market, so selecting one ESB to support

all the integration requirements is a challenging task. The existing literature suggests qualitative

and empirical evaluation of ESBs against the given integration requirements. This evaluation can

5

only be sufficient if there is a single ESB product that best support all the required integration

capabilities. However, it is possible to have multiple ESBs offering the best support for different

integration capabilities required. For example, ESB1 might perform well when considering data

transformation and intelligent routing but comparably worse on service composition. Therefore,

this work will explore the possibility of designing an infrastructure that best support all the

integration requirements needed by GUISET even though the above mentioned problem exists.

Recent research work has demonstrated the limitations of employing single centralized ESB to

support integration in large scale environments (Callaway et al., 2008; Nair S., 2009; Baude et

al., 2010). These limitations stem from the fact that today’s enterprises are distributed in nature,

so ensuring centralized single ESB in a geographically dispersed environment is challenging. In

addition, a single ESB might impose scalability issues which are particularly important for any

pervasive integration. Regardless of the nature of the business; these limitations are driving

today’s systems integration towards federated ESB models. Federated ESBs consist of multiple

ESB domains working together to form a single, logical ESB. There exist three federation

patterns that have been proposed, namely: Directly Connected, Hub-Spoke and Brokered ESB

Federation. However, none of the existing work known has investigated the performance of these

ESB federation patterns.

Therefore, in light of addressing the above mentioned challenges in the GUISET context, this

research work investigates the following:

How can the existing ESBs be integrated to best serve GUISET integration requirements?

(i) Which integration capabilities will GUISET services need?

(ii) Which existing ESB solution can best support each GUISET integration need?

6

(iii)How can the existing ESBs be integrated to ensure that each ESB is used for a capability

it best supports in a GUISET environment?

1.3 Research Goal

The goal of this research project was to determine the best strategy that can be used todesign a

communication infrastructure that best support the GUISET integration requirements.

1.4 Research Objectives

(i) To investigate which integration capabilities that GUISET services will need through

creation of GUISET usage scenarios.

(ii) To conduct literature survey on existing ESB solutions.

(iii) To determine which ESBs can best support a given GUISET integration need through

empirical comparative analysis of the ESBs.

(iv) To determine the best strategy of integrating multiple ESBs for GUISET environment

through empirical comparative analysis of the existing ESB federation patterns.

1.5Research methodology

The work to be conducted in this study is largely experimental with a lot of activities that are

dependent on each other. To give a better understanding on how this research was conducted

Section 1.5.1 presents the research design developed for this study. Section 1.5.2 discusses the

specific research methods used in this study and how they were applied to get scientifically

sound results from this study.

1.5.1 Research Design

This section summarizes the overall study design, activities and the extent of data resulting from

this research. Research design presented in this section was used to provide a framework for

7

designing a systematic study that would address the study’s research goal, objectives and

questions. In a sense, the research design is a blueprint of the research that deals with at least

four problem; what questions to study, what data are relevant, what data to collect and how to

analyze the results (Yin, 2008).

This work argues that that the conflicting ESB selection criteria can be tackled by integrating

multiple ESBs with each ESB responsible for the capability it best support. The purpose of this

work was to determine the best strategy that can be used to integrate multiple ESBs such that

GUISET integration requirements are best supported. Towards this aim, it was then important to

investigate which integration capabilities are needed by GUISET environment. This

investigation was based on the GUISET usage scenario. Scenario is defined as the combination

of actions or events that allows an organization to analyze complex business processes. Scenarios

are widely used by organization of all types to understand different ways that future events might

unfold (Gregory and Duran, 2001). The GUISET integration requirements obtained from the

scenario was then used to investigate which ESB has the best support for each GUISET

integration requirement. This investigation was used to ensure that when integrating multiple

ESBs, each ESB is used for the capability it best supports. Qualitative and empirical analysis of

ESBs was used for the above mentioned investigation.

 Qualitative analysis involved collecting evidences from vendors’ documentations and

publicly available evaluations of the ESBs published by independent entities. The data

collected was focused on the efforts made by ESBs towards supporting each of the

GUISET integration requirements. Having only data was not enough to make

conclusions on ESB capabilities, therefore, a Multi-Criteria Decision Analysis method

known as Analytical Hierarchical Process was used to further analyze data. Using AHP,

8

the GUISET integration requirements were ranked according to their importance towards

supporting integration in a GUISET and other service-based environment. The use of

multiple sources of evidence has been suggested as one of the several methods that can

be used to improve the quality of data and research findings (Patton, 2001; Yin, 2008).

To verify the findings obtained using AHP, this work employed an empirical analysis

method.

 The empirical method was used to comparatively evaluate the performance of ESBs

given the GUISET integration capability. The ESBs were deployed in a simulation

environment and the implementation allowed us to observe scalability, response time

and throughput as performance metrics. Although the results obtained from these metrics

provides the valuable information on how each ESB performed, the data was further

analyzed using statistical method known as Analysis of Variance (ANOVA). ANOVA

allowed us to observe the significant difference in the performance of ESBs.

The use of the above research methods provide the answer to the second research question of this

study as it seeks to determine the best ESB for each GUISET integration requirement. The third

and last research question seeks to determine the best strategy for integrating multiple ESBs. As

an attempt to answer this question, the ESB federation approach was used. ESB federation

allows multiple ESBs to work together to achieve integration objectives. There are three ESB

federation patterns that have been proposed and these are Directly Connected, Hub and Spoke

and Brokered ESBs. This research presented the comparative empirical evaluation of these

patterns with the aim of investigating their performance tradeoffs. The metrics used for

performance evaluation were scalability, response time and throughput. ANOVA was used to

analyze the data collected during the experimentation. The ESB federation pattern that had the

9

best performance was then compared with the single ESB that was found to be closer to meeting

the GUISET integration requirements. This comparison was to find out whether ESB federation

has better performance compared to a single ESB.

1.5.2 Research Methods and Techniques

From the foregoing discussion, it can be clearly seen that the main research activities in this

study were comparing ESBs’ performance on each GUISET integration requirement, comparing

different ESB federation patterns, and finally benchmarking the best performing ESB federation

pattern against a single best performing ESB. The discussion that follows presents how standard

research methods techniques were used throughout these activities.

1.5.2.1Literature Survey

Intensive literature survey was conducted with the aim of finding the background concepts of

enterprise service bus, multiple ESB integration patterns and GUISET. Survey on ESBs was

channeled to focus on the capabilities, characteristics, market visibility and configuration details

with the aim of finding the most popular and comprehensive ESBs. The knowledge gained from

understanding of GUISET and its background was used to formulate usage scenario so as to

ascertain GUISET integration requirements.

1.5.2.2 Qualitative Comparative analysis of ESBs

This method involved doing literature survey on each ESB towards supporting each GUISET

integration requirements. Having literature alone was not enough, so Multi Criteria Decision

analysis (MCDA) technique was used to analyze the results obtained from literature survey. In

addition, MCDA was used to determining which ESB had the better support for each integration

10

requirement needed by GUISET. Moreover, GUISET integration requirements were ranked

according to their importance.

1.5.2.3Experimentation: Empirical Comparative Analysis

This method enabled us to conduct the experiments involving the actual deployment and

configuration of ESBs services. Two sets of experiments were conducted. These were: (i)

experiments to evaluate the performance of each ESB on Service Discovery and Service

Composition, and (ii) Comparison of ESB federation patterns in the context of GUISET

integration requirements.

a. Empirical Comparative Analysis on ESBs

In this analysis, ESB performances were compared with the aim of finding ESBs that best

support Dynamic Service Discovery and Service Composition. Performance metrics

which included service response time and throughput were used for evaluation.

Scalability was also tested to check how ESB respond to load increase. The result was

used to select ESBs that perform best in a given GUISET integration scenario.

b. Empirical Comparative Analysis on ESB Federation patterns

This analysis used the results obtained from (a) above. Each ESB was used for the

capability it was found to best support (a) in each of the identified ESB federation

patterns. The results obtained from these experiments were then used to recommend the

best federation pattern to integrate two or more ESBs for a GUISET-like environment.

11

1.6 Dissertation Synopsis

The rest of the dissertation is organized as follows:

Chapter Two presents the background concept of this research work. These concepts include

GUISET and its integration requirements, enterprise integration, Enterprise Service Bus and

Service Oriented Architecture. In addition to these background concepts, we also analyzed and

selected the ESB implementations that would be used throughout this work.

Chapter three presents the literature review on ESB evaluations. This review was restricted to

only evaluations related to GUISET integration requirements. The ESB analysis in the context of

their support for GUISET integration requirements is also described. Chapter Four presents the

empirical evaluation of ESBs against the GUISET integration requirements. These evaluations

were done to find the best ESB that support each integration requirement.

Chapter Five then presents the concept of ESB Federation and also gives the overview of ESB

federation patterns. The implementation of each pattern was presented with the aim of

investigating their performances. Finally, the performance results and analysis of ESB federation

patterns were presented.

Chapter Six concludes the dissertation. The recommendation for future work is also presented.

12

CHAPTER TWO

BACKGROUND OF ENTERPRISE SERVICE BUS CONCEPT

2.1 Introduction

Over the past years, businesses were required to cope with the rapidly changing markets which

included new competitive pressure and trends that require information systems to respond

quickly towards supporting new business models and requirements (Ortiz, 2007). With changes

becoming more and more frequent it was not unusual for an enterprise to have developed and

collected large number of applications over time. These applications were usually diverse in

nature. In addition it was also a rare case if not none that a single application can cover the needs

of the whole organization. Therefore, this was one of the justifications for having small number

of applications developed over time. To respond quickly to the rapidly changing market

environments, enterprise integration emerged to address the enterprise needs of integrating

business applications into a single system to allow data to be shared internally, with the third

party and customers.

As indicated in Chapter One, the aim of this research was to determine the best strategy that can

be used to design a communication infrastructure that best support GUISET integration

requirements. This Chapter presents the background of key concepts in this study. GUISET and

its integration requirements are presented in Section 2.2.This is followed by the discussion of

approaches that have been proposed towards enabling enterprise integration (Section 2.3).

Among these approaches, Enterprise Service Bus has been the most successful and widely used

due to its use of open standards and its capability of integrating infrastructure that allows

fundamental Web service and SOA concepts to coalesce. Section 2.4 presents SOA concepts and

the web services technology. To qualify a product to be called an ESB, it should feature certain

13

core capabilities, these capabilities are presented in Section 2.5. In Section 2.6, we present the

summarized comparison of the enterprise integration approaches. The popularity of ESB led to

many products being implemented and made available on the market. These products are

architecturally different and they use different techniques towards achieving integration

capabilities. In Section 2.8, we evaluate five ESB products against general criteria with the aim

of selecting the three most comprehensive ESB products that will be used for evaluation against

GUISET integration requirements. Section 2.8 presents the details of the three selected ESB

products. Finally, Section 2.9 presents the chapter summary.

2.2 The GUISET Project

GUISET stands for Grid-based Utility Infrastructure for SMME Enabling Technologies.

GUISET is mainly motivated by the significance of SMMEs in stimulating economic growth and

generating employment that would results in local development especially in African countries.

SMMEs are challenged by unaffordable ICT infrastructures that would allow them to easily

expand their trading territory. This is believed to be one of the impediments to growth of SMME.

To address this issue GUISET was proposed (Adigun et al., 2006). GUISET aims to provide

affordable technology to SMME through utility approach to service delivery. The idea is to

provide a platform that would allow SMME to share information and products thereby helping

them to market and sell products online without spending much on technology. The question that

arises is how would this infrastructure ensure affordability? Using GUISET infrastructure,

SMMEs would register for only services they want and only pay as they use those services. To

make this possible, GUISET leverages on the existing computing paradigms including Grid,

Service Oriented Computing and Utility Computing.

14

 Grid computing allows GUISET services/resources to be distributed and shared across

multiple geographic and administrative domains

 Service Oriented Computing would allow GUISET components to be offered as services

that can be easily assembled to form new applications thereby increasing reuse of

services.

 Employing utility computing would ensure that all GUISET services are used and SMME

pay as they use these services. This model has been acknowledged as an efficient way of

offering service. Cloud computing is an example that utilized this model.

2.2.1 The GUISET Architecture

Figure 2.1 depicts the GUISET architecture. The architecture is divided into three layers. These

layers are Multi-Modal interfaces, Middleware layer and Grid Infrastructure Layer. The

architecture also maps the relationship among different entities of GUISET.

Figure 2.1 GUISET Architecture (Adigun et al., 2006)

15

Multi-modal interface layer contains services that are exposed as interfaces in this layer to

allow any client regardless of the underlying technology to have access. This layer establishes

the necessary interactions with the external entities (including SMMEs) and middleware layer.

Middleware layer contains information bus which enables the dynamic service discovery and

selection. Therefore, this layer describes the glue between Multi-modal interfaces and Grid

infrastructure layer.

Grid infrastructure layer is where GUISET services and resources reside. In this sense services

implement the business logic that is exposed as interface in the Multi-modal interface layer.

This study focuses more on Middleware layer where integration capabilities should be supported

due to diversity in terms of technology in such an environment. As previously mentioned that

this layer provides glue between the other layers, therefore, there is a great need to ensure that

the infrastructure employed at this layer is most suitable for necessary interaction to take place

effectively. For example, in the next section a typical GUISET scenario is given to show

interactions between different services.

2.2.2 GUISET Integration Requirements

To ascertain GUISET integration requirements, we consider a Stock purchasing application

offered by GUISET to its customers. To successfully complete the purchasing process a number

of services need to communicate and exchange messages. These services include order

validation which is responsible for validating whether order has all the necessary information for

it to be processed. On the other hand, there is stock control service which checks and reserve

items purchased. Finally, the shipping service is required to deliver the purchased order to the

16

relevant destination. From this GUISET usage scenario the following integration requirements

were gathered:

 An integration middleware is required through which all GUISET components and services

can have reliable message exchange, therefore minimizing downtime of services

 A facility for mapping data format from source application to the one required by destination

application to avoid incompatibilities between interacting applications.

 Intelligent routing of messages between services. GUISET would offer Quality of Service

(QoS) aware services. Services with similar functionalities would be selected based on their

QoS.

 Support for service composition to allow service reusability by forming new application

from existing services. For example Stock purchasing application is formed by existing

services which can be used for other functions as well.

 Support for dynamic service discovery. For example whenever the requested service is

unavailable it should be possible to substitute this service without affecting the client

application.

As previously mentioned, the main aim of this work was to evaluate the existing integration

mechanism in support of GUISET integration requirements. Section 2.3 overview different

enterprise integration approaches.

2.3 Enterprise Integration

Enterprise Integration is a technical field which focuses on issues such as system interconnectors,

electronic data exchange, and product data exchange in distributed computing environments

(Lima, 2011). Enterprise Integration aims to connect and combine people, processes, systems

17

and technologies to ensure that the right people and the right processes have the right

information and the right resources at the right time (Brosey et al., 2002). A typical scenario

where application integration becomes major concern is when the purchase order application

which is generated using the company’s e-commerce application needs to query a customer

loyalty database to determine whether the customer has done enough business with the company

in the past to merit for special pricing or treatment. To successfully accomplish this process more

than one applications must effectively and flexible communicate and exchange data.

To address issues of enterprise integration, three approaches has been proposed. These

approaches are Enterprise Resource Planning, Enterprise Application Integration and Enterprise

Service Bus. ESB approach is based on Service Oriented Architecture (SOA), so this concept is

also introduced for the better understanding of this approach.

2.3.1 Enterprise Resource Planning (ERP)

Back in the days ERP was the dominating enterprise integration approach due to its tightly

integrated solution for organization’s information system needs. ERP is a business management

system that comprises of integrated sets of comprehensive software modules that assist to

successfully implement, manage and integrate all business functions within an organization

(Themistocleous et al., 2004). With ERP, important parts of business are managed. These parts

include product planning, parts purchasing, maintain inventories, interacting with suppliers,

providing customer service and tracking orders. ERP has the ability to centrally facilitate flow of

information between all supply chain processes in an organization. However, the architecture of

ERP follows the centralized management model. Moreover, applications communicate directly

with each other in a point-to-point method, which can lead to maintenance cost increases and

difficulty to reuse application. In addition, implementation of ERP solution is extensive, lengthy,

18

and expensive. The startup costs for large organizations were typically measured in millions of

dollars (Shehab et al., 2004). Hence, with these drawbacks of ERP, the research for alternative or

supplementary technology was done and EAI was proposed.

2.3.2 Enterprise Application Integration (EAI)

EAI was proposed not only to improve the drawbacks of ERP but also to enable effective

integration of both intra and inter-organization system by allowing applications to communicate

with the broker using adapters. According to Soomro and Awan (2012), EAI can be defined as

the “combination of processes, software standards and hardware that results in the seamless

integration of two or more applications”. EAI is unlike the ERP which consume more time and

money by requiring the rewriting of code for integration, EAI uses a special middleware that act

as the broker between applications to enable seamless system integration. Typically these

middleware are Message Oriented Middleware (MOM) products. MOM allows communication

between applications to be asynchronous, but also can be synchronous. Asynchronous

communication offers an advantage by allowing a sending application to send message

regardless of whether the receiver is up and running. The message is stored by the broker and can

be received some other time. This communication is efficient because the sender is not blocked

during the communication and it can be processing other things while waiting for response.

There are two basic architectures for EAI

 Hub and Spoke – This integration technique has a centralized broker (Hub) and adapters

(Spoke) where the transformation and routing of messages occurs. Spokes connects

applications to the Hub. Moreover, Spokes transform data to the format that Hub

understands and vice versa. Hub brokers all messages and determines the appropriate

19

destination. Hub and Spoke offers an easy to manage integration, however scalability is the

major concern. In addition to scalability, broker is the performance bottleneck and the

single point of failure.

 Bus – The drawbacks of Hub and Spoke introduced serious limitations and projects that

adopted it were not successful (Soomro and Awan, 2012). This led to the new integration

solution based on the Bus. A Bus is the centralized messaging backbone where

applications publish and consume messages using adapters. The main difference with the

Hub and Spokes is that the Bus architecture enables integration engine that performs

transformation and routing to be distributed in the application adapters. This architecture

achieves a better scalability than Hub and Spokes but it difficult to manage.

The major problem with EAI solutions is that they often use proprietary protocols which lack

standards to improve interoperability with other solutions. Lack of interoperability can lead to

isolated EAI- based infrastructures. Proprietary solutions come with lot of functionalities

packaged as the product. Most of these functionalities are never used but their costs are included

during purchasing. So organizations are constantly incurring unnecessary additional costs.

2.3.3 Enterprise Service Bus (ESB)

The early adoption of EAI solutions specifically Bus model led to ESB. In short ESB is a

collection of middleware services which provides integration capabilities. The difference

between ESB and EAI is that ESB is based on open standards which eliminate technology lock-

in. ESB is designed to be the main implementation of Service Oriented Architecture, so it has all

the advantages that SOA offers (Menge, 2007). ESB is the state-of-art in enterprise integration

and SOA. Hence before looking deep into the ESB paradigm, it is necessary to give a brief

discussion on SOA.

20

2.4 Service Oriented Architecture (SOA)

SOA was introduced to enhance the domain of information system development by addressing

requirements of loosely coupled, standard-based and protocol independent communication

between distributed systems/applications (Papazoglou and Heuvei, 2007). SOA is defined as a

set of guidelines, architectural patterns, acceptable and recommended practice for defining

business functions as independent services described using Web Service Description Language

(WSDL), published on the Universal Description, Discovery and Integration (UDDI) and

communicated via SOAP messages over the network as shown represented by publish-find-bind

shown in Figure 2.2 below. At the core of SOA, are services which are self-describing, open

components that support rapid, low-cost composition of distributed application.

The adoption of SOA allow developers effectively overcome distributed enterprise computing

challenges that include application integration and transaction management while enabling

multiple heterogeneous platform and protocols to have access to devices and legacy systems.

Therefore SOA eliminate barriers so that application integration can run seamlessly.

Figure 2.2: SOA publish-find-bind architecture

Web service technology is the key enabler for SOA, for the better understanding of the concept

an overview of this technology is given below.

21

2.4.1 The Web Services

Web service is defined by W3C as a service that supports web standards. More specifically, it is

exposed through network and can be accessed by any other application connected to the network.

The accessibility of web service is completely platform independent because of its formal

description that is defined using WSDL. The communication between web services and other

applications is made possible by SOAP protocol transported via HTTP. Web service is an

abstract notion which should be implemented by either concrete software or an interface to it.

The flexibility and open standard compliant that web services offer has made it to be widely

supported by major software vendors (Papazoglou, 2008). Key web service standards are as

shown in Figure 2.3. This work focuses on SOAP, WSDL and BPEL standards of web services.

In addition, this work presents web service discovery and selection as the concepts that allow

web services to be discovered and selected by other services, applications and business

processes.

Figure 2.3: Web service standards (Papazoglou, 2008)

2.4.2 SOAP

SOAP is the XML based communication protocol which allows the exchange of messages

between distributed applications. SOAP defines a message structure that can be transported by a

22

number of protocols including HTTP, Java Message Service (JMS), XMPP and SMTP. However

HTTP is the most used protocol for transporting SOAP messages.

2.4.3 Web Services Description Language (WSDL)

WSDL is an XML language used to describe the publicly available functions and methods of a

web service. WSDL interface is divided into two parts namely abstract and concrete part.

Abstract defines the general information about the service while concrete gives technical

information to assist in finding and using the web services.

2.4.4 Service Discovery

Web service technology has gained a lot of attention in developing distributed applications and

systems on the Internet. The rapid growth of published web services makes their discovery

process to be a complex task. The most important part of any SOA environment is how other

applications find information about a service. This is typically provided by service discovery.

There are several steps involved in discovering a web service.

 The requester describe the service it requires and then send it to the discovery service to

search and return the information about service (s) that match the requester’s description.

The discovery service either return full service description or a list of matching services

 Upon receiving matching service, the requester and the provider agree on the way they

are about to communicate.

 Then the two entities might start exchanging SOAP messages according to the

functionalities required by the requester.

One of the most successfully technology for service discovery is UDDI service registry.

23

2.4.5 UDDI Service registry

UDDI is a repository for storing information about the web services (Clement et al., 2004).

Service providers publish the information about their services in the UDDI. These services are

discovered and used by any interested parties. The information stored on the UDDI includes

business and service description. Business description consists of service provider’s name and

other relevant information. Service description consists of web service name, functionalities

offered and technical information on how to access the web service. Figure 2.4 illustrates the

data structures that exist in the UDDI registry and they are businessEntity, businessService,

bindingTemplate and tModel.

 businessEntity describe information about the service provider that has published the

Web service

 businessService describes the functionality provided by Web service

 bindingTemplate provide description of the details on how to access the web service

 tModeldescribes the technical information that include categorizations and specifications

of a web service.

Figure 2.4: UDDI core data structure (Clement et al., 2004)

24

2.4.6 Service Selection

Service selection is the process of selecting the appropriate service based on the specified

requirements. The wide acceptance of SOA can result in many services that provide the same

functionalities being published in the UDDI registry. So the major problem is how to select a

single service from the list of matching services. Quality of Service (QoS) has been proposed as

the differentiating factor among services that provides the same functionalities. QoS is the non-

functional attributes of the web service. QoS attributes include web service performance,

dependability, price and reputation (Mareno and Raffeala, 2010). Unfortunately the current

implementation of UDDI service registries does not store QoS information. Blum and Fred

(2004) suggested that QoS information of the Web service can be stored inside UDDI registry by

using categorization structure of the tModel. This approach has been widely used by a number of

authors. Figure 2.5 shows tModel structure storing the QoS information as proposed by Blum

and Fred.

Figure 2.5: QoS information stored on UDDI tModel data structure (Blum and Fred, 2004)

25

The categoryBag has keyedRefence field where QoS information about the web service is stored.

The structure has tModelKey which uniquely differentiate QoS attributes of the service,

keyName stores the name of QoS attributes and keyValue is the actual value of the QoS.

2.4.7 Web Service Composition

In SOA environments, to enable business-to-business and enterprise level application integration,

composition of web services plays an important role. Sometimes it is always possible that a

single service cannot be able to fulfill the requester’s need, therefore different web services are

combined through composition method to achieve a specific business goal. This is the core of

SOA as it aims to promote service reuse by creating new services from the existing ones. There

are two methods towards service composition, namely service choreography and orchestration.

2.4.7.1 Web Service Choreography

Web service choreography is a composition technique that is based on collaboration. In this

technique all web service participating in the composition are treated as equal entity with no

central control of the execution. Participants need to know exactly when to become active and

which service to collaborate with. This means all services need to have information about other

services in the composition.

2.4.7.2 Web Service Orchestration

Web service orchestration approach is based on the central control that coordinates process

execution. In this approach services participating on the process have no information about the

other and they are not aware of their participation in the process. The most successful language

for defining these processes is called Web Service Business Process Execution Language (WS-

26

BPEL). WS-BPEL is the XML-based language standardized for defining business processes. In

the context of ESBs web service orchestration has been the most supported approach compared

to web service choreography and there has been advancement of this approach including the

BPEL engines that can be used to execute business processes defined using WS-BPEL. In view

of the fore-going, the approach used for service composition in this work is focused on service

orchestration.

2.4.7.2.1 Business Process Execution Language (BPEL)

BPEL is a process-oriented web service composition language. More concretely it defines the

order in which web services need to be invoked. BPEL is not a fully featured programming

language like Java simply becaused it was develpoed only to defines business processes. BPEL

defined processes are executed by BPEL engines. The current version of BPEL is called WS-

BPEL 2.0. This version was finally approved by OASIS in April 2007 (Arkin et al., 2007) and it

is hardly backward compartable with version 1.1 (Linthicum, 2006).

2.4.7.2.2 BPEL process Components

BPEL language define several components that have designated functionalities as shown in

Figure 2.6and illustrated below

Figure 2.6: BPEL Components

27

Activities

BPEL activities are like operators of the language. They define steps involved for the process to

complete its intended operation. There are two types of activities, basic and structured.

Basic Activities: These type of activities cannot contain any other activities. They represents an

individual step in the process evolution. Some examples of basic activities include:

 <recieve> Waits for a message to arrive.

 <invoke> Invokes a one-way or request-response operation for a given partner.

 <assign> Update the value of a variable with new data.

 <reply> Send process response to the requesting application.

Structured Activities: The activities offer a way to structure the BPEL processes. They assist in

mananging the flow of a process by enabling concurrent activities, fault handling and

coordination whenever it is required. Some structured activities are:

 <sequence> Contains collection of activities to be performed sequentally one after the

other.

 <flow> represent a set of activities that should run concurrently.

 <if> Specify the condition to select the execution of an activity.

 <pick> Waits for the occurrence of exactly one event for a set, then executes the activity

associated with that event.

There are more activities for defining BPEL proceses and they can be found in (Arkin et al.,

2007)

28

2.4.7.2.3A simple BPEL process

Here we give a simple BPEL process called Hello_Process as illustrated in Figure 2.7 below. At

first the process waits (<receive>) for an input message carrying the string “name” of a person. It

then appends “Hello” before that name (<assign>), and finally send back the greeting message

(<reply>). All of this code is a part of a structured activity <sequence> that ensures every activity

execute in the correct order.

Figure 2.7: Sample BPEL process

2.5 Enterprise Service Bus and Service Oriented Architecture

Since the wide adoption of SOA as the paradigm that enables flexibility and agility required by

business users and processes, organizations are paving way for this paradigm by refactoring their

systems and data models. Executives have found SOA to be the solution that would allow

business systems to react quickly to the ever changing business environment (Genender, 2006).

Today, enterprises impose high demands on the integration solution due to high diversity of

applications in terms of technologies, frameworks, protocols and design concepts.

 ESB is an ideal solution for such demands as it is based on open standards and SOA. In this

sense ESB is a standard based integration platform that combines web service technology,

messaging, data transformation and intelligent routing together to provide flexible integration

solution.

29

In order to support SOA, the ESB has to offer certain key capabilities. The following are the core

of these capabilities (Davis, 2009):

 Message routing capability – The most important capability of an ESB is being able to route

requests to their destination. With this capability the ESB helps to decouple interacting

entities by relieving service requester from knowing physical location of service provider

thereby achieving location transparency. ESBs use different mediation logic to determine the

destination. These logics can be implemented statically (hardwired) or dynamically via

content-based routing.

 Data connectivity and adapters – ESB should be able to support several open standards, such

as SOAP, WSDL, UDDI, JCA (J2EE Connector Architecture), JBI (Java Business

Integration) and different transport protocols like HTTP/s, JMS, TCP, SMTP/POP3, File

batch, etc. In addition ESB should support conversion of these protocols to allow integration

of applications that use different protocols. For example, requesting application might use

HTTP to send request whereas destination application use JMS for communication.

Therefore, achieving interoperability between multiple transport protocols.

 Communication styles –An ESB should support applications which use both synchronous and

asynchronous messaging as communication style.

 Mediation capability – different ESB may use different mediation capabilities. However, in

general mediation is rather used for situations where the flow is composed of simple reusable

actions in a form of Enterprise Integration Pattern (EIP). This includes filtering, routing,

transformation, etc.

 Process Orchestration –ESBs use different tools to support orchestration. This capability is

rather used for complex workflows which involves invocation of external services and may

30

require human interaction. This is used for high-level service composition composed of short

and long running business process. Web Service Business Process Execution Language (WS-

BPEL) is the standard used to define business processes. To support execution of these

processes most ESBs use different BPEL engines.

 Data Transformation – Typically two interacting services may understand different data

formats, this is usually the case when legacy systems or external services are integrated. ESB

should be able to transform data from one format to another to enable smooth communication

between different applications. For example, an application which understands only XML

messages may communicate with application which produces CSV data. XSLT is the most

used transformer for XML based messages.

 Security – In the corporate sector security is very important, so an ESB should provide

mechanism for authentication and authorization of incoming requests, encryption and signing

their content.

 Service discovery – ESB should expose services so that they can be discovered either

statically or dynamically by other services.

 Monitoring and Management – management and monitoring tools should be provided by ESB

to enable central management of integration logic, service lifetime, etc.

2.6 Comparison of Enterprise Integration Approaches

Thus far, we have discussed three approaches towards achieving enterprise integration. Table 2.1

shows the summary of comparisons between these approaches. ESB and EAI are very similar,

however, ESB is based on open standards and therefore, it is a more loosely coupled integration

solution while EAI is based on proprietary standards that lead to technology lock-in.

31

ESB has been widely adopted as the cornerstone of today’s information system integration due to

the flexibility that this platform offers. So the rest of this work is based on ESB approach to

enterprise integration. The next section presents enterprise integration solutions based on ESB

approach.

Table 2.1: Comparisons of Enterprise Integration pattern

Evaluation Parameter ERP EAI Hub and

Spoke

EAI Bus ESB

Topology Single/Multi

Sever

Hub Bus Bus

Architecture Centralized Centralized Decentralized Decentralized

Integration Effort High Medium Medium Low

Coupling Strong Moderate Moderate Loose

Scalability Low Medium High High

Management Easy Easy Complex Complex

Development Proprietary Proprietary Proprietary Standard

Cost High Medium Medium Low

2.7 ESB Solutions

The industrial success of ESB technology led to many products being implemented and offered

on the market. These products include commercial products like BizTalk server from Microsoft

and IBM WebSphere from IBM and open source products like Mule from MuleSoft and

ServiceMix from Apache. The recent adoption of open standards like JBI, SOAP, JMS, XML

and many others led to open source ESBs receiving attention from the literature and business

systems integration. Many open source ESB products are available in the market today, however

this work considers only a few for evaluation based on their popularity in the literature. These

32

ESBs includes Mule, ServiceMix, JBoss, Open ESB and OW2 Petals ESB. In order to

successfully design a communication infrastructure for GUISET services, there was then a need

to first evaluate ESBs according to a given general criteria.

Defining General Criteria

The main aim was to evaluate the completeness of each ESB product. This investigation help

determine which ESBs to include in the evaluation against GUISET integration requirements.

Therefore we defined four general criteria as support for core ESB capabilities, quality of the

documentation, active community support and market visibility.

Support for core ESB capability

In Section 2.5, we presented the core ESB capabilities, so it was important that an ESB of our

choice should provide support for all these capabilities

Quality of the documentation

In this context, quality of the documentation refers to the availability of help resources such as

user guide, books and tutorial that support a novice user to easily get started with the ESB

product. Open source products have been previously criticized regarding their documentation.

However, some vendors have made major efforts to ensure that their product has quality

documentation.

Active Community

Open source ESB products are available for anyone to use. However during the process of using

the product bugs are most likely to happen. Therefore, it is important that an ESB selected is

supported by active community so that bugs can be quickly fixed.

33

Market visibility

Another important criterion is the market visibility which refers to the popularity of the ESB

product. Popularity is measured against a number of available publications that mention the ESB

product.

2.7.1 Assessing the ESBs

Considering support for core ESB capabilities, Open ESB still has a lot of improvement required

especially when considering message routing, monitoring and management capabilities (kusak,

2010). The other four ESBs provide considerable support for core capabilities, however, in the

area of service discovery there still a room for improvement for all ESBs. On the other hand,

OW2 Petals has small number of community with 138 registered users, 5 administrators and 2

members (OW2 Middleware consortium, n.d). JBoss, Mule and ServiceMix were considered for

the evaluation by Forrester Wave. Forrester Wave makes up the leading evaluation of both open

source and commercial ESBs against 109 criteria. These three open source ESBs came up as

strong performers against these criteria (Vollmer et al., 2011). Therefore, in this work these

ESBs were considered for evaluation against GUISET integration requirements.

Table 2-2: ESB evaluations against general criteria

Criteria JBoss

ESB

Mule

ESB

Open ESB OW2 Petals

ESB

ServiceMix

ESB

ESB Core

capability

Good Excellent Weak Good Excellent

Quality of the

documentation

Good Excellent Weak Good Good

Active Community Excellent Good Good Weak Excellent

Market visibility

Good Excellent Good Fair Excellent

34

2.8 Overview of the selected ESBs

Availability of quite a number of ESBs on the market makes selection of one product to use a

difficult task. However, due to the analysis presented in Section 2.7, three ESBs were selected,

and these are JBoss, Mule and ServiceMix ESBs. This section provides an overview of these

ESBs in terms of their architectures and deployment models.

2.8.1 JBoss ESB

JBoss ESB is an open source ESB product from JBoss. It enables the integration of disparate

systems by abstracting the differences between these systems and treats each as logical services

on the ESB. JBoss ESB is based on four components which include (Conner et al., 2012):

- Message Filtering and Message Listener route messages inside the ESB to the endpoint

service or component. Message listener act as inbound message router which listen for

messages in external channels. Upon receiving message, it is passed to message processing

pipeline to evaluate message and determine its endpoint. Message Filtering filters out

messages and route them to their destination endpoint.

- Data Transformation: Smooks action processors are used for converting data form one format

to another within the ESB.

- Content-based routing: to achieve content-based routing inside JBoss ESB, there are several

techniques available and they include XPath, Drools, Smooks and Regex.

- Message Repository: inside the JBoss ESB there is a registry for storing services using their

EndPoints References (ERPs) to differentiate them.

35

2.8.1.1 Architecture

The architecture of JBoss ESB is shown in Figure 2.8. As part of trying to keep up with SOA

principles, everything inside JBoss ESB is considered as either a service or a message (Conneret

al., 2012; JBoss Community, n.d).

Services– Services are the most important part of JBoss ESB they encapsulate business functions

or point of integration with other systems like legacy systems. Inside JBoss ESB services are

defined as a sequence of Listeners and Actions

 Actions are defined by java classes which are called one after the other for each processed

message. For example an action can be sending messages to the content based router’s class.

The lists of actions are called Action Pipeline.

 Listeners are used to define input binding of the service. An example of Listeners can be http

gateway or jms listeners. JBoss ESB define two kinds of Listeners which are Gateway

Listeners and ESB aware Listeners.

Gateway Listeners are used for creating “Gateway” Endpoints. External consumers use

these endpoints. These Listeners wrap messages coming from the outside of the ESB into an

ESB aware message. After the message has been normalized it is then sent to Service’s Action

Pipeline for execution.

 ESB Aware Listeners are used to create endpoints that exchange ESB Messages

between the ESB Aware components inside the bus. These Endpoints are so called “ESB Aware

Endpoints”

36

In addition to Actions and Listeners, Service name and category are other important attributes

used for registering services into Service Repository. The knowledge of service name and

category helps in the process of invoking the registered service.

Service configuration is done in an xml file called jboss-esb.xml. The file contains list of service

definition that will be then deployed into an ESB.

Messages: Messages play an important part in communication inside JBoss ESB. Service clients

and providers interact by exchanging a number of Messages. Message structure of messages

inside JBoss ESB is based on SOAP message and extended by other fields to suit ESB.

 Message Header is mainly used for containing addressing and routing information for the

message. Addressing inside JBoss ESB is based on WS-Addressing standard defined by

W3C commit

 Message Body: this part of the message contains the actual message payload. Arbitrary

number of Objects of any type can be contained inside the payload.

 Context contain information related to session, for example this can be transactional or

security context

 Attachment can contain other payloads that are not inside the body, these payloads are

contained in a form of attachments. Attachments can be any file type such as picture,

document, zip package, etc.

 Properties: additional message meta-data are defined and contained in the message

property. Similar to attachments, properties are treated the same way as message body.

 Fault:all the error information are contained in the fault field

37

Message Exchange Patterns and Response Handling

One-way and request-reply are the two Message Exchange Patterns supported by JBoss ESB.

The simplest message pattern to manage is One-way communication message which is implicit

for some contained class. For example, JMSRouter Action sends only one-way JMS message

and it cannot be forced to receive response unless it’s also a JMS response in a queue. Using

request-reply communication style, each thread creates a temporary response destination that is

automatically set in header of ESB message.

2.8.1.2 Deployment Model for JBoss ESB

JBoss ESB is integrated with JBoss server for runtime environment. A new project or service is

deployed via the so called hot-deployment or by using the administration console via the web.

Hot-deployment allows ESB projects to be deployed in the server while it’s up and running.

Figure 2.8: JBoss ESB Architecture using example (JBoss Community, n.d)

38

2.8.2 Mule ESB

Mule ESB is a lightweight java based open source ESB from MuleSoft Company. Mule service

container is based on Universal Message Objects (UMOs) which are highly distributable object

broker. It comes in two different versions which entail Enterprise and Community Edition. Their

differences can be found in MuleSoft website (MuleSoft,n.d). This work focuses on the

Community Edition.

2.8.2.1 Mule Architecture

Mule uses the concept of message flow which describes the message as it goes through a number

of Mule components. Mule’s Architecture consists of three layers, namely Application layer,

Integration layer and Transport layer as depicted in Figure 2.9

Figure 2.9: Mule ESB Architecture (MuleSoft, n.d)

Application Layer consists of back-end data component ranging from simple POJOs to complex

web services that define business logic. These components do not need to include any Mule

specific code. All the configurations needed are contained by XML file called mule-config.xml

39

which configures the service that wrap service component. Mule configuration file can be

divided into three sections which are Mule Instance, Flow and Service. Mule Instance allows

setting the global configuration options such JMS queue profile and error handling mechanism

that is used by all services throughout the flow or service model. Flow enables to configure how

messages are handled specifically how they are routed, filtered, and transformed between service

components. Messages are sequentially processed by Mule components as defined in the flow.

Lastly, Mule Services are the sectors where all services such as routers, filters and transformers

are defined. Message routing in Mule is based on Enterprise Integration Pattern (EIP) as

described in (Hohpe and Woolf, 2004). Most importantly Mule Service configures the service

endpoint where the service will receive messages and outbound component where service will

relay message next.

In the middle of Mule’s architecture is the Integration Layer. As a part of supporting loose

coupling SOA principle, this layer decouples services from underlying communication protocols

to allow applications to communicate regardless of their heterogeneous protocols. To achieve

full loose coupling this layer allows data transformed from one format to another. During data

exchange transformers are the key components used. Mule defines a number of default

transformers and they include XML-to-Object, JAXB XML-to-Object, XSLT, XQuery, and

XPath to name a few. Custom transformers can also be defined to extend the existing default

transformers when needed. This can be done using simple Java class.

The third layer and the last layer is Transport Layer. In this layer Mule define transport in

which messages are received and dispatched on different protocol connectors. Connectors

contain configuration and state of transport. Transports are mainly responsible for carrying

messages from application to application. Mule support a wide variety of transport protocols out

40

of the box, these protocols includes HTTP, TCP, JMS, File, etc. As a part of integrating

everything, Mule allows custom transport to be developed if the need arise in particular to

support legacy systems.

2.8.2.2 Deployment Model for Mule

Mule deployment model allows managing application lifecycle and also enables multiple

applications to run independent of each other within the same Mule container. The deployment

model has hot deployed for new applications to be added and reloaded without having to restart

Mule. In addition applications are designated to start with the server on startup (MuleSoft, n.d).

2.8.3 Apache ServiceMix ESB

Apache ServiceMix ESB is the integration platform that implements Java Business Integration

standard (Ten-Hove and Walker, 2005). In general ServiceMix combines features offered by

Apache ActiveMQ, Apache Camel, Apache CXF, Apache ODE (Orchestration Director Engine),

and Apache Karaf into a powerful runtime integration platform. ActiveMQ provides reliable

messaging and clustering of different components to improve fault tolerance and support failover

mechanism. Apache Camel empowers definition of routing and mediation rules in a wide range

of domain-specific language including Java. In addition Camel is used support Enterprise

Integration Patterns (EIP) and different messaging models. ServiceMix support both traditional

Web Services (WS) and RESTful (Representational State Transfer) web services through the use

of Apache CXF. Long and short running processes defined using Web Service Business Process

Execution Language (WS-BPEL) standard are executed using Apache ODE orchestration

engine. Different services are orchestrated in a form of business process flow.

41

2.8.3.1 Architecture

Figure 2.10 below shows the basic architecture of ServiceMix ESB (Apache Software, n.d). As

previously mentioned that ServiceMix is based on JBI specification therefore it’s made up of

three component. These components are Binding Component (BC), Normalized Message Router

(NMR) and Service Engine (SE). On the Figure 2.10, the top layer shows examples of SE. SE is

part of ServiceMix that implements business logic, transformation and routing services needed

for application integration. At the middle of architecture is NMR which is responsible for

facilitating communication between SE and BC. Messages passed in this layer are strictly XML

massages. At the bottom is the BC which enables external components to have access to

ServiceMix. Examples of BC are also shown in Figure 2.10and they are used for applications

that communicate using SOAP and files. In addition Legacy applications are also offered

protocols to interact with the ESB.

2.8.3.2 Deployment Model for ServiceMix

The new business logic in ServiceMix is made up of three components, namely SE, BC and

service assembly. Service assembly is basically a collection of service units (describe SE and

BC) packaged in a zip folder the can be hot deployed into an ESB. Hot deployment allows the

flexibility to add new application or service to the running ESB server.

42

Figure 2.10: Apache ServiceMix ESB Architecture

2.9 Chapter Summary

This chapter introduced the GUISET concept and its integration requirements, thereby answering

our first research question (as introduced in Chapter One, Section 1.2) which seeks to find out

which integration capabilities will GUISET needs. Then it further presented an overview of the

concept of enterprise integration and various approaches that have been adopted towards systems

integration. Among these approaches Enterprise Service Bus is currently the state-of-art and it’s

widely adopted by enterprises worldwide (Vollmer et al., 2011) (Issarny et al., 2011) (Ortiz,

2007). The popularity of ESB is due to the fact that it is based on open standards and it paves a

way for SOA. This chapter also introduced SOA and web service standards. In addition, a

general evaluation of the top ranked ESBs was presented with an aim of selecting the ESBs that

would be evaluated against GUISET integration requirement. From this general evaluation

JBoss, ServiceMix and Mule ESBs were selected and the overview of the selected ESB platform

was also provided. The next chapter critically analyzes existing work that has been done to

evaluate ESBs. The analysis was further restricted to the work done related to evaluating

GUISET integration requirements.

43

CHAPTER THREE

THEORETICAL EVALUATION OF ESBs

3.1 Introduction

Despite the major success of ESB technology as an integration solution for an Enterprise’s IT

resources, selecting a single ESB that optimally supports the integration requirements of a given

environment is a challenging task. This is due to conflicting criteria that need to be considered in

selecting an ESB to be used to best meet given integration requirements. Some research efforts

(e.g. Siddiqui et al., 2011; Vollmer et al., 2011; Ahuja and Patel, 2011) have been directed

towards finding ESB solutions that best fits a given environment. Such research efforts have

produced sound methodologies that can be used in this endeavor, which the research reported in

this dissertation builds upon. However, these efforts assume that there exist a single ESB that

best meet all the integration requirements of a given environment. Contrary to this assumption,

large SOA environments have a wide variety of integration needs that cannot be best meet by a

single ESB. This dissertation argues that instead of compromising to a single ESB that best meet

the conflicting criteria, multiple ESBs can be used in an integration solution with each ESB

responsible for the capability it best supports.

To enable integration of multiple ESBs, this study firstly investigated which ESB has the best

support for each GUISET integration requirements. GUISET integration requirements were

presented in Chapter Two and they have support for high availability, data transformation,

intelligent message routing, service composition and dynamic service discovery. This chapter

presents ESB evaluation against the above mentioned GUISET integration requirements. The

aim was to determine which ESB has the best support for which GUISET integration

requirement. This was used to ensure that when integrating multiple ESBs, each ESB will be

44

used for the requirement it best supports. Section 3.1 establishes background for our evaluation

by presenting review of the work done to evaluate ESBs using general criteria. The review of the

work that has been done to evaluate the integration capabilities needed by GUISET is presented

in Section 3.3. Section 3.4 presents the analysis of ESBs towards their support for GUISET

integration requirements. The discussion on the analysis results is presented in Section 3.5.

Finally, Section 3.6 provides the chapter summary.

3.2 General ESB Evaluations

There exist a substantial amount of research work that can be utilized when it comes to

evaluating existing ESB solutions according to particular criteria and comparisons. One of the

most important evaluations was done by Forrester research (Vollmer et al., 2011). In this work

both open source and commercial ESB products were evaluated against 109 criteria which were

divided into three major groups that are “current offering” (capabilities of the product including

architecture, orchestration, mediation, and routing), “strategy” (in terms of vendor cost, strategy

and customer reference) and “market presence” (revenue, new customers, etc.). This evaluation

considered a number of factors that can be used to assist in selecting ESB product to use.

Works that are closely related to the research reported in this dissertation are the evaluations that

concerns with comparing performances of core ESB capabilities. These capabilities include high

availability, data transformation, and content-based routing (Kruessmann et al., 2009; Ahlberg et

al., 2010; Ahuja and Patel, 2011).

3.3 Core GUISET ESB Evaluation

ESBs share the same philosophy as Enterprise Application Integration (EAI) which is to provide

integration of heterogeneous applications. ESB has been popular integration solution due to its

45

capability of integrating infrastructure where the concept of Web Service and SOA coalesce

(Papazoglou and Heuvei, 2007). An ESB is the middleware glue that holds an SOA together and

enables communication between web-based enterprise applications. Even though ESB concept is

technically not a completely new concept, the drastically increasing adoption of SOA in the

industry raises new engineering challenges that requires research to provide some solutions.

These challenges include the performance evaluation of SOA systems and enabling

infrastructures. This work will focus on performance evaluation of ESBs. Performance

comparison of ESB products has been the focus of many researchers as it assists in ESB

selection. However, testing the end-to-end performance of any SOA systems including ESB is

often a difficult task due to the barriers that exists in this environment. These barriers include

organization boundaries, presence of shared resources and services with other organizations,

security requirements and the fact that load testing can be perceived as a denial of service attack

to the system. These barriers are among factors that impose restrictions on performance testing

of SOA systems. On the other hand, integration testing on the production ready system can be

inevitably too late and expensive to completely change software architecture to address

performance and scalability problem that might arise. It is, therefore, valuable to predict the

performance implications of architectural alternatives for SOA as early as possible during

development lifecycle. The method that allows performance and capacity of the ESB to be tested

at planning stage before the actual deployment was proposed in Ueno and Tatsuburi (2006). The

method is based on capacity-planning methodology (Menasce and Almeida, 2002) and it was

intended to assist designers to be able to configure lightweight environment for testing an ESB

capacity and performance at an early stage before the actual deployment. This work is relevant to

ours as it justifies and proves that lightweight environments configured with limited hardware

46

resources for ESB assessment achieve equivalent results to that of production systems used in the

real world environments. Furthermore, another approach towards early performance prediction

of SOA applications is proposed in Brebner (2009). This approach used model-driven approach

to automatically generate a runtime model for execution of composite services and workflows.

The discrete-event simulation engine dynamically captures performance of each service that

participates in the composition. Therefore, this allows performance adjustments to be done on a

specific service rather than the whole composition. The famous SOA/ESB example of

LoanBroker application (Hohpe and Woolf, 2004) and Mule ESB was used to test the method.

Brebner’s approach showed that the performance of SOA applications can be easily modified

and maintained. The above mentioned work does not provide performance comparisons of

different ESB products, but they propose the valuable methods for ESB evaluation. Given the

particular requirements of SOA application and environment, organizations would like to

evaluate different ESBs. This evaluation can help an organization to select an ESB that best

supports the desired integration requirements. A lot of research has been done to evaluate

performance of ESB products based on a given scenario. This work discusses research efforts

related to the evaluation of GUISET integration requirements as they are highlighted in Chapter

Two. These requirements are High availability, Data Transformation, Intelligent Message

Routing, Service Composition and Dynamic Service Discovery.

3.3.1 ESB High Availability

High availability characterizes an ESB that is designed to avoid the loss of services by managing

or reducing failures. Most ESBs use failover mechanisms to ensure high availability. Failover

mechanism requires more than one ESB instance to be up and running so that when the primary

instance fails the secondary instance takes over and resumes where the primary instance left. The

47

major issue is to disseminate state information among the cluster. Staged Event Driven

Architecture (SEDA) service event and In-memory message queues help to solve this issue by

storing the transient state information and sharing among running instances (MuleSoft, 2012). In

this direction the work done by Siddiqui et al., (2011); Kruessmann et al.,(2009) and Ahlberg et

al.,(2010) evaluate high availability. These evaluations use Java Messaging System (JMS) to

support failover that ensure high availability of both ESB and services deployed in it. JMS

allows clients to send message to a list of broker connection URLs so that when one broker fails

the other one takes over. Failover capabilities were simulated by killing the server process,

unplugging network cable and killing the master. Some ESBs are not too dependent on JMS

implementation, for example Mule does not include any JMS on the product. However APIs and

mechanisms are available to integrate any JMS compliant product. On the contrary, some ESBs

have strong support for JMS, for example ServiceMix is distributed with ActiveMQ while JBoss

is shipped with JBossMQ. Regarding high availability the ESBs with strong support for JMS are

more favored (Kruessmann et al., 2009).

3.3.2 Data Transformation

Another important capability of ESB is to ensure that different application understands each

other regardless of their underlying technology. This requires that data from one system be

transformed from one encoding to the other and this is done by an ESB capability known as data

transformation. Data transformation is the technique used to change data from one format to

another as required by destination application (Genender, 2006). Most ESBs support XML as

native format for data flowing across the bus. Extensible Stylesheet Language Transformations

(XSLT) is the most used method for data transformation. The performance of XSLT in

transforming XML messages has been evaluated by a number of authors including

48

AdroitLogic,(2012); Ahuja and Patel,(2011); Perera,(2008);Desmet et al., (2007). In all the

afore-mentioned work XSLT was applied as a proxy between two communicating applications.

The performance metrics used for evaluation included response time, throughput and load

handling. Data transformation contributes to lose coupling between interacting applications

because the sender needs not to worry about the format expected in the destination. Mule’s

transformer allows transformation objects to be pooled for better performance. This means

transformation context properties can be set on the transformer and pooled from message using

expression evaluator. This flexibility achieves better performance.

3.3.3 Intelligent Message Routing (Content-based routing)

Routing capability allows ESB to route messages to the appropriate destination application.

ESBs implement content-based routing which is a facility that allows a message to be received,

analyzed and based on its content the destination application is determined (Ziyaeva et al.,

2008). Content-based routing is typically used in practice to route requests messages to different

destination endpoints or to handle them differently at the ESB based on their message attributes.

There has been some research efforts directed at evaluating the performance of ESBs in the

context of content-based routing techniques (Perera, 2012; Ahuja and Patel, 2011; Kusak, 2010).

In the afore-mentioned work, an ESB performs XPath evaluation over a SOAP message to

determine the message destination. In these evaluations, the performance metrics considered

were response time, throughput and load handling. Load-handling was characterized as a single

client sending varying sizes of message payloads. The results of these evaluations showed that

on content-based routing Mule performs better than ServiceMix, Fuse, JBoss, and Open ESB.

This is attributed to its powerful expression-filter that allows enhanced configuration of XPath

and Groovy.

49

3.3.4 Dynamic Service Discovery

In real world scenarios, large organizations maintain a huge number of services that implements

some business logics that is needed for the day-to-day running of the business. These services

need to be managed in a most efficient manner to ensure that they can be automatically

discovered when needed by other services or business processes. Efforts have been made to

enable dynamic service discovery for services integrated through an ESB. Chen et al., (2008)

proposed an adaptive service bus that is able to support dynamic change of business rules at

runtime to avoid costly unexpected shutdown of applications when faults happen. In this

approach, a service router component of a dynamic service bus is responsible for discovering and

selecting the service to be used at runtime. The targeted service selection is based on the ranking

of different services which uses information such as expected availability and execution time.

Dynamic Routing in Enterprise Service Bus (DRESR) was proposed by Bai et al., (2007) to

allow service routing table inside the ESB to be changed at runtime. DRESR used abstract

service name to define routing path in which at runtime the real services are instantiated by

replacing the abstract service names with the real URIs. In addition DRESR supports service

selection preferences such as response time.

Wu et al., (2008) also proposed another approach towards achieving dynamic service routing.

This approach was enhanced with reliability of sending requests by redirecting the requests to

another service when the response from the previous service was not received within suitable

time. Context of application information related to the request was used for discovering list of

targeted services. Moreover, Jongtaveesataporn and Takada (2010) enhanced dynamic service

selection by load balancing. Service types were used to categories services with the same

functionalities. The service was dynamically selected based on the server status and load which

50

was constantly monitored by load monitor. Yu and Yan, (2011) proposed another approach that

integrates ESB and UDDI registry to allow service endpoint to be obtained dynamically when

needed by to route messages in the ESB. Although the above mentioned approaches provided the

remarkable effort towards dynamic service routing, but they do not present any performance

evaluation of different ESBs when considering dynamic service discovery.

3.3.5 Service Composition

In addition to UDDI support, in order to achieve a certain business objective, it is often that

multiple services are composed to create a business process. Composition of services can be

achieved either through service orchestration or choreography. Most ESBs provide support for

BPEL which is the orchestration language for defining processes. The work by (Garcia-Jimenez

et al., 2010) showed the performance evaluation of ESBs invoking the existing external BPEL

process.

3.4 Analysis Methodology

Making decision on competing ideas/solution/artifacts that have multiple conflicting criteria is a

challenging task that has drawn attention in literature from multiple disciplines. Solutions for

such task fall under a set of methods known as Multi Criteria Decision Analysis (MCDA).

MCDA has been acknowledged as an important tool in environmental decision-making for

formalizing and addressing the problem of competing decision objectives. In general, the goal of

MCDA is to determine a preference ordering among a number of available options using

multiple criteria (Steele et al., 2009). MCDA methods include Analytical Hierarchy Process

(AHP), Bayesian Analysis (BA), and Multi-attribute Utility Theory (MAUT) method (Cho,

2003). However, AHP since its invention has been the most widely used MCDA method by

decision makers and researchers. Outstanding results have been published on AHP application in

51

different fields including software engineering (Triantaphyllou and Mann, 1995), agriculture

(Alphonce, 1996), and project management (Al-Harbi, 2001). AHP allows a decision to be made

using either qualitative or quantitative data. AHP use pair-wise comparison to determine trade-

offs among criteria and the ability to calculate the degree of consistency (or inconsistency) of

judgments in each step. The possibility of applying AHP to evaluate some ESB capabilities is

presented by Siddiqui et al., (2011). Siddiqui et al., (2011) used Interoperability, Information

Security and High Availability as their criteria. Taking inspiration from the success of using

AHP method in making a decision by considering multiple criteria, the work reported in this

dissertation used AHP to resolve issues of conflicting ESB selection criteria. The AHP process

used for the analysis in this study is known as Pair-wise comparison (Saaty and Shih, 2009). The

pair-wise comparison allows a decision to be made considering multiple criteria. These criteria

are ranked according to their importance. Using pair-wise comparison, an enhanced decision that

is acceptable and un-contradictory can be achieved.

3.4.1 Pair-wise comparison process

There are three hierarchical steps to be observed during the pair-wise comparison process. These

steps are ‘Goal’, ‘Criteria’ and ‘Alternatives’ as illustrated in Figure 3.1. In this study, the goal is

‘Analysis of ESBs for GUISET’, the criteria used for this analysis are ‘High Availability’,

‘Content-Based Routing’, ‘Data Transformation’, ‘Service Orchestration’ and ‘Dynamic Service

Discovery’, the alternatives ESBs considered are ‘Mule ESB’, ‘ServiceMix’ and ‘JBoss ESB’.

Three pairs of the AHP pair-wise comparisons were made. These pairs were Mule was compared

with ServiceMix, secondly Mule was compared with JBoss and lastly ServiceMix was compared

with JBoss.

52

Analysis of ESBs for
GUISET

High
Availability

Content-
based

Routing

Data
Transformatio

n

Service
Orchestration

Dynamic
Service

Discovery

ServiceMix
ESB

JBoss ESBMule ESB

Step 1: Goal

Step 2: Criteria

Step 3: Alternatives

Figure 3.1: AHP steps for Analysis of ESBs for GUISET

The pairwise comparison was used to determine the relative importance of each alternative ESB

in terms of each criterion. The priority assignments and judgments on ESBs are presented in

Section 3.4.2. The priority assignments were based on the nine-point scale proposed by Saaty,

(2007). The scale is as described in Table 3.1 below. The overall rankings of both selection

criteria and ESBs are given in Section 3.4.3 and Section 3.4.4, respectively.

Table 3.1: Intensity Scale and Definition

Intensity importance Definition

1 Identical

3 Considerable in favor

5 Strongly in favor

7 Very strongly in favor

9 Acute favor

2, 4, 6, and 8 Intermediate values between

judgments, used when

compromise is needed

53

Table 3.2: ESB technologies towards supporting GUISET integration requirements

ESB(s) ESB products effort towards support of GUISET integration requirements

Mule ESB

High Availability

Mule support clustered ESB instances, which uses StagedEvent Driven Architecture

(SEDA) service and in-memory message queues. High availability of services on

transactional transports like JMS, WebSphere MQ, and JDBC. However, for non-

transactional transport like HTTP (including CXF web services), File and FTP Mule uses

reliable patterns called reliable requisition flow (MuleSoft, n.d).

Message and Data Transformation

Messages exchanged in mule can be any format, Mule support JSON, Scripting, Encryption

and XML based transformation using XSLT, XStream, JAXB binding framework, XQuery,

XmlToDom, XPath expression using JAXP and JXPath. Custom transformers are offered

via Apache velocity Engine.

Content-based Routing

For content-based routing Mule use filters, which leverages Mule expression to all

configuration of XPath, Groovy and OGNL based filters. XPath filters are implemented with

Apache Commons JXPath Library. Payload type, Regular expression and wild card filter is

used to determine endpoint service. Mule’s ChoiceRouter choose one and only on endpoint

route that matches those in the filter.

Service Orchestration

Mule support JPBM process engine and JPDL suite distribution. Mule support invocation of

services hosted in any BPEL engine like Oracle SOA BPEL engine using standard SOAP

endpoint (web services) and JMS.

Dynamic Service Discovery

Galaxy service registry is used to store and discover service related metadata. Among

features provided by searching capabilities using SQL like queries and support for Atom

Publishing Protocol (APP).

For view, publish, and subscriber Galaxy use Queues, web interface/HTTP, open search,

custom query language, XQuery, XPath and Groovy.

ServiceMix

ESB

High Availability

Support WS-Reliable Message standard for CXF binding component which are non-

transactional. Non-persistent messages in-memory SEDA flow is used. Alternatively,

persistent message on a transactional transport Active MQ can be used including JDBC

clustering. Active and standby clustering ensures high availability(Apache Software, n.d).

Message and Data Transformation

Since all messages exchanged in NMR are XML, so Saxon service engine is used for

54

transformation, Saxon is based on XSLT style sheet. XQuery based transformation is also

supported. Additional message can be transformed via script, Java class and BPEL.

Content-based routing

This feature is supported using XPath expression on a normalized XML content. Also EIP

and Camel service engine. Rules-driven routing using drools and script-driven routing using

servicemix-script service engine.

Service Orchestration

Strong support for BPEL specification using Apache ODE as an external service engine.

Engine provides a drop-in JBI to execute composite services inside ServiceMix.

Alternatively Routing and transformation mechanisms can be used with support of EIP (for

individual service connection) and Script or Java beans

Dynamic Service Discovery

JBI provides a very basic registry which map services to WSDL and can be accessed via JBI

API (with a provided component Context) or remotely via JMX.

Apache jUDDI can be used as an external service to provide more sophisticated service

discovery capabilities.

JBoss ESB

High Availability

High availability is supported via JBoss MQ (Re-delivery queue), JBoss massaging and

JBoss Messaging Core for transactional, reliable transport system (JBoss Community,n.d).

Message and Data Transformation

Smooks is the default transformation engine, but XML-based transformation engine XSLT

is also supported. Custom transformation is supported using Action Processor data

transformation.

Content-based routing

Provide support for JBoss Drools rule engine which is a complete enterprise platform for

rule based application development, alternatively simpler approach include XPath custom

rule and Regex Content based routing

Service Orchestration

Strong support for jBPM which is a default BPM engine for orchestrating services.

Alternative from jBPM, ActiveBPEL andRiftsaw BPEL engine can be used. Also support

for WS-BPEL via Web service component.

Dynamic Service Discovery

By default JBoss ESB uses JAX-R implementation (Scout) and UDDI (jUDDI) for service

registry and discovery. Registry stores EndPoint References (ERPs) for services deployed

and its automatically updated when new service start

55

3.4.2 Priority Assignment and Judgments

The weights were assigned using two sources of information; vendor documentation on the ESBs

and publicly available evaluations of the ESBs published by independent entities. At first we

reviewed the documentation of each ESB products as published by vendors (MuleSoft,n.d),

(Apache Software,n.d), and(JBoss Community,n.d). Table 3-2 shows summaries of the efforts in

terms of technologies made by each ESB (Mule, ServiceMix and JBoss ESB) in support of

GUISET integration requirements. According to this review it was noted that all ESBs use

different approaches in providing each capability. However, some technologies are widely used

and they keep appearing like transformation using XSLT and content based routing using XPath

expressions. The information in the vendors’ documentations served as the background

knowledge. We then looked at the published and publicly available articles on ESB evaluations

with the aim of verifying the claims made by vendors on the product documentations. The

articles were selected on the basis that they provide either empirical or qualitative analysis of the

ESB products that are under review. Moreover, the articles were evaluating high availability,

content-based routing, data transformation, service orchestration and dynamic service discovery

capabilities of different ESBs as presented in Section 3.3. Table 3.3, Table 3.4 and Table 3.6

represents 3 X 3 matrices for the corresponding judgments in each decision criteria (GUISET

integration requirements). Alternatives listed on the left are one-by-one compared with each

alternative listed on top so as to determine which ESB is more preferred than the other.

Table 3.3: Pairwise comparison matrix for High Availability (HA)

High Availability Mule Service Mix JBoss

Mule

SMX

1

3

1/3

1

3

5

JB 1/3 1/5 1

56

A normalized pairwise comparison matrix can be obtained bydividing each element of the matrix

by its column total. For example, value 0.2308 in Table 3.4 was obtained by dividing 1 (from

Table 3.3) with the sum of a column items (1 +3 +1/3) from Table 3.3. Priority vector

(Eigenvector) in Table 3.4 was obtained by finding the row averages. For example, the priority

vector of Mule with respect to the criterion ‘High Availability’ in Table 3.4 was calculated by

dividing sum of the rows (0.2308 + 0.2174 + 0.3333) with number of columns (alternative

ESBs), i.e. 3 to obtain 0.2605.

Table 3.4: Normalized table for High availability

High Availability Mule Service Mix JBoss Priority Vector

Mule

SMX

0.2308

0.6923

0.2174

0.6522

0.3333

0.5556

0.2605

0.6333

JB 0.0769 0.0222 0.1111 0.1062

λmax = 3.0387, CI = 0.0194, RI = 0.58, CR = 0.0334 < 0.1 OK

Now having the pairwise comparisons which are given in Table 3.4, the consistency ratio was

determined by using the eigenvalue λmax.

Eigenvalue was calculated by first finding the weighted sum average of the given matrix. For

example considering judgments for criterion “High Availability”, the weighted sum average is

given as:

For example Consistency Ratio (CR) for criterion ‘High Availability’ can be obtained as follows;

 1 1/3 3 0.7902 weighted

 0.2605 3 + 0.6333 1 + 0.1062 5 = 1.9458 sum (1)

 1/3 1/5 1 0.3197 Matrix

Then, having weighted sum matrix, we calculated Eigen value by dividing all elements of the

weighted sum matrices by their respective priority vector elements. We then found its average as

follows:

57

λmax= [(0.7902/ 0.2605) + (1.9458/ 0.6333) + (0.3197/ 0.1062)]

 3

 = 3.0387 (2)

Now, we find the Consistency Index (CI) given by the formula

 – n, is the matrix size

 λmaxis the Eigen value as calculated above

CI = (3.0387 -3) / (3 -1) = 0.0194 (3)

The judgment consistency can be checked by taking the Consistency Ratio (CR) of CI with

Average Random Consistency (RI) given in Table 3-5 below. The CR is acceptable if it does not

exceed 0.10, if it does there is a need to review and improve judgments.

Table 3.5: Average Random Consistency (Al-Harbi, 2001)

Finally, the appropriate random consistency value was selected. Using the matrix size of 3 from

Table 3-3, the random consistency value RI = 0.58 (from Table 3.5 above). The consistency ratio

CR was calculated as follows:

CR = CI/RI = 0.0194/0.58 = 0.0334 (4)

Complete judgments for other four remaining criteria

Table 3-6 shows the judgments for content-based routing, dynamic service discovery, data

transformation and service orchestration.

58

Table 3.6: Pairwise Comparison matrix for the remaining criteria

Content-based Routing (CBR)

Priority Vector

Mule 1 5 7 0.7235

SMX 1/5 1 3 0.1932

JB 1/7 1/3 1 0.0833

λmax = 3.0623, CI = 0.0312,

RI = 0.58, CR = 0.053 < 0.1 OK

Dynamic Service Discovery

(DSD)

 Priority Vector

Mule 1 3 1/3 0.2431

SMX 1/3 1 1/7 0.0882
JB 3 7 1 0.6687

λmax = 3.0072, CI = 0.036,

 RI = 0.58, CR = 0.0621 < 0.1 OK

Data Transformation (DT)

Priority Vector

Mule 1 7 5 0.7235

SMX 1/7 1 1/3 0.0833
JB 1/5 3 1 0.1932

λmax = 3.0623, CI = 0.0312,

RI = 0.58, CR = 0.053 < 0.1 OK

Service Orchestration (SO)
Priority Vector

Mule 1 1/2 3 0.3325

SMX 2 1 3 0.5278

JB 1/3 1/3 1 0.1397

λmax = 3.0387, CI = 0.01935,

 RI =.58, CR = 0.0334 < 0.1 OK

3.4.3 The Overall Criteria Rankings

In addition to the pairwise-wise comparison for the decision alternatives, the same procedure was

also used to set the priorities for all our five criteria so as to find the importance of each criteria

in contributing to the overall goal. Table 3.7 shows pairwise comparison matrix for the five

criteria. Figure 3.2 graphically represents criteria rankings, with Dynamic Service Discovery and

Service Orchestration being the most important criteria for GUISET, followed by High

Availability, Content-based Routing and Data Transformation, respectively.

Table 3.7: Pairwise comparison matrix for all five criteria

Criteria SO HA DSD DT CBR Priority Vector

CBR 1 1/5 1/3 1/2 1/5 0.0621

DSD

DT

HA

SO

5

3

2

5

 1

1/3

1/2

 1

 3

 1

 2

 3

 2

1/2

 1

 2

 1

 1/3

1/2

 1

0.3252

0.1192

0.1682

0.3252

λmax = 7.1511, CI = 0.5378, RI = 1.12, CR = 0.4802 < 0.1 OK

59

Figure 3-2: Average weights and Ranking for all criteria

3.4.4 The Overall ESB Ranking

Section 3.4.3 above presented the judgment of each ESB in a given criterion. Using these priority

judgments, our goal was to rank the three alternative ESBs according to their support for

GUISET integration. This section shows the ESB ranking according to their overall priorities.

For example, overall priority for Mule ESB was obtained as follows:

Overall priority for Mule ESB

 = 0.7235(0.0621) +0.2431(0.3252) + 0.7235(0.1192) +0.2605(0.1682) +0.3325 (0.3252)

 = 0.3622

For other ESB, overall priorities are given in Table 3.8 below

Table 3.8: Overall ESB Rankings

Criterion

 Alternatives

 CBR

(0.0621)

DSD

(0.3252)

DT

(0.1192)

HA

(0.1682)

SO

(0.3252)

Overall Priority

Mule 0.7235 0.2431 0.7235 0.2605 0.3325 0.3622

SMX

JB

0.1932

0. 0833

0.0882

0.6687

0.0833

0.1932

0.6333

0.1062

0. 5278

0.1397

0.3268

0.3096

Therefore, based on the AHP analysis performed, Mule came first in the ranking followed by

ServiceMix and JBoss ESB, respectively.

60

3.5 A discussion on Analysis of Results

According to the comparative analysis presented in Section 3.4, it can be observed that the

presented ESB solutions are somehow similar because they all have some mechanism towards

supporting the integration requirements needed by GUISET. However there is no one ESB

solution that fits all for a dynamic environment like GUISET. For example scalability is an

important requirement, so the distributed topology of Mule ESB allows it to be more scalable

than other ESBs (Lima, 2011). In addition Mule allows transformation to be available as part of

the enterprise services bus rather that keeping it inside the service components. This approach

matches the concept of Aspect Oriented Programing (AOP) which makes Mule achieves more

effective data transformation technique that results in better performance (Desmet et al., 2007)

(AdroitLogic, 2012). Moreover, Mule architecture is based on Enterprise Integration Pattern that

allows it to have support for more enhanced message routing capability (Hohpe and Woolf,

2004). However Mule ESB does not have native UDDI support to enable dynamic service

discovery. In addition, support for high availability of service is low because Mule architecture is

not based on any JMS implementation.

On the other hand, ServiceMix has a strong support for JMS and its architecture is based on

Apache ActiveMQ to enable the better availability of services and cluster instances for failover

(Kruessmann et al., 2009). Moreover, ServiceMix is shipped with Apache Orchestration Director

Engine to support execution of BPEL processes. JBoss ESBs comes integrated with Java

implementation of the Universal Description, Discovery, and Integration (jUDDI) registry to

provide UDDI capabilities including publishing and discovering of services via an ESB (Conner

etal.,2012). Once a service is requested by the consumer, JBoss ESB dynamically gets its address

61

to jUDDI. Since the basic information about services running in the ESB are stored in jUDDI

server, service management become easier.

3.6 Chapter Summary

This chapter presented the work that was done to evaluate ESBs. The review was restricted to the

work that evaluates ESB based on integration requirements for GUISET in order to provide the

theoretical background of this work. Reviewing literature and presenting the results was not

enough, so the further analysis was presented with an aim of determining which ESB has better

support for which GUISET integration requirements. The analysis presented in this chapter

provides the useful information that assisted in providing the answers to our second research

question that seeks to investigate which ESB better support each GUISET integration

requirement. However, the analysis was based on the qualitative data collected about each ESB.

This data was reported in the literature.

Although works has been done to assist ESB selection process but there still a lot to be desired in

particular when considering dynamic service discovery and service orchestration. There are few

works that attempted to enable dynamic service routing by integrating ESB with UDDI (Yu and

Yan, 2011). However, no comparison of the ESB solutions was mentioned. Moreover dynamic

service discovery and selection was not addressed. The performance evaluation of ESBs that

invokes external BPEL process was reported in (Garcia-Jimenez et al., 2010). Nevertheless,

there was no integration of ESB with BPEL engine to allow the execution of local business

processes. Moreover the services were pre-defined at design which makes the service routing to

be static. These points are worth mentioning because during our criteria ranking dynamic service

discovery and service orchestration were ranked at the top as the most important requirements

for GUISET integration. The rest of the work presented in this dissertation focused on these two

62

criteria. The importance of these integration requirements led to the need to empirically evaluate

Mule, ServiceMix and JBoss ESB towards support of dynamic service discovery and service

orchestration. This empirical evaluation is reported in the next chapter.

63

CHAPTER FOUR
EMPIRICAL EVALUATIONOF ESBs

4.1. Introduction

The literature reviewed in Chapter Three shows that the qualitative and empirical evaluations for

high availability, data transformation and content-based routing has been an attraction to a

number of researchers. ESB evaluation regarding service orchestration and dynamic service

discovery has not been fully explored. This is mainly due to the fact that most ESBs do not

provide these features out of the box. However, there exist add-ons to support these features

(Mulik, 2009). Dynamic service discovery allows appropriate service to be determined at

runtime. UDDI is the key enabling specification that can be used for dynamic service discovery

and management. The use of BPEL standard for defining short and long business processes

enable the existing enterprise functions to be composed and reused to build new business

requirements. There are engines that have been implemented to execute BPEL processes. Most

ESBs provides add-ons for these two features. Therefore, this chapter presents the empirical

comparative evaluation of ServiceMix, Mule and JBoss regarding service orchestration and

dynamic service discovery. More specifically, the following key questions were investigated:

 What is the effect of integrating ESB with BPEL engine on ESB performance?

 What is the effect of integrating ESB with UDDI on ESB performance?

The aim of this chapter is to provide answers to these question and select the ESB that perform

better when given a service orchestration and dynamic service discovery. This chapter begins by

an overview of ESB with service orchestration and ESB with UDDI in Section 4.2 and Section

4.3 respectively. The LoanBroker scenario is presented in Section 4.4. The ESBs use different

approaches towards realizing integration capabilities, Section 4.5 present our integration model

64

design and the configurations of each ESB. Section 4.6 presents the ESB performance

evaluation. Finally, Section 4.7presents the chapter summary.

4.2. ESB with Service Orchestration

The popularity of web service technology and the growing adoption of service-based application

development models resulted in the possibility of having software applications that are built as a

composition of existing services. Service composition is one of the most important principles of

SOA. A composite service combines more than one service functionalities to achieve a new

business requirement. The process of composing functionalities of different services is known as

service composition. An instance of a composite service is often called business process. In SOA

there exist two approaches towards service composition. These include service choreography and

orchestration. However, service orchestration is the most supported approach by ESB. The

popularity of service orchestration led to WS-BPEL standard being proposed and widely

accepted as the language for defining business processes.

4.2.1 BPEL Engine and WS-BPEL

BPEL engine executes and provides runtime environment for business processes written in WS-

BPEL standard. The engine coordinates invocation of web services by sending and receiving

messages, handling data manipulation and error recovery as defined in the business process.

BPEL engines support execution of both long and short living business processes. Business

processes are defined using WS-BPEL standard which is a language that defines several

constructs for writing business processes. Processes are defined by a set of basic control

structures such as conditions, invoke web service element and receive messages form service. In

order to invoke web service, a WSDL interface of a service is used.

65

There are quite a number on BPEL engines that are available and they include Apache ODE,

JBoss Riftsaw, Open ESB BPEL Engine, OW2 Orchestra and Petals BPEL Engine. They are

different in terms of their architecture but they share the same philosophy of executing WS-

BPEL defined business processes.

The ESBs under review in this work has strong support for Apache ODE and JBoss Riftsaw.

However, JBoss Riftsaw is a WS-BPEL engine optimized for JBoss application server container.

JBoss Riftsaw is not a standalone BPEL engine; it’s based on Apache ODE. Therefore Apache

ODE was considered for service orchestration.

Apache ODE

Apache ODE is an engine which executes one or more business processes defined in WS-BPEL

language. Apache ODE supports two communication layers, one based on Axis2 (specifically,

Web Services http transport) and the other based on JBI standard. It has compatibility with

BPEL4WS 2.0 which includes WS-HumanTask with Apache HISE.

4.3. ESB and UDDI

ESB supports systems communication by providing standard based platform for integrating

heterogeneous applications. Inside the ESB service invocation and composition are implemented

by routing messages to a specific destination endpoint configured in the configuration file. This

is static service routing because destination services are not discovered to determine their status

dynamically. The current ESB frameworks support only this static service routing which can

result in invocation faults if a specified destination is unavailable. Moreover, in a dynamic

environment like SOA, services are added and updated overtime to meet new requirements, so it

becomes difficult to manage these services that might be provided by different systems that are

66

heterogeneous and distributed in nature. This section, therefore, presents the method for

integrating ESB and UDDI service registry to enable dynamic service discovery and easy

management of services inside the ESB.

4.3.1 The UDDI Registry

The UDDI is currently the most widely used service registry and it has been voted to be a mature

service registry by OASIS (Longworth, 2005). UDDI is an effort done by the industry to provide

a directory service for web services offered by different businesses. UDDI allows business

providers to publish their services in the directory and enables business partners and consumers

to discover and use those services. To make publishing, discovery and binding of services

possible, UDDI specification provides structural templates for representing information about

business entities, information about their services and the mechanisms to access them. One of the

templates structure is the tModel. The tModel describes technical details about the service.

Structural templates are facilitated by standards such as WSDL and SOAP to enable quick

business-level and service-level discovery.There are several implementations of UDDI that are

currently available and they include UDDI4J (UDDI for Java) and jUDDI (Java UDDI). These

implementations make it easier to search or publish services without getting mired in the

complexities of the UDDI API. UDDI4J is the java implementation of the UDDI that was

originally developed by IBM. Apache jUDDI is another java UDDI registry implementation that

provides toolkits for accessing and interacting with UDDI. In this work we have used apache

jUDDI to assist ESB to support dynamic service discovery.

67

Apache jUDDI

Apache jUDDI can be deployed on Apache tomcat server and support different database

management systems such as MySQL, Oracle and Derby. Derby is a default database that comes

integrated with jUDDI and therefore it was used to avoid complexity in our implementation.

Apache jUDDI support three APIs to interact with registry: publish API, search API and security

policy API. Publish API provides set of functionalities for publishing new businesses and

services. Search API provides functionalities for searching registered businesses and web

services. Finally, security policy API ensures security for publish and search operation by

granting authentication token to users performing operations in the registry.

4.3.2 Dynamic service discovery and Selection

Discovery in the UDDI is done using a set of search criteria for finding businesses and their

services. Services can be searched by specifying business name, service name, service category

and tModels. As the number of service providers advertising their services increase, the number

of web services offering the same functionalities will also increase. This means that more and

more services meet the requester’s search criteria, so selecting only one service becomes a

problem. An approach to useQoS attributes to differentiate between services that offer the same

functionality was proposed and it’s now widely adopted by many researchers (Zenget al., 2004;

Khan et al., 2010; Rajendran and Balasubramanie, 2009). QoS attributes define non-functional

information about the service. These attributes include response time, availability, and reliability

(Wu and Wu, 2010). To have web services that are QoS-aware there is a need to provide

structure to allow service providers to publish their web services together with their QoS

information. The UDDI specification does not include the structure for defining QoS

information. However, Blum and Fred (2004) proposed that the QoS information of the web

68

service be stored in the UDDI tModel categorization. Many researchers have adopted this

approach and have proved to be more efficient than extending UDDI data structure using

UDDI’s extensibility mechanism (Patil and Gopal, 2012, Tiwari et al., 2012, and Khanet al.,

2010). Blum’s approach uses categoryBag for defining QoS mechanisms. Inside categoryBag

there is keyedReference that contains the keyName, keyValue and tModelKey. The keyName

represent the name of the QoS attribute. The keyValue is the corresponding QoS value assigned

to the attribute. The tModelKey is the unique identifier for the QoS information. This work

considered only service availability as the QoS attribute for differentiating services with the

same functionality. Service availability is defined in percentage with the value between 0 and

100. During dynamic service discovery the service availability value is obtained and compared

with availability of other services. The service with high availability is selected for binding.

4.4. Motivating Scenario: Loan Broker Application

In order to demonstrate the applicability of service orchestration and dynamic service discovery,

this section presents experimental prototype implementation of LoanBroker user case

scenario.The Loan Broker application is a widely usedSOA/ESB application example, and is

welldocumented in the Enterprise Integration Patterns book (Hohpe and Woolf, 2004). However,

it is important to note that although Loan Broker scenario presents real world example of service

orchestration, the concept in this work applies to a lot of service orchestration scenarios found in

many other domains. This section starts with an overview of the prototype implementation,

describing the various ESB configurations done to ensure uniformity and fairness of the results

obtained. Thereafter, an experimental setup and comparative performance analysis of the ESBs is

also presented.

69

4.4.1 Implementation Overview

The aim of the implementation was to investigate performance of Mule, ServiceMix and JBoss

ESB with respect to service orchestration and dynamic service discovery. For service

orchestration, ESB accepts the user-request on demand and triggers the business process which

orchestrates different services to provide response to user-request. While for dynamic service

discovery, the ESB dynamically discover all the services in the registry.

The prototype implementation presented was carried out using Java related frameworks and

technologies. Java 2 Standard Edition running on Eclipse Helios was primarily used as the

programming environment. Axis2 version 1.1 was used to implement all the web services

orchestrated. Sequence diagram for LoanBroker scenario is shown in Figure 4.1. The scenario

has six web services that are orchestrated to form the LoanBroker process. Two types of services

were modeled and they are simple and composite or complex services. Simple services model

service that cannot or do not need to be further decomposed because they are usually provided by

external partners therefore no implementation is available for such services. Such services in our

implementation are CreditAgency, Lender, Bank1, Bank2 and Bank3. For our Loan Broker we

deployed simple services on Apache Tomcat server to mimic external partners. On the other

hand a composite service is used to model business process and service which consume other

services. These are usually represented as a workflow consisting of an ordered sequence of steps

where each service is a call to another service. By default these series of steps are executed

sequentially one after the other. In the implementation presented here, there is only one

composite service, namely LoanBroker. LoanBroker composite service was deployed inside an

ESB server. Finally, WSDL2Java tool was used to generate proxy stub used by ESB to invoke

the service implementation of our process.

70

BPEL 2.0 standard was used to define the Loan Broker process. Apache ODE was used to

provide runtime orchestration engine for the Loan Broker process. WSDL2Java tool was used to

generate proxy stub used by ESB to invoke the service implementation of the LoanBroker

process. Each of the three ESBs (Mule, ServiceMix and JBoss ESB) was configured to accept

user requests as SOAP messages over HTTP.

4.4.2 Walk-through of the Loan Broker Application

LoanBroker application models a real world scenario of a consumer looking for the best loan

quote by consulting a number of banks as shown in Fig.1. Message flow is as follows:

1) Consumer sends loan request with loan amount to LoanBroker.

2) LoanBroker sends request to Credit Agency to get credit profile.

3) LoanBroker receives credit profile.

4) LoanBroker sends request to Lender Gateway to determine the most appropriate lenders

(banks) to contact based on consumer’s credit profile and amount requested.

5) List of potential lenders is returned.

6) LoanBroker sends loan quote request to the potential lenders.

7) Each potential lender computes and returns interest rate.

8) Amongst the rates computed by potential lenders, the best rate is selected.

9) Best loan quote is returned to the consumer.

71

Consumer LoanBroker CreditAgency Bank 1 Bank 2 Bank 3

getCreditProfile

Compute Rate

Select Best Rate

Lender

SelectLenders(amount,
CreditProfile)

GetLoanQoute
(amount)

CreditProfile

ListLenders

GetLoanQoute(amount, CreditProfile)

GetLoanQoute(amount, CreditProfile)

LoanQoute

1.

2.

3.
4.

5.

6.

LoanQoute

LoanQoute

7.

8.

9.

Compute Rate

Figure 4.1: LoanBroker Sequence diagram

4.5. Integration Model Design for our ESB Performance Evaluation

In order to achieve a complete SOA, service composition and discovery mechanisms are required

in addition to the ESB. This work aims to evaluate the performance of integrating ESB with

UDDI and BPEL engine. Specifically, the following three key designs elements were evaluated:

 Simple ESB – Direct Service orchestration

 ESB integrated with BPEL engine for service orchestration

 ESB integrated with UDDI for dynamic service discovery

We now discuss each in turn.

4.5.1 Simple ESB – Direct Service Orchestration

Simple ESB is the basic design where ESBs perform service orchestration without any external

component. In this design the composite service was hosted inside the ESB using Apache CXF

and it was responsible for coordinating and directly invoking external services for the

LoanBroker application. The purpose of this design was to investigate performance of each ESB

when considering direct service orchestration. External services were deployed on the tomcat

72

server and they included CreditAgency, Lender, Bank1, Bank2 and Bank 3 service. Section 4.7.1

provides detailed configurations of each ESB.

4.5.1.1 Detailed configuration of each ESB

As it was previously mentioned that different ESB products uses different approaches towards

achieving a certain integration capability. This led to different configurations as presented in this

section.

4.5.1.1.1ServiceMix ESB

ServiceMix is based on JBI specification and it uses the concept of Binding Components (BC)

and Service Engines (SE). The HTTP BC was configured to expose the CXF web service hosted

inside ServiceMix. SOAP messages are exchanged between internal and external web services.

Web service client send loan request and receive loan quote via HTTP protocol as shown in

Figure 4.2 below.

ServiceMix ESB

ServiceMix ESB

LoanRequest

HTTP
BC

CXF WS
SE

CreditAgency

Lender

Bank

Invokes

Invokes

Invokes

Figure 4.2 ServiceMix configurations for Direct Service Orchestration

4.5.1.1.2Mule ESB

Unlike ServiceMix which is based on JBI, Mule ESB uses Inbound and Outbound concepts. We

have configured HTTP inbound endpoint to expose CXF web service hosted in Mule over

HTTP, essentially making it an HTTP server. To invoke external web services SOAP outbound

73

was used to exchange SOAP messages as shown in Figure 4.3. CXF WS was used to host the

LoanBroker composite service inside Mule ESB.

Mule ESB

Mule ESB

LoanRequest

HTTP
Inbound

CXF WS

CreditAgency

Lender

Bank

Invokes

Invokes

Invokes

SOAP
Outbound

Figure 4.3 Mule configurations for Direct Service Orchestration

4.5.1.1.3JBoss ESB

JBoss ESB uses the concept of ESB unaware and ESB aware messages. Each service describes

“Listeners” which listen to external messages and list “Actions” which are inside the ESB and

are executed sequentially. The HTTP gateway was configured to listen to HTTP messages

thereby exposing JBoss CXF web service to the clients. SOAP processor was used to process

SOAP messages to and from internal web services. In addition, JBoss CXF WS invokes external

CreditAgency, Lender and bank web services using SOAP messages.

JBoss ESB

JBoss ESB

LoanRequest

HTTP
Gateway

SOAP
process

or

CreditAgency

Lender

Bank

Invokes

Invokes

Invokes

JBoss CXF
ws

Figure 4.4 JBoss configuration for Direct Service Orchestration

74

4.5.2 ESB integrated with BPEL engine for service orchestration

Although not all ESBs provide native support for BPEL engines but there are APIs that exist to

assist in integrating ESB and BPEL engine (Muliket al., 2009). In this design, Apache ODE was

included as external BPEL Engine to all ESB in order to support execution of WS-BPEL

processes. LoanBroker scenario was implemented as business process written using BPEL 2.0.

The business process orchestrates and invokes CreditAgency, Lender and Banks web service.

Integrating ESB and Apache ODE involved different configurations for each ESB. The

configurations are detailed in the section below.

4.5.2 .1 Configuration of each ESB

This section presents different configurations of integrating ServiceMix, Mule and JBoss ESB

with Apache ODE engine to provide support for BPEL business process execution.

4.5.2 .1 .1 ServiceMix ESB

CXF Service Engine was configured to register BPEL LoanBroker composite web serviceinto

ServiceMix. Apache ODE has support for JBI, so for ServiceMix we had an option of deploying

JBI distribution of Apache ODE inside the ESB. However for fairness throughout the

experiment, it was kept external and integrated with ESB using Apache Axis2 distribution which

was deployed on Apache tomcat. The configuration is depicted in Figure 4.5 below.

ServiceMix ESB

ServiceMix ESB

LoanRequest

HTTP
BC

CXF SE

CreditAgency

Lender

Bank

Invokes

Invokes

Invokes

BPEL Loan
process

Apache ODE
Executes

` Fig 4.5 ServiceMix configuration for BPEL Orchestration

75

4.5.2 .1.2 Mule ESB

BPEL LoanBroker process was hosted inside Mule using CXF. To execute the process, Apache

ODE was configured to communicate with the ESB using SOAP outbound component which

sends messages from and to the engine. Same as the first scenario HTTP outbound was used to

exposed web service. The configuration is depicted in Figure 4.6

Mule ESB

Mule ESB

LoanRequest

HTTP
Inbound

BPEL
Loan

process

CreditAgency

Lender

Bank

In
vokes

Invokes

Invokes

SOAP
Outbound

Apache ODE
Executes

 Fig 4.6 Mule configuration for BPEL Orchestration

4.5.2 .1.3JBoss ESB

JBoss ESB has native support for JBoss RiftSaw. However, Apache ODE was used for the

experiments presented in this work as depicted in the Figure 4.7 below. BPEL Loan process was

hosted inside the ESB and the runtime execution was provided using external Apache ODE.

SOAP over HTTP was used for communication between the engine and the ESB hosting BPEL

process.

JBoss ESB

JBoss ESB

LoanRequest

HTTP
Gateway

SOAP
process

or

CreditAgency

Lender

Bank

Invokes

Invokes

Invokes

BPEL Loan
process

Apache ODE
Executes

Fig 4.7 JBoss configuration for BPEL Orchestration

76

4.5.3 ESB integrated with UDDI for dynamic service discovery

In the dynamic environments like SOA, the number of services increases over-time. There is a

need to discover the most appropriate service dynamically at runtime. The UDDI can provide

dynamic service discovery capability in the ESB environment. This section presents an overview

of the architecture for integrating ESB with UDDI registry. Then later give the detailed

configuration of UDDI registry each ESB.

4.5.3.1High-level architecture for integrating ESB and UDDI server

The current ESB implementations support static discovery of services which is inflexible to

change (Yu and Yan, 2011). Defining service routing at design time can result in too many issues

including invocation faults when the service required is unavailable. In addition as number of

services increases it can results to maintenance nightmare. So enabling dynamic service discover

and selection in the ESB can be a solution to some of the issues posed by static service

discovery. Integrating ESB with UDDI server can provide dynamic service discovery and

selection by allowing service information to be registered in a central repository. Once the

service is requested by the service consumer, an ESB get its address dynamically from UDDI

server. Since the basic information about all services running inside the ESB is stored in the

UDDI server, the service management becomes easier. Figure 4.8 below introduce the high level

architecture of integration of ESB with UDDI service. The architecture has three layers and they

are Business layer, Integration layer and ESB layer

 Business Layer is at the top and it includes service providers and consumers. In addition

it contains enterprise application systems that map business processes to business services

77

 Integration Layer is at the middle and it contains two major components for integrating

ESB and UDDI, these components are proxy and UDDI server. The proxy provides

access to UDDI server and it can be implemented by a web application. The UDDI server

is responsible for managing basic information of all services that are available in the

ESB.

 ESB Layer is at the bottom and contains the ESB. This layer provides the facility for

routing messages form source to destination application. In addition ESB contains

dynamic service discovery mechanism for service look-up at runtime. Service consumers

request services form ESB and then ESB query the UDDI to find the basic information

about the service then bind with that service.

UDDI

Service Consumer
Service

Provider
Service

Provider

ESB Layer

Service Discovery
Layer

Business Layer

Proxy

Enterprise Service Bus

Figure 4.8: Overview of ESB integrated with UDDI

4.5.3.2Detailed configuration for each ESB

This section provides the configuration of ServiceMix, Mule and JBoss ESB integrated with

jUDDI to enable dynamic service discovery.

78

4.5.3.2.1 Integrating ServiceMix ESB and jUDDI

ServiceMix ESB is based on JBI specification which defines Binding Component (BC) and

Service Engine (SE). To expose LoanBroker service to external client, the HTTP BC was

configured to accept SOAP request and relay response. Apache jUDDI client was used to

provide access to the jUDDI registry while dynamic discovery mechanism that discover and

sequentially invoke each of CreditAgencyStore, CreditAgencyBank, Lender and BankService is

incorporated inside CXF SE. Then based on the service information discovered, CXF client is

used to invoke the external service. BC and SE are packaged to form a single service assembly

(SA) that is deployable to the ESB. Figure 4.9 shows how ServiceMix ESB was configured to

enable service discovery.

ServiceMix integrated with jUDDI

ServiceMix ESB

Service
Registry

jUDDI

Service Consumer Service Provider

Service Discovery
Layer

Business Layer

ESB Layer

jUDDI
Client

CXF
Client

SE

CXF SE
(DSD)

HTTP
BC

Figure 4.9: ServiceMix ESB integrated with UDDI

4.5.3.2.2 Integrating Mule ESB and jUDDI

Mule services consist of inbound router, service implementation component and outbound

router. Inbound router exposes the service to the external entities and it’s responsible for

receiving and processing of messages sent by previous service or client. In this case

79

SOAP/HTTP inbound component was used as shown in the figure. The Component represents

our LoanBroker application that invokes a CreditAgency, Lender and Bank services that are

published in the jUDDI registry. LoanBroker component takes loan quote request from the user

via SOAP/HTTP message then discover and invoke external services. Service implementation

component provides proxy that link Mule with jUDDI using jUDDI client. In addition it contains

the dynamic discovery mechanism that ensures services are selected according to their QoS

information, specifically availability value. Then based on the information returned by jUDDI,

the component uses CXF client to invoke the discovered web service. Finally the Outbound

router receives the results and sends them to other services or applications. The Figure 4.10

shows the complete configuration of Mule integrated and jUDDI.

Mule integrated with jUDDI

Mule ESB

Service
Registry

UDDI

Service Consumer Service Provider

Service Discovery
Layer

Business Layer

jUDDI
Client

CXF WS
Client

SOAP/
HTTP

Inbound

Outbound

Service

ESB Layer

CXF WS

Figure 4.10: Mule ESB integrated withjUDDI

4.5.3.2.3 Integrating JBoss ESB and jUDDI

JBoss ESB has native support for Apache jUDDI, so we had an option of using an internal

jUDDI implementation. However, for fair comparisons of the three ESBs, Apache jUDDI was

kept external as shown in Figure 4.11. An ESB-unaware message was sent from service

80

consumer via HTTP gateway to SOAP processor which was configured to be the ESB-aware

component. Upon receiving the message that contains loan quote request, the LoanBroker

service discover about the available CreditAgencyStore, CreditAgencyBank, Lender, and Bank

services. The discovery mechanism uses jUDDI client to interact with the registry. Invocation of

these services takes place via JBoss CXF web service. Loan response is sent back to the

requesting application or service.

JBoss integrated with UDDI

JBoss ESB

Service Registry

jUDDI

Service Consumer Service Provider

Service Discovery
Layer

Business Layer

ESB Layer

jUDDI
Client

JBoss
CXF WS
Client

HTTP
Gateway

Service

JBoss
CXF WS
(DSD)

SOAP
Process

or

Figure 4.11: JBoss ESB integrated with UDDI

4.6. Performance Evaluation of ESBs

For the comparative performance analysis, we tested scalability, response time and throughput of

each ESB using the configurations presented in section 4.5.

4.6.1 Scalability

 Scalability is the ability of ESB system to handle increasing amount of work. Scalability is one

of the important performance metrics in service-oriented systems because of the dynamic nature

of the environment. The number of users requesting the same service can grow exponentially

81

from time to time which can impose performance overhead on ESB system. Scalability of each

ESB was observed using response time.

4.6.2Average Response Time

Response Time is defined as the amount of time it takes for the system to return the desired

response (Menascé, 2002). This time is usually measured by the client application sending

request and receiving response. Then average response time was measured by taking average

time of receiving response from a batch number of requests sent concurrently as seen in the

formula. The aim was to measure how well the ESB system was able to respond to the increasing

number of requests.

∑

 , where n is the number of requests

4.6.3Throughput

The other most important performance measure of ESB system is throughput (Menascé, 2002).

Throughput measures the number of transactions processed at a given time. This analysis

measures throughput as the average transactions processed per second. The formula is as given

below;

∑

4.6.4 Statistical Analysis Method

After performing the experiments and collecting data to compare the performances of each ESB,

we needed a method to analyze the results. Simply calculating the average response time or

82

throughput and generating graphs is not sufficient for the analysis that can lead to conclusions

and decisions of which ESB performs better on which scenario. Therefore, Univariate ANOVA

was used.

4.6.4.1 Univariate ANOVA

For our data analysis, we used Univariate ANOVA to test our null hypothesis that says all three

ESBs would have a similar performance. Therefore, the mean difference between two ESBs

compared over a set of matched pairs of data points would be zero (Tabachnick and Fidell,

2007). The P-Value threshold chosen for statistical significance was 0.05. Thus, if the calculated

P-Value was below 0.05, then we reject null hypothesis, otherwise there is not enough

information to reject null hypothesis. The hypothesis is as defined below:

H0: All the three ESBs would have a similar performance

 (µ1 = µ2 = µ3)

 H1: At least one ESB’s performance is different from the rest

 (µ1 ≠ µ2 ≠ µ3)

 (µ1 ≠ µ2 = µ3)

 (µ1 = µ2 ≠ µ3)

For each experiment below, a P-Value was calculated for each metric. The Univariate ANOVA

helped to analyze the results obtained by focusing on a P-Value below the threshold of 0.05 as

our set level of significance. In addition, the analysis was used to prove whether or not the

performance of each ESB was equal to its peer, for a particular test.

83

4.6.5 Experimental Setup and Results Analysis

This section presents the results obtained when carrying out different experiments that aimed to

investigate the performance each ESB. This investigation was motivated by the fact that these

ESBs use different approaches towards realizing any ESB capability including service

orchestration. So selecting a single ESB for service orchestration is rather a difficult task.

Performance investigation was used to determine the ESB that perform better on service

orchestration and dynamic service discovery scenario.

This section describes in detail all the experiments and analyses carried out and discusses the

results that were obtained. We carried out various simulation experiments that were directed to

investigating the following:

1) Direct Service Orchestration time as the number of concurrent requests increase.

2) BPEL service orchestration time as the number of concurrent requests increase.

3) Dynamic Service Discovery time as the number of service discovered and published

increase.

4.6.5.1 Experiments for Direct and BPEL Service Orchestration

This section presents the experimental setup, results analysis and discussion for Direct and BPEL

Service Orchestration.

4.6.5.1.1Experimental Setup for Direct and BPEL Service Orchestration

To mimic distributed environment, two tired architecture was configured with two machines.

The machines were both Intel (R) Core (TM) processors with an i5 CPU @ 3.20 GHz and 3.00

GB of RAM. These machines were running Windows 7 with 32-bit Operating System. The first

machine was used to represent the server running the backend services of LoanBroker

84

application. More specifically this machine was running ESB which in turn contains LoanBroker

composite service and Apache ODE for providing runtime environment of BPEL processes. In

addition Apache Tomcat server was used as container for simple services. The second machine

contained front-end application that invokes LoanBroker by sending SOAP request and measure

response time as well as throughput. Apache JMeter version 2.5.1 was used as client and load

generator. For testing purposes in the context of service orchestration, the ESB configurations

introduced in Section 4.5.1 and Section 4.5.2 was used. The two service orchestration methods

were considered in order to examine the performance of each ESB. The first method is direct

service orchestration which involves a composite service directly invoking the external simple

services. In this method, the composite service was deployed inside each ESB while external

services were hosted in an external application server to mimic distributed environment while

allowing the ESBs to have access to similar services for fair comparison.

The second service orchestration method includes the use of BPEL defined processes which are

executed by BPEL engine. The BPEL process was deployed in each ESB and executed by

Apache ODE engine. For ServiceMix there was an option of deploying JBI distribution of

Apache ODE inside the ESB but Axis2 distribution deployed on tomcat was used since all the

three ESBs had support for this distribution. During initial testing it became clear that the three

ESBs would need modification to their default pooling size before they would actually be able to

run the test cases. For example ServiceMix default maximum pool size was set to allow only 32

concurrent HTTP requests. The number of requests was varied from 50 to 400 requests with the

range of 50 and service orchestration time and throughput were metrics measured.

85

4.6.5.1.2Experiment I: Direct Service Orchestration

This experiment is used as a base case, where an ESB directly perform service orchestration

without the help of an external component. Figure 4.12 shows response time for each ESB given

a number of concurrent requests. We observe that as the number of requests increases all three

ESBs maintained constant behavior regarding response time. This behavior of the response time

in all ESBs seems to suggest that the ESB did not rich saturation and hence requests where being

processed at a faster rate than they were being generated. However ServiceMix and Mule

achieved almost the same and lower response time. Throughput is shown on Figure 4.13, where

all ESBs started with low throughput but progressed steadily as the number of requests increases.

Since the response rates in Figure 4.12 seemed to suggest that the ESBs did not reached

saturation, the throughputs for 50 to 250 requests seem to be a function of the rate at which the

request were being generated. As a result, throughput increased linearly with increases in the as

the number of requests. A somewhat constant throughput was observed from 250 to 400

requests. This may be due to the fact that the ESBs were nearing saturation. As a result the

throughput began to be a function of the ESBs and hence the expected constant throughput for

each ESB.

Figure 4.12: Response Time vs. No of Requests Figure 4.13: Throughput vs. No of Requests

(Direct Service Orchestration) (Direct Service Orchestration)

0

20

40

60

80

100

50 100 150 200 250 300 350 400

JBoss ESB ServiceMix ESB Mule ESB

R
e

sp
o

n
se

Ti
m

e
 (

m
s)

No of requests

0

1

2

3

4

5

50 100 150 200 250 300 350 400

JBoss ESB ServiceMix ESB Mule ESB

No of requests

Th
ro

u
gh

p
u

t
(T

p
s)

86

4.6.5.1.3Experiment II: BPEL Service Orchestration

The main aim of this experiment was to investigate the performance of each ESB when

integrated with BPEL engine to support business process execution. Unlike in the first

experiment, response time considering BPEL scenario increased as the number on requests

increases. Therefore, integrating BPEL engine with ESBs had an effect on response time. This

behavior shows how each ESB interact with Apache ODE. Regarding scalability as the number

of requests increase, we observe that the rate at which the gradient change keeps widening as

depicted in Figure 4.14.Therefore ServiceMix scale better than other ESBs while also achieving

lowest response time. Considering throughput, we noted almost similar behavior with the first

experiment. This means all ESBs were almost consistent with the processing of the transactions.

However, ServiceMix had a better throughput in this scenario.

Figure 4.14: Response time vs. No of Requests Figure 4.15: Throughput vs. No of Requests

(BPEL Service Orchestration) (BPEL Service Orchestration)

4.6.5.1.4 Direct and BPEL Service Orchestration Results discussions

Although the graphs above give us the visual representation of how each ESB performed in a

given metric, a statistical analysis was needed to give meaning to the data collected. As stated

previously in section 4.10.3, we ran Univariate ANOVA test on each metric and observed the P-

Values that were below set threshold of 0.05. We tested hypothesis that were defined in Section

4.6.4

0

10000

20000

30000

40000

50000

60000

50 100 150 200 250 300 350 400

JBoss ESB ServiceMix ESB Mule ESB

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No. of Requests

0

1

2

3

4

50 100 150 200 250 300 350 400

JBoss ESB ServiceMix ESB Mule ESB

Th
ro

u
gh

p
u

t
(T

p
s)

No. of requests

87

Table 4.1 shows the P-Values that were obtained from the post-hoc analysis of the Univariate

ANOVA. Looking at the P-Values for direct service orchestration, throughput was significantly

different for all the three ESBs, while response time for ServiceMix and Mule was comparable.

Considering BPEL service orchestration scenario, the response time was significantly different

for all ESBs, while on throughput ServiceMix had a throughput significantly different from that

of Mule and JBoss. Thus looking at the computed values for our metrics in Table 4.2,

ServiceMix obtained the lowest values for response time which are 32.5 ms and 12647.5 ms in

both scenarios, while obtaining the highest throughputs which are 4.0125 Tps and 2.7275 Tps for

direct and BPEL service orchestration respectively. Therefore, we can conclude that ServiceMix

handled service orchestration better than Mule and JBoss ESB. The reason for ServiceMix better

performance is that it has strong support for Apache ODE as an orchestration engine.

Table 4.1: P-Values for Direct and BPEL Service orchestration

ESBs Direct Service Orchestration BPEL Service Orchestration

 Response Time Throughput Response Time Throughput

JBoss vs. ServiceMix 0.000 0.007 0.000 0.000

JBoss vs. Mule 0.000 0.001 0.046 0.060

ServiceMix vs. Mule 0.06 0.000 0.033 0.013

Table 4.2: Means and grouping of ESBs for Direct and BPEL Service Orchestration

Means and grouping for Response time of

Direct service orchestration

Means and grouping for Throughput of

Direct service orchestration

88

Means and grouping for Response time of

BPEL service orchestration

Means and grouping for Throughput of

BPEL service orchestration

4.6.5.2Experiments for Dynamic Service Discovery

The aim of this experiment is to investigate the scalability of the ESB in terms of the time it

takes for dynamic service discovery and selection. This experiment was in turn divided into three

test cases:

 Increasing number of service discovered.

 Increasing number of services published.

 Increasing number of concurrent requests.

4.6.5.2.1 Experimental Setup for Dynamic Service Discovery

In this experiment the two tired architecture was configured with two machines. The machines

were both Intel (R) Core (TM) processors with an i5 CPU @ 3.20 GHz and 3.00 GB of RAM.

These machines were running Windows 7 with 32-bit Operating System. The first machine was

89

used as the server running ESB and jUDDI registry. The second machine was used as the client

that sends SOAP messages and obtaining response time and throughput. To evaluate only service

discovery, the composite service was deployed inside each ESB, this service was then

responsible for discovering and invoking all the LoanBroker services from jUDDI. A maximum

of 20 services were discovered on the jUDDI registry and only 4 selected for loan process based

on their QoS attributes. JBoss ESB comes integrated with jUDDI registry to support service

registration, discovery and management but we chose not to use the already configured jUDDI

since it might had impact on the results. So jUDDI was deployed on tomcat server and integrated

with each ESB as an external component to allow a fair performance comparison. The

experiment varied number of services discovered, published and concurrent requests to

investigate performance and scalability of each ESB.

4.6.5.2.2Test Case I: Increasing number of services discovered

This test case investigates scalability of ESB as the increase in number of services that are

discovered. The LoanBroker application consists of four services that are discovered in the

jUDDI registry. At level-0 no services were discovered from the registry; Level-1 discovered

only one service from the registry and so on until all the four services were discovered. Figure

4.16 shows the results obtained and it can be observed that as the number of service discovered

increase, the response time also increases. All the three ESBs were equally scalable as the

number of services discovered increases. The throughput is represented in Figure 4.17 and it

shows that as the number services discovered increases the throughput of all ESBs decreases.

Although this decrease in throughout exist JBoss ESB seemed to have better throughput than

ServiceMix and Mule ESB.

90

Figure 4.16: Response Time vs. No of services discovered Figure 4.17: Throughput vs. No of services discovered

4.6.5.2.3Test Case II: Increasing number of services published

This test case presents the performance investigation of ESBs as the number of services that are

published on the registry increases. In this case LoanBroker discover all its four services form

the registry. At level-0 only four services were published in the registry, i.e. one per each service

participating in the LoanBroker. At level-1 the number of services published was increased to

eight, i.e. two identical services providing the same functionality but only one selected due to

better QoS information. And so on until 20 services were published and five providing the same

functionality. Figure 4-18 shows the response time obtained by each ESB when increasing

number of services published. The response time was almost constant 12 to 20 services

published. In view of this response time, the conclusion were made that all the ESBs were

equally scalable because the change in gradient was almost the same. Figure 4.19 depicts the

throughput obtained by each ESB in this test case. It can be observed that all the ESBs reached

0

500

1000

1500

2000

2500

3000

0 1 2 3 4

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No. of Services disovered

JBoss ServiceMix Mule

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0 1 2 3 4

Th
ro

u
gh

p
u

t
(T

p
s)

No. of Services Discovered

JBoss ServiceMix Mule

91

their highest throughput when there were 8 services published in the registry

Figure 4.18: Response time vs. No of Services published Figure 4.19: Throughput vs. No of services published

4.6.5.2.4Test Case III: Increasing number of concurrent requests

The aim in this experiment was to investigate the scalability of JBoss, ServiceMix and Mule ESB

in terms of the time it takes to complete the service orchestration process as the number of

concurrent requests increases. In this case, the number of services published in the UDDI held

constant at 20. Among these services, only 4 services were selected based on their QoS value.

This experiment investigates performance of each ESB under heavy load. The results obtained

for response time are shown in Figure 4.20. As the number of requests increases, the response

time for all the ESBs also increased. All the ESBs are also scalable when increasing number of

requests. The throughput of each ESB is shown in Figure 4.21, it can be observed that as the

number of requests increases the throughput also increase.

0

1000

2000

3000

4000

5000

4 8 12 16 20

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No. of Service Published

JBoss ServiceMix Mule

0

0.05

0.1

0.15

0.2

0.25

0.3

4 8 12 16 20

Th
ro

u
gh

p
u

t
(T

p
s)

No. of services published

JBoss ServiceMix Mule

92

Figure 4.20: Response time vs. no of requests Figure 4.21: Throughput vs. no of requests
(Services published = 20) (Services published = 20)

4.6.5.2.5 Dynamic Service Discovery Results Discussion

The graphs above present the findings for the performance of each ESB when considering

dynamic service discovery using jUDDI as the registry. In addition to graphs, we performed a

statistical analysis in order analyze data obtained and make conclusion on which ESB perform

better in dynamic service discovery. Table 4.3 list the P-Values obtained for post hoc analysis for

the three test cases of dynamic service discovery. Looking at the P-Values for increasing services

discovered the response time was comparable for all ESBs, while we observe significant

difference in throughput when comparing JBoss with ServiceMix and Mule. The computed

means are shown in Table 4.4, JBoss had the lowest response time of 1616.20 ms and the highest

throughput of 0.3016 Tps when increasing services discovered. The P-Values for increasing

services published shows the difference in response time when comparing JBoss with

ServiceMix and Mule. Throughput for ServiceMix was not significantly different than that of

JBoss and Mule. Mean values shows that JBoss achieved the lowest response time of 2910.40 ms

and the highest throughput of 0.2176 Tps. The P-Values for increasing number of concurrent

requests shows that the response time for all ESBs was significantly differentwhile throughput

for ServiceMix and Mule was comparable. Even in this test case JBoss obtained the lowest

response time of 8497.88 ms with the highest throughput of 0.4093 Tps. Therefore, based on this

0

3000

6000

9000

12000

15000

18000

1 2 3 4 5 6 7 8 9 10

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No. of Requests

JBoss ServiceMix Mule

No of Services = 20

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(T

p
s)

No. of Requests

JBoss ServiceMix Mule

No of Services = 20

93

analysis it was concluded that JBoss handled dynamic service discovery better that the other

ESBs. This is due to the fact that JBoss has a native support for UDDI. JBoss is shipped with

Apache jUDDI for service registration, discovery and management (Conner et al., 2012).

Table 4.3: P-Values for Dynamic Service Discovery

ESBs Increasing Services

discovered

Increasing Services

published

Increasing services

published with Requests

 Response

Time

Throughput Response

Time

Throughput Response

Time

Throughput

JBoss vs.

ServiceMix

0.247

0.000

0.011

0.093

0.000

0.000

JBoss vs.

Mule

0.065

0.000

0.05

0.013

0.000

0.000

ServiceMix

vs. Mule

0.635

0.925

0.806

0.410

0.000

0.431

Table 4.4: Means and grouping of ESBs for Dynamic Service discovery

Means and grouping for Response time when

Increasing Services discovered

Means and grouping for Throughput when

Increasing Services discovered

94

Means and grouping for Response time when

Increasing services published

Means and grouping for Throughput when

Increasing services published

Means and grouping for Response time when

Increasing number of requests

Means and grouping for Response time when

Increasing number of requests

95

4.7 Chapter Summary

This Chapter presented the comparative experimental results of JBoss, ServiceMix and Mule

ESB with regard to service orchestration and dynamic service discovery. The goal was to

investigate the performance of each ESB, and then based on the performance result select one

ESB that handle each scenario better. Towards this goal, scalability, average response time and

throughput was measured and used as the performance metrics. The results obtained were

analyzed using statistical method and conclusions were made on each scenario. Overall,

ServiceMix achieved better results on service orchestration. Therefore, scenarios that needs

service orchestration can be better supported by ServiceMix. As an advantage ServiceMix is

shipped with Apache ODE engine to support BPEL process execution inside the ESB. On the

other hand, JBoss had the better ESB performance when considering dynamic service discovery

using UDDI. In addition JBoss comes integrated with Apache jUDDI to support service

registration, discovery and management. These two results were expected since the analysis in

Chapter Three also advocated that ServiceMix and JBoss have strong support for service

orchestration and dynamic service discovery, respectively.

To this end, we can conclude that there is no single best ESB solution for GUISET since

different integration requirements are best supported by different ESB products. Therefore, to

support all the GUISET integration requirements, a strategy to integrate different ESBs to work

together was needed. ESB federation is a concept that emerged to conquer the limitations of a

single centralized ESB model by allowing multiple physical ESBs to work together to form a

single logical ESB. In the next chapter, we discuss this concept in details and introduce different

patterns in which ESB federation can be achieved. The empirical evaluations of these patterns

are also presented.

96

CHAPTER FIVE

ESB FEDERATION PATTERNS ANDPERFORMANCE EVALUATION

5.1 Introduction

Despite the growth of using ESB technology to build new integration platforms, ESBs are still

faced by challenges when employed for integration in large dynamic SOA environments. These

challenges include the fact that large organizations are distributed in nature which makes it

difficult to ensure single ESB throughout. In addition, the scalability of a single ESB is

questionable when it has to support integration of a huge number of services and systems that

constantly exchange messages for communication (Kumaret al., 2011; Baude et al., 2010; Gniel

and Arnold, 2009; Nair, 2009). Chapter Three presented the analysis of the work that has been

done related to the evaluation of ESBs towards supporting GUISET integration requirements.

From this analysis, ServiceMix, Mule and JBoss ESB showed that they have some mechanisms

that can be used to support GUISET integration needs. However, there is still a challenge of no

single ESB that best support all the GUISET integration needs. For example, as presented in

Chapter Three and Chapter Four, JBoss ESB performed well considering UDDI and dynamic

service discovery support but comparably worse on the other requirements evaluated.

The challenge of different integration requirements that are best met by different ESBs calls for

major adjustments in designing a GUISET integration platform. Industry practices are moving

towards ESB Federation, so as to overcome the challenges imposed by the single centralized

ESB in large environments. In an ESB Federation, two or more ESBs work together towards

achieving integration needs of a certain organization. This work also employed ESB Federation

approach to integrate ServiceMix, Mule and JBoss ESB in order todesign an environment that

best support GUISET integration requirement. Federation of ESBs seemed to be a feasible

97

solution since it allowed different ESBs to work together, with each ESB used for the feature(s)

that it best support.

There are three major patterns for ESB Federation that has been proposed (Dundek, 2010; Keen

et al., 2004). These patterns are Directly Connected, Hub-Spoke and Brokered ESB Federation

patterns. These patterns are architecturally different but they all serve the same purpose of

forming Federated ESB based on multiple ESBs working together to achieve integration

requirements. The aim of this chapter was to use an empirical comparative analysis method to

provide answers to the following questions:

1. Which ESB federation pattern has the best performance in terms of response time and

throughput?

2. Does ESB federation have better performance compared to a single ESB in the GUISET

context?

To successfully answer the above mentioned question, this chapter introduces the background

and architecture of these patterns in Section 5.2. Section 5.5 and Section 5.6 discuss how these

patterns were implemented to ensure that the GUISET integration requirements are best

supported. More specifically, this was achieved by allowing each ESB participating in the

federation to be used for the capability that it best supports. This study focused on only two

GUISET integration requirements which are Service Orchestration and Dynamic Service

Discovery. Section 5.7 presents the performance evaluation of three ESB federation patterns.

ESB Federation pattern that obtained the best performance was then compared with a single ESB

that was found to be closer in meeting GUISET integration requirements. This comparison is

presented in Section 5.8. Finally, the chapter summary is presented in Section 5.9.

98

5.2 Directly Connected ESB Federation Pattern

Directly connected ESB pattern is based on point-to-point topology. It allows ESBs to be

connected directly to each other as peers. For example, the ESB that hosts the service consumer

must know which ESB hosts the service provider, how to communicate with it in terms of what

protocol to use and which format is expected to accept request. However, this defeats SOA

principle of loose coupling. Some work has been done to federate multiple ESB domains using

Directly Connected ESB Federation pattern. Dragicevic et al.,(2010) proposed an approach for

cross-domain service integration called Declarative Inter-ESB Service-Connectivity

Configuration Engine (DISCE). DISCE is a configuration engine that automates the connectivity

required by applications accessing services on the distributed domains of SOA networked

environment. DISCEmake services visible at the ESB domains by introducing a description

realized as a WSDL file of the service in the registry of the client’s domain.

Large SOA environments demand more scalable infrastructure to accommodate huge number of

service consumers and providers. Enhancement of Petals distributed ESB toward an ESB

federation is presented in Baude et al., (2010). Petals distributed ESB contains ESB instances

that are directly connected to each other as peers. The enhancement of Petals distributed ESB

towards supporting large scale SOA environment include scaling service registries and message

routers to the level of federation using hierarchical approach. Directly Connected ESB

Federation pattern is known of its ability to scale well. However, with the routing information

distributed among different ESBs, maintenance in this pattern would require exponentially more

efforts as the number of links between ESBs increases (Keen et al., 2004).

99

5.3 Brokered ESB Federation pattern

Rather than defining routing information within each distributed ESB as that of directly

connected, a separate ESB called “broker” can be deployed. The function of the broker is routing

information and acting as mediator between ESBs in the federation (Keen et al., 2004). The

broker ESB offers nothing other than routing services. This separates integration logic and

related business rules from ESBs in the federation. For example, the ESB hosting service

consumer need only to know how to communicate with the broker and the broker determines the

ESB that host service provider. Therefore, each ESB has less implementation knowledge about

other ESBs. This creates a loose coupled environment because the changes in one ESB will be

less likely to affect the other ESBs.

Brokered ESB reduces number of point-to-point connection which eases maintenance nightmare

that is a problem in Directly Connected ESB pattern. However, the major drawback of this

pattern is that the central broker becomes an architectural bottleneck which introduces

scalability, performance and fault tolerance problems (Callaway et al., 2008).

5.4 Hub and Spoke ESB Federation Pattern

In this pattern, the ESB can either be Hub or Spoke. Spokes are connected to the Hub and they

have no connection among themselves. The major difference between Hub and Spoke and

Brokered ESB is that the Hub act as mediator and it can make requests or respond to requests as

well unlike the Broker that does nothing other than routing. The Hub can be a fully-fledged ESB

with enhance routing services to coordinate interaction amongst the Spokes in the federation. For

example, a service consumer hosted in the Spoke sends a request to the Hub and the Hub check

100

whether it has service provider requested; if yes it respondto the request or else determine the

Spoke that host required service provider (Dundek, 2010).

5.5 Design of Federated ESB

The implementation design is a three layered architecture representing five major components.

These components are Service Consumer, Service Provider, Federated ESB, BPEL Engine and

UDDI Registry. The five components work together to provide integration for the prototyped

GUISET environments. The design is shown in Figure 5.1.

Design overview

 Business Layer

BPEL Engine UDDI Registry

Federated ESB

Service Consumer Service Provider

Figure 5.1: Overview Design solution for Federated ESB

Business Layer

This layer is responsible for providing access to the environment by means of allowing two

entities to participate. These entities are service consumer and service provider.

Service Consumer – In the prototype environment service consumer is an entity that requires

the capability offered by the service provider. The consumer’s request is submitted through the

101

Federated ESB. A service consumer is assumed to have one or more tasks to be submitted for

execution.

Service Provider – A service provider is an entity that develops and publishes web service that

performs a given task. Web services are published together with their QoS information in order

to differentiate between services offering the same functionalities. Each service published has

QoS information. In this implementation QoS information was regarded as the “availability”

value

Service Provider Service

UDDI Registry

Develop and
manages

Publish Services

QoS information

Has

Figure 5.2: Service Provider Component

Federated ESB Component

Federated ESB is the main component responsible for coordinating the interaction of other

components by:

 Accepting the consumer’s request.

 Trigger BPEL process and submit the process to BPEL engine for execution.

 Dynamically look-up for service information by querying the UDDI registry.

 Based on the query results, the service is invoked.

102

Federated ESB component can be any of the ESB Federation patterns introduced in Section 5.2

to Section 5.4. These patterns differ in the way they route messages between ESBs. Figure 5.3

graphically represents the interaction of Federated ESB with other components. Once the request

is made, Federated ESB initiates the BPEL process and dynamically gets the addresses of all the

required services in the UDDI registry. Then using the service address, the service consumer

binds and invokes the concrete service which is hosted in the Federated ESB.

Federated ESB

Concrete
service

UDDI Registry

BPEL Processes

Service Info.

Has

Consumer

Search

Initiate

Bind

Request

Figure 5.3: Interaction between Federated ESB and other Components

BPEL Engine Component

BPEL Engine component is responsible for providing runtime environment for BPEL processes.

Figure 5.4 shows the BPEL engine and its related components. The BPEL written business

process define the order of invocation for different services. These services are known using

their WSDL interfaces. BPEL processes are submitted to BPEL engine for execution.

103

BPEL written business
process

Service

Service

BPEL Engine

BPEL Runtime
Invokes

Invokes

Execute

Figure 5.4: BPEL Engine Component

UDDI Registry Component

UDDI registry is the component responsible for storing information about the web services. This

information is provided by service providers when they register their new web services in the

registry so that they can be discovered by service consumers. Information stored in the registry

includes business, service, and technical information that specify details on how to access the

services offered. In addition, QoS information can be stored in the tModel data structure of the

UDDI registry to assist in web service selection when more than one web services meet

functional requirements requested. UDDI registry provides APIs for security policing,

publishing, searching, updating web services. In an environment like Federated ESB some

services might be hidden unintentionally from other ESBs. Therefore, UDDI can improve service

visibility by providing centralized repository for publishing and searching for services.

Moreover, since the information about the services is stored in the registry, service management

becomes easier. Figure 5.5 shows UDDI registry component.

104

UDDI Registry

Business Info.

Service Info.

tModel Info.

Service Consumer Service Provider

Search Publish

QoS Info.

Has
1

0...*

Figure 5.5: The UDDI Registry Component

5.6 Implementation of LoanBroker Scenario

Chapter Four presented the LoanBroker scenario which model the client obtaining the best loan

quote by comparing loan rates from different banks. The scenario entails different services that

are invoked to complete the loan quote process. These services are CreditAgencyBank,

CreditAgencyStore, LenderService and BankService.

 CreditAgencyBank – takes customers Social Security Number (SSN) and compute banks

credit history of the customer.

 CreditAgencyStore - takes customers Social Security Number (SSN) and compute Store

credit history of the customer. The assumption is that the customer credit profile is

obtained by adding banks and store credit history.

 LenderService – this service act as the gateway for the potential loan lenders. It is

responsible for selecting Lenders (Banks) based on the customer’s credit profile and the

loan amount requested.

105

 BankService – This service is the gateway for Banks that are categorized as either High

Rated or Low Rated. Each bank under the selected category computes and returns its

name and loan rate.

o High Rated – this category entails banks that offer large loan amount for

customers with good credit profile.

o Low Rated – This category has banks that offer small loan amount for customers

with moderate credit profile.

5.6.1 Apache jUDDI Registry hosting LoanBroker Services

The above mentioned services were hosted by ESBs across federation, so as to allow ESBs to be

active and contribute towards LoanBroker process. The information about these services was

published in the jUDDI registry so that they can be dynamically discovered. The screenshot

below (Figure 5.6) shows jUDDI portal containing LoanBroker services. Chapter Four presented

the performance evaluation of Mule, ServiceMix and JBoss ESBs towards supporting dynamic

service discovery. The results obtained favored JBoss ESB among other contenders. Moreover

the aim of federating ESBs was to allow different ESBs to work together, with each being used

for the feature that it best support. Therefore, in the Federation, JBoss was responsible for

performing all service discovery needed by itself and on-behalf of other ESBs. JBoss was

configuredto have direct communication with jUDDI Registry.

106

Figure 5.6: Snapshot of the Apache jUDDI showing LoanBroker services published

5.6.2 BPEL LoanBroker Processes

LoanBroker process involves the invocation of different services that communicate and

exchange messages until the loan quote is obtained. WS-BPEL 2.0 was used as the design tool to

define the LoanBroker process as shown inFigure 5.7 below. Chapter Four presented the

performance evaluation of Mule, ServiceMix and JBoss ESB towards support of BPEL service

orchestration. The results presented favored ServiceMix among other contenders. Therefore to

achieve maximum results in the Federated ESB, ServiceMix was responsible for performing

hosting and executing BPEL processes. ServiceMix was configured to have direct

communication with Apache ODE to assist in BPEL process execution.

107

Figure 5.7: BPEL defined LoanBroker process

5.6.3 Implementation of Federated ESB Patterns

In the literature, three major ESB Federation patterns were proposed. At the beginning of this

Chapter, an overview of Directly Connected, Hub and Spoke, and Brokered ESB Federation

patterns was presented. This section presents the detailed implementation of each pattern. The

LoanBroker business process was used for proof of concepts and performance evaluation of

three federation patterns introduced. The aim was to recommend a single federation pattern for

GUISET like environments.

108

5.6.3.1 Directly Connected ESB Federation Pattern

In this pattern, ESBs communicate directly with each other as shown in Figure 5.8. As

mentioned previously that the LoanBroker services were distributed among different ESBs in the

federation. More specifically, CreditAgencyBank was hosted inside ServiceMix, while

CreditAgencyStore and LenderService were hosted by Mule, and JBoss hosted the BankService.

In addition ServiceMix was configured to host the BPEL LoanBroker process that dynamically

discover and invokes different services. Note that the LoanBroker process does not know

CreditAgencyBank and CreditAgencyStore, it invokes CreditAgencyService.

CreditAgencyService aggregates the results obtained from CreditAgencyBank and

CreditAgencyStore to make a single customer’s credit profile. CreditAgencyService is hosted by

JBoss ESB and it enables the interaction between JBoss and the other two ESBs. Moreover,

JBoss ESB host the dynamic service discovery mechanism.

Directly Connected ESB Federation

CreditAgencyBank CreditAgencyStore LenderService BankService

ServiceMix ESB

M
ul

e
ES

B

JB
os

s E
SB

Apache ODE

Service
Registry

jUDDI

Execute

Search

LoanRequest

Figure 5.8: Directly Connected ESB Federation implements of LoanBroker

109

5.6.3.2 Hub and Spokes ESB Federation Pattern

This pattern is almost the same as Directly Connected ESB Federation. The major difference is

that Spokes communicate via Hub. So when JBoss aggregates credit profile,

CreditAgencyService sends request to CreditAgencyStore proxy hosted by ServiceMix. This

proxy then invokes CreditAgencyStore on behalf of CreditAgencyService. Therefore, in Hub and

Spokes communication between spokes takes place through Hub. Figure 5.9 shows the complete

configuration of Hub and Spoke ESB federation pattern.

Hub and Spoke ESB Federation

CreditAgencyBank CreditAgencyStore LenderService BankService

ServiceMix ESB

M
ul

e
ES

B

JB
os

s
ES

B
Apache ODE

Service
Registry

jUDDI

Execute

Search

Figure 5.9: Hub-Spoke Federation pattern implements LoanBroker

5.6.3.3 Brokered ESB Federation Patterns

In this Federation pattern, there is a single ESB called broker which is dedicated for only

communication. Therefore, ServiceMix was configured to be the broker ESB that host all the

communication protocols for routing messages throughout the Federation as shown in

110

Figure5.10. In addition, ServiceMix hosts LoanBroker process. Moreover, CreditAgencyBank

that was hosted by ServiceMix in the previous patterns was moved to JBoss ESB.

Brokered ESB Federation

CreditAgencyBank CreditAgencyStore LenderService BankService

ServiceMix ESB

M
ul

e
ES

B

JB
os

s E
SB

Apache ODE

Service
Registry

jUDDI

Execute

Search

LoanRequest

Figure 5.10: Brokered ESB Federation Pattern implements LoanBroker

5.7 Performance Evaluation of Federated ESB Patterns

This section presents the performance evaluation of Directly Connected, Hub and Spoke and

Brokered ESB Federation patterns. The implementation of these patterns was provided in

Section 5.6. However, it is noteworthy to mention that our implementation was restricted to just

an experimental prototype with only manageable number of services deployed on the ESB and

published on our local service registry. While, this implementation allows us to gain valuable

insight of how GUISET integration requirements can be best supported, there was a need to

further comparatively evaluate the performance of the three federation patterns in a controllable

and repeatable environment, so as to ascertain their performance tradeoffs. The results of this

evaluation will be used to recommend a single ESB Federation pattern for the GUISET

111

environment. Towards this end, this section presents an empirical evaluations and analysis of

Federated ESB patterns.

The following key performance questions were investigated:

 What is the effect of increasing number of service discovered on the service orchestration

time and throughput?

 How does increasing number of services published affect service orchestration time and

throughput?

 What effect does increasing number of concurrent requests has on service orchestration

time and throughput?

5.7.1Basic Assumption of the Simulation Model

In configuring our experiments, the following basic assumptions were made:

 We assumed that LoanBroker web services were already published by their service

providers.

 Service Providers defined service QoS Attributes, specifically “availability” during

service registration.

 Assumed the network delay was constant throughout the experiment.

5.7.2 Simulation Setup and Environment

To mimic distributed environment for our experiments, three different machines running 32- Bit

Windows 7 Professional were used. The machines had Intel (R) Core (TM) i5 CPU with 3.20

GHz processor speed and 3 GB of RAM. The first machine was configured to run ServiceMix

ESB which host LoanBroker BPEL process, Apache ODE for BPEL process execution, and

Apache JMeter which was used as client that sends SOAP messages to LoanBroker process and

measures response time and throughput. The second machine was running JBoss ESB which

112

hosts dynamic service discovery mechanism, and Apache jUDDI which was used as repository

registry storing information about LoanBroker web services. Finally, the third machine was

running Mule ESB hosting implementation of some of the LoanBroker web services. All the

three machines were connected using 100 Mbps network switch. Upon initiation, the LoanBroker

process consults JBoss ESB to dynamically discover services to be invoked. When there is a list

of matching services then QoS value of availability was considered for service selection. The

maximum number of services published in the jUDDI repository was 20, with each of the

LoanBroker services having 5 replicas that have different QoS value of availability. A

LoanBroker request was executed 10 times in each test case to investigate service orchestration

time and throughput.

5.7.4 Experimental Results and Discussion

The implementation design of Directly Connected, Hub-Spoke and Brokered ESB federation

patterns was discussed in Section 5.6. Based on this implementation, this section discusses the

results obtained from various simulation experiments that were directed towards investigating

the service orchestration time and throughput in the following situations:

 When the number of services discovered increases.

 When the number of services registered increases.

 When the number of concurrent requests increases.

The experiments were designed to test scalability, average response time and throughput of

executing BPEL LoanBroker process. BPEL LoanBroker process dynamically discovers its

services from jUDDI registry and invokes these services by binding with the service providers.

In this case service providers host their services inside the ESBs.

113

The average response time is given as the sum of n service requests response time (RT) divided

by n number of requests sent. R Tis the time it takes to complete service orchestration process.

This includes the service discovery and invocation time. The equation is as shown below;

∑

Whereas the average transaction time is given by the sum of n service requests processed per

second divided by the n requests. This is represented by the following equation;

∑

5.7.4.1 Experiment I: Increasing number of services discovered

The aim of this experiment was to investigate the scalability, response time and throughput of the

ESB federation patterns when the number of services discovered increases. In this experiment at

Level- 0 all services were directly invoked by the LoanBroker process, therefore, no service

discovery took place at this level. At Level – 1, only one service was discovered from the jUDDI

registry, while the rest of services were directly invoked. The number of services discovered was

increased until all the four services were dynamically discovered for the registry. The results

obtained from this experiment are graphically represented in Figure 5.11 and Figure 5.12 and

they are discussed in details in the results discussion section. The results in Figure 5.11 shows

the response time of the three ESB Federation Patters (Directly connected, Hub and Spoke and

Brokered ESB Federation). It can be observed that as the number of services discovered

increases the service orchestration time also increase. Such behavior was expected, given the fact

that searching the registry takes time due to two factors; first the registry needs to perform

114

authentication process on the request. The second factor being the fact that registry returns a list

of matching service and the service discovery mechanism has to evaluate and compare services

QoS information specifically “availability” as attribute was considered for service selection. The

service with the high availability value gets selected to participate in the LoanBroker process. It

can also be observed that all the three federation patterns were equally scalable in this scenario.

Figure 5.12 depict the findings of our experiments for throughput versus number of service

discovered. The results show that the throughput for all the ESB Federation patterns were nearly

the same when there was no service discovery. The constant behavior from 0 to 3 services

discovered was observed for Directly Connected and Brokered ESB Federation patterns

Figure 5.11: Response Time vs. No of service discovered for Figure 5.12: Throughput vs. No of service discovered for

The three ESB Federation Patterns the three ESB Federation Patterns

5.7.4.2 Experiment II: Increasing number of service registered

This experiment aimed to investigate scalability of Federation pattern with increases in the

number of services registered in the registry. LoanBroker process dynamically discovers and

invokes four different services that exchange messages to complete loan process. At Level – 0,

four services were registered in the registry and discovered by LoanBroker. At level – 1, we

increased number of services in the registry by registering replicas of each service of the 4

services. Therefore, at Level – 1, number of services registered and discovered by the

LoanBroker were increased to 8. Then, we increased the number of services registered in the

0

1000

2000

3000

4000

5000

0 1 2 3 4

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No. Of Services discovered
DirectlyConn ESBs Hub-Spoke Brokered ESB

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

0 1 2 3 4

Th
ro

u
gh

p
u

t
(T

p
s)

No. Of Services discovered

DirectlyConn ESBs Hub-Spoke Brokered ESB

115

registry until the sum of 20 services were registered and discovered in the registry. The results

obtained from this experiment are shown in Figure 5.13 and Figure 5.14. Results showing

response time versus number of service registered is depicted in Figure 5.13. Figure 5.13 shows

that increasing number of service registered had an effect on service orchestration time. The

effect is in such a way that increasing number of service registered also increase number of

response time. The lower response time at the beginning was caused by the fact that the registry

was responding with only one service matching the requests as opposed to the list, therefore no

comparison of QoS attributes needed. We observed from Figure 5.13 that the three federation

patterns were equally scalable. Figure 5.14 shows throughput versus number of service published

results. Throughput starts high and decrease then when reached 16 services registered it then

increases again.

Figure 5.13: Response Time vs. No of service published for Figure 5.14: Throughput vs. No of service published for the

three Federated ESB patterns three Federated ESB patterns

5.7.4.3 Experiment III: Increasing number of service registered

In SOA environments, it is always possible that two or more clients can be concurrently

consuming the same service, so the environment should be able to behave the same regardless of

the load. In this experiment, we investigated the behavior of each pattern when the number of

concurrent requests increases. The results obtained are graphically represented in Figure 5.15and

0

1000

2000

3000

4000

5000

4 8 12 16 20

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No of Service published

DirectlyConn ESBs Hub-Spoke Brokered ESB

0

0.05

0.1

0.15

0.2

0.25

0.3

4 8 12 16 20

Th
ro

u
gp

u
t

 (
TP

S)

No. of Service published

DirectlyConn ESBs Hub-Spoke Brokered ESB

116

Figure 5.16. The results in Figure 5.15 show that increasing number of requests was directly

proportional to the response time. We also observed that all the three patterns were equally

scalable as the number of requests increases. The throughput on the other hand was below 1 Tps

in all test cases as shown in Figure 5.16. Having these results was not enough to make decision

of which federation pattern performs better. Therefore, the results were further analyzed in

Section 5.7.5.

Figure 5.15: Response time vs. increasing no of requests Figure 5.16: Throughput vs. increasing no of requests

 (20 services published) (20 services published)

5.7.5 Results Discussion

Graphical representation of the results obtained was given in section 5.7.4above. Although the

graphs give visual representation of how each federation pattern performs in a given scenario,

the statistical analysis was needed to assist in selecting one pattern that performed better. The

analysis was based on looking at the P-Value at the 95% confidence interval, if the P-Value

obtained was less than 0.05 then performance on the two candidates compared was significantly

different. The P-Values for all experiments are recorded below in Table 5.1. We further recorded

the means and the grouping for patterns in Table 5.2.

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No of Requests

DirectlyConn ESB Hub-Spoke Brokered ESB

No of Services = 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(T

p
s)

No of Requests

DirectlyConn ESBs Hub-Spoke Brokered ESB

No of Services = 20

117

 Looking at the increasing service discovered response time and throughput show that Directly

Connected ESB pattern had significantly different performance than Hub-Spoke. Considering the

experiment of increasing services published, we observed the difference in response time when

comparing Directly Connected ESB with Hub-Spoke and Brokered ESB. Throughput for

Directly Connected ESB was different with that of Brokered but comparable with that of Hub-

Spoke. Looking at the scenario of increasing requests, the response time and throughput showed

that Directly Connected ESB had significantly different performance compared to other

federation patterns.

Table 5.2 represents means and clustering of the patterns. According to the computed values,

Directly Connected ESB achieved the lowest response time of 2005.40 ms, 3221.60 ms, and

8452.92 ms in all three experiments respectively. Considering throughput, also Directly

Connected ESB obtained the highest throughput of 0.2400 Tps, 0.2030 Tps and 0.4299 Tps in all

the experiments respectively. The reason for such performance was due to the fact that in

Directly Connected federation pattern, ESBs communicate directly with each other in a point-to-

point model. This reduces time taken to perform message routing proxy as required by other

patterns. Therefore, based on these analyses we can conclude that Directly Connected ESB

federation pattern performed better in all scenarios followed by Hub and Spoke and then

Brokered ESB.

Table 5.1: P-Values for comparison of ESB Federation patterns

Federated

ESB Patterns

Increasing Services

discovered

Increasing Services

published

Increasing services

published with Requests

 Response

Time

Throughput Response

Time

Throughput Response

Time

Throughput

118

DirectlyConn

vs. Hub-Spoke

0.030

0.018

0.037

0.055

0.000

0.000

DirectlyConn

vs. Brokered

0.100

0.049

0.003

0.041

0.000

0.000

Hub-Spoke vs.

Brokered

0.704

0.763

0.209

0.977

0.774

0.811

Table 5.2: Means and grouping for ESB Federation patterns

Means and grouping for Response time when

Increasing Services discovered

Means and grouping for Throughput

when Increasing Services discovered

Means and grouping for Response time when

Increasing services published

Means and grouping for Throughput when

Increasing services published

119

Means and grouping for Response time when

Increasing number of Requests

Means and grouping for Thoughput when

Increasing number of Requests

5.8 Performance Comparison of a single ESB and Directly Connected ESBs

In section 5.7, we investigated performance of Directly Connected, Hub-Spoke and Brokered

ESB federation pattern. The results were presented in Figure 5.9 to Figure 5.14 and they show

that Directly Connected ESB federation pattern outperforms the other patterns according to the

criteria investigated. This was expected since this pattern use point-to-point interaction among

ESB, thereby speeding communication time between ESBs. Although Directly Connected ESBs

pattern provide better performance when compared to other federation pattern, but there was a

need to further compare it with a single ESB so as to determine whether having federated ESB

was worth in terms of the performance. In order to perform the comparison of Directly

Connected ESBs and a single ESB, we had to first find the best ESB when integrated with both

UDDI and BPEL engine to support dynamic service discovery and BPEL process execution.

Therefore, Section 5.8.1 shows the design and configuration of each ESB when integrated with

BPEL engine and UDDI. Then Section 5.8.2 presents the performance evaluation of JBoss,

ServiceMix and Mule ESB.

Chapter Four presented the techniques for integrating ESB with each of BPEL engine and UDDI.

However, the importance of these two features in addition to ESB would ensure integration

120

infrastructure that is efficient for dynamic environments like GUISET. Section 5.8.1 presents the

integration of each ESB with Apache ODE for service composition and jUDDI for service

management and dynamic service discovery.

5.8.1Configuration of each ESB with Apache ODE and jUDDI

In this configuration each ESB is integrated with Apache ODE and jUDDI. Apache ODE

execute the LoanBroker BPEL process that coordinate and invoke services that are dynamically

discovered from jUDDI. CreditAgencyStore, CreditAgencyBank, Lender and Bank services are

published with their QoS attribute in the jUDDI registry. The QoS attribute indicate the

availability of the service. The service with the highest availability attribute in each category is

selected to participate in the BPEL process.

5.8.1.1Mule ESB

In this section Mule ESB was integrated with both Apache ODE and jUDDI to provide an ESB

with dynamic discovery and BPEL process support. LoanBroker service implements the

discovery mechanism and the service invocation is defined using BPEL language. Moreover, the

BPEL process is executed by the external Apache ODE BPEL engine. Figure 5.15 shows the

configuration of Mule integrated with jUDDI and BPEL engine. Service consumer initiates the

interaction by sending a SOAP request to the ESB. This request is accepted by HTTP inbound

component of Mule ESB. The request is submitted to BPEL LoanBroker service which uses the

WSDL specified during the process design and jUDDI client API to discover the actual service

address and WSDL interface. Then, the WSDL interface of the actual service was used to invoke

the service implementation. CXF WS Client API enabled the interaction between the web service

121

and BPEL process. Apache ODE was used to execute the BPEL LoanBroker process. Outbound

component was used to send the results back to service consumer.

Mule integrated with jUDDI and Apache ODE

Mule ESB

ESB Layer

Service
Consumer

Service Provider

Service Discovery
and Composition

Layer

Business Layer

Apache ODE

Service Registry

jUDDI

jUDDI
Client

CXF WS
Client

SOAP/HTTP
Inbound Outbound

Service

Figure 5.17: Mule Integrated with UDDI and BPEL Engine

5.8.1.2ServiceMix ESB

Apache CXF service engine define the discovery mechanism that is used by the LoanBroker

process for discovery of services that participate in the process. The LoanBroker process is also

hosted inside an ESB and executed by the external Apache ODE. Service consumer sends the

SOAP message to the ESB. Apache CXF BC of ServiceMix accepts the new request. CXF SE

then uses jUDDI client to discover the WSDL interfaces for all services needed by the BPEL

LoanBroker process. Each service is then invoked as defined by the BPEL process and the

results are orchestrated using Apache ODE.

122

ServiceMix integrated with jUDDI and Apache ODE

ServiceMix ESB

ESB Layer

Service
Consumer Service Provider

Service Discovery
and Composition

Layer

Business Layer

Apache ODE

Service Registry

jUDDI

jUDDI
Client

CXF
SE

CXF
BC

Service

Figure 5.18: ServiceMix ESB integrated with UDDI and BPEL Engine

5.8.1.3JBoss ESB

JBoss ESB uses a SOAP processor for processing SOAP messages that are exchanged between

the ESB and Apache ODE during execution. JBoss CXF web service dynamically discovers all

services needed by BPEL LoanBroker process.

JBoss integrated with jUDDI and BPEL Engine

JBoss ESB

ESB Layer

Service
Consumer Service Provider

Service
Discovery and
Composition

Layer

Business
Layer

jUDDI
Client

JBoss
CXF
WS

HTTP
Gateway

Service

Apache ODE

SOAP
Proces

sor

SOAP
Proces

sor

Service Registry

jUDDI

Figure 5.19: JBoss ESB integrated with UDDI and BPEL Engine

123

5.8.2Performance evaluation of ESB integrated with UDDI and BPEL Engine

In section 5.8.1, we presented the different configurations of each ESB when integrated with

UDDI and BPEL engine. Based on these configurations we carried out different experiments to

investigate the scalability of each ESB when performing both dynamic service discovery and

executing BPEL process through Apache ODE. Our performance investigation was based on the

following three test cases:

 Increasing number of service discovered.

 Increasing number of services published.

 Increasing number of concurrent requests.

Experiment I: Increasing number of service discovered

In this test case, we increased the number of services that were discovered to participate in the

process. At Level-0, no discovery took place as all the services participating in the process were

directly invoked. Leve-1 the one service was discovered dynamically at runtime by the

LoanBroker process, until all the four services were discovered. The results are shown in Figure

5.20 and Figure 5.21. The response in Figure 5.20 increased as the number of services

discovered was increasing. There was no exponential growth observed in Figure 5.20, hence all

the three ESBs were scalable when increasing number of service discovered. Considering

throughput shown in Figure 5.21, we observed the decrease in throughput as the number of

services discovered was increasing.

124

Figure 5.20: Response time vs. No. of services discovered Figure 5.21: Throughput vs. No. of services discovered

Experiment II: Increasing number of services published

The aim of this test case is to investigate the performance of ESBs when increasing number of

services published in the jUDDI registry. The services published were increased by registering

the replicas of the LoanBroker services. LoanBroker BPEL process select only one service based

on its availability as the QoS attribute. Figure 5.22 shows that the response time was increasing

as the number of services published was increasing. Considering this test case we can conclude

that all ESBs scaled well since there was no quadratic growth in response time as the number of

service published increases. Looking at throughput in Figure 5.23 we observed that each ESBs

had their best throughput when services published was at 16

Figure 5.22: Response time vs.no of services published Figure 5.23: Throughput vs. no of services published

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4

R
e

sp
o

n
e

 T
im

e
 (

m
s)

No. of services discovered

JBoss ServiceMix Mule

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

Th
ro

u
gh

p
u

t
(T

p
s)

No. of services discovered

JBoss ServiceMix Mule

0

1000

2000

3000

4000

5000

4 8 12 16 20

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No. Of Services Published

JBoss ServiceMix Mule

0

0.05

0.1

0.15

0.2

0.25

0.3

4 8 12 16 20Tr
an

sa
ct

io
n

 P
e

r
Se

c
(T

p
s)

No. Of Services Published
JBoss ServiceMix Mule

125

Experiment III: Increasing both services published and number of concurrent requests

Increasing number concurrent requests allows us to investigate scalability of each ESB under

various loads. In this experiment, LoanBroker BPEL process receives concurrent requests for

loan quotes and the clients were measuring response time and throughput. The response time and

throughput results obtained are shown in Figure 5.24 and Figure 5.25 respectively. Regarding

response time there was not much of the different between ESBs, while for throughput seemed to

provide a better throughput then other ESBs.

Figure 5.24: Response time vs. No of Requests Figure 5.25: Throughput vs. No of Requests

 (Services published = 20) (Services published = 20)

5.8.1.3 Results discussion for BPEL with Dynamic Service Discovery

In this experiment, we collected the data that is visually represented by the graphs above, and

then we analyzed the data using Univariate ANOVA statistical test. Looking at the P-Values for

increasing services discovered, we observed the comparable response time for ServiceMix and

JBoss. The significant difference in throughput was observed for all ESBs. The P-Values of

increasing service published showed that JBoss had comparable response time with both

ServiceMix and Mule. On the other hand, throughput for Mule was comparable to that of JBoss

and ServiceMix. Increasing service published with respect to requests showed the response time

for ServiceMix was significantly different with that of JBoss and Mule. According to computed

0

4000

8000

12000

16000

20000

1 2 3 4 5 6 7 8 9 10

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No of Requests

JBoss ServiceMix Mule

No of Services = 20

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(T

p
s)

No of Requests

JBoss ServiceMix Mule

No of Services = 20

126

means recorded in Table 7, we can observe that ServiceMix obtained the lowest response time of

2236.40, 3420 and 8883.46 ms in three test cases respectively. In addition ServiceMix achieved

the highest throughput of 0.3064, 0.176 and 0.391 Tps in all the test cases. Therefore, we

concluded that ServiceMix is the better ESB when considering integration with BPEL engine for

business process support and UDDI for dynamic service discovery support. Although JBoss

performed better on service discovery, the inclusion of BPEL engine for business processes

support showed the drop in performance for JBoss. As it can be observed on the experiment

when considering only BPEL service orchestration, JBoss obtained the worse performance which

means adding BPEL engine has significant impact (see Chapter Four, Section 4.9.7 and Section

4.9.8).

Table 5.3: P-Values for ESB integrated with UDDI and BPEL Engine

ESBs Increasing Services

discovered

Increasing Services

published

Increasing services

published with Requests

 Response

Time

Throughput Response

Time

Throughput Response

Time

Throughput

JBoss vs.

ServiceMix

0.698

0.003

0.188

0.015

0.000

0.000

JBoss vs.

Mule

0.009

0.011

0.294

0.646

0.703

0.606

ServiceMix

vs. Mule

0.003

0.00

0.018

0.058

0.000

0.000

127

Table 5.4: Means and grouping of ESBs integrated with UDDI and BPEL Engine

Means and grouping for Response time when

Increasing Services discovered

Means and grouping for Throughput when

Increasing Services discovered

Means and grouping forResponse timewhen

Increasing services published

Means and grouping forThroughputwhen

Increasing services published

Means and grouping forResponse timewhen

Increasing number of Requests

Means and grouping forResponse timewhen

Increasing number of Requests

5.8.3 Comparing Performance Results for ServiceMix and Directly Connected ESB

The results presented in Section 5.8.2shows that ServiceMix performed better than the other

ESBs when equipped with both dynamic service discovery and BPEL support. Therefore, the

128

following experiments were carried out to investigate the performance of Directly Connected

ESB Federation pattern when compared with ServiceMix. This investigation would assist us to

determine whether federating different ESBs and distributing integration tasks to the ESB that

has best support has better performance than having a single ESB. The same data obtained when

comparing federation patterns (Section 5.7) and single ESBs (Section 5.8.2)was used because

these comparisons provide environments that support both dynamic services discovery and

BPEL process execution.

The comparison presented in this section is based on the following experiments:

 Increasing number of service discovered.

 Increasing number of services published.

 Increasing number of concurrent requests.

5.8.2.1 Increasing number of services discovered

The aim of this experiment was to investigate the performance of Directly Connected ESBs and

ServiceMix when increasing number of services discovered in the UDDI for the composition.

The response time and throughput is given in Figure 5.26 and Figure 5.27 respectively. The

response time increases as the number of requests increase and we observed that between 0 and 2

services the response time was almost the same. Looking at the throughput, a completely

different behavior was observed as increasing number of services discovered. The throughput for

Directly Connected ESBs was almost constant between 0 and 3 services discovered and then

increases afterwards while for ServiceMix, the throughput decreased and became constant

between 2 and 3, then decreased again as more number of services were discovered.

129

Figure 5.26: Response time vs. no of services discovered Figure 5.27: Throughput vs. no of services discovered

5.8.2.2Increasing number of services published

The purpose of this experiment was to investigate the response time and transaction time when

increasing number of services that are published in the UDDI. Figure 5.28 shows that the

response time was comparable for both as it increases with the increase in services that are

published. Figure 5.29 presents throughput results as we observed that when we had 16 services

published, ServiceMix reached its highest throughput of 0.259 Tps while Directly Connected

ESBs pattern reached its lowest throughput of 0.158 Tps.

Figure 5.28: Response time vs. no of services published Figure5.29: Throughput vs. no of services published

5.8.2.3 Increasing number of concurrent requests with respect services published

In this experiment, the aim was to investigate the performance when increasing number of

concurrent request. Figure 5.30 and Figure 5.31 shows response time and throughput obtained in

as the number of requests increase. The response time was comparable as the number of requests

increase. We observed that the throughput increases as the number of requests increase.

0

1000

2000

3000

4000

0 1 2 3 4

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No of services discovered
Directly Connected ESBs ServiceMix

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4

Th
ro

u
gh

p
u

t
(T

p
s)

No of services discovered

Directly Connected ESBs ServiceMix

0

1000

2000

3000

4000

5000

4 8 12 16 20

R
e

sp
o

n
se

 T
im

e
 (

m
s)

No of services published
Directly Connected ESBs ServiceMix

0
0.05

0.1
0.15

0.2
0.25

0.3

4 8 12 16 20

Th
ro

u
gh

p
u

t
(T

p
s)

No of Services published

Directly Connected ESB ServiceMix

130

Figure 5.30: Response time vs. increasing no of requests Figure 5.31: Throughput vs. increasing no of requests

 (20 services published) (20 services published)

5.8.3 Results Discussion for ServiceMix and Directly Connected ESBs

The statistical analysis using Univariate ANOVA method was performed to give meaning to the

data collected in the experiments presented above. We looked at the P-Values that were below

the set threshold of 0.05. We tested our hypothesis that Directly Connected ESBs would perform

better than ServiceMix.

Table 5.5 shows the recorded P-Values for each tested metric. Looking at the increasing number

of services discovered both response time and throughput showed that Directly Connected ESBs

and ServiceMix had comparable performance. The P-Values for increasing number of services

published indicated the difference in response time while the throughput was comparable. Then

looking at the P-Values for increasing number of requests with respect to services published, we

observed the significant difference in both response time and throughput. Although Directly

Connected ESB and ServiceMix achieved considerable performances but in Table 5.6 we noted

down the computed means obtained in each metric tested. According to these means Directly

Connected ESBs achieved the lower response time of 2005.4 ms, 3221.6 ms and 8452.92 ms in

the experiments respectively compared to 2236.4 ms, 3420 ms and 8883.46 ms for ServiceMix.

In addition, Directly Connected ESB Federation obtained the highest throughput of 0.203 and

0

3000

6000

9000

12000

15000

18000

1 2 3 4 5 6 7 8 9 10

R
e

sp
o

n
se

Ti
m

e
 (

m
s)

No of Requests

Directly Connected ESBs ServiceMix

No of Services = 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(T

p
s)

No of Requests

Directly Connected ESBs ServiceMix

No of Services = 20

131

0.43 compared to 0.176 and 0.391 for ServiceMix when increasing number of service published

and also when increasing number of requests with respect to number of services.

The fact that ServiceMix was integrated with both UDDI for discovery and BPEL engine for

business process support caused a drop in performance for ServiceMix. In addition, we proved in

Chapter Four that ServiceMix wasn’t the best candidate for dynamic service discovery, so this

also contributed to the results obtained by ServiceMix. On the other hand Directly Connected

ESBs was made up of three ESBs that work together with each ESB responsible for performing

the task that it supports the best. This configuration allows tasks to be distributed among

different ESB; in our case JBoss has best support for dynamic service discovery therefore it was

integrated with UDDI while ServiceMix was integrated with BPEL engine since it has best

support for BPEL processes. So this distribution of responsibilities gave Directly Connected ESB

an advantage compared to ServiceMix. In addition, the fact that communication between

different ESBs participating in this pattern is direct also contributed to its performance.

Table 5.5: P-Values for Directly Connected ESBs and ServiceMix ESB

Single ESB &

Pattern

Increasing Services

discovered

Increasing Services

published

Increasing services

published with Requests

 Response

Time

Throughput Response

Time

Throughput Response

Time

Throughput

DirectlyConn

vs.

ServiceMix

0.169

0.345

0.009

0.492

0.000

0.000

132

Table 5.6: Computed mean values for Directly Connected ESBs and ServiceMix ESB

Means for Response time when Increasing

Services discovered

Means for Throughput when

Increasing Services discovered

Means for Response time when Increasing

services published

Means for Throughput when

Increasing services published

Means for Response time when Increasing

Requests

Means for throughput when Increasing

Requests

133

5.9 Chapter Summary

This Chapter has presented ESB Federation patterns as they were proposed to reduce some

limitations of employing a single ESB in large dynamic SOA environments. These patterns were

used to design a communication infrastructure that best support all the GUISET integration

requirements. We then presented the implementation of each pattern using LoanBroker scenario

in order to illustrate real life settings especially runtime environment, automated service

orchestration and dynamic service discovery. The comparative performance evaluation results of

Directly Connected, Hub-Spoke and Brokered ESB federation patterns were also presented. The

experiments were based on the BPEL defined business process that performs dynamically

service discovery. The goal was to investigate the performance of each federation pattern so that

one pattern can be recommended for GUISET environment. The results showed that Directly

Connected ESB federation pattern outperformed the other patterns. We further compared the

performance of Directly Connected ESBs with ServiceMix. The aim of this comparison was to

determine whether federating multiple ESBs increase or degrade performance when compared

with a single ESB. The results obtained showed Directly Connected ESBs perform better than a

single ESB. According to the results presented in this chapter, we can conclude that federating

multiple ESBs does not only provide an environment, where all GUISET integration requirement

can be supported, but it also improves performance since tasks are distributed to ESBs that have

better support for their demands.

134

CHAPTER SIX

SUMMARY AND FUTURE DIRECTIONS

This chapter gives a summary of the study, highlighting how the goal was achieved, the

recommendations based on the results presented from the previous Chapters and gives directions

for further work. The limitations of this study were given to highlight the areas of our work that

we believe requires improvement in the future.

6.1 Summary

Among enterprise integration approaches that have been developed over the years, the ESB has

received a lot of attention and it has become a de facto standard for enterprise integration. This is

mainly due to the fact that it provides the infrastructure that paves a way to wide spread adoption

of Service Oriented Computing paradigm. The wide adoption of ESBs as the integration solution

that provides fast return on investment raise a lot of interest from practitioners and organizations

that may want to adopt the use of an ESB. However, with a lot of interest comes a lot of

questions on how can this technology be adopted in order to maximally benefit from it. One of

these questions found to be of interest to practitioners and organizations is how to choose ESB

products that best suit a business’s integration needs? When an ESB has been chosen another

important question is: how will the chosen ESB be complemented to cater for the integration

requirements it may not address? Given the foregoing, this work was a successful attempt to

address these questions in the context of GUISET. The goal of this research project was to

determine the best strategy that can be used to ensure that the GUISET integration requirements

are best supported. The following summarizes what was done towards achieving the goal

mentioned above:

135

i). This work presented the analysis of ESBs based on multiple conflicting criteria. Today’s

large SOA environments demand a lot from their middleware infrastructures in particular

ESBs. These demands results in a huge number criteria being used to make decision on which

infrastructure to employ in the middleware layer. However these selection criteria might be

conflicting due to the fact that different ESB products use different approaches towards

achieving a given integration requirement. As a result integration requirements might be best

supported by different ESB products. Most previous work focuses on evaluating ESB

capabilities, but they do not adequately address the issue of conflicting selection criteria. To

address this gap in the GUISET context, this work used a Multi Criteria Decision Analysis

Method called Analytical Hierarchy Process to determine which ESB product had better

support for which integration requirements. Mule, ServiceMix and JBoss ESBs were

evaluated against GUISET integration requirements which are: High Availability, Data

Transformation, Content-based Routing, Service Orchestration and Dynamic Service

Discovery. Moreover, these GUISET integration requirements were ranked according to their

importance in a GUISET-like environment. From this ranking Service Orchestration and

Dynamic Service Discovery were ranked as the most important integration requirement for

GUISET environment. The analysis results obtained using AHP showed that there is no single

ESB that best support all the GUISET integration requirements. For example JBoss performed

well when considering dynamic service discover and comparatively worse on other criteria.

ii). This work presented an approach for integrating ESB with BPEL engine and UDDI to

enable dynamic service composition. The current ESB implementation only support static

routing of service communications, this means that messages are transmitted to the specific

routing path configured at design time using service configuration file (Yu and Yan, 2011)

136

(Wu et al., 2008). This static routing is inflexible for service oriented environments where

services are dynamically created, deployed and updated. So the decision of which service to

select should be taken at execution time based on the recent information. The consequences of

this inflexibility are even amplified when multiple services are composed and used in a

variety of unplanned-for ways. To address the limitation of the current ESB implementation,

this work came up with an approach to integrate ESBs with the BPEL engine and the UDDI.

This was more of a by-product to the evaluation of ESB federation patterns which required

both dynamic service discovery and service orchestration. In this approach a BPEL defined

process dynamically discover service information in the UDDI and coordinate multiple

service invocations to give the value-added functionality based on the existing services.

iii). This study demonstrated the effectiveness in terms of response time and throughput

of federating multiple ESBs with each ESB supporting an integration requirement

that it best support. The market trends show that industries are constantly adopting SOA

to enable business process automation and integration of heterogeneous IT systems. This

adoption of SOA is causing an increase in the number of business-to-business

transactions between autonomous SOA deployments. This calls for new and innovative

strategies for creating large scale SOA deployments (Callway et al., 2008). Single

centralized ESBs are believed to be limited (Kumar et al., 2011). This has led to some

practitioners proposing the use of decentralized ESBs. The nature of decentralization is

still subject of research but some practitioners have proposed ESB federation. ESB

federation has been acknowledged as one of the most promising response to addressing

the limitations of a single centralized ESB (Kumar et al., 2011; Baude et al., 2010; Nair,

2009). On the backdrop of the foregoing, this work evaluated federation of ESBs towards

137

supporting GUISET integration requirements that are best supported by different ESB

products. The comprehensive analysis and simulation experiments to investigate

performance of Directly Connected, Hub and Spoke and Brokered ESB Federation

patterns were presented. The empirical analysis and performance results offer the useful

guide for practitioners that seek to adopt a decentralized approach towards building SOA

deployment that require integration capabilities that are supported by different ESB

products. The results obtained proved that ESB federation provides a better performance

compared to single centralized ESB. The reason for this performance improvement is that

in the federation different tasks are delegated to the ESBs that best support them.

Based on the results that were presented in this study, we recommend that Directly Connected

ESB Federation pattern can be used to design a communication infrastructure for the

environment that require integration capabilities that are best supported by different ESB

products.

6.2 Limitations and Future Directions

This work determined the best strategy for integrating multiple ESBs in order to ensure that all

GUISET integration requirements are best supported. Although this strategy proved to perform

better than a single ESB, they are some limitations that are worth mentioning and can be

considered in future. These limitations include the fact that we only considered dynamic service

discovery and BPEL process support for empirical evaluation. Even though this was well

justified by the fact that these two requirements are most important for GUISET environment, in

future we would like to also consider high availability, data transformation and message routing

for the empirical evaluation. Overall results obtained from this work were based on the simple

scenario which can be seen as the approximation of the reality. Therefore, in future, we would

138

like to observe the behavior of our recommended strategy in real world deployment. We intend

to deploy the ESB federation on a dynamic service oriented (like GUISET) withreal service

consumers that dynamically discover and compose services.

139

REFERENCES

Adigun, M., Emuoyibofarhe O., Migiro, S. (2006). Challenges to Access and Opportunity to use

SMME enabling Technologies in Africa.In 1st All Africa Technology Diffusion Conference,

Johannesburg- South Africa.

AdrioticLogic, (2012).ESB Performance Testing - Round 4.[Available Online: Last Accessed

February 2013] http://esbperformance.org/display/comparison/ESB+Performance+Testing+-

+Round+4

Ahlberg M., (2010).Enterprise Service Buses: A Comparison Regarding Reliable Message

Transfer”.Unpublished Masters Dissertation, University of Stockholm, School of Computer

Science and Engineering, Royal Institute of Technology, Sweden.

Ahuja, S., & Patel, A. (2011). Enterprise Service Bus: A performance evaluation. In the

Scientific Research Communications and Network: Vol. 3(3), (pp. 133-140).

Al-Harbi, K. (2001). Application of the AHP in project management.International journal of

project management, 19(1), 19-27.

Alphonce, C. B. (1997). Application of the analytic hierarchy process in agriculture in

developing countries.Agricultural systems, 53(1), 97-112.

Arkin A., Askary S., Bloch B., Curbera F., Goland Y., Kartha N., Liu C., Thatte S., Yendluri P.,

& Yiu A., (2007). Web Services Business Process Execution Language Version 2.0.

[Available Online: Last Accessed February 2013]http://docs.oasis-open.org/wsbpel/2.0/

Apache Software foundation (n.d), “Apache ServiceMix documentation” [Available Online: Last

accessed February 2013] http://servicemix.apache.org/

Bai, X., Xie, J., Chen, B., & Xiao, S. (2007). DRESR: Dynamic routing in enterprise service bus.

In IEEE International Conference on e-Business Engineering (ICEBE). (pp. 528-531).

Baude, F., Filali, I., Huet, F., Legrand, V., Mathias, E., Merle, P. & Lorre, J. P. (2010).ESB

federation for large-scale SOA.In ACM Symposium on Applied Computing (pp. 2459-

2466).New York, USA.

Bauler, P., Feltz, F., Biri, N., & Pinheiro, P. (2006).Implementing a Service-Oriented

Architecture for Small and Medium Organizations.In Entwicklungsmethod for the

information systems and their application(EMISA),(pp. 105-118). Hamburg, Germany

Blum A.,& Fred C., (2004).Representing Web Services Management Information in

UDDI.[AvailableOnline : Last accessed February 2013]http://soa.sys-con.com/node/45102.

http://esbperformance.org/display/comparison/ESB+Performance+Testing+-+Round+4
http://esbperformance.org/display/comparison/ESB+Performance+Testing+-+Round+4
http://docs.oasis-open.org/wsbpel/2.0/
http://servicemix.apache.org/
http://soa.sys-con.com/node/45102

140

Brebner, P. (2009). Service-oriented performance modeling the MULE enterprise service bus

(ESB) loan broker application. In the 35th IEEE Euromicro Conference on Software Engineering

and Advanced Applications (SEAA) (pp. 404-411). Lille, France.

Brosey, W., Neal, R.,& Marks, D. (2001).Grand challenges of enterprise integration.In 8th IEEE

International Conference onEmerging Technologies and Factory Automation(pp. 221–

227).United States of America.

Callaway, R., Viniotis, Y., Rodriguez, A., Brown, K., & Robinson, R. (2008).Enabling

federations of enterprise service buses using a distributed service registry.In Second

international workshop and Summer School on Service Science, Management and

Engineering (SSME), (pp. 2-9). Palermo, Italy.

Cape Clear Software Inc. (2005). Cape Clear Enterprise Service Bus (ESB):How Cape Clear

Software applies SOA and Web service principles to deliver a proven ESB solution. Cape

Clear Software, United States of America

Chen, I., Ni, G., & Lin, C. (2008). A runtime-adaptable service bus design for telecom operations

support systems. IBM Systems Journal, 47(3), 445-456.

Cho, K.(2003). Multicriteria decision methods: an attempt to evaluate and unify. International

Journal of Mathematical and computer modeling,37(9), 1099-1119.

Clement, L., Hately, A., von Riegen and Rogers, T. (2004).UDDI v 3.0.2 Spec Technical

Committee Draft. OASIS

Davis, J. (2009). Open source SOA.Greenwick: Manning Publications Co.

Conner, K., DiMaggio, L., Kumar, M., Cunningham, T., Dimaggio, L., & Kumar, M.

(2012).Jboss Esb Beginner's Guide.Birmingham: Packt Publishing Ltd.

Desmet, S., Volckaert, B., Van Assche, S., Dhoedt, B., & De Turck, F. (2007). Throughput

evaluation of different enterprise service bus approaches.In Conf. on Software Eng. Research

and Practice (SERP’07), (pp.378- 384).United States of America

Dragicevic, K., Garcés-Erice, L., & Bauer, D. (2010). DISCE: A Declarative Inter-ESB Service-

Connectivity Configuration Engine. In IEEE International Conference on Web Services

(ICWS), (pp. 489-496).Miami, Florida, United States of America.

Dundek, M. (2010).Service Oriented Architecture and Business Process Management

Architecture& Technical Components. In IBM SOA& Business Process Management.

Fakorede, O. (2007). An investigation into the implementation issues and challenges of service

oriented architecture. Unpublished Masters Dissertation, Bournemouth University, United

Kingdom

141

García-Jiménez, F., Martínez-Carreras, M., & Gómez-Skarmeta, A. (2010).Evaluating Open

Source Enterprise Service Bus. In7
th

 IEEE International Conference on e-Business

Engineering (ICEBE), (pp. 284-291). Shanghai, China.

Genender, J. (2006). The Buzz about Enterprise Service Bus (ESB).In Open Source enterprise

Journal: Focusing on open source strategies in the enterprise,(pp. 34–37).

Gniel, C., and Arnold, D. (2009).Demystifying ESB patterns.In IBM SOA in Action Seminar

Series.

Gregory,W.,& Duran, A.,(2001).Scenarios and Acceptance of Forecasts. In the Department of

Psychology, New Mexico State University,pp. 519-541. Mexico

Hohpe, G., & Woolf, B. (2004).Enterprise integration patterns: Designing, building, and

deploying messaging solutions. Indiana: Addison-Wesley Professional.

Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., & Hamida, A.

(2011). Service-oriented middleware for the Future Internet: state of the art and research

directions. Journal of Internet Services and Applications, 2(1), 23-45.

JBoss Community (n.d). JBoss ESB documentation. [Online, Last accessed February 2013]

http://www.jboss.org/jbossesb/docs

Jongtaveesataporn, A., & Takada, S. (2010). Enhancing enterprise service bus capability for load

balancing.Journal World Scientific and Engineering Academy and Society (WSEAS)

Transactions on Computers, 9(3), 299-308.

Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C.,& Verschueren, P. (2004).

Patterns: Implementing an SOA using an enterprise service bus. New York City:

IBMCorporation, International Technical Support Organization.

Khan, F., Bashir, S., Javed, M., Khan, A., & Khiyal, M. (2010). QoS Based Dynamic Web

Services Composition & Execution.International Journal of Computer Science and

Information Security, 7(2), 147-152.

Kumar, S. Britto. R., & Rabara, S. A. (2011).Multi-level Security for Integrated Financial

Mobile Web Services using Federated ESB. International Journal of Computer Applications,

32(10), 39-45.

Kusak, D. (2010). Comparison of Enterprise Application Integration Platforms.Unpublished

MastersDissertation, Charles University in Prague, Czech

Kruessmann, T., Koschel, A., Murphy, M., Trenaman, A., & Astrova, I. (2009). High

availability: Evaluating open source enterprise service buses. In31
st
 IEEE International

Conference on Information Technology Interfaces (pp. 615-620). Croatia

http://www.jboss.org/jbossesb/docs

142

Lima, B.(2011). MBC-Mobile Business Collaboration.Unpublished Mastersdissertation,

Universidade Tecnica de Lisboa, 2011, Portugal

Linthicum, D. (2006). Ws-bpel 2.0: Not backward compatible?. [Available Online,Last accessed

February 2013] http://webservices.sys-con.com/read/291050.htm

Luo, M., Goldshlager, B., and Zhang, L. (2005).Designing and implementing Enterprise Service

Bus(ESB) and SOA solutions Tutorial. In IEEE International Conference on Services

Computing(SCC), Orland, FL, United States of America.

Mareno, M.,& Raffeala, M. (2010).QoS Analysis for Web Service Applications: a Survey on

Performance Oriented approaches from the Architecture Point of View. In Technical Report

UBLCS-2010-05, Italy

Menascé, D. A., & Almeida, V. (2002). Capacity Planning for Web Services: metrics, models,

and methods (p. 133- 140). New Jersey: Prentice Hall.

Menge, F. (2007). Enterprise Service Bus. In Free and Open Source Software Conference.United

State of America.

MuleSoft(n.d).Mule ESB documentation. [Available Online, Last accessed February 2013]

http://www.mulesoft.org/documentation/dashboard.action

Mulik, S. (2009).Using Enterprise Service Bus (ESB) for connecting corporate functions and

shared services with business divisions in a large enterprise.InIEEE Asia-Pacific Conference

on Services Computing (APSCC), (pp. 430-434). China.

Nair S. (2009). Why the Time Has Come for Federated ESBs. In SOA Security [Available

Online: Last Accessed in February 2013]

http://www.ebizq.net/topics/soa_security/features/10915.html

Ortiz, S. (2007). Getting on board the enterprise service bus. Computer Archives, 40(4), 15-17.

OW2 Middleware consortium (n.d).People in Petals Forum. [Available Online: Last Accessed

February2013]

http://forum.petalslink.com/template/NamlServlet.jtp?macro=app_people&node=1863229

Perera, A. (2008). WSO2 Enterprise Service Bus (ESB) Performance Testing Round 3. Oxygen

tank [Available Online: Last Accessed in February 2013] http://wso2.org/library/3740

Papazoglou, M., &Heuvel, W. (2007). Service oriented architectures: approaches, technologies

and research issues. The VLDB Journal,16(3), 389-415.

Papazoglou, P. (2008). Web Services: Principles and Technology, 1
st
 Edition, © Pearson

Education Limited, Netherlands.

http://webservices.sys-con.com/read/291050.htm
http://www.mulesoft.org/documentation/dashboard.action
http://www.ebizq.net/topics/soa_security/features/10915.html
http://forum.petalslink.com/template/NamlServlet.jtp?macro=app_people&node=1863229
http://wso2.org/library/3740

143

Patil, N., & Gopal, A. (2012). Enhancing UDDI registry for storing Qos in tModel for

discovering web services.International Journal of Computer Science and Application, 9(3)

Patton, M. (2001).Qualitative research & evaluation methods. London: Sage Publications

Incorporated.

Rajendran, T., & Balasubramanie, P. (2009).Analysis on the Study of QoS-Aware Web Services

Discovery.Journal of Computing, 1(1), 119-130

Saaty, T., & Shih, H. S. (2009). Structures in decision making: On the subjective geometry of

hierarchies and networks. European Journal of Operational Research, 199(3), 867-872.

Saaty, T. (2007).Decision making, scaling, and number crunching. Decision Sciences, 20(2),

404-409.

Serhani, M., Nabeel, A., &Abdelghani, B. (2010).Enterprise services (business) collaboration

using portal and SOA-based semantics.In 4th IEEE International Conference onDigital

Ecosystems and Technologies (DEST) (pp. 450- 455).United Arab Emirates, Dubai

Shehab, E., Sharp,W., Supramaniam,L., & Spedding, T. (2004) Enterprise resource planning: An

integrative review.Business Process Management Journal, 10 (4), 359-386.

Siddiqui, Z., Abdullah, A. H., Khan, M. K., & Alghathbar, K. (2011).Analysis of enterprise

service buses based on information security, interoperability and high-availability using

Analytical Hierarchy Process (AHP) method.International Journal of the Physical Sciences,

6(1), pp. 35-42.

Soomro, T., & Awan, A. (2012).Challenges and Future of Enterprise Application

Integration.International Journal of Computer Applications, 42(7), 42-45.

Steele, K., Carmel, Y., Cross, J., & Wilcox, C. (2009). Uses and misuses of multicriteria decision

analysis (MCDA) in environmental decision making. Risk analysis, 29(1), 26-33.

Ten-Hove, R., & Walker, P. (2005).Java Business Integration (JBI) 1.0.Java Specification

Request, 208.

Tiwari, V., Dagdee, N., Tiwari, A., & Dixit, D. (2012).Extended SOA to Enable Web Service

Discovery on Non Functional Parameters.International Journal of Electronics

Communication and Computer Engineering, 3(2), 97-100.

Themistocleous, M., Irani, Z. & O’Keefe, R. (2004).ERP and application integration:

Exploratory survey.Business Process Management Journal, 7(3), 195-204.

144

Triantaphyllou, E., & Mann, S. (1995). Using the analytic hierarchy process for decision making

in engineering applications: some challenges. International Journal of Industrial

Engineering: Applications and Practice, 2(1), 35-44.

Ueno, K., & Tatsubori, M. (2006).Early capacity testing of an enterprise service bus. In IEEE

International Conference onWeb Services(pp. 709-716). Chicago, USA

Vollmer, K., Gilpin M., and Rose S.(2011).The Forrester Wave™: Enterprise Service Bus, Q2

2011. Forrester Research, Inc, 10.

Wu, B., Liu, S., & Wu, L. (2008).Dynamic reliable service routing in enterprise service bus.In

IEEE Asia-Pacific Services Computing Conference (APSCC) (pp. 349-354).

Wu, B., & Wu, X. (2010).A QoS-aware Method for Web Services Discovery.Journal of

Geographic Information System, 2 (1), 40-44.

Yu, D., & Yan, D. (2011). Towards the integration of Enterprise Service Bus with UDDI server:

A case study. In IEEEInternational Conference on System Science and Engineering (ICSSE),

(pp. 28-31).Macau

Yin, R. (2008).Case study research: Design and methods.London: Sage

PublicationsIncorporated.

Zdravković,M., Trajanović, M., & Manić M., (2007).SOA-based approach to the Enterprise

resource planning implementation in Small Enterprises.In Series of Mechanical Engineering,

5 (1), 97– 104.

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., & Chang, H. (2004). QoS-aware

middleware for web services composition. IEEE Transactions on Software Engineering,

30(5), 311-327.

Ziyaeva, G., Choi, E., & Min, D. (2008). Content-based intelligent routing and message

processing in enterprise service bus. In IEEE International Conference on Convergence and

Hybrid Information Technology (ICHIT). (pp. 245-249). Washington DC, United States of

America

145

Appendix A: ESB Configuration and Installations

The installation and configuration steps listed below are for Windows operation system

ServiceMix ESB

Installation

 Java and Maven need to be installed at first

o Java version 1.7 was installed. The installation can be found at

http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-

windows.html

o Maven version 3.0.3 was installed. Instruction cab be found at

http://maven.apache.org/download.cgi#Installation

 Download Apache ServiceMix ESB 3.4.0 (.zip distribution) from

http://servicemix.apache.org/downloads/servicemix-3.4.0

 Unpack the .zip file anywhere in the system. This folder we will refer to it as <inst_dir>

 The is no need for SERVICEMIX_HOME

Running

 Use command prompt, Go to <inst_dir>/bin and type servicemix.bat

 ServiceMix ESB will start and automatically deploy all the default JBI components

 Item logs can be found in <inst_dir>/data/log/servimix.log

Building and Deploying Projects

 Ensure that ServiceMix is running, use command prompt to navigate to <proj_dir> and

type mvn install. This should install the project, if successful it should end with a

message “BUILD SUCCESSFUL”

 Then copy <proj_dir>/projectName-cxf-sa-1.0 .zip to <inst_dir>/hotdeploy. The project

should deploy and ServiceMix server should indicate deploy successfully

Tuning

 The default java memory was too low for our experiments, to increase memory – Edit

<inst_dir>/conf/servicemix.xml file. At the beginning add these two lines;

o JAVA_MIN_MEM = 512M

o JAVA_MAX_MEM = 1024M

 The default maximum PoolSize of ServiceMix is 32 which is too small. To increase

HTTP gateway we had to edit <inst_dir>/config/servicemix.properties by modifying

servicemix.maximumPoolSize = 64

http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html
http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html
http://maven.apache.org/download.cgi#Installation
http://servicemix.apache.org/downloads/servicemix-3.4.0

146

Mule ESB

Installation

 Mule also needs apache maven installed

 Download Mule Community distribution from http://www.mulesoft.org/download-mule-

esb-community-edition

 Select Mule ESB full distribution standalone server

 Unpack the downloaded file to somewhere in the system

 Set MULE_HOME to mule path (for example: C://MuleESB/mule-standalone-3.2.0)

 Start Mule

 Use command prompt, go to <inst_dir>/bin and type mule.bat. Mule would be started.

JBoss ESB

Installation

 Prerequisite: jdk6 or newer should be installed

 Install Apache ant

 Download jbossesb-server-4.9 .zip folder and place it anywhere in the system

 No JBOSS_HOME is needed

Running JBoss

 Use command prompt to navigate to <inst_dir>/bin and type run.bat. JBoss will start

 Admin console available at http://localhost:8080/admin-console- username=admin,

password=admin

 Logs are available in the folder <inst_dir>/server/default/log

Building projects

 Edit file<JBossProject>/conf/base-biuld.xml. Set server installation path to jbossesb

server by editing<property name= “product.dir” location = “/jbossesb-server-4.9”/>

 Navigate to <JBossProject> ant type ant deploy

 JBoss ESB server log should show message that a new project successfully deployed

http://www.mulesoft.org/download-mule-esb-community-edition
http://www.mulesoft.org/download-mule-esb-community-edition
http://localhost:8080/admin-console

147

Appendix B: Source Code

BPEL LoanBroker Process Implemented for ESB Federation

<!-- DirectESB-FederationDSD-1 BPEL Process [Generated by the Eclipse BPEL

Designer] -->

<!-- Date: Mon Dec 17 19:26:28 CAT 2012 -->

<bpel:processname="DirectESB-FederationDSD-1"

targetNamespace="http://DirectESB-FederationDSD-1.process"

suppressJoinFailure="yes"

xmlns:tns="http://DirectESB-FederationDSD-1.process"

xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

xmlns:ns="http://webservice_creditAgencyStore/creditAgencyDirectNoDisc"xmlns:

ns0="http://servicemix.apache.org/examples"xmlns:ns1="http://webservice_BankS

erviceHR/BankServiceHR"xmlns:ns2="http://webservice_BankServiceLR/BankService

LR">

<!-- Import the client WSDL -->

<bpel:importnamespace="http://webservice_BankServiceLR/BankServiceLR"location

="MuleBankLR.wsdl"importType="http://schemas.xmlsoap.org/wsdl/"></bpel:import

>

<bpel:importnamespace="http://webservice_BankServiceHR/BankServiceHR"location

="MuleBankHR.wsdl"importType="http://schemas.xmlsoap.org/wsdl/"></bpel:import

>

<bpel:importnamespace="http://servicemix.apache.org/examples"location="SMXLen

derService.wsdl"importType="http://schemas.xmlsoap.org/wsdl/"></bpel:import>

<bpel:importnamespace="http://webservice_creditAgencyStore/creditAgencyDirect

NoDisc"location="JBossCreditAgency.wsdl"importType="http://schemas.xmlsoap.or

g/wsdl/"></bpel:import>

<bpel:importlocation="DirectESB-FederationDSD-

1Artifacts.wsdl"namespace="http://DirectESB-FederationDSD-1.process"

 importType="http://schemas.xmlsoap.org/wsdl/"/>

<!-- === -->

<!-- PARTNERLINKS -->

<!-- List of services participating in this BPEL process -->

<!-- === -->

<bpel:partnerLinks>

<!-- The 'client' role represents the requester of this service. -->

<bpel:partnerLinkname="client"

partnerLinkType="tns:DirectESB-FederationDSD-1"

myRole="DirectESB-FederationDSD-1Provider"

/>

<bpel:partnerLinkname="JBossCreditAgencyPL"partnerLinkType="tns:JBossCreditAg

encyPLT"partnerRole="JBossCreditAgencyRloe"></bpel:partnerLink>

<bpel:partnerLinkname="SMXLenderPL"partnerLinkType="tns:SMXLenderPLT"partnerR

ole="SMXLenderRole"></bpel:partnerLink>

<bpel:partnerLinkname="MuleBankHRPL"partnerLinkType="tns:MuleBankHRPLT"partne

rRole="MuleBankHRRole"></bpel:partnerLink>

<bpel:partnerLinkname="MuleBankLRPL"partnerLinkType="tns:MuleBankLRPLT"partne

rRole="MuleBankLRRole"></bpel:partnerLink>

</bpel:partnerLinks>

<!-- === -->

<!-- VARIABLES -->

148

<!-- List of messages and XML documents used within this BPEL process -->

<!-- === -->

<bpel:variables>

<!-- Reference to the message passed as input during initiation -->

<bpel:variablename="input"

messageType="tns:DirectESB-FederationDSD-1RequestMessage"/>

<!--

 Reference to the message that will be returned to the requester

 -->

<bpel:variablename="output"

messageType="tns:DirectESB-FederationDSD-1ResponseMessage"/>

<bpel:variablename="JBossCreditAgencyPLResponse"messageType="ns:creditAgencyD

irectNoDisc_getCreditHistoryResponse"></bpel:variable>

<bpel:variablename="JBossCreditAgencyPLRequest"messageType="ns:creditAgencyDi

rectNoDisc_getCreditHistory"></bpel:variable>

<bpel:variablename="SMXLenderPLResponse"messageType="ns0:selectLendersRespons

e"></bpel:variable>

<bpel:variablename="SMXLenderPLRequest"messageType="ns0:selectLendersRequest"

></bpel:variable>

<bpel:variablename="MuleBankHRPLResponse"messageType="ns1:BankServiceHR_getBa

nkServiceHRRateResponse"></bpel:variable>

<bpel:variablename="MuleBankHRPLRequest"messageType="ns1:BankServiceHR_getBan

kServiceHRRate"></bpel:variable>

<bpel:variablename="MuleBankHRPLResponse1"messageType="ns1:BankServiceHR_getB

ankServiceHRQouteResponse"></bpel:variable>

<bpel:variablename="MuleBankHRPLRequest1"messageType="ns1:BankServiceHR_getBa

nkServiceHRQoute"></bpel:variable>

<bpel:variablename="MuleBankLRPLResponse"messageType="ns2:BankServiceLR_getBa

nkServiceLRRateResponse"></bpel:variable>

<bpel:variablename="MuleBankLRPLRequest"messageType="ns2:BankServiceLR_getBan

kServiceLRRate"></bpel:variable>

<bpel:variablename="MuleBankLRPLResponse1"messageType="ns2:BankServiceLR_getB

ankServiceLRQouteResponse"></bpel:variable>

<bpel:variablename="MuleBankLRPLRequest1"messageType="ns2:BankServiceLR_getBa

nkServiceLRQoute"></bpel:variable>

</bpel:variables>

<!-- === -->

<!-- ORCHESTRATION LOGIC -->

<!-- Set of activities coordinating the flow of messages across the -->

<!-- services integrated within this business process -->

<!-- === -->

<bpel:sequencename="main">

<!-- Receive input from requester.

 Note: This maps to operation defined in DirectESB-FederationDSD-

1.wsdl

 -->

<bpel:receivename="receiveInput"partnerLink="client"

portType="tns:DirectESB-FederationDSD-1"

operation="process"variable="input"

createInstance="yes"/>

<!-- Generate reply to synchronous request -->

<bpel:assignvalidate="no"name="AssignToCeditAgency">

<bpel:copy>

149

<bpel:from><bpel:literal><tns:getCreditHistoryxmlns:tns="http://webservice_cr

editAgencyStore/creditAgencyDirectNoDisc"xmlns:xsi="http://www.w3.org/2001/XM

LSchema-instance">

<amount>amount</amount>

</tns:getCreditHistory>

</bpel:literal></bpel:from>

<bpel:tovariable="JBossCreditAgencyPLRequest"part="getCreditHistory"></bpel:t

o>

</bpel:copy>

<bpel:copy>

<bpel:frompart="payload"variable="input">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[tns:input]]></bpel:query>

</bpel:from>

<bpel:topart="getCreditHistory"variable="JBossCreditAgencyPLRequest">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[amount]]></bpel:query>

</bpel:to>

</bpel:copy>

</bpel:assign>

<bpel:invokename="InvokeCreditAgency"partnerLink="JBossCreditAgencyPL"operati

on="getCreditHistory"portType="ns:creditAgencyDirectNoDisc"inputVariable="JBo

ssCreditAgencyPLRequest"outputVariable="JBossCreditAgencyPLResponse"></bpel:i

nvoke>

<bpel:assignvalidate="no"name="AssignToLender">

<bpel:copy>

<bpel:from><bpel:literal><ns:selectLendersxmlns:ns="http://servicemix.apache.

org/examples"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<ns:amount>ns:amount</ns:amount>

<ns:creditHistory>ns:creditHistory</ns:creditHistory>

</ns:selectLenders>

</bpel:literal></bpel:from>

<bpel:tovariable="SMXLenderPLRequest"part="parameters"></bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="payload"variable="input">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[tns:input]]></bpel:query>

</bpel:from>

<bpel:topart="parameters"variable="SMXLenderPLRequest">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[ns0:amount]]></bpel:query>

</bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="getCreditHistoryResponse"variable="JBossCreditAgencyPLRespons

e">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[return]]></bpel:query>

</bpel:from>

<bpel:topart="parameters"variable="SMXLenderPLRequest">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[ns0:creditHistory]]></bpel:query>

</bpel:to>

</bpel:copy>

</bpel:assign>

150

<bpel:invokename="InvokeLenders"partnerLink="SMXLenderPL"operation="selectLen

ders"portType="ns0:Lenders"inputVariable="SMXLenderPLRequest"outputVariable="

SMXLenderPLResponse"></bpel:invoke>

<bpel:ifname="CheckLenderRating">

<bpel:condition><![CDATA[$SMXLenderPLResponse.parameters/ns1:return=

"BankServiceHR"]]></bpel:condition>

<bpel:sequence>

<bpel:assignvalidate="no"name="AssignToBankRate">

<bpel:copy>

<bpel:from><bpel:literal><tns:getBankServiceHRRatexmlns:tns="http://webservic

e_BankServiceHR/BankServiceHR"xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

<amount>amount</amount>

</tns:getBankServiceHRRate>

</bpel:literal></bpel:from>

<bpel:tovariable="MuleBankHRPLRequest"part="getBankServiceHRRate"></bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="payload"variable="input">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[tns:input]]></bpel:query>

</bpel:from>

<bpel:topart="getBankServiceHRRate"variable="MuleBankHRPLRequest">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[amount]]></bpel:query>

</bpel:to>

</bpel:copy>

</bpel:assign>

<bpel:invokename="InvokeBankHRRate"partnerLink="MuleBankHRPL"operation="getBa

nkServiceHRRate"portType="ns1:BankServiceHR"inputVariable="MuleBankHRPLReques

t"outputVariable="MuleBankHRPLResponse"></bpel:invoke>

<bpel:assignvalidate="no"name="AssignToHRLoanQoute">

<bpel:copy>

<bpel:from><bpel:literal><tns:getBankServiceHRQoutexmlns:tns="http://webservi

ce_BankServiceHR/BankServiceHR"xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

<rate>rate</rate>

<amount>amount</amount>

</tns:getBankServiceHRQoute>

</bpel:literal></bpel:from>

<bpel:tovariable="MuleBankHRPLRequest1"part="getBankServiceHRQoute"></bpel:to

>

</bpel:copy>

<bpel:copy>

<bpel:frompart="payload"variable="input">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[tns:input]]></bpel:query>

</bpel:from>

<bpel:topart="getBankServiceHRQoute"variable="MuleBankHRPLRequest1">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[amount]]></bpel:query>

</bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="getBankServiceHRRateResponse"variable="MuleBankHRPLResponse">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[return]]></bpel:query>

151

</bpel:from>

<bpel:topart="getBankServiceHRQoute"variable="MuleBankHRPLRequest1">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[rate]]></bpel:query>

</bpel:to>

</bpel:copy>

</bpel:assign>

<bpel:invokename="InvokeHRLaonQouteResults"partnerLink="MuleBankHRPL"operatio

n="getBankServiceHRQoute"portType="ns1:BankServiceHR"inputVariable="MuleBankH

RPLRequest1"outputVariable="MuleBankHRPLResponse1"></bpel:invoke>

<bpel:assignvalidate="no"name="AssignToHROutput">

<bpel:copy>

<bpel:from><bpel:literal><tns:DirectESB-FederationDSD-

1Responsexmlns:tns="http://DirectESB-FederationDSD-

1.process"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:result>tns:result</tns:result>

</tns:DirectESB-FederationDSD-1Response>

</bpel:literal></bpel:from>

<bpel:tovariable="output"part="payload"></bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="getBankServiceHRQouteResponse"variable="MuleBankHRPLResponse1

">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[return]]></bpel:query>

</bpel:from>

<bpel:topart="payload"variable="output">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[tns:result]]></bpel:query>

</bpel:to>

</bpel:copy>

</bpel:assign>

<bpel:replyname="ReplyHRLoanQouteResponse"partnerLink="client"operation="proc

ess"portType="tns:DirectESB-FederationDSD-1"variable="output"></bpel:reply>

</bpel:sequence>

<bpel:else>

<bpel:sequence>

<bpel:assignvalidate="no"name="AssignToBankRate">

<bpel:copy>

<bpel:from><bpel:literal><tns:getBankServiceLRRatexmlns:tns="http://webservic

e_BankServiceLR/BankServiceLR"xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

<amount>amount</amount>

</tns:getBankServiceLRRate>

</bpel:literal></bpel:from>

<bpel:tovariable="MuleBankLRPLRequest"part="getBankServiceLRRate"></bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="payload"variable="input">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[tns:input]]></bpel:query>

</bpel:from>

<bpel:topart="getBankServiceLRRate"variable="MuleBankLRPLRequest">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[amount]]></bpel:query>

</bpel:to>

</bpel:copy>

152

</bpel:assign>

<bpel:invokename="InvokeBankLRRate"partnerLink="MuleBankLRPL"operation="getBa

nkServiceLRRate"portType="ns2:BankServiceLR"inputVariable="MuleBankLRPLReques

t"outputVariable="MuleBankLRPLResponse"></bpel:invoke>

<bpel:assignvalidate="no"name="AssignToLRLoanQoute">

<bpel:copy>

<bpel:from><bpel:literal><tns:getBankServiceLRQoutexmlns:tns="http://webservi

ce_BankServiceLR/BankServiceLR"xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

<rate>rate</rate>

<amount>amount</amount>

</tns:getBankServiceLRQoute>

</bpel:literal></bpel:from>

<bpel:tovariable="MuleBankLRPLRequest1"part="getBankServiceLRQoute"></bpel:to

>

</bpel:copy>

<bpel:copy>

<bpel:frompart="getBankServiceLRRateResponse"variable="MuleBankLRPLResponse">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[return]]>

</bpel:query>

</bpel:from>

<bpel:topart="getBankServiceLRQoute"variable="MuleBankLRPLRequest1">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[rate]]>

</bpel:query>

</bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="payload"variable="input">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[tns:input]]>

</bpel:query>

</bpel:from>

<bpel:topart="getBankServiceLRQoute"variable="MuleBankLRPLRequest1">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">

<![CDATA[amount]]>

</bpel:query>

</bpel:to>

</bpel:copy>

</bpel:assign>

<bpel:invokename="InvokeLRLaonQouteResults"partnerLink="MuleBankLRPL"operatio

n="getBankServiceLRQoute"portType="ns2:BankServiceLR"inputVariable="MuleBankL

RPLRequest1"outputVariable="MuleBankLRPLResponse1"></bpel:invoke>

<bpel:assignvalidate="no"name="AssignToLROutput">

<bpel:copy>

<bpel:from><bpel:literal><tns:DirectESB-FederationDSD-

1Responsexmlns:tns="http://DirectESB-FederationDSD-

1.process"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:result>tns:result</tns:result>

</tns:DirectESB-FederationDSD-1Response>

</bpel:literal></bpel:from>

<bpel:tovariable="output"part="payload"></bpel:to>

</bpel:copy>

<bpel:copy>

<bpel:frompart="getBankServiceLRQouteResponse"variable="MuleBankLRPLResponse1

">

153

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[return]]></bpel:query>

</bpel:from>

<bpel:topart="payload"variable="output">

<bpel:queryqueryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><![

CDATA[tns:result]]></bpel:query>

</bpel:to>

</bpel:copy>

</bpel:assign>

<bpel:replyname="ReplyLRLoanQouteResponse"partnerLink="client"portType="tns:D

irectESB-FederationDSD-1"operation="process"variable="output"/>

</bpel:sequence>

</bpel:else>

</bpel:if>

</bpel:sequence>

</bpel:process>

Dynamic Service Discovery Mechanism

public class DynamicInvoker {

 private static UDDISecurityPortType security = null;

private static UDDIInquiryPortType inquiry = null;

private AuthToken rootAuthToken;

private String accesspoint;

private String serviceName;

private String serviceEndpoint;

private String serviceKey;

 public DynamicInvoker(){

 try {

 String clazz =

UDDIClientContainer.getUDDIClerkManager(null).getClientConfig().getUDDINode("default").getProxyTransport(

);

 Class<?> transportClass = ClassUtil.forName(clazz, Transport.class);

 if (transportClass!=null) {

 Transport transport = (Transport)

transportClass.getConstructor(String.class).newInstance("default");

 security = transport.getUDDISecurityService();

 inquiry = transport.getUDDIInquiryService();

 }

 } catch (Exception e) {

e.printStackTrace();

 }

 }

public String getAuthToken(){

try {

 // Setting up the values to get an authentication token for the 'root' user ('root' user has admin privileges

 // and can save other publishers).

 GetAuthToken getAuthTokenRoot = new GetAuthToken();

getAuthTokenRoot.setUserID("root");

getAuthTokenRoot.setCred("root");

154

 // Making API call that retrieves the authentication token for the 'root' user.

rootAuthToken = security.getAuthToken(getAuthTokenRoot);

return rootAuthToken.getAuthInfo();

 } catch (Exception e) {

e.printStackTrace();

return null;

 }

 }

public ServiceList findBusServiceList(String serviceName){

try{

FindService findservice = new FindService();

findservice.setAuthInfo(getAuthToken());

 FindQualifiers q = new FindQualifiers();

q.getFindQualifier().add("ApproximateMatch");

findservice.setFindQualifiers(q);

 Name sName = new Name();

sName.setValue(serviceName);

findservice.getName().add(sName);

 ServiceList services = inquiry.findService(findservice);

return services;

 }

catch (Exception e){

e.printStackTrace();

return null;

 }

 }

public BusinessService GetBusServiceDetails(ServiceList services, int Serviceindex){

 try{

 String servicekey = services.getServiceInfos().getServiceInfo().get(Serviceindex).getServiceKey();

 GetServiceDetail serviceDetails = new GetServiceDetail();

serviceDetails.setAuthInfo(getAuthToken());

serviceDetails.getServiceKey().add(servicekey);

 ServiceDetail serviceDet = inquiry.getServiceDetail(serviceDetails);

 BusinessService businessService = serviceDet.getBusinessService().get(0);

 return businessService;

 }

 catch(Exception e){

 e.printStackTrace();

 return null;

 }

 }

public int ServiceIndex(ServiceList services){

int maximumQoS = 70;

int servIndex = 0;

for(int i = 0; i < services.getListDescription().getActualCount(); i++){

 BusinessService service = GetBusServiceDetails(services, i);

 TModel tmodel = getTmodel(service);

 //String QosName = getQoSName(tmodel);

 String QoSValue = getQoSValue(tmodel);

155

int actualQosValue = Integer.parseInt(QoSValue);

if (actualQosValue>=maximumQoS){

maximumQoS = actualQosValue;

servIndex = i;

 }

 }

return servIndex;

 }

public String getAccesspoint(BusinessService service){

 serviceKey = service.getServiceKey();

 try

 {

 GetServiceDetail getServiceDetail=new GetServiceDetail();

getServiceDetail.setAuthInfo(getAuthToken());

getServiceDetail.getServiceKey().add(serviceKey);

 ServiceDetail serviceDetail=inquiry.getServiceDetail(getServiceDetail);

 BusinessService businessservice=serviceDetail.getBusinessService().get(0);

serviceName = businessservice.getName().get(0).getValue();

 //wsdlTA.append("fetched service name:"+serviceName+"\n");

 String bindingkey = businessservice.getBindingTemplates().getBindingTemplate().get(0).getBindingKey();

 //wsdlTA.append("fetched binding key:"+bindingkey+"\n");

 GetBindingDetail gbd = new GetBindingDetail();

gbd.setAuthInfo(rootAuthToken.getAuthInfo());

gbd.getBindingKey().add(bindingkey);

 BindingDetail bindingdetail=inquiry.getBindingDetail(gbd);

 BindingTemplate bindingtemplate=bindingdetail.getBindingTemplate().get(0);

accesspoint=bindingtemplate.getAccessPoint().getValue();

System.out.print("fetched access point: "+accesspoint+"\n");

serviceEndpoint = accesspoint;

return accesspoint;

 //wsdlTA.append("fetched access point: "+accesspoint+"\n");

 }catch(Exception e){

 e.printStackTrace();

 return null;

 }

 }

public TModel getTmodel(BusinessService service){

 String tmodelKey =

service.getBindingTemplates().getBindingTemplate().get(0).getTModelInstanceDetails().getTModelInstanceInfo().g

et(0).getTModelKey();

try{

 GetTModelDetail getTmodelDetails = new GetTModelDetail();

 getTmodelDetails.setAuthInfo(rootAuthToken.getAuthInfo());

 getTmodelDetails.getTModelKey().add(tmodelKey);

 TModelDetail tmodelDetails = inquiry.getTModelDetail(getTmodelDetails);

156

 TModel tmodel = tmodelDetails.getTModel().get(0);

 return tmodel;

}catch(Exception e){

 e.printStackTrace();

 return null;

 }

 }

public String getOverviewURL(TModel tmodel){

 String serviceURL = tmodel.getOverviewDoc().get(0).getOverviewURL().getValue();

System.out.println("URL"+ serviceURL);

System.out.print("Accesspoint"+ accesspoint);

 return serviceURL;

 }

public String getQoSValue(TModel tmodel){

 String QoSValue = tmodel.getCategoryBag().getKeyedReference().get(0).getKeyValue();

 return QoSValue;

 }

public String getQoSName(TModel tmodel){

 String QoSName = tmodel.getCategoryBag().getKeyedReference().get(0).getKeyName();

 return QoSName;

 }

}

