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Preface

Cosmology today is often described as being a ‘precision’ science, which reflects that

cosmology had not always been seen as such. The enormous theoretical and experi-

mental data from the cosmic microwave background (CMB), type Ia supernovae (SNe

Ia), the Wilkinson Microwave Anisotropy Probe (WMAP), large scale structure (LSS),

gravitational lensing, the Sloan Digital Sky Survey (SDSS), baryonic acoustic oscilla-

tions (BAO), and PLANCK, has drastically ameliorated cosmology; thus, providing a

deeper understanding of the universe. These observations suggest that the universe is

currently undergoing an accelerated expansion, where two thirds of its critical energy

density is reserved in the form of an energy called dark energy (DE). This energy is usu-

ally associated with a cosmological constant, and the resulting standard cosmological

model is called the ΛCDM model. This humongous episode confronted the fundamen-

tal theories of cosmology and astrophysics. Due to some shortcomings of the ΛCDM

model, various alternatives have been proposed, which include modifications of gen-

eral relativity itself, by imposing extra terms in the Einstein-Hilbert action (EH), or by

considering dynamical candidates. These modified theories of gravity include Gauss-

Bonnet, f (G), higher derivative (HD) theories, f (R) theories, f (T ) and f (R,T ) gravity

theories, while dynamical candidates include the cosmological constant, quintessence,

phantom, quintom, k-essence, tachyon and Chaplygin gas, among others.

Though the present universe is homogenous and isotropic, theoretical studies and ob-

servational data support the existence of an anisotropic phase at early evolution, leading

to the consideration of anisotropic- background models of the universe. Many authors

have explored the features of modified theories of gravity in anisotropic background to

study the early universe. Amongst the various families of homogeneous, but anisotropic

geometries, the most well-known are the Bianchi type I -IX space-time line elements.

However, earlier studies on the possible effects of anisotropic universe make the Bianchi

type-I model a prime alternative. In particular, a locally-rotationally-symmetric (LRS)
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or a plane symmetric spacetime is the simplest version of Bianchi-I models.

Most studies on standard gravity, as well as on modified gravity, assume the cosmic

fluid to be prefect, i.e. non-viscous. From a hydrodynamicist’s point of view, this is

somewhat visionary, since there are several mechanisms in fluid mechanics, even in

homogeneous space without boundaries, it is where bulk viscous fluid come into play.

Dissipative effects, including both bulk and shear viscosity, are supposed to play a very

important role in the early evolution of the universe. The bulk viscous pressure term in

the matter energy-momentum tensor may lead to an accelerating universe.

This dissertation primarily investigates exact solutions of LRS Bianchi-I cosmolog-

ical model with and without viscous matter in f (R,T ) theory of gravity, where f (R,T )

is an arbitrary function of the Ricci scalar R and the trace T of the energy-momentum

tensor. In particular, we have studied f (R,T ) = R+ 2 f (T ), where f (T ) = λT with λ

being an arbitrary constant. The function f (R,T ) = R+ 2 f (T ) is used with two non-

interacting fluids: one the perfect fluid, and the other from modified f (R,T ) gravity.

The characteristic of the dynamical evolution of each cosmological model has been

performed. A number of viability criteria, such as the existence of exact real solutions

and physical viability, have been taken care of from each cosmological model.

This is a four-chapter dissertation comprising the first introductory chapter; chap-

ters two and three, being the actual research work, carried out by the authors; and the

concluding chapter.

Chapter 1

This introductory chapter gives the overview of the sequential understanding of the

universe, from the inflationary phase, through the radiation and matter phases, and up to

its current state, the accelerating epoch. Various concepts and cosmological parameters
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that explain both geometric and physical properties of the universe ought to be stated,

including the new proposed alternatives of DE, modified theories of gravity, and all

terms and equations involved in the theory of gravity.

Chapter 2

In this chapter, an LRS Bianchi type-I cosmological model is explored in the pres-

ence and absence of bulk viscosity within the framework of general relativity. The

solutions are obtained by assuming that the expansion scalar is proportional to the shear

scalar. To determine exact solutions, the system of equations is closed in two ways:

first, by assuming a perfect fluid equation of state and then to study the behavior of

the bulk viscous coefficient, and second, by considering two known bulk viscous coef-

ficients, and then to study the normal matter. Comparison amongst the models is also

made in two ways, firstly, by differentiating between the models of general relativity

and f (R,T ) gravity, and secondly, differentiating between the models with and without

viscosity. It is found that f (R,T ) gravity or bulk viscosity does not affect the behav-

ior of the effective matter, which acts as a stiff fluid in all cases. The individual fluids

have very rich behavior. The effect of f (R,T ) gravity is to diminish the effect of bulk

viscosity.

Chapter 3

This chapter entails LRS Bianchi-I model in f (R,T ) gravity, where the matter is con-

sidered with and without bulk viscosity. The approach to find the solutions is the same

as presented in chapter 2. To investigate the role of viscosity and f (R,T ) gravity in the

evolution of the universe is our main concern in this study. To analyse the properties
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of primary matter and coupled matter, the equation of state will be another criterion to

classify the nature of matter assuming two different forms of bulk viscous coefficient.

Comparison amongst the models is also made in two ways: firstly, differentiating be-

tween the models of general relativity and f (R,T ) gravity, and secondly, differentiating

between the models with and without viscosity.

Chapter 4

This chapter presents the final summary of the results obtained. The future perspectives

of the work is also reported in this chapter.
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Research questions

• Which cause can give the desired geometrical behaviour?

• In which matter will the model depict the desired evolution?

• What is the role of the f (R,T ) gravity theory?

• What is the influence of the use of different analytic forms on the bulk viscosity?

• How are the outcomes with viscous matter different from those without viscous

matter?

• How are the outcomes in f (R,T ) gravity different from those in General Relativ-

ity?
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Research aim and objectives

Aim

The aim of the research is to construct and explore the behaviour of the cosmological

models in a locally-rotationally-symmetric anisotropic space-time in GR and in f (R,T )

gravity, in the presence and absence of viscous matter.

Objectives

The aim of the research is achieved by obtaining the exact solutions assuming that the

expansion scalar is proportional to the shear scalar. Comparison amongst the models

is made in two ways: by differentiating between the models of general relativity and

f (R,T ) gravity, and by also differentiating between the models with and without vis-

cosity.

Motivation for the study

Our universe, on a sufficiently large scale, is homogeneous and isotropic. However,

on smaller scales, the universe is neither homogeneous nor isotropic. There are the-

oretical predictions that the universe, in its early stages, was also highly anisotropic.

Among the simplest homogeneous and anisotropic models, which nevertheless com-

pletely describe the anisotropic effects, Bianchi type-I (B-I) models play outstanding

role in explaining essential features of the universe, such as the formation of galaxies.

Also in a universe filled with matter, initial anisotropy in a B-I universe quickly dies

away and the universe eventually becomes isotropic. Since the present-day universe

is isotropic, the prominent features of the B-I models make them prime candidates for
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studying the possible effects of anisotropy in early evolution of the universe. In par-

ticular, the locally-rotationally-symmetric (LRS) B-I space-time is one of the simplest

models of an anisotropic universe that describe a homogenous and spatially flat uni-

verse. In the light of its importance in study of possible effects of anisotropy on the

early universe on present-day observations, many researchers have studied the LRS B-I

models in various contexts (see [1–3] and references therein).

While the perfect fluid satisfactorily accounts for the large scale matter distribution

in the universe, the realistic scenario requires the consideration of matter other than a

perfect fluid. Some observed physical phenomena, such as the large entropy per baryon

and the noteworthy degree of isotropy of the cosmic background radiation, suggest

dissipative effects in cosmology. Entropy- producing processes and dissipative effects

play a very significant roles in the early evolution of the universe. In fluid cosmology,

the simplest phenomenon associated with a non-vanishing entropy production is bulk

viscosity. Bulk viscosity is the only dissipative effect that is consistent with the sym-

metry requirements of the homogeneous and isotropic Friedmann-Lemaitre-Robertson-

Walker (FLRW) models (for more detail, see the review article by [4] and references

therein).

As mentioned in the preface, the shortcomings of the ΛCDM model have motivated

the search for alternatives to the fundamental theories of cosmology and astrophysics,

which include modifications of general relativity itself by imposing extra terms in the

Einstein-Hilbert action. The modified theories of gravity include higher derivative theo-

ries, Gauss-Bonnet f (G) gravity, f (R) theory, f (T ) and f (R,T ) gravity theories. In the

past decade, f (R,T ) gravity has attracted the attention of many researchers to look at

many astrophysical and cosmological phenomena in the context of this theory (see [5]

for a broad list of references).

My intention in this dissertation is to study LRS Bianchi-I anisotropic model in

f (R,T ) gravity with bulk viscous fluid. I try to find the exact solutions of the field
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equations by following existing approaches and examining the viability of the solu-

tions. I thoroughly explored the physical behaviour of the model. Moreover, while

going through the literature on such problems, to the best of my knowledge I came to

know that the solutions of an LRS B-I model within the framework of GR and with an

assumption of expansion scalar proportional to shear scalar have not been investigated

by anyone. Therefore, before presenting the solutions of the f (R,T ) gravity model, I

first found the solutions in GR with and without bulk viscous matter. This helped me

to distinguish between the solutions in GR and f (R,T ) gravity. Consequently, we can

analyse the significance of f (R,T ) gravity and bulk viscosity.
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Literature Review

Cosmology is the scientific study of the origin, evolution and ultimate fate of the whole

universe on a large scale. Over the years, various theories/models have been proposed

about the origin of the universe, e.g., steady-state and big bang (BB) [6]. The latter is

the leading explanation about how the universe began, at its simplest. It says that the

universe came into existence at a definite moment in time, some 13,6 billion years ago,

in the form of a super hot, super dense fireball of energetic radiation known as Big Bag

event.

From observations and theory, cosmology has enabled a deeper understanding of the

universe. Modern cosmology emerged about 100 years ago through Einstein’s theory of

general relativity (theory of space-time and gravitation) in 1917 [7]. GR is a well known

theory of space-time and gravitation, and is widely taken as a fundamental theory to

explain geometrical properties of space-time. It is based on two fundamental postulates

namely:

(a) The principle of equivalence

General Relativity states that gravity is equivalent to acceleration; therefore, grav-

ity affects measurements of space and time.

(b) The principle of general covariance

This principle states that a physical law expressed in a generally covariant man-

ner takes the same mathematical form in all coordinate systems, and is usually

expressed in terms of tensor fields.

GR vividly describes gravity as a geometry of four-dimensional curved space-time and

ameliorated the understanding of the cosmos by providing, to a good approximation,
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an eloquent description of space-time geometry around the sun and earth. It also de-

scribes the history and expansion of the universe, the bending of light from the stars and

galaxies, which are far away, and gives the physics of black-holes.

In 1998, flummoxing results emerged from the Hubble Space Telescope, where dis-

tant supernovae suggested that the universe at present is going through an accelerating

phase [8–10]. A cosmic fluid (pressureless and with pressure) obeying a perfect fluid

type equation of state cannot support the acceleration. GR predicts a mysterious form

of energy that permeates space and accelerates the expansion of the universe. The un-

known component is popularly known as “dark energy " (DE) [11]. The presence

of DE has not been directly detected yet. However, an array of observations, viz., the

CMB anisotropy [12], baryonic acoustic oscillations (BAO) [13], gravitational lens-

ing(GL) [14], and statistics of quasars and clusters [15], etc. are indirect evidences of

its existence. Investigations suggest that DE has properties, which can be explained by

a cosmological constant that corresponds to vacuum energy [16, 17].

The present universe consists of non-relativistic prefect fluid, dark matter (DM) and

dark energy (DE). DE makes up about 70% of matter in the universe, while DM makes

up 25% and visible matter only 5% [18–20]. In the standard model, DM (which is

represented by pressure-less fluid, after cooling off rapidly as the expansion takes place)

was first observed by Fritz Zwicky in the Coma cluster [21]. He observed that within

a cluster, galaxies were moving with higher velocities than what the collective gravity

from all the clusters of galaxies would permit. Hence, it is regarded as a missing mass

and was given the name DM. It is also not seen directly, but its effect is clearly observed

in rotating galaxies [22].

While the latter universe broadly contains the above mentioned ingredients, the uni-

verse is supposed to be filled mainly with imperfect fluids and electromagnetic (EM) ra-

diation. Among the various imperfect fluids, the bulk viscous matter plays an important

role in early evolution of the universe. There are several processes that generate viscous
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effects. Singh and Beesham [23] listed some of these principal processes. These mainly

include the decoupling of neutrinos during the radiation era, and the decoupling of ra-

diation and matter during the recombination era [24]. In an early stages of evolution of

the universe, when neutrino decoupling phenomena occurs, the matter behaves like a

viscous fluid [25]. Bulk viscosity is also associated with the GUT phase transition and

string creation [26]. The presence of bulk viscosity inaugurates many interesting fea-

tures in the dynamics of the universe. Initially, it was proposed that neutrino viscosity

could smooth out initial anisotropies and resulted into the isotropic universe that we see

today [27]. The presence of bulk viscosity can avert the big-bang singularity too [28].

Bulk viscosity can also explain a phenomenological process of particle creation in a

strong gravitational field [26]. The back-reaction effects of string creation can be mod-

elled by a bulk viscous fluid [26]. This has fascinated a wide scrutiny across the field

of cosmology and many investigators have pondered on the effects of bulk viscosity in

different contexts (see for examples [29–43] and references cited in these papers).

Because of technical reasons, most of the above referred investigations have assumed

homogenous and isotropic symmetries. The observational data of Cosmic Microwave

Background (CMB) [44] and Wilkinson Microwave Anisotropy Probe (WMAP) [45]

admit the existence of anisotropic phase and has gained a lot of interest. It is supposed

that the CMB anisotropies at small angular scales form the base for the formation of

discrete structures. Theoretical arguments also support the existence of an anisotropic

phase that approaches an isotropic phase in late time evolution [46]. Amongst the vari-

ous families of homogeneous but anisotropic 1 geometries, the most well-known are the

Bianchi type I -IX space-time line elements [47]. These homogeneous and anisotropic

line elements play a significant role in describing the behaviour of the early stages of

the evolution of the universe. Unlike the isotropic FRW space-time metric, Bianchi type

models have different scale factors in each direction, which introduces the anisotropy

in the system. The simplest example of a homogeneous and anisotropic model is the

1Spatial sections are direction dependent.
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Bianchi type-I (B-I), which is more general than flat FRW line element.

Therefore, in the search for a realistic picture of the universe in its early stages, a

large number of studies have been done in anisotropic space-times as well (see [48–63]

and references therein). The general B-I spacetime models have been studied by, inter

alia, [51,58,64–72]. More specifically, [73–75] presented some LRS B-I bulk viscosity

cosmological models. Though we have mentioned the works that have been done in

the framework of GR, there are many other works that have been carried out in other

theories of gravitation such as Brans-Dicke theory and other scalar-tensor theories [76–

82].
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Chapter 1

Introduction

This introductory chapter gives a short review of the basic mathematical equations

that govern the evolution of the Universe. The purpose of this chapter is basically to

describe several issues relating to gravitation and cosmology; that is, problems related

to the early inflation and the late-time cosmic acceleration. Some modified theories of

gravity are briefly introduced to explain the dark energy and dark matter phenomena.

The foundation of this chapter provides the motivation for the work carried out in this

dissertation.

1.1 Space-time geometry

The space-time geometry is well articulated by a line-element that gives the space-time

distance between any two nearby points. The Greek index xi with i = (0,1,2,3) is used

to denote the arbitrary space-time coordinates. Consequently, the four dimensional
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space-time coordinates are (x0, x1, x2, x3), where x0 = t, x1 ,x2,x3 is the time and spatial

coordinates, respectively. Using the Einstein’s summation convention, the line-element

between two points is separated by coordinate intervals, dxi and is given by

ds2 =
3

∑
i, j=0

gi jdxidx j, (1.1.1)

where the coefficients gi j are functions of the space-time coordinates xi, under the re-

striction g = |gi j| 6= 0. The quantities gi j are components of a covariant symmetric

tensor of rank two, known as the metric tensor. A line-element in (1.1.1) shows the

curved geometry. According to GR, space is curved in a gravitational field and the ge-

ometry of space in the gravitational field is known as Riemannian. The contravariant

metric tensor is given as

gi j =
cofactor of gi j in g

g
. (1.1.2)

The metric tensor gi j is also a symmetric tensor of rank two.

1.2 Homogeneous and isotropic space-time

On a very large scale (� 100 Mpc) the universe is homogeneous (has spatial transla-

tion symmetry) and isotropic (has spatial rotation symmetry). It contains gravitationally

clustered matter in galaxies, as well as non-clustered energy, which is distributed uni-

formly and looks like a uniform density cloud of dust at gigantic scales. It appears the

same in every place and in all directions. At its simplest form, the line-element of a flat

homogeneous and isotropic space-time is given by

ds2 = c2dt2−a2(t)
[
dx2 +dy2 +dz2] , (1.2.1)

where c is the speed of light, and a(t) is the scale factor associated with the expansion

or contraction of the universe. Usually (1.2.1) is known as the Friedmann-Robertson-
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Walker (FRW) metric. For a non-flat universe, the metric in spherical coordinates is

given by

ds2 = c2dt2−a2(t)
[

dr2

1−κr2 + r2(dθ
2 + sin2

θdϕ
2)

]
, (1.2.2)

where κ is a constant that describes the curvature of the spatial sections, and (0≤ θ ≤

π), (0 ≤ ϕ ≤ 2π). It is either negative, zero, positive (−1,0,+1) for open, flat, closed

universes, respectively.
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1.3 Homogeneous and anisotropic space-time

The observation of the Wilkinson Microwave Anisotropy Probe (WMAP) [83] and the

cosmic microwave background (CMB) [12] shows that there exists an anisotropy in the

early stages of the universe. These CMB anisotropies at small angular scales are the

ingredients for structure formation [84]. There exists also a theoretical argument that

supports the existence of an anisotropic phase, where it approaches the isotropic phase

during late times [46]. The Bianchi type I–IX space-time line-elements are well-known

families of homogeneous and anisotropic geometries [85]. They have different scale

factors in each direction. The simplest one is the Bianchi type-I (B–I) metric, which

is more general than FRW line element. The line-element of a general B–I space-time

metric is given by

ds2 = c2dt2−A2(t)dx2−B2(t)dy2−C2(t)dz2. (1.3.1)

If A = B =C, it reduces to the FRW metric, and if A 6= B =C or A = B 6=C, it is known

as locally-rotational-symmetric (LRS) Bianchi I space-time, or if A 6= B 6=C, the totally

anisotropic B–I space-time.

1.4 Gravitational action and Einstein’s field equations

Einstein’s relativistic field equations, which are equivalent to Poisson’s equation of

Newtonian dynamics, remain the most vital equations in explaining the relationship

between matter and geometry. In the Newtonian perspective, the gravitational field

equation under the presence of matter is [86]

∇
2
Φ = 4πGρ, (1.4.1)
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where Φ is the gravitational potential, G is the gravitational constant and ρ is the density

of matter. This equation depicts the mathematical relationship between the gravitational

potential Φ in space at a point and the mass density ρ in a mathematical form at that

point. The replacement of Φ by the metric tensor gi j comes as a result of a non- rela-

tivistic limit g00, playing the role of the gravitational potential.

The EH gravitational action is used to describe GR and results in the Einstein’s

relativistic field equations (EFE), built on the assumption that it is a function of the

metric, connected by the Levi-Civita connection, containing a second-order derivatives

of the metric. One of the easiest gravitational actions is matter fields being included

resulting in

S =
∫ ( 1

2κ
(R)+Lm

)√−gd4x, (1.4.2)

where R = gi jRi j is the Ricci scalar, and Ri j being the Ricci tensor, (Lm) is the La-

grangian density for any matter fields and κ = 8πG
c4 . Varying (1.4.2) with respect to gi j

results in the EFE

Ri j−
1
2

gi jR = κTi j, (1.4.3)

where the matter density is also a component of a second rank EMT tensor, and the right

hand side is in terms of the energy tensor Ti j with vanishing divergence. Then (1.4.3)

govern the evolution of a universe. These equations also explain the gravitational red-

shift, the propagation of gravitational waves, how black holes behave, how the orbit

of Mercury changes, how structures are formed in the universe from planets, stars, the

clusters and super-clusters of galaxies, and any matter that is observed today.

The most general matter consistent with the assumption of the cosmological princi-

ple is a perfect fluid (frictionless continuous matter), which carries information about

the energy density as well as the momentum density. The energy-momentum tensor
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(EMT) or stress tensor is given by

Ti j = (ρc2 + p)uiu j + pgi j, (1.4.4)

where ρc2 is the energy density, p is the pressure for the perfect fluid and uµ is the

four-velocity such that uµuµ = −1. The matter distribution (Ti j) is a function of time,

but not of spatial coordinates, due to the spatial homogeneity.

1.5 Friedmann equations

In the co-moving coordinates system, Alexander A. Friedmann in 1922 [87], from

(1.2.2), (1.4.3) and (1.4.4), derived two independent equations

(
ȧ
a

)2

+
kc2

a2 =
8πGρ

3
, (1.5.1)

2
ä
a
+

(
ȧ
a

)2

+
kc2

a2 = −4πGp
c2 , (1.5.2)

where dots represent derivative with respect to cosmic time t. The above equations are

known as Friedmann’s equations. From (1.5.1), Friedmann mathematically predicted

that the universe is expanding [87]. This was discovered seven years prior to Hubble’s

discovery of an expanding universe, that left Einstein foundering upon his thoughts of

his static universe, because this was unstable, meaning that the actual universe was not

static. In 1927, George Lamaitre came up with an independent derivation [88] of (1.5.1).

The expansion of the universe was later confirmed by George Lamaitre in 1927 [88],

while Hubble, in 1929, experimentally proved the expansion of the universe [89].

Then (1.5.2) is simplified to be

ä
a
=−4πG

3c2 (ρc2 +3p). (1.5.3)
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This equation is called the Raychaudhuri equation, which accounts for an accelerated

or contracted expansion of the universe. In the absence of k in (1.5.3), it implies that the

acceleration is independent of the spatial curvature of the universe. For a perfect fluid

(radiation and matter) ä
a < 0, implying a decelerated expansion of the universe.

1.6 Energy conservation law

The EMT (1.4.4) is conserved. Differentiating (1.4.4) with respect to cosmic time t,

one obtains

2ȧä =
8πG

3
(ρ̇a2 +2ρaȧ). (1.6.1)

From (1.5.3) and (1.6.1), one may easily derive

ρ̇ +3(ρ +
p
c2 )

ȧ
a
= 0. (1.6.2)

All terms here have a dimension of energy density per time, which implies that the

change of energy per unit time is zero.

1.7 Einstein’s modified field equations

The geometry and time evolution of the universe, as predicted by Einstein’s theory, are

given by what is now known as the Friedmann-Robertson-Walker (FRW) model, which

describes the solutions to Einstein’s field equations for a spatially homogeneous and

isotropic universe in which the scale factor varies with time.

In 1917, Einstein proposed a static cosmological model based on the “cosmological

principle" a generalization of the Copernican principle postulating that the homogeneity

and isotropy of space in be extended to include the time dimension as well.
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This solution to Einstein’s field equations was first put forward by Alexander Fried-

mann in 1922 [87] and later independently by Georges Lamaître [88]. Robertson and

Walker subsequently showed that this was the only solution to the field equations con-

sistent with spatial homogeneity and isotropy. As we discussed above, in 1917, Einstein

had put forth a theory of a static universe, a solution of the general relativity field equa-

tions that is not only homogeneous and isotropic in the three spatial dimensions, but

also homogeneous in time. Given the lack of compelling observational evidence to the

contrary at the time, Einstein believed that an eternal universe, in which the Copernican

principle held not only in three spatial dimensions but also in time, was more elegant,

and hence, more plausible. In order to satisfy the gravitational field equations, Einstein

had to introduce a cosmological constant term.

The EH action with a cosmological constant (CC), Λ, is modified as [90]

S =
∫ [ 1

2κ
(R−2Λ)+Lm

]√−gd4x, (1.7.1)

which results in the Einstein’s modified field equations

Ri j−
1
2

gi jR+Λgi j = κTi j, (1.7.2)

where Λ is measured in inverse meter squared. In a comoving coordinate system, the

above equations for the metric (1.2.2) and EMT (1.4.4) yield

(
ȧ
a

)2

+

(
k
a2 −

Λ

3

)
c2 =

8πGρ

3
, (1.7.3)

ä
a
− Λ

3
= −4πG

3c2 (ρc2 +3p). (1.7.4)

A positive cosmological constant (Λ) curves space-time to counteract attractive grav-

itation due to matter. Einstein adjusted the CC for a static solution known as the

Einstein universe. Arthur Eddington figured out the instability in the Einstein static

universe [91]. Then Einstein disbanded the cosmological constant from his equations
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calling it “the biggest blunder life" [92]. Then for a while, the CC was forgotten, but

later turned out to be a strong candidate of DE that explains the late-time accelerated

expansion of the universe.

1.8 Some cosmological parameters

Let us focus on some observational and theoretical cosmological parameters that will

be used in this dissertation.

1.8.1 Hubble parameter

The notion that the universe is composed of many galaxies, where each assembly is sim-

ilar to a Milky Way, emerged in the decade of 1920’s. Observing a galaxy through vis-

ible wavelengths, there is a shift, which is the difference between the emitted (λemitted)

by a source and received wavelengths (λreceived) by an observer. This change is defined

through a red-shift, namely

z =
λrecieved−λemitted

λemitted
. (1.8.1)

For non-relativistic motion

z =
∆λ

λ
≈ v

c
, (1.8.2)

where v is the receding velocity between the source and observer. The relationship be-

tween z and distance d was discovered by Edwin Hubble in 1929, where he formulated

the relation

z =
H0

c
d, (1.8.3)
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where H0 is the Hubble constant, which is the recession speed over the separation be-

tween the emitting and receiving galaxies. Using (1.8.2) and (1.8.3), the following

relationship is obtained

v = H0d. (1.8.4)

This relation in which the receding speed is proportional to the separation distance

is known as the Hubble-Lemaitre law. The constant H0 is positive in an expanding

universe, also showing the rate at which the universe is expanding. The precise value

for H0 is unspecified, but recent observations from WMAP, CMB, BAO, H(z) suggest

that H0 = (69.32±0.80)km/s/Mpc [20]. In relation with the present H0 = H(t0), from

(1.8.4), the Hubble constant has dimensions of inverse time namely, tH = H−1
0 , known

as the Hubble time and is used to predict the age of the universe. The present age of the

universe is tH = 13.77GY r (1GY r = 109 years = 1 Billion years). The Hubble constant

will not be constant with time, due to the matter and energy density in the universe. The

gravitational attraction between matter and energy slows down the expansion, which

leads to a decreasing rate of H(t), implying a decelerating universe. The evolution of

the universe is also traced through these theoretical and observational parameters. The

Hubble parameter is defined by

H(t) =
ȧ(t)
a(t)

. (1.8.5)

This parameterizes the rate of expanding universe, thus giving a way to link up with

observations for models using a scale factor. It is taken into consideration that H(t0) =

H0.
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1.8.2 Critical density

The future of the universe relies on the critical density. This corresponds to the density

of the expanding flat universe and is given as

ρc(t) =
3H2

8πG
. (1.8.6)

It separates the bounded and unbounded cases. The present value of H0 = 75 kms−1Mpc−1

results in

ρc ≈ 10−29gm/cm3. (1.8.7)

1.8.3 Density parameter

This determines the spatial geometry of the universe and is given by

Ω =
ρ(t)
ρc(t)

. (1.8.8)

If Ω = 1, the universe is flat, Ω > 1 means a closed universe, and Ω < 1 corresponds to

an open universe. Through the observations, the present universe is close to the spatially

flat geometry, i.e., Ω≈ 1.

1.8.4 Deceleration parameter

It measures the rate at which the expansion of the universe is changing with time, in

terms of the scale factor. It is defined as

q =−aä
ȧ2 . (1.8.9)
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If q < 0, it represents an accelerating universe, and if q > 0, a decelerating universe.

1.9 Some kinematical parameters

The evolution of the universe is clearly understood by introducing kinematical parame-

ters for observational interest and are vital when considering that the universe is homo-

geneous and isotropic.

1.9.1 Some basic mathematical formalism

Let us set the speed of light to be unity, i.e., c = 1. As gi j is a fundamental tensor which

describes the local geometry of space-time, the projection tensor is given by

hi j = gi j +uiu j, (1.9.1)

where ui is the four-velocity of the fluid. The rotational tensor

ωi j = hα
i hβ

j uα;β =
1
2
(
ui;αhα

j −u j;αhα
i
)
. (1.9.2)

The expansion

θi j = hα
i hβ

j uα;β =
1
2
(
ui;αhα

j +u j;αhα
i
)
, (1.9.3)

where its trace becomes θ ≡ θ i
i = ui

;i.

The shear tensor

σi j = θi j−
1
3

hi jθ , (1.9.4)

satisfying σ i
i = 0.

12



Lastly, the fluid velocity, which is

ui; j = ωi j +σi j +
1
3

hi jθ −Aiu j, (1.9.5)

with Ai being the four-acceleration, given by Ai = u̇i = u jui; j.

1.9.2 Expansion scalar

It is the rate of expansion of the universe and is represented by θ . It is defined in the

FRW model as

θ = ui
;i = 3

ȧ
a
= 3H. (1.9.6)

In homogeneous and anisotropic space-times defined in (1.3.1), this becomes

θ =

(
Ȧ
A
+

Ḃ
B
+

Ċ
C

)
. (1.9.7)

1.9.3 Anisotropy parameter

It provides information on the universe’s anisotropic behavior, or the measure of isotropy

departure. It is described as

Ap =
1
3

3

∑
i=1

(
Hi−H

H

)2

, (1.9.8)

where Hi(i = 1,2,3) denotes the directional Hubble parameters in the x,y,z directions,

respectively. Hence the Hubble parameter in the anisotropic universe is

H =
ȧ
a
=

1
3

(
Ȧ
A
+

Ḃ
B
+

Ċ
C

)
, (1.9.9)
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corresponding to the following directional Hubble parameters

H1 =
Ȧ
A
, H2 =

Ḃ
B
, H3 =

Ċ
C
. (1.9.10)

1.9.4 Shear scalar

The shear in an anisotropic universe is measured via observations. It plays a crucial role

in studying homogeneous and anisotropic universes and is defined as

σ
2 =

1
2

σi jσ
i j =

1
2

[
Ȧ
A
+

Ḃ
B
+

Ċ
C

]
− θ 2

6
, (1.9.11)

where σ i j denotes the shear tensor and is fundamentally defined as

σi j =
1
2
(ui;αhα

j +u j;αhα
i )−

1
3

θhi j, (1.9.12)

where θ ≡ θ i
i = ui;i.

1.10 Phases of the universe

The evolving universe is assumed to have undergone four different phases. These are

pre-matter phase (p =−ρ) with a density nearly equal to Planck density; the radiation

epoch (very high temperature); matter-dominated epoch where the content of matter

in the galaxies is being described by pressure-less gas; and the last phase is known

as an accelerating phase with negative pressure. These phases are characterized by an

equation of state (EoS) that is defined as

p = (γ−1)ρc2, (1.10.1)
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where 0≤ γ ≤ 1.

The continuity equation (1.6.2) by the use of above EoS results

ρ = ρ(t0)
[

a(t0)
a(t)

]−3γ

, (1.10.2)

where t0 represents the present time. Using (1.10.2) in (1.5.1) for a flat universe (k = 0),

one obtains

a(t) = a(t0)
(

t
t0

)− 2
3γ

, provided (γ 6= 0). (1.10.3)

If γ = 0, one gets

a(t) = a(t0)exp

[(
8πGρ(t0)

3

) 1
2

t

]
. (1.10.4)

1.10.1 Inflationary epoch

Inflation is a short period of drastic exponential expansion of the early universe, at

the end of which the standard BB model description is applied. This phase came out

with a solution to the problems of flatness, horizon and the monopole problems in the

universe [93]. Inflation smoothed out the geometry of the universe to be almost flat,

thus allowing matter and density to be of order unity.

During inflationary epoch γ = 2
3 ; therefore,

ρ ∝ a−2. (1.10.5)

For a flat universe (κ = 0), the scale factor evolves linearly, i.e., a(t) ∝ t. This is also

known as marginal inflationary expansion. If γ = 0, ρ = constant, and a(t) = e
√

H0t ,

which is exponential expansion. This process is vital in addressing the horizon, flatness,

monopole and entropy problems.
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(a) Horizon Problem

This is generally known as the homogeneity problem or rather, the cosmological

fine-tuning problem in the BB model. It is supported by the background radiation

with high isotropy, meaning uniformity in every direction. We observed in all

directions a CMB spectrum of thermal black-body with a temperature of 2.725

Kelvin, varying only in one part in 100,000 from perfect isotropy. The unifor-

mity of temperature in every direction implies that very far opposite parts of the

universe had been in thermal equilibrium in the past. Since there is no possibility

for causality from two distant opposite parts of the universe, due to the fact that

information travels at speeds less than or equal to the speed of light, how could

the same temperature be measured in every direction?.

(b) Flatness Problem

The data obtained from the CMB reveals that the geometry of the universe is

nearly flat, i.e., the density parameter (Ω) is nearly or close to 1. So far there, is

no reason to why the density of the universe and the critical density are of order

unity. Thus, an extreme fine-tuning of conditions was required earlier, which

tends to be an unbelievable coincidence. More precisely, for a flat universe, the

amount of matter is adequate to halt the expansion, but inadequate to re-collapse

it. This will require a lot of fine-tuning to balance the act. This is known as the

flatness problem of the standard model.

(c) Monopole Problem

The grand unified theory (GUT) of particle physics predicts a high abundance of

magnetic monopoles, highly massive around 1016 GeV , during the early universe.

They are more stable and indestructible particles after being created. They have

been present since antiquity. The lack of observations of these monopoles is a

problem.
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(d) Entropy Problem

Entropy remains constant in a given comoving volume in adiabatic expansion.

An explanation for the presently observed high entropy per baryon ratio in the

universe is lacking in the standard model of cosmology. If the assumption that

entropy is constant in adiabatic assumption were violated at some point and en-

tropy is boosted by a large factor, then presently, this problem would be resolved.

This is a similar problem to the horizon problem.

1.10.2 Radiation era

Relativistic particles probe the expansion of the early universe, which is called the

radiation-dominated era. This phase is filled with isotropic black body radiation, due

to which the rate of expansion of the universe expansion is slowing down. The light

elements: lithium, helium and deuterium, resulting from BB Nucleosynthesis, where

nuclei other than hydrogen were formed, occur during this phase [94]. The evolution

of the relativistic particles occurs when γ = 4/3, using it from an EoS gives p = −ρc2

3 ,

then substituting to d(ρc2a3) = −ρc2d(a3)
3 , gives

ρ ∝ a−4. (1.10.6)

Then (1.5.1) for a flat universe (κ = 0) gives ȧ2 ∝ a−2, which implies a ∝
√

t.

Presently, the contribution of radiation is of order 10−5, which is negligible when

compared to the matter. Different light nuclei were formed during radiation era. Later,

as the universe expanded and cooled down, the neutral atoms were produced. The

decoupling process thus allowed the matter-dominated phase.
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1.10.3 Matter-dominated phase

After the radiation era ended, the matter phase began. The temperature of the universe

had fallen to around 3000K, so v� c. The universe at this epoch is assumed to be filled

with dust matter, which permeates space and exerts zero pressure.

The dust matter exerts no pressure (p = 0), therefore, in a flat matter-dominated

universe

ρ ∝ a−3. (1.10.7)

The scale factor evolves as a = t
2
3 . This transition period from the radiation to the

matter phase occurs spontaneously, due to the fact that the matter density is inversely

proportional to volume.

Other than the above discussed phases, there is also the possibility of Zel’dovich or

stiff matter phase. In stiff matter phase, γ = 2, such that the energy density becomes

equal to the pressure, i.e., p = ρ , which implies ρ = a−6, and a ∝ t
1
3 . However in an

empty universe (p = ρ = 0), a remains constant.

1.10.4 Present accelerating phase

Inflation was the first phase of cosmic acceleration before the radiation-dominated

phase. Around early 1990s, from the theoretical point of view, it was believed that

the expansion of the universe after inflation had to slow down. An extraordinary dis-

covery by the Hubble Space Telescope (HST) [8] in 1998 of observations from far away

supernovae illustrates that the expansion of the universe has actually shown an acceler-

ation in recent times. In the past two decades, cosmology has shown immense progress

from various projects. This has made cosmology to be an important branch of science

to study both early and late-time evolutions of the universe. In 1998, vast developments
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have emerged to account for two phases of cosmic acceleration. A large number of

observations, such as SNe Ia [9], CMB [12], LSS [95], BAO [13], WMAP [83] and

recently one from the PLANCK Collaboration [96], confirm this.

Hence, there were suggestions from theorists to explain the late time acceleration.

The most successful explanation is the cosmological constant, strange energy-fluid fill-

ing space, and the second is the extension of Einstein’s theory of gravity.

As there is no bona-fide name to explain this enigma of late-time acceleration of

the universe, theorists have termed it DE. It is known to be a property of space, or the

hypothetical type of energy that is filling up space, thus triggering the universe to un-

dergo the current accelerated expansion. An idea of an empty space to be filled up with

its own energy was developed long ago by Einstein. As elucidated from its definition,

DE appears as a result of more space. This idea has led to the understanding that this

energy causes a drastic expansion of the universe. This kind of energy possesses the

same characteristics of a CC, making it a prime candidate for DE [16], [17]. A model

based on CC is known as ΛCDM model [97].

1.11 The ΛCDM Model

The CC is equivalent to vacuum energy [98] or DE [98], [22], which is different from

DM [18–20].

If CC is taken to the right hand side of equation (1.7.2), the field equations are written

as

Ri j−
1
2

gi jR = κ(Ti j +T vac
i j ), (1.11.1)

where T vac
i j =−Λ

κ
gi j is the vacuum contribution.
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The energy-momentum tensor of vacuum energy is given by

T vac
i j = (ρvacc2 + pvac)uiu j + pvacgi j, (1.11.2)

with ρvacc2 = Λ

κ
, and pvac =−ρvacc2.

This model is the standard model in cosmology, also known as the concordance

model [99].

1.12 The success and shortcomings of the ΛCDM Model

The standard big-bang model of the universe remains successful in explaining the fol-

lowing predictions:

(i) Hubble’s law must hold for the universe.

(ii) Formation of light atomic nuclei from protons and neutrons a few minutes after the

initial singularity (BB). This unveils abundance ratios for 3He, 2H, 4He and 7Li.

(iii) The relic (CMB) having a black-body spectrum with a temperature of 2.75K,

presently.

Though the ΛCDM model has exceptional features, it encounters very momentous prob-

lems, such as the fine tuning problem of cosmological constant and coincidence prob-

lems [17, 100], monopole problem [101], flatness and horizon problems [17, 101], and

singularity problem [27, 90]. The inflationary phase proposed by Alan Guth success-

fully explains the flatness and horizon problems [93]. The mysteries of DE and DM

remain open challenges, but interesting issues in current research scope. The difficul-

ties of the ΛCDM model has made cosmologists adapt to new alternatives, apart from

CC.
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1.13 Alternatives

Since the ΛCDM model has experienced serious problems when explaining DE, cos-

mologists came up with two theoretical approaches to account for the unknown energy.

This led to two ways to account for DE: first being dynamical candidates for DE, and

second, the modified theories of gravitation. Let us first discuss the former.

1.14 Dynamical candidates for Dark Energy

Due to the aforementioned problems (fine-tuning and coincidence problems) faced by

the standard model of cosmology, many dynamical candidates for DE have been pro-

posed [102], including a time-dependent cosmological term [103]. The primary can-

didate is quintessence [104, 105], which uses a scalar particle field [106]. The scalar

fields are triggers of inflation [106, 107]. Being a source for primordial perturbations

in the early universe, scalar fields allow the structure formation [108]. The similarity

in primordial dark energy (DE) through inflation and the present DE led to inflationary

models being used to account for late time acceleration, where these models use the

notion of scalar fields [102, 104].

The results from various observations [109] illustrate other possibilities for strange

dynamical candidates for DE known as phantom field, discovered by Caldwell [110]

with negative kinetic energy [111], tachyon fields [112], k-essence [112, 113], quintom

[114] and Chaplygin gas [115]. All these candidates are used to account for late time

acceleration [98,107,116]. In our work, we shall use only scalar fields. So let us discuss

this in details.
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Scalar field

The quintessence is regarded as a slowly evolving cosmic scalar fields (φ) together

with a self interacting scalar potential V (φ) [102,104]. By switching the sign for kinetic

energy for the Lagrangian of the standard quintessence scalar field [112,117], one would

obtain a phantom. So the matter Lagrangian for a phantom or a quintessence scalar field

minimally coupled to gravity is [102]

Lφ =
1
2

ε∇
σ

φ∇σ −V (φ), (1.14.1)

where ε =±1 corresponds to quintessence and phantoms models, respectively. A gen-

eral EH action for a minimally coupled phantom or quintessence scalar field is given

by

S =
∫ ( 1

2κ
R+

1
2

ε∇
σ

φ∇σ −V (φ)

)√−gd4x, (1.14.2)

The energy-momentum tensor of quintessence or phantom scalar field is

T φ

i j = ε∇iφ∇ jφ −gi j

[1
2

ε∇
σ

φ∇σ −V (φ)], (1.14.3)

where the pressure and density are given by

pφ =
1
2

εφ̇
2−V (φ), (1.14.4)

ρφ =
1
2

εφ̇
2 +V (φ). (1.14.5)

The equation of state (EoS) is defined as

ωφ =
pφ

ρφ

=
1
2εφ̇ 2−V (φ)
1
2εφ̇ 2 +V (φ)

. (1.14.6)

In observations, the EoS for quintessence is −1 < ωφ < −1
3 , while ωφ = −1 for the

cosmological constant and ωφ < −1 phantom [117]. The accelerating conditions are
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ω < −1
3 , a(t) ∝ td with d > 1 so that pφ < 0 or ρφ ∝ a−2. Since V (φ) is not known, a

specific function of φ has to be assumed, e.g., constant potential, zero, exponential law,

and power law [118], [106]. The setbacks of phantom matter are: it violates the strong

energy conditions [119], has negative kinetic energy and stability problems [112], [120],

and has a big rip curvature singularity [121]. This model seems less realistic to account

for DE as there exist alternatives for dynamical properties that give clarity [122], [123].

1.15 Modified Theories of gravity

Modifying the theory of gravity just came into existence four years after the Einstein

theory of gravity. Its unique status within gravitational theories has been questioned.

The general theory of relativity was enlarged to accommodate broader aspects and other

unified theories to account for how the universe is evolving. It was Weyl in 1919 [124]

and Eddington in 1923 that were partakers of extending the theory [91]. In 1970, an

array of modified theories of general relativity emerged, which include Eddington’s

theory of connections [91], Weyl’s scale independent theory [124], Brans Dicke scalar-

tensor theory [125], Kaluza [126], and Klein [127], and Nordtvedt [128].

Around the 20th century, a lot of caution has been entrusted to this theory as a re-

sult of great anticipation from cosmology, astrophysics and high-energy physics [129].

The possibility of replacing DM or DE on cosmological scales and galactic scales was

mostly considered by researchers [130], [131]. A vast number of proposals on f (R) the-

ories [130,132], f (T ) [133], brane world gravity [134], Gauss-Bonnet f (G) [135], and

Horava-Lifshitz gravity [136], have been used to explain conundrum of the universe.

These models explain the mystery of late-time cosmic acceleration together with DM

and DE. There are a number of fascinating features on modified theories [137]. They

are quite auspicious alternatives to dark energy, the transition phase is well articulated

by these theories, inflation to late time cosmic acceleration. In an absence of exotic
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matter, the phase from non-phantom to phantom and the problem of coincidence may

be resolved by DE being dominant through the aid of modified gravity.

Though the work done in this dissertation is based on f (R,T ) gravity but it would

be injustice not to discuss the history of development of this theory. So let us go back to

the period 1960-1970. This is the time when the modification was done by introducing

some higher order correction terms in EH action.

1.15.1 Higher derivative gravity

The EH action of general relativity is neither renormalized nor conventionally quan-

tized. In the 1960s, it was found that renormalization at one loop requires the addition

of higher-order curvature terms as was shown by Utiyama and DeWitt [138]. This dis-

covery of Utiyama and DeWitt has enhanced studies of higher-order curvature on EH

action undertaken around late 1960s [139]. Renormalization of higher order terms is

possible but not unitary as was discovered by Stelle in 1977 [140]. Starobinsky replaces

R with R+λR2 and also by the addition of non-local terms from the de Sitter, radiation

to the matter phase. Hence when R2 (squared curvature term) is added to the EH action,

then we get (L = R+ λR2) with λ > 0, a coupling constant. This is called a higher

derivative theory. The Hilbert action is given by [141]

S =
∫ [ 1

2κ
(R+λR2)+Lm

]√−gd4x. (1.15.1)

With λ = 0, the standard EH action is recovered.

Varying (1.15.1) with respect to gi j results in

Ri j−
1
2

gi jR+λ

[
2R(Ri j−

1
4

gi jR)+2(∇i∇ j−gi j�)R
]
= κTi j, (1.15.2)
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where ∇µ∇µ is the d’Alembert operator.

Initially, R2 was introduced to regularize ultraviolet divergences [138]. As time pro-

gressed, it was used in cosmology, thus resulting in bouncing models that eschew the

big-bang singularity [141]. This work has attributes similar to the structure of higher

derivative theory [142]. This theory is most fabulous because it can explain inflation in

the absence of exotic matter [143]. This was proven in the work of Starobinsky [141].

The higher-order terms are better comprehended as an effective fluid not bound to en-

ergy conditions [144]. The higher derivative can also be the alternatives to quintessence,

the cosmological constant or rather phantom in the absence of exotic matter or compli-

cated potentials [131].

Capozziello suggested that cosmic acceleration can be clearly described by terms

like 1
R because when the curvature becomes minute, they become important [131]. Ex-

perimental data has found irregularities, if gravity is modified in this manner. Since GR

is a well tested and robust theory, one has to be vigilant because even small perturbations

result into matter instabilities [145, 146] or disseminate ghosts [147]. As elucidated,

low and high curvature must be ensured to agree with observations. The positive and

negative curvature corrections will illustrate late acceleration of the universe [148] and

also complies with solar system constraints [148]. After the introduction of power ap-

proach [149], it was suggested that at large scales, the negative power dominates, while

the positive power dominates at small scales [150]. Inflation is explained by positive

powers, while late acceleration is vividly explained by negative terms [151].

Capozziello and Francaviglia [152,153] showed that transient matter-dominated de-

celerated expansion is accomplished and cosmological acceleration is driven by the

smooth transition in Rm gravity for m = 2 higher derivative theory. Early and late evo-

lutions have been studied thoroughly by [154].
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1.15.2 The f (R) Theories

The f (R) theories give an alternative version of DE without invoking the conventional

description of a mysterious form of energy [132, 148]. In f (R) gravity, varying its

metric enables the addition of a scalar degree of freedom, which results in late-time

cosmic acceleration triggered by the Ricci scalar. This is termed dark gravity or rather

curvature DE [130, 131]. It is the most flexible theory of DE because it also accounts

for natural unification of various phases of the evolution of the universe [131, 148].

This theory replaces R (Ricci scalar) by a general function f (R) [155]

S =
∫ [ 1

2κ
( f (R)+Lm

]√−gd4x. (1.15.3)

Varying (1.15.3) with respect to gi j gives

f ′(R)Ri j−
1
2

f (R)gi j− (∇i∇ j−gi j�) f ′(R) = κTi j, (1.15.4)

where a prime denotes the derivative with respect to the argument.

The theory confines the basics of higher theories [130]. A lot of work has been

conducted through f (R) theories to address DE, DM, accelerating expansion [130,148],

and singularity problem [156]. Some of the attempts were not viable to observations

[157] or have the same features as the ΛCDM model [158]. A vast number of proposals

[131,144,151] have been made that pass all local observations [131]. Most of the works

have been conducted through spatially isotropic space-times [131, 144, 149, 151, 159–

161]. There are observational evidences of anisotropies in early universe, therefore,

many researchers have been working on anisotropic models based on this theory [162–

165].
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1.15.3 The f (R,T ) Theories of gravity

The modified theories of gravity, as elucidated earlier, were alternative theories to ex-

plain the current acceleration without invoking the cosmological constant. Various ways

to deviate from general relativity make it complicated to formulate modified theories

because of the property of the additive structure of the Ricci scalar and the matter La-

grangian in the Hilbert action of GR. However, there is no fundamental principle on

the additive property of geometry and space. In 1984, Goenner [166] came up with an

idea of non-coupling between geometry and matter. The maximal extension by explic-

itly coupling between geometry and matter with an arbitrary function of R and Lm was

proposed in 2007 [167]. The functional f (R,Lm) theories were recently extended by

Harko [168]. They were regarded as f (R,Lm) theories of gravity [169–171].

Poplawski [172] assumed baryonic matter and DE interaction to be a varying cos-

mological constant. The principle of least action on a relativistic covariant model on

interacting DE was implemented by Bertolami et al. [167]. The general non-minimal

coupling of geometry and matter was proposed by Harko [168].

In 2011, Harko et al. [173] formulated f (R,T ) gravity. The action of f (R,T ) gravity

is given by

S =
∫ [ 1

2κ
f (R,T )+Lm

]√−gd4x, (1.15.5)

where f (R,T ) is a function of the Ricci scalar, R and the T trace of the EMT tensor and

Lm matter Lagrangian density. Lm depends only on the metric components, and not on

its derivatives.

The EMT tensor, Ti j is

Ti j =−
2√−g

δ
(√−gLm

)

δgi j , (1.15.6)
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where T = gi jTi j.

Varying (1.15.5) with respect to the metric gives

fR(R,T )Ri j−
1
2

f (R,T )gi j +(gi j−∇i∇ j fR(R,T )) = κTi j− fT (R,T )(Ti j +Θi j), (1.15.7)

where fR and fT are derivatives of f (R,T ) w.r.t R and T , respectively ∇i is the covariant

derivative and

Θi j ≡ gµν
δTµν

δgi j , µ,ν = 0,1,2,3. (1.15.8)

Substituting into above results in

Θi j =−2Ti j +gi jLm−2gζ τ ∂ 2Lm

∂gi j∂gξ τ
. (1.15.9)

It has been suggested that f (R,T ) depends on the source term and this source term is a

function of the matter Lagrangian Lm. The choice of Lm decides the field equations of a

model. For example: if Lm =−p, one has

Θ =−2Ti j− pgi j. (1.15.10)

In particular, when f (R,T ) = R+2 f (T ), the field equations (1.15.7) become

Ri j−
1
2

Rgi j = Ti j− (Ti j +Θi j) f ′(T )+
1
2

f (T )gi j, (1.15.11)

which by the use of (1.15.10) becomes

Ri j−
1
2

Rgi j = Ti j +(Ti j + pgi j) f ′(T )+
1
2

f (T )gi j. (1.15.12)

Refer to (1.6.2), the energy density is conserved in GR, i.e., d(ρV ) = −pdV , where

V (= a3) is the volume and ρV is the total energy. However, f (R,T ) gravity has an

interesting property, i.e., the non-zero four divergence of the EMT tensor. The covariant
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derivative of (1.15.7) yields [168]

∇
iTi j =−

fT (R,T )
1+ fT (R,T )

[
(Ti j +Θi j)∇

iln fT (R,T )+∇
i
Θi j−

1
2

gi j∇
iT
]
. (1.15.13)

The extra terms are generated by the non-minimal coupling of matter and geometry.

The exotic imperfect fluids, or rather quantum effects, are what makes T to be se-

lected as an argument to the Lagrangian. The new recipe of this theory is that the

addition of new terms in the field equations take the role of a CC, which are time-

dependent in the gravitational field, together with the new matter. This theory relies on

a source term since it couples to matter and geometry. It also has the property that the

covariant divergence of stress-energy tensor does not disappear. This has led to non-

geodesic motion of test particles due to the extra force [167] that has allowed studies on

the Newtonian limit together with the Mercury precession.

The most prominent feature of this theory is that the coupling of matter and geometry

assures that the f (R,T ) theory maintains an extra acceleration. What is more interest-

ing is that an extra acceleration generates, not only from the geometry, but also in the

matter part. Due to this predicament, many researchers decided to look at it vividly

as it shows good signs of explaining problems in astrophysics and cosmology as well.

This theory violates the first law of black-hole thermodynamics [174]. Non-equilibrium

thermodynamics, using two forms of energy-momentum of dark components, was stud-

ied by Sharif and Zubhair [175]. Homogeneous and isotropic space-time has been used

in many cosmological models [176–180]. Some authors have also explored f (R,T )

theory in anisotropic space-time [181–184]. Many researchers have reconstructed this

theory to account for early and late time evolution of the universe [174, 185]. Thus, the

f (R,T ) theory is one of the active areas of research in cosmology and astrophysics.
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1.16 Viscous fluid

From a hydrodynamical viewpoint, it is almost surprising to notice that the cosmic fluid

- whether considered in the early or in the late epochs - is usually taken to be non-

viscous. After all, there are two viscosity (shear and bulk) coefficients naturally oc-

curring in general linear hydrodynamics, within the linear approximation implying that

one is physically considering only first order deviations from thermal equilibrium. The

shear viscosity coefficient is evidently of importance when dealing with flow near solid

surfaces, but it can also be crucial under boundary-free conditions such as in isotropic

turbulence. In later years, it has become more common to take into account the viscos-

ity properties of the cosmic fluid. As a result of assumed spatial isotropy in the fluid,

the shear viscosity is usually left out and any anisotropic deviations, like those encoun-

tered in the Kasner universe, become rather quickly smoothened out. Thus, only the

bulk viscosity coefficient, remains in the energy-momentum tensor of the fluid. An-

other peculiar characteristic of bulk viscosity is that it acts as a negative energy field

in an expanding universe [186]. Romano and Pavon have investigated the evolution of

Bianchi Type-I universe with viscous fluid [187]. An LRS Bianchi-I with cosmic string

and expansion scalar proportional to shear scalar was studied by [188,189]. A series of

papers that discussed Bianchi Type-I universe with viscous fluid has been considered

by [190–192]. The effect of bulk viscosity on cosmological evolution has been investi-

gated by a number of authors [98,193–196]. Then, in 2014, [197] studied LRS Bianchi

type-I stiff fluid inflationary universe with variable bulk viscosity.

Mahanta [198] considered an LRS Bianchi-I model with bulk viscous matter in

f (R,T ) gravity for linear and quadratic forms of f (R,T ). The author assumed an ex-

pansion scalar proportional to the shear scalar to solve the field equations. However, the

field equations in his work contain wrong signs. Consequently, the solutions obtained

by him are mathematically incorrect. Later, Shamir [199] considered some models with

the same formulation without bulk viscosity. Shamir’s models for f (R,T )=R+λT and

30



f (R,T ) = R+ λT 2 are a particular case of Mahanta’s work, but he has not acknowl-

edged Mahanta’s work. However, the field equations in Shamir’s paper are correct and

the solutions discussed by him are mathematically and physically valid. Then [197]

investigated a model with variable bulk viscosity in the frame work of locally rota-

tionally symmetric (LRS) Bianchi type-I space–time. Singh and Kumar used spatially

homogeneous and isotropic flat FRW metric and observed that the universe accelerates

or exhibits a transition from a decelerated phase to an accelerated phase under certain

constraints of η0 and η1 [200]. Then, [201] presented non-singular Bianchi types-I and

V cosmological models, in the presence of bulk viscous fluid and within the framework

of f (R,T ) gravity theory. In addition, [202–204] used bulk viscosity matter component

in an LRS B-I model with variable deceleration parameter, which shows an accelera-

tion of the universe. Recently, Sahoo and Reddy [205] have considered bulk viscosity

in an LRS B-I model in f (R,T ) gravity with a special type deceleration parameter.

Very recently, [206, 207] have studied the general B-I and B-V bulk viscous model in

f (R,T ) = R+λRT gravity with a hybrid expansion law of the scale factor.

Our objective in this dissertation is to reconsider the model presented by Mahanta

[198], with the intention to correct the field equations and solutions, and to examine the

viability of the solutions. We diligently explored the physical behaviour of the model.

Moreover, while digging the past works on such formulations, we came to know that

the solutions of an LRS B-I model within the framework of GR and with the same

assumption of expansion scalar proportional to shear scalar do not exist in the existing

literature. Therefore, before presenting the solutions of the f (R,T ) gravity model, we

first explored the solutions in GR, with and without bulk viscosity. This helps us to

distinguish between the solutions in GR and f (R,T ) gravity. Consequently, we could

analyse the significance of f (R,T ) gravity and bulk viscosity. In chapter 2, we shall

consider LRS Bianchi-I model with viscous matter in Einstein’s gravity. LRS Bianchi-I

model with viscous matter in f (R,T ) = R+2λT gravity will be considered in chapter

3. The conclusion and future scope of the work will be discussed in chapter 4.
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Chapter 2

LRS Bianchi-I model with viscous

matter in Einstein’s gravity

In this chapter, we have studied locally-rotationally-symmetric Bianchi type-I cosmological

models in the presence and absence of bulk viscosity within the framework of general relativity.

Solutions are obtained by assuming that the expansion scalar is proportional to the shear scalar.

This assumption yields a constant value for the deceleration parameter (q = 2). To determine

exact solutions, the system of equations is closed in two ways: one, by assuming a perfect fluid

equation of state and thereafter study the behaviour of the bulk viscous coefficient, and second,

by considering two known bulk viscous coefficients, and then to study the normal matter.
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2.1 Introduction

As we have mentioned at the end of previous chapter, Mahanta [198] considered an LRS

Bianchi-I model with bulk viscous matter in f (R,T ) gravity. However, the field equa-

tions in his work contain wrong signs. Consequently, the solutions obtained by him are

mathematically incorrect. In this chapter, we explore LRS Bianchi-I model with bulk

viscous matter in Einstein’s gravity in the presence and absence of bulk viscosity. This

will help us to distinguish between the solutions in GR and f (R,T ) gravity when we

shall study this model in f (R,T ) = R+2λT gravity in the next chapter. By comparing

these models, we shall be able to analyse the significance of f (R,T ) gravity and bulk

viscosity.

The work is organized as follows: the field equations and solutions of a model with-

out bulk viscosity is studied in sect. 2.2 and the bulk viscous model is investigated in

sect. 2.3 and its subsections. The viability of the solutions is kept a priority in each

model by imposing constraints for a physically realistic scenario. The comparison is

made between the models, with and without viscosity. The results are discussed in sect.

2.4.

2.2 The model without bulk viscosity

As we mentioned in sect. 1.3, the metric (1.3.1) for A 6=B=C or A=B 6=C, represents a

spatially homogeneous and anisotropic LRS B-I space-time. Let us consider the former

one

ds2 = dt2−A2dx2−B2(dy2 +dz2), (2.2.1)

where we have assumed the velocity of light to be unity, i.e., c = 1.

The average scale factor and average Hubble parameter (refer (1.9.9)) for the above
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metric are, respectively, defined as

a = (AB2)
1
3 , (2.2.2)

H =
1
3

(
Ȧ
A
+2

Ḃ
B

)
. (2.2.3)

The energy-momentum tensor (1.4.4) in the system of units c = 1 of the matter

reduces to

Ti j = (ρ + p)uiu j− pgi j. (2.2.4)

Similarly, the Einstein field equations (1.4.3) in the system of unit 8πG = 1 are read

as

Ri j−
1
2

Rgi j = Ti j. (2.2.5)

The field equations (2.2.5) for the metric (2.2.1), with the consideration of the energy-

momentum tensor (2.2.4), yield

(
Ḃ
B

)2

+2
ȦḂ
AB

= ρ, (2.2.6)

(
Ḃ
B

)2

+2
B̈
B

= −p, (2.2.7)

Ä
A
+

B̈
B
+

ȦḂ
AB

= −p. (2.2.8)

These equations consist of four unknowns, namely, A, B, p, ρ . Therefore, in order to

find exact solutions, one supplementary constraint is required.

Mahanta [198] considered the expansion scalar, θ(= 3H) to be proportional to the

shear scalar1, σ , which leads to

A = Bn, (2.2.9)

1σ2 = 1
3

(
Ȧ
A − Ḃ

B

)2
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where n is an arbitrary constant. From (2.2.7) and (2.2.8), by the use of (2.2.9), one gets

B̈
B
+(n+1)

(
Ḃ
B

)2

= 0, (2.2.10)

which gives

B = β [(n+2)t + c2]
1

n+2 . (2.2.11)

Consequently,

A = α [(n+2)t + c2]
n

n+2 . (2.2.12)

The volume scale factor turns out to be

V = a3 = cn+2
1 [(n+2)t + c2]. (2.2.13)

The expansion scalar and the shear scalar become

θ =
n+2

(n+2)t + c2
, σ

2 =
1
3

[
n−1

(n+2)t + c2

]2

. (2.2.14)

It is noted that isotropy condition, i.e., σ2

θ
→ 0 as t→ ∞ is satisfied. Hence, the spatial

volume at t = 0 is zero, while expansion scalar is infinite, which suggests that universe

started evolving with zero volume at t = 0, i.e., big bang scenario. Also, it is noted that

the average scale factor is zero at t = 0, implying a point type singularity. The energy

density and pressure become equal

ρ = p =
(1+2n)
(2+n)2t2 . (2.2.15)

Hence, the effective matter behaves as stiff matter. The energy density must be positive

for a realistic cosmological scenario, which is possible only for n >−1/2. To the best

of our knowledge, these solutions are new.

In section “3" of his paper, Mahanta [198] worked out some geometrical parameters
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which are the volume, expansion scalar and shear scalar. All these parameters are de-

fined in terms of the metric potentials A and B. We see that the scale factors given in

(2.2.11) and (2.2.12) are identical to those of Mahanta’s work, though we have obtained

both in Einstein’s GR. Hence, the metric potentials are independent of f (R,T ) gravity.

Consequently, all the geometrical parameters remain independent of f (R,T ) gravity.

Thus, the geometrical behaviour of the model remains similar to the model in GR. It

is to be noted that although Mahanta obtained the mathematical expressions of these

parameters, he has not discussed their interpretation. For the geometrical behavior of

the model, we refer to [199].

2.3 Bulk viscous model

The energy density of bulk viscous matter remains the same but the pressure in energy-

momentum tensor (2.2.4) for viscous fluid modifies as

p̄ = p′m−ξ θ , (2.3.1)

where p′m is the pressure of normal matter and ξ is the coefficient of bulk viscosity.

The field equations for a viscous model also remain identical to (2.2.6)–(2.2.8) ex-

cept that p is replaced by p̄. Accordingly, the field equations now consist of five un-

knowns, that is, A, B, ρ , p′m, and ξ . Therefore, to determine the exact solutions com-

pletely, we require one more constraint other than (2.2.9). The assumption (2.2.9) again

leads to the solution (2.2.15), i.e., ρ = p̄, which is identical to the model without bulk

viscosity. Hence, the bulk viscosity does not affect the behavior of effective matter and

it acts as stiff matter. Further, to determine p′m and ξ , we need one more constraint

to close the system of equations (2.2.6)–(2.2.8). This can be done in two ways: first,

to assume an EoS that relates ρ to p′m, and then determine ξ ; and second, to assume
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an explicit form for ξ and then determine p̄. We shall follow both approaches in the

following section.

2.3.1 The behaviour of bulk viscous coefficient

We assume that the normal matter follows the perfect fluid EoS

p′m = ωρ, (2.3.2)

where 0≤ ω ≤ 1 is the EoS parameter.

From (2.3.1), the expression for the coefficient of bulk viscosity is obtained as

ξ (t) =
(2n+1)(ω−1)

(n+2)2 t
. (2.3.3)

Since we have n>−1/2 for the energy density to be positive, the coefficient of bulk vis-

cosity for any kind of matter, except stiff matter (ω = 1), remains positive and decreases

with the evolution of the universe; for example, ultra-relativistic radiation (ω = 1/3),

non-relativistic dust (ω = 0) or even for vacuum energy (ω = −1). Also, as ξ → 0

as t → ∞, the effect of bulk viscosity disappears at late times. In case of stiff mat-

ter, the coefficient of bulk viscosity vanishes and the solutions obtained in (2.2.15) are

recovered.

2.3.2 The behaviour of matter

By assuming a perfect fluid EoS, in sects. “3" and “4.1", Mahanta [198] merely obtained

the expression for the coefficient of bulk viscosity. The author, in sect. “4.2", while

considering the model f (R,T ) = λR+λT 2, also considered two relations between the
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bulk viscous coefficient and expansion scalar to study the properties of normal matter

and viscous matter. However, other than the wrong signs in the field equations, there is

another flaw in this model. The author over-determined the solutions in this case. One

needs two constraints to close the system but Mahanta used three, i.e., “(21)", “(61)"

and the perfect fluid EoS for the normal matter, i.e., p = ερ , 0≤ ε ≤ 1.

Regardless of this, the solutions are not valid as the sign on the right hand side of

field equations is wrong. Though we are not incorporating this model in this present

study, we shall implement the approach of considering both the relationship between

the bulk viscous coefficient and expansion scalar to know the characteristics of bulk

viscous matter. In these two cases, Mahanta assumed:

(i) the coefficient of bulk viscosity is directly proportional to a positive constant (k > 0),

i.e., ξ θ = k, and

(ii) the product of bulk viscosity coefficient and expansion scalar is directly propor-

tional to energy density, i.e., ξ θ = k1ρ , where k1 > 0 is a constant.

In what follows, we shall consider two explicit cases to study the behavior of normal

matter by assuming these two relations.

Case (i) ξ θ = k

In this case, the EoS of parameter of matter, ω ′ = p′m/ρ gives

ω
′ = 1+

k(2+n)2t2

1+2n
. (2.3.4)

At the origin, we have ω ′= 1 (stiff matter). If k > 0, the EoS parameter starts from ω ′=

1 and increases with the evolution. This case corresponds to a semi-realistic EoS p =

ε p (ε ≥ 1). Many researchers [208–210] have studied cosmological models with the
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semi-realistic matter in forward approaches. Though Mahanta considered k > 0, if k <

0, the EoS parameter exhibits a smooth transition from ω ′= 1 (stiff matter) to ω ′→−∞

(phantom matter). Thus, it describes all kinds of known matter (stiff matter, radiation,

and dust) including the hypothetical form of dark energy (quintessence and phantom)

and cosmological constant as well. Since the model only describes the decelerated

universe, the dark energy characteristics do not, in anyway, contradict with the evolution

of the universe because the normal matter is not the effective matter in this model.

Indeed, we have already seen that the matter effectively acts as stiff matter.

Case (ii) ξ θ = k1ρ

The EoS parameter in this case takes a constant value

ω
′ = 1+ k1. (2.3.5)

Hence, if k1 > 0, in this case also, the matter follows the semi-realistic EoS. Again, if

k1 < 0, the model renders a variety of matter, depending on the values of k1, e.g., ω ′ =

1/3 (radiation) for k1 = −2/3, ω ′ = 0 (dust) for k1 = −1, ω ′ = −1/3 (quintessence)

for k1 =−4/3, ω ′ =−1 (cosmological constant) for k1 =−2, and ω ′ <−1 (phantom)

when k1 < −1. If k1 = 0, we have ω ′ = 1 (stiff matter), which implies ξ = 0 as θ =

1/t 6= 0. Hence, in the absence of bulk viscosity, the solutions given in (2.2.15) are

recovered.

The solutions discussed in the above two cases were not reported by Mahanta [198].
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2.4 Discussion

Mahanta [198] studied an LRS Bianchi-I model in f (R,T ) gravity with bulk viscous

matter. A serious issue in his work is the incorrect signs in the field equations in all

three models of f (R,T ) considered by him. Due to this error, the solutions presented

by Mahanta are mathematically, and hence, physically invalid. However, the incor-

rect signs in the field equations do not affect the geometrical behaviour of the model.

The geometrical parameters, namely: volume, expansion scalar, Hubble parameter, and

shear scalar, are all correct mathematically. However, the author has not interpreted the

behavior of these parameters. Later on, Shamir [199] also studied some models with

matter without viscosity within the same formulation. The field equations in Shamir’s

paper are correct. He evaluated these parameters and also discussed their behaviours. To

obtain the solutions in both the foresaid papers, the authors have assumed an expansion

scalar proportional to the shear scalar, which returns a constant value of the deceleration

parameter, q = 2. Hence, the model can describe only the decelerated expansion of the

universe.

Noticing that the solutions have not been investigated in GR earlier, in this chapter,

we have investigated the model in GR with matter, in the absence and presence of bulk

viscosity. We have shown that the behaviour of geometrical parameters are indepen-

dent of f (R,T ) gravity, and remain identical to the one in GR. In their studies, both

Mahanta and Shamir have not examined the viability of their solutions. Then Mahanta

in sect. “3" and “4.1" of his work, merely found the expressions of the coefficient of

bulk viscosity. However, there are two ways to close the system. One is to study the

bulk viscosity coefficient by assuming an EoS for the matter, and the second is the vice-

versa, i.e., assume an explicit form ξ and study the nature of matter. We have followed

both approaches. We have studied the behaviour of normal matter for two different

forms of bulk viscosity coefficient considered by Mahanta. In contrast, by assuming the

matter as perfect fluid, we have studied the behaviour of the coefficient of bulk viscosity.
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The solutions have been found physically viable only for n > −1/2. The effective

matter behaves as stiff matter. When the bulk viscosity is incorporated into this model,

the bulk viscosity coefficient with perfect fluid (except for stiff matter) is found to be

a decreasing function of cosmic time. In case of stiff matter, the coefficient of bulk

viscosity vanishes. In the reverse approach, if we consider ξ θ = k, for k > 0, the matter

follows a semi-realistic EoS, while for k < 0 the EoS of matter exhibits a transition

from a stage of stiff matter to phantom. With the second relation ξ θ = k1ρ , the EoS

of matter becomes constant (ω = 1+ k1), which also renders semi-realistic matter for

k1 > 0; whereas, for k1 < 0, the EoS can describe a variety of matter including radiation,

dust, quintessence, phantom, and cosmological constant for different choices of k1. For

k = 0 = k1, the solutions reduce to the model without viscosity.

42



Chapter 3

LRS Bianchi-I model with viscous

matter in f (R,T ) gravity

In this chapter, we consider the model studied in the previous chapter in f (R,T ) gravity.

The same approach is followed to determine the solutions. Apart from differentiating between

the models, with and without viscosity, we also compare the models of general relativity and

f (R,T ) gravity. It is found that f (R,T ) gravity or bulk viscosity does not affect the behaviour of

the effective matter, which acts as a stiff fluid in all cases. However, the individual fluids behave

differently in some cases. The effect of f (R,T ) gravity is to diminish the effect of bulk viscosity.

43



3.1 Introduction

Mahanta [198] considered an LRS Bianchi-I model with bulk viscous matter in f (R,T )

gravity for linear and quadratic forms of f (R,T ). The author assumed an expansion

scalar proportional to the shear scalar to solve the field equations. However, the field

equations in his work contain wrong signs. Consequently, the solutions obtained by

him are mathematically incorrect. Later, [199] considered some models with the same

formulation without bulk viscosity. Recently, [205] have considered bulk viscosity in

an LRS B-I model in f (R,T ) gravity with a special type of deceleration parameter. Very

recently, [207] have studied the general B-I bulk viscous model in f (R,T ) = R+λRT

gravity with a hybrid expansion law of the scale factor.

Our objective in this chapter is to reconsider the model presented by [198] with the

intention to correct the field equations and solutions, and to examine the viability of

the solutions. Mahanta [198] merely found the expression for the coefficient of bulk

viscosity by assuming that the normal matter follows the perfect fluid EoS. However, in

case of the f (R,T ) =R+2λT 2 model, the author has also studied the behaviour of mat-

ter by considering two different forms of the bulk viscosity coefficient. This approach

can also be implemented in the f (R,T ) = R+ 2λT model. We follow this approach.

Therefore, our solutions are an extension of Mahanta’s work. It is worthwhile to men-

tion that though a single matter content is considered in f (R,T ) gravity models, but due

to the coupling between the trace and the matter, some extra terms appear in the field

equations. These additional terms may be treated as another form of matter, and may

be called coupled matter. One must study the physical properties and contribution of

this coupled matter too. Following [5] and the references mentioned therein on similar

works, we also studied the nature of this coupled matter. We find the constraints for the

primary matter and coupled matter to satisfy the weak energy condition (WEC), which

ensures the viability of the solutions.
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The chapter is organized as follows: the field equations of the LRS B-I space-time

within the framework of f (R,T ) = R = 2λT gravity and their solutions without bulk

viscosity are presented in sect. 3.2 and the bulk viscous model is studied in sect. 3.3.

The physical properties of the effective matter and individual fluids, using the perfect

fluid EoS, are analysed in the subsections. The viability of the solutions is kept a pri-

ority in each model by imposing constraints for a physically realistic scenario. The

comparison is made between the models, with and without viscosity, and between the

model in GR and in f (R,T ) gravity. The findings are presented in the discussion sect.

3.4.

3.2 The model without viscous matter

It is vital to note that ρ and p in chapter 2 are the effective energy density and pressure,

respectively, while in f (R,T ) gravity both the physical qualities no longer epitomize

the effective energy density and pressure. Indeed, the coupling between geometry and

matter in f (R,T ) gravity introduced some additional terms visible on the right hand

side of the field equations. These terms must be treated as matter that can be called

coupled matter. Therefore, to distinguish between the main matter and coupled matter,

we replace p with pm and ρ with ρm, which represents the primary or main matter. The

notations for the energy density and pressure of the coupled matter are defined in sect.

3.2.1.

The field equations for f (R,T ) = R+ 2 f (T ) is given in (1.15.12), which with the

new notations can be rewritten as

Ri j−
1
2

Rgi j = Ti j +2
(
Ti j + pmgi j

)
f ′(T )+ f (T )gi j. (3.2.1)

For f (T ) = λT , i.e., f (R,T ) = R+ 2λT , where T = ρm− 3pm, the above equations
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reduce to

Ri j−
1
2

Rgi j = (1+2λ )Ti j +λ (ρm− pm)gi j, (3.2.2)

which, for the metric (2.2.1) and energy-momentum tensor (2.2.4), yield

(
Ḃ
B

)2

+2
ȦḂ
AB

= (1+3λ )ρm−λ pm, (3.2.3)

(
Ḃ
B

)2

+2
B̈
B

= −(1+3λ )pm +λρm, (3.2.4)

Ä
A
+

B̈
B
+

ȦḂ
AB

= −(1+3λ )pm +λρm. (3.2.5)

These are the correct field equations. We can see that the terms on the RHS of the above

field equations are different from “(18)–(20)" in Ref. [198]. These equations consist

of four unknowns, namely A, B, pm, ρm. Therefore, in order to find exact solutions,

one supplementary constraint is required. We consider the same assumption that the

expansion scalar, θ(= 3H) is proportional to the shear scalar, σ , and leads to the Eq.

(2.2.9).

On equating (3.2.4) and (3.2.5), by the use of (2.2.9), we obtain the same as (2.2.10),

which leads to the same solutions (2.2.11) and (2.2.12). Using (11) and (12) in (3.2.3)

and (3.2.4), for λ 6=−1/2, we obtain

ρm = pm =
(2n+1)

(1+2λ )(n+2)2t2 . (3.2.6)

This is the correct expression for the energy density and pressure, which is different

from the wrong one given in Eq. “(26)" by Mahanta [198]. The primary matter acts

as stiff matter. The energy density and pressure decrease with the evolution. The en-

ergy density ought to be positive for any physical viable cosmological model, and it is
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possible if

λ >−1/2 if n >−1/2,

or λ <−1/2 if n <−1/2. (3.2.7)

Thus, while the solutions in GR are valid only for n > −1/2, f (R,T ) gravity makes

them valid for n <−1/2 also.

It is worthwhile to mention here that we have obtained expression (3.2.6) without

bulk viscosity but Mahanta [198] considered the bulk viscous matter to obtain expres-

sion “(24)". It is to be noted that P̄ in “(22)–(24)" in Mahanta’s paper is just a symbol

P with an overhead bar. One may readily verify that there is no use of “(14)" to get the

expression “(26)" in his paper. Hence, with or without bulk viscosity, one gets the same

expressions for the energy density and pressure. Thus, the energy density and pressure

obtained in (3.2.6) remain independent of bulk viscosity. We shall consider the model

with bulk viscosity in sect. 3.3.

3.2.1 The behaviour of coupled matter

As elucidated above, ρm and pm do not represent the effective matter in this model

of f (R,T ) gravity. The terms containing λ in (3.2.3)–(3.2.4) can be associated with

the coupled matter. By separating these terms from the energy density and pressure of

primary matter, these equations can be expressed as

(
Ḃ
B

)2

+2
ȦḂ
AB

= ρm +ρ f , (3.2.8)

(
Ḃ
B

)2

+2
B̈
B

= −(pm + p f ), (3.2.9)

Ä
A
+

B̈
B
+

ȦḂ
AB

= −(pm + p f ), (3.2.10)
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where p f = λ (3ρm− pm) and p f = λ (3pm−ρm), respectively, represent the energy

density and pressure of the coupled matter, and are obtained as

ρ f = p f =
2λ (2n+1)

(1+2λ )(n+2)2t2 . (3.2.11)

Hence, the coupling terms contribute as stiff matter. The energy density and pressure

decrease with the evolution. For a physically viable model, the energy density must be

positive and is corroborated under the constraints

−1
2
< λ < 0; if n <−1

2
,

or λ <−1
2

or λ > 0; if n >−1
2
. (3.2.12)

These constraints, in view of (3.2.7), agree with λ > 0 and n > −1/2 only. Thus, in

general, f (R,T ) gravity makes the model physically viable for n < −1/2 when λ <

−1/2, but if we treat the matter-geometry coupling terms as matter, then the model

becomes physically viable for λ > 0 and n >−1/2 only.

3.3 Bulk viscous model

The gravitational field equations with bulk viscous matter remain the same as given in

(3.2.3)–(3.2.4) or (3.2.8)–(3.2.9), except that the pressure, pm modifies to

p̄m = p′m−ξ θ . (3.3.1)

Now we shall repeat the same procedure which we have followed in sect. 2.3. First,

to examine the behavior of the bulk viscosity coefficient, we consider the viscous free

matter to follow the prefect fluid EoS. Second, by considering the relations of bulk

viscosity assumed in cases (i) and (ii) of sect. 2.3.2, we shall study the behavior of
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matter.

3.3.1 The behavior of bulk viscous coefficient

Using the prefect fluid EoS p′m = ωρm, where 0≤ ω ≤ 1, we obtain

ξ (t) =
(1+2n)(ω−1)

(1+2λ )(2+n)2 t
, (3.3.2)

Since n > −1/2 and λ > 0 for a physically viable model, for any type of matter other

than stiff fluid, ξ remains positive, which decreases with the evolution and vanishes

at late times. For stiff matter (ω = 1), the bulk viscosity coefficient vanishes, and

the solutions reduce to viscous free matter as discussed above. Thus, the behavior of

the bulk viscosity coefficient is similar to the model in GR. f (R,T ) gravity plays no

significant role, except that a large value of λ diminishes the effect of bulk viscosity.

3.3.2 The behaviour of matter

Case (i) When ξ θ = k

The EoS parameter of matter, ω ′m = p′m/ρm, gives

ω
′
m = 1+

k(n+2)2(1+2λ )t2

1+2n
. (3.3.3)

In view of the restrictions n > −1/2 and λ > 0, the above EoS parameter for k > 0

represents semi-realistic matter, whereas if k < 0, it shows a transition from ω ′m = 1 to

ω ′m → −∞ as t → 0, which is similar to the model in GR. Hence, this also indicates

that f (R,T ) gravity plays no significant role in this model. However, a large value of λ

makes the growth of ω ′m much faster. At the origin of evolution, ω ′m = 1. If k = 0, the
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solutions reduce to the model without bulk viscosity.

Case (ii) When ξ θ = k1ρ

The EoS in this case takes a constant value

ω
′
m = 1+ k1, (3.3.4)

which is identical to (2.3.5). Hence, f (R,T ) gravity contributes nothing new in this

case.

3.4 Discussion

In this chapter, we have reconsidered the f (R,T ) = R+ 2λT gravity model studied

by Mahanta [198]. A part of our work is also an extension of Shamir’s work. Both

authors, in their studies, did not examine the viability of their solutions. Moreover,

they did not investigate the importance of f (R,T ) gravity. Indeed, a comparison of the

outcomes with the model in GR is required in such studies. Mahanta, in sects. “3"

and “4.1" of his work, merely found the expressions of the coefficient of bulk viscosity.

However, there are two ways to close the system. One is to study the bulk viscosity

coefficient by assuming an EoS for the matter, and the second is the vice-versa, i.e.,

assume an explicit form ξ and study the nature of matter. We have followed both

approaches. We have studied the behaviour of normal matter for two different forms

of bulk viscosity coefficient considered by Mahanta in a model f (R,T ) = R+λT 2. In

contrast, by assuming the matter as perfect fluid, we have studied the behaviour of the

coefficient of bulk viscosity.

Although, Shamir presented the correct solutions, he studied only the behaviour of
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effective matter. However, in case of f (R,T ) gravity, some extra terms appeared on the

right hand side of the field equations. These terms can be treated as representing matter

due to the coupling between matter and geometry. Therefore, we have also reconsidered

Shamir’s model. We have extracted and collected the coupling terms. By considering

these extra terms as coupled matter, we have studied the behaviour of coupled matter

too. In this way, we look into the role of f (R,T ) gravity in this model. Mahanta [198]

has also obtained the expressions for effective viscous matter only. It has been found

that the behaviour of effective matter remains unaffected in the presence or absence of

bulk viscosity.

In general, the solutions in f (R,T ) gravity are physically viable for λ > −1/2 and

n > −1/2 or λ < −1/2 and n < −1/2. However, when the coupling terms are treated

as matter, then a physically viable model is possible only for λ > 0 and n > −1/2.

The primary matter and coupled matter act as stiff matter. Thus, the behaviour of bulk

viscous model in f (R,T ) gravity is not much significantly different from the model

in GR. The only difference is that f (R,T ) = R+ 2λT gravity for large values of λ

diminishes the effect of viscous matter.
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Chapter 4

Conclusion and future scope of the

work

Many researchers have explored cosmological models with stiff matter in the forward

approach in different contexts (see for example from [57, 211, 212] and references

therein). While these works utilize simplified assumptions of the EoS of stiff matter

to get exact solutions, it is a natural outcome of the present study. The stiff matter cos-

mological models are interesting in the sense that for such models the speed of light is

equal to the speed of sound [213, 214]. A realistic example of the distribution of stiff

fluid is a polytropic fluid inside a star. The existence of realistic objects in the universe

makes the studies of stiff matter models prominent.

As a future scope of the work, we would like to highlight that Mahanta [198] con-

sidered three forms of f (R,T ), which are f (R,T ) = R+2λT , f (R,T ) = λR+λT , and

f (R,T ) = R+λT 2. The field equations for all the three models contain wrong signs.

The first two forms are, in fact, not different as the first one is a particular case of the

second. Consequently, both forms give similar results. Moreover, the model with the

second form is formulated in a way that the coupling terms are treated as a variable cos-
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mological constant, Λ = (ρ− p)/2. As we have seen, the energy density and pressure

of effective matter, as well as coupled matter, become equal. As a result, Λ vanishes

in this formulation and the solutions reduce to the model in GR. As a matter of course,

even if one considers the correct field equations, the outcomes would be identical to the

model in GR. Therefore, we have not incorporated this form explicitly in our study.

It is also worthwhile mentioning here that [198] also considered f (R,T ) = R+λT 2

gravity model with bulk viscous matter. Shamir studied this form with a matter without

bulk viscosity with the correct field equations. Apart from the wrong signs in the field

equations, another issue in Mahanta’s model is over-determination of the solutions. It is

to be noted that “(58)–(60)" have five unknowns, namely H1, H3, ρ , P and ξ . Therefore,

only three assumptions are required to close the system, but the author uses four, that

is, “(27)", “(28)", “(61 or 65)" along with the EoS P = ερ . The use of the perfect

fluid EoS makes the solutions over-determined. However, we have not presented the

solutions for this model here for the sake of keeping our focus on the particular form of

f (R,T ) = R+2λT . We shall consider the others models in our future work.



Bibliography

[1] Belinchon, J. A.: Astrophys. Space. Sci. 301, 161 (2006).

[2] Singh, V., Beesham, A.: Gen. Relativ. Grav. 51, 166 (2019). [arXiv:gr-

qc/1912.05850].

[3] Singh, V., Beesham, A.: Int. J. Mod. Phys. D 28, 1950056 (2019b). [arXiv:gr-

qc/1912. 05305].

[4] Gron, O.: Astrophys. Space Sci. 173, 191 (1990).

[5] Singh, V., Beesham, A.: Eur. Phys. J. Plus. 135, 319 (2000). [arXiv:gr-

qc/2003.08665].

[6] Linde, A., Linde, D., Mezhlumian, A.: Phy. Rev. D 49, 4 (1783).

[7] Einstein, A., et al.: Annalen Phys. 49, 769-822 (1916).

[8] Riess, A. G., et al.: Astron. J. 116, 1009–1038 (1998), [astro-ph/9805201].

[9] Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999). [Astro-ph/9812133].

[10] Schmidt, B. P., et al.: Astrophys. J. 507, 46 (1998), [astro-ph/9805200].

[11] Frieman, J. A., Turner, M. S., Huterer, D.: Annu. Rev. Astron. Astrophys. 46,

385-432 (2008).

[12] Weller, J., Lewis, A. M.: Mon. Not. R. Astron. Soc. 346, 987–993 (2003).

55



[13] Seo, Hee-Jong, Eisenstein, D. J.: The Astrophy. J. 2, 720 (2003).

[14] Hu, W.: Phys. Rev. D 65, 023003 (2001).

[15] Lopes, A. M., Miller, L.: Mon. Not. R. Astron. Soc. 348, 519–528 (2004).

[16] Krauss, L. M., Turner, M. S.: Gen. Relativ. Gravit. 27, 1137–1144 (1995).

[17] Peebles, J. E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003).

[18] Turner, M. S., White, M.: Phys. Rev. D 56, R4439 (1994).

[19] Ade, P. A. R., et al.: Astron. Astrophys. 57, A1 (2014).

[20] Hinshaw, G. L.,.et al.: The Astrophys. J. Supplement Series. 208, 19 (2003).

[21] Zwicky, F., Kowal, C. T.: Catalogue of Galaxies and of Clusters of Galaxies 6.

Caltech (1968).

[22] Carroll, S.: Nature Physics. 2, 653-654 (2006).

[23] Singh, G. P., Beesham, A.: Aust. J. Phys. 52, 1039 (1999).

[24] Hannestad, S., Madsen, J.: Phys. Rev. D 52, 4 (1995).

[25] Singh, C. P.: Pramana 71, 1 (2008).

[26] Barrow, J. D.: Nucl. Phys. B 310, 3–4 (1988).

[27] Misner, C. W.: Astrophys. J. 151, 431 (1968).

[28] Santos, N. O., Dias, R. S., Banerjee, A.: J. Math. Phy. 26, 4 (1985).

[29] Pavon, D., Bafaluy, J., Jou, D.: Class. Quant. Grav. 8, 347 (1991).

[30] Beesham, A.: Phys. Rev. D. 48, 3539 (1993).

[31] Triginer, T., Pavon, D.: Gen. Relativ. Grav. 26, 513 (1994).

[32] Zimdahl, W.: Phys. Rev. D 53, 5483 (1996).

56



[33] Beesham, A.: Nuovo. Cimento. B 111, 1481 (1996).

[34] Arbab, A. I.: Gen. Relativ. Grav. 29, 61 (1997).

[35] Chimento, L. P., Jakubi, A. S., Mendez, V., Maartens, R.: Class. Quant. Grav. 14,

2263 (1997). [arXiv:gr-qc/9710029].

[36] Gavrilov, V. R., Melnikov, V.N., Triay, R.: Class. Quant. Grav. 14, 2203 (1997).

[arXiv:gr-qc/9710029].

[37] Singh, T., Beesham, A.: Gen. Relativ. Grav. 32, 607 (2000).

[38] Zimdahl, W., Schwartz, D.J., Balakin, A.B., Pavon, D.: Phys. Rev. D 64, 063501

(2001).

[39] Cataldo, M., Cruz, N., Lepe, S.: Phys. Lett. B 619, 5 (2005).

[40] Fabris, J. C., Goncalves, S. V. B., Ribeiro, R.de Sa.: Gen. Relativ. Gravit. 38, 495

(2006).

[41] Szydlowski, M., Hrycyna, O.: Ann. Phys. 322, 2745 (2007).

[42] Singh, C. P., Kumar, S., Pradhan, A.: Class. Quant. Grav. 24, 455 (2007).

[43] Colistete, R., Fabris Jr. J. C., Tossa, R., Zimdahl, W.: Phys. Rev. D 76, 103516

(2007).

[44] Netterfield, C. B., Ade, P. A., Bock, J. J., Bond, J. R., Borrill, J., Boscaleri, A.,

Farese, P.: The Astrophys. J. 571, 2 (2002).

[45] Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela,

F., Aumont, J., Benabed, K.: Planck 2013 results. V. LFI calibration. Astron.

Astrophys. 571, A5 (2013).

[46] Singh, J. P.: Astrophys. Space Sci. 318, 1–2 (2008).

[47] Ellis, G. F., MacCallum, M. A.: Commun. Math. Phys. 12, 2 (1969).

57



[48] Roy, S. R., Prakash, S.: Ind. J. Pure App. Math. 8, 723 (1977).

[49] Barnejee, A., Santos, N. O.: Gen. Relativ. Grav. 16, 217 (1984).

[50] Bali, R., Jain, D. R.: Astrophys. Space Sci. 185, 211 (1991).

[51] Burd, A., Coley, A.: Class. Quant. Grav. 11, 83 (1994).

[52] Hoogen, R. J., Coley van den A. A.: Class. Quant. Grav. 12, 2335 (1995).

[53] Bali, R., Jain, V. C.: Astrophys. Space Sci. 254, 13 (1997).

[54] Pradhan, A., Singh, S. K.: Int. J. Mod. Phys. D 13, 503 (2004).

[55] Saha, B.: Mod. Phys. Lett. A 28, 2127 (2005).

[56] Singh, T., Chaubey, R.: Pramana. J. Phys. 68, 721 (2007).

[57] Bali, R., Kumawat, P.: Phys. Lett. B 665, 331 (2008).

[58] Chakraborty, S., Roy, A.: Astrophys. Space Sci. 313, 389 (2008).

[59] Singh, J. P., Baghel, P. S.: Int. J. Theor. Phys. 49, 2734 (2010).

[60] Ram, S., Verma, M. K.: Astrophys. Space Sci. 330, 151 (2010).

[61] Baghel, P. S., Singh, J. P.: Res. Astron. Astrophys. 12, 1457 (2012).

[62] Ram, S., Singh, M. K., Verma, M. K.: J. Math. Phys. 3, 9 (2012).

[63] Singh, M. K., Verma, M. K., Ram, S.: Int. J. Phys. 1, 77 (2013).

[64] Barnejee, A., Santos, N. O.: J. Math. Phys. 24, 2689 (1983).

[65] Barnejee, A., Duttachoudhury, S. B., Sanyal, A. K.: J. Math. Phys. 26, 2010

(1985).

[66] Goenner, H. F. M., Kowalewski, F.: Gen. Relativ. Gravit. 21, 467 (1989).

[67] Romano, V., Pavon, D.: Phys. Rev. D 47, 1396 (1993).

58



[68] Arbab, A. I.: Gen. Relativ. Grav. 30, 1401 (1998).

[69] Beesham, A.: Gen. Relativ. Grav. 32, 471 (2000).

[70] Belinchon, J. A.: Astrophys. Space. Sci. 299, 343 (2005). [arXiv:gr-qc/0410065].

[71] Saha, B., Rickvitsky, V.: Physica D 219, 168 (2006). [arXiv:gr-qc/0410056].

[72] Singh, C. P., Kumar, S.: Int. J. Theor. Phys. 48, 925 (2009).

[73] Huang, W. H.: J. Math. Phys. 31, 1456 (1990).

[74] Pradhan, A., Otarod, S.: Astrophy. Space Sci. 311, 413 (2007).

[75] Wang, X. X.: Chin. Phys. Lett. 20, 1674 (2003).

[76] Pimentel, L. O.: Int. J. Theor. Phys. 33, 6 (1994).

[77] Ram, S., Singh, C. P.: Astrophys. Space Sci. 254, 1 (1997).

[78] Singh, G. P., Beesham, A.: Austr. J. Phys. 52, 6 (1999).

[79] Singh, G. P., Deshpande, R. V., Singh, T.: Astrophys. Space Sci. 282, 3 (2002).

[80] Rao, V. U. M., Kumari, G. S. D., Sireesha, K. V. S.: Astrophys. Space Sci. 335, 2

(2012).

[81] Rao, V. U. M., Sireesha, K. V. S.: Int. J. Theor. Phys. 51, 10 (2012).

[82] Reddy, D. R. K., Kumar, R. S., Kumar, T. P.: Int. J. Theor. Phys. 52, 4 (2013).

[83] Komatsu, E., et al.: Astrophys. J. Suppl. 192, 18 (2011). [astro-ph/1001.4538].

[84] Fraisse, A. A., Ringeval, C., Spergel, D. N., Bouchet, F. R.: Phys. Rev. D 78, 4

(2008).

[85] Ellis, G. F. R., MacCallum, M. A. H.: Common. Math. Phys. 12, 108–141 (1969).

[86] Malament, D. B.: Philosophy of Science. 62, 489-510 (1995).

59



[87] Friedman, A.: Zeitschrift für Physik. 10, 377–386 (1922).

[88] Lemaître, G.: Annales de la Société scientifique de Bruxelles.47, 49–59 (1927).

[89] Hubble, E.P.: Astrophys. J. 69, 31 (1929).

[90] Weinberg, S.: Gravitation and Cosmology: Principles and applications of the Gen-

eral Theory of Relativity, John Wiley and Sons, ISBN-10: 0471925675 (1972).

[91] Eddington, A. S.: The Mathematical Theory of Relativity, Cambridge University

Press, (1923).

[92] Myers, Zac D.: "Identifying and eliminating the problem with Einstein’s cosmo-

logical constant." PhD diss., (2005).

[93] Guth, A. H.: Phys. Rev. D 23, 347 (1981).

[94] Carrol, S. M., Kaplinghat, M.: Phys. Rev. D 65, 063507 (2002).

[95] Peebles, P. J. E.: The large-scale structure of the universe (1980).

[96] Springel, V. F., Carlos, S. W., Simon, D. M.: Nature 440, 1137–1144 (2006).

[97] Szydlowski, W. G. M.: arXiv preprint astro-ph/0507322.

[98] Padmanabhan, T.: Phys. Rep. 380, 235–320 (2003).

[99] Wang.,et al.: Astrophys. J 530, 17 (2000).

[100] Zlatev, I., et al.: Phys. Rev. 82, 896 (1999).

[101] Linde, A. D.: Phys. Rev. B 108, 389-393 (1982).

[102] Copeland, E. J., Sami, M., Shinji T.: Int. Mod. Phys. J. 15, 1753–1935 (2006).

[103] Peebles, P. J. E., Ratra, B.: Astrophys. J. 325, L17-L20 (1988).

[104] Martin, J.: Phys. Rev. D 23, 1252–1265 (2008).

60



[105] Ratra, B., Peebles, P. J. E.: Phys. Rev. D 37, 3406 (1988).

[106] Barrow, J. D., Saich, P.: Class. Quantum Gravi. 10, 279 (1993).

[107] Chiba, T.: Phys. Rev. D 60, 083508 (1999).

[108] Lee, Jae-weon., Koh, In-gyu.: Phys. Rev. D 53, 2236 (1996).

[109] Carrol, S. M., Hoffman, M., Trodden, M.: Phys. Rev. 68, 023509 (2003).

[110] Zhao, G. B., Zhang, X.: Phys. Rev. D 81, 043518 (2010).

[111] Caldwell, R. R., et al.: Phys. Lett. B 7, 071301 (2003).

[112] Tsujikawa, S., Sami, M.: Phys. Lett. B 603, 113–123 (2004).

[113] Chiba, T. O., et al.: Phys. Rev. D 62, 023511 (2000).

[114] Guo, Zong-Kuan., et al.: Phys. Lett. B 608, 177-182 (2005).

[115] Kamenshchik, A., et al.: Phys. Lett. B 511, 265-268 (2001).

[116] Gibbons, G. W.: Phys. Lett. B 537, 1-4 (2002).

[117] Caldwell, R. R.: Phys. Lett. B 545, 23-29 (2002).

[118] Chimento, L. P. et al.: Class. Quantum Grav. 16, 3749 (1999).

[119] Baldi, M., Finelli, F., Matarrese, S.: Phys. Rev. D 72, 083504 (2005).

[120] Feinstein, A., Jhingan, S.: Modern Phys. J. 19, 457–465 (2004).

[121] Nojiri, S., Odintsov, S. D., Tsujikawa, S.: Phys. Rev. D 71, 063004 (2005).

[122] Sami, M., Toporensky, A.: Mod. Phys. Lett. A 19, 1509–1517 (2004).

[123] Singh, P., Sami, M., Dadhich, N.: Phys. Rev. D 68, 023522 (2003).

[124] Weyl, H.: Annalen Phys. 5, 237-240 (1919).

[125] Brans, C., Dicke, R. H.: Phys. Rev. D 124, 1925 (1961).

61



[126] Kaluza, T.: Int. Mod. Phys. J. 1921, 1870001 (1921).

[127] Klein, O.: Phys. 37, 895 (1926); Nature 118, 516 (1926).

[128] Nordtvedt, K.: Astrophys. J. 161, 1059 (1970).

[129] Wagoner, R. V.: Phys. Rev. D 1, 3209 (1970).

[130] Nojiri, S., Odintsov, S. D.: Phys. Rep. 505, 59–144 (2011).

[131] Capozziello, S., Nojiri, S.: Int. J. Mod. Phys. D 12, 1969–1982 (2003).

[132] De Felice, A., Tsujikawa, S.: Living Rev. Rel. 13, 3 (2010).

[133] Linder, E. V.: Phys. Rev. D 81, 127301 (2010).

[134] Maartens, R.: Living. Rel. 7, 7 (2004).

[135] Nojiri, S., Odintsov, S. D.: Phys. Lett. B 631, 1–6 (2005).

[136] Horava, P.: High Energy Phys. J. 2009, 020 (2009).

[137] Capozziello, S., Francaviglia, M.: Gen. Relativ. Gravit. 40, 357-420 (2008).

[138] Utiyama, R.: Phys. Rev. 125, 1727 (1962).

[139] Ruzmaikina, T. V., Ruzmaikin, A. A.: Sov. Phys. JETP 30, 372 (1970).

[140] Stelle, K. S.: Phys. Rev. D 16, 953 (1977).

[141] Starobinsky, A.: Phys. Lett. B 771–774 (1980).

[142] Whitt, B.: Phys. Lett. 145, 176–178 (1984).

[143] Suen, W. M., Anderson, P. R.: Phys. Rev. D 35, 2940 (1987).

[144] Carroll, S. M., Duvvuri, V., Trodden, M., Turner, M. S.: Phys. Rev. D 70, 043528

(2004).

[145] Chiba, T.: Phys. Lett. B 575, 1–2 (2003).

62



[146] Dolgov, A. D., Kawasaki, M.: Phys. Lett. B 573, 1–4 (2003).

[147] Nunez, A., Solganik, S. Phys. Lett. B 608, 3–4 (2005).

[148] Nojiri, S., Odintsov, S. D.: Phys. Rev. D 68, 123512 (2003).

[149] Brookfield, A. W., van de Bruck, C., Hall, L. M.: Phys. Rev. D 74, 064028

(2006).

[150] Liddle, A. R., Scherrer, R. J.: Phys. Rev. D 59, 2 (1998).

[151] Carloni, S., et al.: Class. Quantum Grav. 22, 4839 (2005).

[152] Capozziello, S., Cardone, V. F., Carloni, S., Troisi, A.: Int. J. Mod. Phys. D 12,

10 (2003).

[153] Carloni, S., Dunsby, P. K., Capozziello, S., Troisi, A.: Class. Quantum Grav. 22,

4839 (2005).

[154] Paul, B. C., Mukherjee. S., Beesham, A.: Int. J. Mod. Phys. D 7, 499 (1998).

[155] Buchdahl, H. A.: Mon. Not. R. Astron. Soc. 150, 1 (1970).

[156] Frolov, A. V.: Phys. Rev. Lett. 101, 061103 (2008).

[157] Woodard, R. P.: Lect. Notes Phys. 720, 403 (2007).

[158] Amendola, L.: Phys. Rev. D 62, 043511 (2000). [arXiv:astro-ph/9908023].

[159] Nojiri, S., Odintsov, S. D.: Phys. Rev. D 74, 086005 (2006).

[160] Kenmoku, M., Otsuki, K., Shigemoto, K., Uehara, K.: Class. Quantum. Grav.

13, 1751 (1996).

[161] Singh, G. P., Beesham, A., Deshpande, R. V.: Pramana 54, 5 (2000).

[162] Sharif, M., Shamir, M. F.: Class Quant. Grav. 26, 235020 (2009).

[163] Sharif, M., Kausar, H. R.: J. Phys. Soc. Jpn. 80, 044004 (2011).

63



[164] Sharif, M., Kausar, H. R.: Phys. Lett. B 697, 1 (2011).

[165] Sharif, M., Shamir, M. F.: Gen. Relativ. Gravit. 42, 11 (2010).

[166] Goenner, H. F. M.: Found. Phys. 14, 865 (1984).

[167] Bertolami, O., Bochmer, C. G., Harko, T., Lobo, F. S. N.: Phys. Rev. D 75,

104016 (2007).

[168] Harko, T.: Phys. Rev. D 90, 044067 (2014).

[169] Harko, T.: Phys. Lett. B 669, 5 (2008).

[170] Harko, T., Lobo, F. S.: Eur. Phys. J. Plus 70, 1–2 (2010).

[171] Harko, T.: Phys. Rev. D 81, 044021 (2010).

[172] Poplawski, N. J.: Phys. Rev. D 74, 084032 (2006).

[173] Harko, T., Lobo, F. S., Nojiri, S. I., Odintsov, S. D.: Phys. Rev. D 84, 024020

(2011).

[174] Jamil, M., et al.: Eur. Phys. J. C. 72, 1999 (2012).

[175] Sharif, M., Zubair, M.: J. Cosmo. Astropart. Phys. 21, 28 (2012).

[176] Sharif, M., Rani, S., Myrzakulov, R.: Eur. Phys. J. Plus 128, 123 (2013).

[177] Azizi, T.: Int. J. Theor. Phys. 52, 10 (2013).

[178] Chakraborty, S.: Gen. Relativ. Gravit. 45, 10 (2013).

[179] Houndjo, M. J. S., Batista, C. E. M., Campos, J. P., Piattella, O. F.: Can. J. Phys.

91, 7 (2013).

[180] Shabani, H., Farhoudi, M.: Phys. Rev. D 88, 4 (2013).

[181] Sharif, M., Zubair, M.: J. Phys. Soc. Jpn. 81, 11 (2012).

64



[182] Adhav, K. S.: Astrophys. Space Sci. 339, 2 (2012).

[183] Sharif, M., Zubair, M.: J. Phys. Soc. Jpn. 82, 1 (2012).

[184] Rao, V. U. M., Neelima, D.: Astrophys. Space Sci. 325, 2 (2013).

[185] Houndjo, M.J.S.: Int. J. Mod. Phys. D 21, 1250003 (2012).

[186] Johri, V. B., Sudarshan, R., Srinath, L. S.: Proc. Int. Conf. on Mathematical

Modeling in Science and Technology (1988).

[187] Massimo, C., Mauro, F., Magnano, G.: General Relativity and Gravitational

Physics-Proceedings Of The 10th Italian Conference. World Scientific (1994).

[188] Bali, R., Upadhaya, R. D.: Astrophys. Space Sci. 288, 3 (2003).

[189] Bali, R., Singh, J. P.: Int. J. Theor. Phys. 47, 12 (2008).

[190] Saha, B.: Mod. Phys. Lett. A 20, 28 (2005).

[191] Saha, B., Rikhvitsky, V.: Physica D 219, 2 (2006).

[192] Saha, B., Rikhvitsky, V.: J. Phys. A 40, 46 (2007).

[193] Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 9, 04 (2000).

[194] Singh, J. P., Pradhan, A., Singh, A. K.: Astrophys. Space Sci. 314, 1–3 (2008).

[195] Pradhan, A., Pandey, P.: Astrophys. Space Sci. bf 301, 1–4 (2006).

[196] Singh, C. P., Kumar, S., Pradhan, A.: Class. Quantum Grav. 24, 2 (2006).

[197] Bali, R., Singh, S.: Can. J. Phys. 92, 5 (2014).

[198] Mahanta, K. L.: Astrophy. Space Sci. 353, 683 (2014).

[199] Shamir, M. F.: Astrophys. Space Sci. 75, 354 (2015). [arXiv:gen-

ph/1507.08175].

65



[200] Singh, C. P., Kumar, P.: Eur. Phys. J. C 74, 10 (2014).

[201] Ram, S., Kumari, P.: Open Physics 12, 10 (2014).

[202] Sahoo, P. K., Sahoo, P., Bishi, B. K.: Int. J. Geom. Methods Mod. Phys. 14,

1750097 (2017).

[203] Sahoo, P., Reddy, R.: Astrophysics, 61, 1 (2018).

[204] Ram, S., Singh, S. K., Verma, M. K.: PAIJ 2, 4 (2018).

[205] Sahoo, P.K., Reddy, R.: Astrophysics 61, 134 (2018).

[206] Bhardwaj, V. K., Rana, M. K., Yadav, A. K.: Astrophys. Space Sci. 64, 8 (2019).

[207] Yadav, A.K., Sahoo, P.K., Bhardwaj, V.: Mod. Phys. Lett. A 34, 1950145 (2019).

[208] Buchdahl, H. A., Land, W. J.: Austr. Math. Soc. 8, 6 (1968).

[209] Whittaker, J. M.: Proc. R. Soc. Lond. A 306, 1 (1968).

[210] Ibanez, J., Sanz, J. L.: J. Math. Phys. 23, 164 (1982).

[211] Bali, R., Sharma, K.: Astrophy. Space Sci. 293, 367 (2004).

[212] Adhav, K. S., Mete, V. G., Nimkar, A. S., Pund, A. M.: Int. J. Theor. Phys. 47,

2314 (2008).

[213] Zeldovich, Ya. B.: Sov. Phys. J. Exp. Theor. Phys. 14, 1143 (1962).

[214] Zeldovich, Ya. B.: Mon. Not. R. Astron. Soc. 160, 1 (1972).

66



Chapter 5

Appendix

67



LRS Bianchi I model with bulk viscosity in f (R, T )

gravity

Siwaphiwe Jokweni∗1, Vijay Singh†2, and Aroonkumar Beesham‡3

1,2,3Department of Mathematical Sciences, University of Zululand,
Private Bag X1001, Kwa-Dlangezwa, KwaZulu-Natal 3886, South

Africa.
3Faculty of Natural Sciences, Mangosuthu University of Technology,

Umlazi, South Africa.

Abstract

Locally-rotationally-symmetric Bianchi type-I viscous and non vis-
cous cosmological models are explored in general relativity (GR) and
in f(R, T ) gravity. Solutions are obtained by assuming that the expan-
sion scalar is proportional to the shear scalar which yields a constant
value for the deceleration parameter (q = 2). Constraints are obtained
by requiring the physical viability of the solutions. A comparison is
made between the viscous and non viscous models, and between the
models in GR and in f(R, T ) gravity. The metric potentials remain
the same in GR and in f(R, T ) gravity. Consequently, the geometri-
cal behavior of the f(R, T ) gravity models remains the same as the
models in GR. It is found that f(R, T ) gravity or bulk viscosity does
not affect the behavior of effective matter which acts as a stiff fluid
in all models. The individual fluids have very rich behavior. In one
of the viscous models, the matter either follows a semi-realistic EoS
or exhibits a transition from stiff matter to phantom, depending on
the values of the parameter. In another model, the matter describes
radiation, dust, quintessence, phantom, and the cosmological constant
for different values of the parameter. In general, f(R, T ) gravity di-
minishes the effect of bulk viscosity.
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1 Introduction

Our universe on a sufficiently large scale is homogeneous and isotropic. How-
ever, on smaller scales it is neither homogeneous nor isotropic. There are
theoretical predictions that the early universe was also highly anisotropic
which has been supported by many observations [1–7]. Among the simplest
homogeneous and anisotropic models, Bianchi type-I (B-I) models play an
outstanding role in understanding essential features of the early universe.
Also in a universe filled with matter, the initial anisotropy in a B-I universe
quickly dies away and the universe eventually becomes isotropic. Since the
present-day universe is isotropic, the prominent features of the B-I models
make them a prime candidate for studying the possible effects of anisotropy
in the early evolution of the universe. In particular, the locally-rotationally-
symmetric (LRS) B-I spacetime is one of the simplified versions of the B-I
model. In light of its importance, many researchers have studied the LRS
B-I models in various contexts (see [8–10] and references therein).

On the other hand, although a perfect fluid satisfactorily accounts for
the large scale matter distribution in the universe, the realistic cosmological
scenario requires the consideration of matter other than a perfect fluid. Some
observed physical phenomena such as the large entropy per baryon and the
noteworthy degree of isotropy of the cosmic background radiation, suggest
dissipative effects in cosmology. Entropy producing processes and dissipative
effects play a very significant role in the early evolution of the universe. In
fluid cosmology, the simplest phenomenon associated with a non-vanishing
entropy production is bulk viscosity (for more detail see the review article
by [11] and references therein).

There are several processes which generates viscous effects (see Ref. [12]
for a list of some principal processes. The presence of bulk viscosity inaugu-
rates many interesting features in the dynamics of the universe. Initially, it
was proposed that neutrino viscosity could smooth out initial anisotropies
and result the isotropic universe that we see today. The presence of bulk
viscosity can avert the big-bang singularity too. Bulk viscosity can also
explain a phenomenological process of particle creation in a strong gravita-
tional field. The back-reaction effects of string creation can be modeled by
a bulk viscous fluid. It has attracted much interest across the field of cos-
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mology and many investigators have pondered the effects of bulk viscosity
in different contexts (see for examples [13–27] and references therein). Most
of these investigations are based on isotropic cosmology. However, in the
search for a realistic picture of the early universe, a large number of studies
have been done in anisotropic spacetimes as well (see [28–43] and references
therein). The general B-I spacetime models also have been studied by many
authors [31, 38, 44, 46–52, 65]. More specifically, some authors [53–55] pre-
sented LRS B-I bulk viscous cosm/ological models.

On the other hand, the shortcomings of the ΛCDM model has confronted
many authors to seek various alternatives to the fundamental theories of cos-
mology and astrophysics, which include modifications of general relativity
itself by imposing extra terms in the Einstein-Hilbert action. The modified
theories of gravity include higher derivative theories, Gauss-Bonnet f(G)
gravity, f(R) theory, f(T ) and f(R, T ) gravity theories. In the past decade,
f(R, T ) gravity has attracted the attention of many researchers to look at
many astrophysical and cosmological phenomena in the context of this the-
ory (see [56] for a broad list of references).

Mahanta [57] considered a bulk viscous LRS B-I model in f(R, T ) gravity.
The author assumed an expansion scalar proportional to the shear scalar to
solve the field equations. Soon after, Shamir [58] considered some models
under the same formulation without bulk viscosity. Later on, Sahoo and
Reddy [59] presented solutions of an LRS B-I model containing bulk viscous
matter in f(R, T ) gravity using a special type deceleration parameter. Very
recently, Yadav et al. [60] have studied the general B-I bulk viscous model in
f(R, T ) = R + λRT gravity with a hybrid expansion law of the scale factor.

Our purpose in this paper is to reconsider the LRS B-I model with bulk
viscosity. We eloquently explore the behavior of the model keeping in view
the physical viability of the model. Before considering the f(R, T ) gravity
model, we first discuss the solutions in GR in the presence and absence
of bulk viscosity. In this way, we distinguish the outcomes of the f(R, T )
gravity model with that of GR and recognize the role of f(R, T ) gravity and
bulk viscosity.

Also, Mahanta [57] in his model of f(R, T ) = R + 2λT merely found
the expression for the coefficient of bulk viscosity. While, in case of the
f(R, T ) = R + 2λT 2 model, the author also studied the behavior of mat-
ter by considering two different forms of the bulk viscosity coefficient. We
implement this approach to the f(R, T ) = R + 2λT model. Therefore, our
solutions are an extension of Mahanta’s work. It is worthwhile to mention
that though a single matter content is considered in f(R, T ) gravity, due to
the coupling between the trace and the matter, some extra terms appear in
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the field equations. We treat these additional terms as coupled matter. We
study the nature of this additional matter and its contribution to the cosmic
evolution.

The work is organized as follows. An LRS B-I spacetime model in the
presence and absence of bulk viscosity within the framework of GR is studied
in Sec. 2 and in its subsections. The f(R, T ) = R + 2λT gravity viscous
and non viscous models are explored in Sec. 3 and in its subsections. The
findings are accumulated in the concluding Sec 4.

2 The model in Einstein’s gravity

The spatially homogeneous and anisotropic LRS B-I space-time metric is
given as

ds2 = dt2 − A2dx2 − B2(dy2 + dz2), (1)

where A and B are the scale factors, and are functions of the cosmic time t.
The average scale factor and average Hubble parameter, respectively, are

defined as

a = (AB2)
1
3 , (2)

H =
1

3

(
Ȧ

A
+ 2

Ḃ

B

)
. (3)

where a dot represents a derivative with respect to t. We consider the
energy-momentum tensor of the matter as

Tij = (ρ + p)uiuj − pgij , (4)

where ρ is the energy density and p is the thermodynamic pressure of the
matter. In comoving coordinates, ui = δi

0, where ui is the four-velocity of
the fluid that satisfies the condition uiu

j = 1.
The Einstein field equations are given by

Rij − 1

2
Rgij = Tij , (5)

where 8πG = 1 = c are assumed. The field equations (5) for the metric (1),
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with the consideration of the energy-momentum tensor (4), yield

(
Ḃ

B

)2

+ 2
ȦḂ

AB
= ρ, (6)

(
Ḃ

B

)2

+ 2
B̈

B
= −p, (7)

Ä

A
+

B̈

B
+

ȦḂ

AB
= −p. (8)

These equations consist of four unknowns, namely, A, B, p, ρ. Therefore,
in order to find exact solutions, one supplementary constraint is required.

Mahanta [57] considered the expansion scalar, θ(= 3H) to be propor-
tional to the shear scalar1, σ, which leads to

A = Bn, (9)

where n is an arbitrary constant. From (7) and (8), by the use of (9), one
gets

B̈

B
+ (n + 1)

(
Ḃ

B

)2

= 0, (10)

which gives

B = β [(n + 2)t + c2]
1

n+2 . (11)

Consequently
A = α [(n + 2)t + c2]

n
n+2 . (12)

The energy density and pressure become equal

ρ = p =
(1 + 2n)

(2 + n)2t2
. (13)

Hence, the effective matter behaves as stiff matter. The energy density
must be positive for a realistic cosmological scenario which is possible only
for n > −1/2.

In section “3” of the paper, Mahanta [57] worked out some geometrical
parameters, namely, the volume, expansion scalar and shear scalar. All these
parameters are defined in terms of the metric potentials A and B. We see
that the scale factors given in Eqs. (11) and (12) are identical to those of

1σ2 = 1
3

(
Ȧ
A

− Ḃ
B

)2

5



Mahanta’s work though we have obtained both in GR. In fact, LHS of the
field equations (7) and (8) are same, although the right hand side (RHS)
has different matter in Ref. [57], but when it is used in these two equations,
the RHS is cancelled out whatever may be the matter content. Hence, the
metric potentials are independent of f(R, T ) gravity. Consequently, all the
geometrical parameters remain independent of f(R, T ) gravity. Thus, the
geometrical behavior of the model remains similar to the model in GR. We
refer to Ref. [58] for the geometrical behavior of the model.

2.1 Viscous model

The energy density of bulk viscous matter remains the same but the pressure
in energy-momentum tensor (4) for viscous fluid modifies as

p̄ = p′
m − ξθ, (14)

where p′
m is the pressure of matter and ξ is the coefficient of bulk viscosity.

The field equations for a viscous model remain almost similar to (6)–(8)
except that the pressure p is replaced by bulk viscous pressure p̄. Therefore,
the assumption (9) again leads to the solution (13), i.e., ρ = p̄ which is
identical to the non viscous model. Hence, the bulk viscosity does not affect
the behavior of effective matter and it acts as stiff matter. However, it is
to be noted that the new field equations consist five unknowns, namely, A,
B, ρ, p′

m, and ξ. Therefore, to determine the exact solutions completely,
we require one more constraint other than (9). We have two ways: first,
assuming an EoS that relates ρ to p′

m, and then determine ξ; and second,
assuming an explicit form for ξ and then determine p̄. We shall follow both
approaches in the following section.

2.1.1 The behavior of bulk viscous coefficient

We assume that the matter follows the perfect fluid EoS

p′
m = ωρ, (15)

where 0 ≤ ω ≤ 1 is the EoS parameter.
From (14), the expression for the coefficient of bulk viscosity is obtained

as

ξ(t) =
(2n + 1)(ω − 1)

(n + 2)2 t
. (16)

Since we have n > −1/2 for the energy density to be positive, the coefficient
of bulk viscosity for any kind of matter except stiff matter (ω = 1) remains
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negative and increases with the evolution of the universe, for example, ultra-
relativistic radiation (ω = 1/3), non-relativistic dust (ω = 0) or even for
vacuum energy (ω = −1). Also, as ξ → 0 when t → ∞, the effect of bulk
viscosity disappears at late times. In case of stiff matter, the coefficient of
bulk viscosity vanishes and the solutions obtained in (13) are recovered.

2.1.2 The behavior of matter

By assuming a perfect fluid EoS, in Sects. “3” and “4.1”, Mahanta [57]
merely obtained the expression for the coefficient of bulk viscosity. However,
in Sect. “4.2” while considering the model f(R, T ) = λR + λT 2, the author
also considered two different relations between the bulk viscous coefficient
and expansion scalar to study the properties of matter and viscous fluid.
However, other than the wrong signs in the field equations, there is another
flaw in the model f(R, T ) = λR + λT 2. The author over-determined the
solutions in this case. One needs two constraints to close the system but he
used three, i.e., “(21)”, “(61)” and the perfect fluid EoS for the matter, i.e.,
p = ϵρ, 0 ≤ ϵ ≤ 1. Regardless of over determining the solutions, the sign on
the right hand side of the field equations is incorrect. Though we are not
incorporating this model here, but we shall use the assumptions considered
by Mahanta [57]. These assumptions are: (i) the coefficient of bulk viscosity
is directly proportional to a positive constant (k > 0), i.e., ξθ = k, and
(ii) the product of bulk viscosity coefficient and expansion scalar is directly
proportional to energy density, i.e., ξθ = k1ρ, where k1 > 0 is a constant.
We consider both in in following cases to examine the nature of matter.

Case (i) ξθ = k

In this case the EoS parameter, ω′ = p′
m/ρ gives

ω′ = 1 +
k(2 + n)2t2

1 + 2n
. (17)

At the origin we have ω′ = 1 (stiff matter). Mahnata considered only the
case when k > 0. If k > 0, the EoS parameter starts from ω′ = 1 and
increases with the evolution. This case corresponds to a semi-realistic EoS
p = εp (ε ≥ 1). Many researchers [61–63] have studied cosmological models
with the semi-realistic matter in forward approaches. However, if k < 0,
the EoS parameter has interesting behavior. It exhibits a smooth transi-
tion from ω′ = 1 (stiff matter) to ω′ → −∞ (phantom matter). Thus, it
describes all kinds of known matter (stiff matter, radiation and dust) in-
cluding the hypothetical form of dark energy (quintessence and phantom)
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and cosmological constant as well. Since the model only describes the de-
celerated universe, the dark energy characteristics anyway do not contradict
because the matter showing this characteristic is not the effective matter in
this model. Indeed we have already seen that the effective matter behaves
as a stiff fluid.

Case (ii) ξθ = k1ρ

The EoS parameter in this case takes a constant value

ω′ = 1 + k1. (18)

Hence, if k1 > 0, the matter in this case also follows the semi-realistic
EoS. On the other hand, if k1 < 0, the model renders a variety of matter
depending on the values of k1, e.g., ω′ = 1/3 (radiation) for k1 = −2/3,
ω′ = 0 (dust) for k1 = −1, ω′ = −1/3 (quintessence) for k1 = −4/3,
ω′ = −1 (cosmological constant) for k1 = −2, and ω′ < −1 (phantom) when
k1 < −1. If k1 = 0, we have ω′ = 1 (stiff matter), which implies ξ = 0 as
θ = 1/t ̸= 0. Hence, in the absence of bulk viscosity, the solutions given in
(13) are recovered.

3 The model in f(R, T ) gravity

It is vital to note that ρ and p in Sect. 2. are the effective energy density
and pressure, respectively while in f(R, T ) gravity both the physical qual-
ities no longer epitomize the effective energy density and pressure. Indeed
the coupling between geometry and matter in f(R, T ) gravity adds some
additional terms visible, on the RHS of the field equations. These terms
must be treated as matter that can be called coupled matter. Therefore, to
distinguish between the main matter and coupled matter, we replace p with
pm and ρ with ρm, which represents the primary or main matter. The nota-
tions for the energy density and pressure of the coupled matter are defined
in Sect. 3.1.

The field equations in f(R, T ) = R + 2f(T ) gravity with the system of
units 8πG = 1 = c, are obtained as

Rij − 1

2
Rgij = Tij + 2

(
Tij + pmgij

)
f ′(T ) + f(T )gij , (19)

where a prime stands for a derivative with respect to T . For f(T ) = λT ,
i.e., f(R, T ) = R + 2λT , where T = ρm − 3pm, (19) simplifies as

Rij − 1

2
Rgij = (1 + 2λ)Tij + λ(ρm − pm)gij , (20)
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which for the metric (1) and energy-momentum tensor (4), yield
(

Ḃ

B

)2

+ 2
ȦḂ

AB
= (1 + 3λ)ρm − λpm, (21)

(
Ḃ

B

)2

+ 2
B̈

B
= −(1 + 3λ)pm + λρm, (22)

Ä

A
+

B̈

B
+

ȦḂ

AB
= −(1 + 3λ)pm + λρm. (23)

This is the correct set of field equations. One can see that the terms on
the RHS of the above field equations are different from Eqs. “(18)–(20)” in
Ref. [57].

Using (11), and (12) in (21) and (22) provided λ ̸= −1/2, we obtain

ρm = pm =
(2n + 1)

(1 + 2λ)(n + 2)2t2
. (24)

This is the correct expression for the energy density and pressure which
is different from incorrect one obtained in Eq. “(26)” by Mahanta [57].
The primary matter acts as stiff matter. The energy density and pressure
decrease with the evolution. The energy density ought to be positive for any
physical viable cosmological model which is possible either

λ > −1/2 if n > −1/2,

or λ < −1/2 if n < −1/2. (25)

Thus, while the solutions in GR are valid only for n > −1/2, f(R, T ) gravity
makes them valid for n < −1/2 also.

It is worthwhile to mention here that we have obtained expression (24)
without bulk viscosity but Mahanta [57] considered the bulk viscous matter
to obtain expression “(24)”. It is to be noted that P̄ in Eqs. “(22)–(24)” in
Mahanta’s paper is just a symbol P with an overhead bar. One may readily
verify that there is no use of Eq. “(14)” to calculate the expression “(26)”
in his paper. Hence, for viscous or non-viscous model, one gets the same
expressions of the energy density and pressure. Thus, the energy density
and pressure obtained in (24) remain independent of bulk viscosity. We
shall consider the bulk viscous model in Sect. 3.2.

3.1 The behavior of coupled matter

As elucidated above, ρm and pm do not represent the effective matter in
this model of f(R, T ) gravity. The terms containing λ in Eqs. (21)–(23)

9



can be associated with the coupled matter. By separating these terms, the
equations can be expressed as

(
Ḃ

B

)2

+ 2
ȦḂ

AB
= ρm + ρf (26)

(
Ḃ

B

)2

+ 2
B̈

B
= −(pm + pf ) (27)

Ä

A
+

B̈

B
+

ȦḂ

AB
= −(pm + pf ), (28)

where pf = λ (3ρm − pm) and pf = λ (3pm − ρm), respectively, represent the
energy density and pressure of the coupled matter, and are obtained as

ρf = pf =
2λ(2n + 1)

(1 + 2λ)(n + 2)2t2
. (29)

Hence, the coupling terms contributes as stiff matter. The energy density
and pressure decrease with the evolution. For a physically viable model, the
energy density must be positive which is corroborated under the constraints

−1

2
< λ < 0; if n < −1

2
,

or λ < −1

2
or λ > 0; if n > −1

2
. (30)

These constraints, in view of (25), agree with λ > 0 and n > −1/2 only.
Thus, in general, f(R, T ) gravity makes the model physically viable for
n < −1/2 when λ < −1/2, but if we treat the matter-geometry coupling
terms as matter, then the model becomes physically viable only for λ > 0
and n > −1/2.

3.2 Bulk viscous model

The gravitational field equations with bulk viscous matter remain the same
as given in (21)–(23) or (26)–(28), except that the pressure, pm is replaced
with

p̄m = p′
m − ξθ. (31)

Now we shall repeat the same procedure which we have followed in Sec. 2.1.
First, to examine the behavior of the bulk viscosity coefficient, we consider
the viscous free matter to follow the prefect fluid EoS. Second, by considering
the relations of bulk viscosity assumed in cases (i) and (ii) of Sect. 2.1.2, we
shall study the behavior of normal matter.
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3.2.1 The behavior of bulk viscous coefficient

Using the prefect fluid EoS p′
m = ωρm, where 0 ≤ ω ≤ 1, we obtain

ξ(t) =
(1 + 2n)(ω − 1)

(1 + 2λ) (2 + n)2 t
. (32)

Since n > −1/2 and λ > 0 for a physically viable model, with any kind
of matter except stiff fluid, ξ remains negative which increases with the
evolution and vanishes at late times. For stiff matter (ω = 1), the bulk
viscosity coefficient vanishes, and the solutions reduce to the non viscous
model as discussed above. Thus, the behavior of the bulk viscosity coefficient
is similar to the model in GR. f(R, T ) = R+2λT gravity plays no significant
role, except that a large value of λ diminishes the effect of bulk viscosity.

3.2.2 The behavior of matter

Case (i) When ξθ = k

The EoS parameter of matter, ω′
m = p′

m/ρm, gives

ω′
m = 1 +

k(n + 2)2(1 + 2λ)t2

1 + 2n
. (33)

In view of the restrictions n > −1/2 and λ > 0, the above EoS parameter
for k > 0 represents semi-realistic matter, whereas for k < 0, it shows a
transition from ω′

m = 1 to ω′
m → −∞ as t → 0, which is similar to the model

in GR. Hence, this also indicates that f(R, T ) gravity plays no significant
role in this model. However, a large value of λ makes the growth of ω′

m

much faster. At the origin of evolution, ω′
m = 1. If k = 0, the solutions

reduce to the model without bulk viscosity.

Case (ii) When ξθ = k1ρ

The EoS in this case takes a constant value

ω′
m = 1 + k1, (34)

which is identical to (18). Hence, f(R, T ) gravity plays no role in this case.

4 Conclusion

Mahanta [57] studied an LRS Bianchi-I model in f(R, T ) gravity with bulk
viscous matter. The signs in the field equations in all three models of f(R, T )
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are incorrect. This minor error makes the solutions presented mathemati-
cally, and hence physically, invalid. The positive aspect is that the incorrect
signs in the field equations do not affect the metric potential. Consequently,
the geometrical parameters, namely, volume, expansion scalar, Hubble pa-
rameter and shear scalar are correct mathematically. However, the author
has not discussed the behavior of these parameters. Later on, Shamir [58]
also studied some models without bulk viscosity under the same formula-
tion. He has discussed the geometrical behavior of the model. To obtain the
solutions, the authors have assumed an expansion scalar proportional to the
shear scalar, which returns a constant value of the deceleration parameter,
q = 2. Hence, the model can describe only the decelerated expansion of the
universe.

Though the present-day universe undergoes an accelerated expansionary
evolution and bulk viscosity plays a very vital role in explaining this phe-
nomenon. However, it does not exclude the existence of a decelerating phase
in the early history of our universe. Mak and Harko IJMPD 11 (2002) 447,
studied a causal bulk viscous cosmological fluid for a flat constantly decel-
erating Bianchi type I spacetime model, and showed that this model leads
to a self-consistent thermodynamic description which could describe a well-
determined period of the evolution of our universe. Therefore, decelerating
models have their own importance to understand the early evolution of the
universe.

In this paper, we have reconsidered the f(R, T ) = R+2λT model studied
by Mahanta [57]. Indeed, a comparison of the outcomes in the modified
gravity model with the outcomes of the model in GR helps to understand the
role of modified gravity. So before considering the f(R, T ) gravity model, we
have studied viscous and non viscous models in GR. A part of our work is also
an extension of Shamir’s work. Since Shamir has discussed the geometrical
behavior, we have not repeated it here. However, we have shown that these
parameters are independent of f(R, T ) gravity. Also, while the authors
in [57,58] ignored the physical viability of the models, we have obtained the
constraints for a physically realistic cosmological scenario.

Mahanta [57] in Sect. “3” and “4.1” only obtained the expressions of the
coefficient of bulk viscosity. Extending his work we have also studied the
behavior of normal matter for two different forms of bulk viscosity coefficient
considered by him in a model f(R, T ) = R + λT 2.

The model in GR has been found physically viable only for n > −1/2.
The effective matter behaves as stiff matter irrespective of a viscous or non
viscous model. In the viscous model, the bulk viscosity coefficient with
perfect fluid (except for stiff matter) is found to be negative and an increas-
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ing function of cosmic time. In the case of stiff matter, the coefficient of
bulk viscosity vanishes. In the reverse approach, with the first assumption
ξθ = k for k > 0 the matter follows a semi-realistic EoS, while for k < 0 the
EoS of matter exhibits a transition from a stage of stiff matter to phantom.
With the second assumption ξθ = k1ρ, the EoS of matter becomes constant
(ω = 1+k1), which also renders semi-realistic matter for k1 > 0, whereas for
k1 < 0 the EoS can describe a variety of matter including radiation, dust,
quintessence, phantom, and cosmological constant for different choices of k1.
If k = 0 = k1, the solutions reduce to the model without viscosity.

As far as the f(R, T ) gravity model is concerned, Shamir [58] has studied
the behavior of effective matter only. However, in case of f(R, T ) gravity,
some extra terms appear on the right hand side of the field equations. These
terms can be treated as representing some additional matter due to the cou-
pling between matter and geometry. Therefore, by considering matter and
geometry coupling terms as coupled matter, we have examined its behav-
ior. Since the metric potential remains identical to the model in GR, the
effective matter (irrespective of viscous or non viscous models) acts as stiff
matter in f(R, T ) gravity also.

In general, the solutions in f(R, T ) gravity are physically viable for
λ > −1/2 and n > −1/2 or λ < −1/2 and n < −1/2. However, when
the coupling terms are treated as matter then a physically viable model is
possible only for λ > 0 and n > −1/2. The primary matter as well as
coupled matter acts as stiff matter. Thus, the behavior of the bulk viscous
model in f(R, T ) gravity is almost similar to the model in GR. The only
difference is that f(R, T ) = R+2λT gravity for large values of λ diminishes
the effect of viscous matter.

Many researchers have been explored cosmological models with stiff mat-
ter in the forward approach in different contexts (see for example from
[37, 65–67] and references therein). While these works utilize simplified as-
sumptions of the EoS of stiff matter to get exact solutions, it is a natural
outcome of the present study. The stiff matter cosmological models are in-
teresting in the sense that for such models the speed of light is equal to the
speed of sound [68, 69]. A realistic example of the distribution of stiff fluid
is a polytropic fluid inside a star. The existence of realistic objects in the
universe makes the studies of stiff matter models prominent.

It is also worthwhile mentioning here that Mahanta [57] considered three
models of f(R, T ), namely, f(R, T ) = R + 2λT , f(R, T ) = λR + λT and
f(R, T ) = R + λT 2. The sign in field equations for all three models is
incorrect. The first two forms are, in fact, not different as the first one is
a particular case of the second. Consequently, both forms would produce
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similar results. Moreover, the second model is formulated in a way that the
coupling terms are treated as a variable cosmological constant, Λ = (ρ−p)/2.
As we have seen, the energy density and pressure of effective matter as well as
coupled matter become equal. Resultantly, Λ vanishes in such formulation
and the solutions reduce to the model in GR. Consequently, even if one
considers the correct sign in the field equations, the outcomes would be
identical to the model in GR. Therefore, we have not studied this form
explicitly.

Finally, we would like to point out that apart from the wrong signs
in the field equations, Mahanta [57] in his model f(R, T ) = R + λT 2 over
determined the solutions. We see that Eqs. “(58)–(60)” have five unknowns,
namely, H1, H3, ρ, P and ξ. Therefore, only three assumptions would be
required to close the system, but he used four, namely, “(27)”, “(28)”, “(61
or 65)” along with the EoS P = ϵρ. We have not considered this model
in the present study for the sake of keeping our paper of mandate length.
Shamir [58] has studied this form without bulk viscosity. We shall consider
this model with bulk viscosity somewhere else.
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