




A REQUIREMENTS SPECIFICATION MODEL FOR A

PRODUCT LINE

SALAH KEMILEMBE KABANDA

(20044965)

2005



A REQUIREMENTS SPECIFICATION MODEL FOR A

PRODUCT LINE

SALAH KEMILEMBE KABANDA

(20044965)

A dissertation submitted to the Faculty of Science and Agriculture in fulfillment of

the requirements for the degree

of

MASTERS OF SCIENCE

In

COMPUTER SCIENCE

Department of Computer Science

University of Zululand

December 2005



OECLARATION

This dissertation represents research work carried out by the author and has

not been submitted in any form to another University for a degree. All sources

used have been duly acknowledged in the text.

Salah Kabanda

---
Date

11



DEDICATION

I dedicate this work to my mother, Leilah Rugachwa Kabanda, for believing

and encouraging me through the difficult times and to my late grandfather,

Tibangayuka Kabanda for instilling the value of education in our family.



ACKNOWLEDGMENTS

First, I thank the Lord for all the blessings bestowed on me in seeing this

research work through. Secondly, I would like to extend special thanks to my

supervisor Prof. M.O Adigun, who is most responsible for helping me

complete the writing of this dissertation as well as the challenging research

that lies behind it. I would like to thank his continuous fatherly support and

mostly for believing in me when the challenge became difficult.

Besides my adviser, I thank all staff members and fellow colleagues in the

Department of Computer Science at the University of Zululand for their

continuous encouragement and support. Many thanks to Dr. Eyono-Obono of

Durban Institute of Technology for having confidence in me and for listening to

my complaints and frustrations. I thank Mr. P. Mudali for his support and

assistance during the programming phase. Lastly, I thank my family who have

put up with my busy schedule, but still provided me with their unconditional

support, love and encouragement to pursue my interests. Your everyday

prayers were not wasted.



TABLE OF CONTENTS

DECLARATION ii

DEDICATION iii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF EQUATIONS xii

ACRONYMS AND ABBREVIATIONS xiii

ABSTRACT xv

CHAPTER ONE 1

1.0 INTRODUCTION .. . 1

1.1 Overview 1

1.2 The need for new Requirement Engineering models 2

1.2.1 Model Driven Architecture (MDA) .........3

1.2.2 Web tier Application Framework (WAF) ..4

1.3 Problem Statement 5

1.4 Justification 6

1.5 Goal and Objectives 8

1.6 Research Methodology 8

1.7 Scope and Limitation 9



1.8 Overview of the rest of the dissertation 9

CHAPTER TWO 11

2.0 BACKGROUND CONCEPTS AND LITERATURE REVIEW. 11

2.1 Introduction 11

2.2 Requirements Engineering Concepts 11

2.2.1 Users' Wishes 12

2.2.2 Stakehofder Needs 13

2.3 Product Line Software Engineering 14

2.3.1 Product Line Software Engineering Methodologies 16

2.3.2 Product Line Software Engineering supporting tools 25

2.3.3 Analysis of Product Line Software Engineering Tools 30

2.4 The Model Driven Architecture Approach (MDA) 31

2.5 RSPL as a tool for PL Requirements Generation and Specification 32

CHAPTER THREE 35

3.0 MODEL DEVELOPMENT 35

3.1 Overview 35

3.2 A Model-Driven Requirement Specification for a Product Line 37

3.2.1 Domain Knowledge 39

3.2.2 User Perspective .41

3.2.3 The Requirements Generation Process······· .46

3.3 A Web-Tier Application Framework for RSPL. 49



CHAPTER FOUR 51

4.0 RSPL TOOL DESIGN AND IMPLEMENTATION 51

4.1 Introduction 51

4.2 RSPL Tool Decomposition 52

4.2.1 Tool Requirements Definition Phase 52

4.2.2 RSPL Requirements Analysis 54

4.2.3 Tool Design 59

CHAPTER FIVE 66

5.0 RSPL TOOL CASE STUDY 66

5.1 Introduction 66

5.2 Case Study: Generation and Specification of requirements for the

E-Commerce Domain 66

5.2.1 Rationale for an E-Commerce Domain " 66

5.2.2 The Portal Interface 68

5.2.3 User Authentication 69

5.2.4 Elieitation and Seoping Interface 70

5.2.5 Specification and Generation Interface 72

5.3 Evaluation of Result.. 75



CHAPTER SIX 76

6.0 CONCLUSION AND FUTURE WORK 76

6.1 Conclusion 76

6.2 Future Work 78

REFERENCES 80



LIST OF FIGURES

Figure 1: Domain modeling for a family of systems [16] 15

Figure 2: A Requirement metamodel for a product line [32] 20

Figure 3: A requirements elicitation process 26

Figure 4: Example of a Use Case in the PLUC notation taken from [56] 29

Figure 5: The flow of an MDA generator 31

Figure 6: The Model Driven RSPL Architecture 38

Figure 7: Product Line Requirement Metamodel .40

Figure 8: Domain Object Template .42

Figure 9: Textual Product Object Template .45

Figure 10: A Requirements Specification Document.. ..49

Figure 11: RSPL Use case 53

Figure 12: A sequence diagram for the login use case 55

Figure 13: Elicitation and Scoping Sequence Diagram 57

Figure 14: Requirements Specification Sequence diagram 59

Figure 15: RSPL Tool Architecture 59

Figure 16: Detailed MVC architecture of RSPL Tool 62

Figure 17: RSPL Portal Interface 69

Figure 18: RSPL Login Page 69

Figure 19: Domain Template Elicitation 70

Figure 20: Product Seeping 71



Figure 21: Specifying qualitative features 71

Figure 22: Domain Template Specification 72

Figure 23: Selection of a product Instance 72

Figure 24: Feature specification 73

Figure 25: Sub Feature Specification 73

Figure 26: A partial metadata representation of the Entity Domain 74

Figure 27: A partial RSD for the Online Ecommerce Application 74



LIST OF TABLES

Table 1: Quality Profiles 24

Table 2: Textual Use Case template [5] 27

Table 3: Mapping MVC features to RSPL 50

Table 4: RSPL tool packages 65



LIST OF EQUATIONS

Equation 1: Transaction Throughput.. 21

Equation 2: WorKload 22

Equation 3: Maintenance constraint. .23

Equation 4: Defect Density rate 23



RE

SDLC

RSPL

RSL

RSD

MDA

WAF

PL

PLSE

OK

KB

UP

MVC

PLUC

ACRONYMS AND ABBREVIATIONS

Requirement Engineering

Software Development Life Cycle

Requirements Specification Model for a Product Line

Requirements Specification Language

Requirement Specification Document

Model Driven Architecture

Web tier Application Framework

Product Line

Product Line Software Engineering

Domain Knowledge

Knowledge Base

User Perspective

Model-View-Controller

Product Line Use Case



LOC

IT

W

TV

SE

NFR

FODA

FORM

SME

Lines of Code

Transaction Throughput

Workload

Transaction Volume

Service Element

Non Functional Requirement

Feature-Oriented Domain Analysis

Feature-Oriented Reuse Method

Small and Medium Enterprises



ABSTRACT

This research work focuses on developing a new requirement engineering

model (RSPL) based on a Model Driven Architecture and Web-tier application

framework, to support automatic and interactive requirements generation and

specification when creating families of systems. In realizing the model, two

goals were targeted namely (i) to construct a requirement engineering model

that support automatic transformation of domain features into actor-specific

requirements; and (ii) to design and implement an interactive web based

requirement engineering tool that demonstrates the requirements generation

and specification process for a product line. The result obtained is twofold: (i)

a model driven architecture for rapid requirements generation and

specification for a product line that reduces costs and development time; (ii)

tool implementation based on a web tier application framework that supports

different client and actor types. In conclusion, the study is a contribution to a

recently advocated idea that requirements generation and specification for

product line development could be model-driven. The result shows that the

idea is promising with respect to requirement reuse and improving

communication barriers among members of a system development team.



CHAPTER ONE

1.0 INTRODUCTION

1.1 Overview

Requirements Engineering (RE) is a set of activities that help develop the

understanding of a system's domain, constraints, characteristics and

systems functionalities as per stakeholders view, as well as the

documentation of the systems spedfication for all stakeholders involved in

systems development [7]. The deliverable from RE is a Software

Requirements Specification document (RSD) that fully describes the

external behavior of the application, its nonfunctional requirements,

design constraints and other factors necessary to provide a complete and

comprehensive description of the requirements for the software.

In the past, requirements engineers elicited and specified requirements

using manual methods, which proved to be too slow and error prone to

maintain a competitive position in the global economy. Therefore, the

need for faster, better and less expensive methods of developing complex

applications to meet market demands and still maintain a competitive

status quo became desirable. The notion of automatic requirements tools

was belieVed to be the solution to most challenges imposed by traditional

methods of RE. Automatic tools implied that requirements are stored in a



requirements repository as individual objects instead of a paper document

for easier maintenance and reusability purposes [12J. Although this was a

breakthrough in the RE field, the challenge had just begun. Most tools

were made for a single product development, making the task difficult

when a family of systems had to be considered.

A family of systems is a set of applications with very similar requirements

and few key differences that can be configured to provide reusable assets

[24, 25, 26J. Developing software for a family of systems is not an easy

task as in a single product development. It requires that the family domain

be critically analyzed to identify and define common and variable features

that can be used to create individual product instances.

The common features if exploited could achieve substantial cost savings

(improvements in productivity; time to market; product quality and

customer satisfaction) through reuse. This means that each time a new

product is introduced to the domain the same asset repository can be

reused leading to direct savings.

1.2 The need for new Requirement Engineering models

Tools and methods that assist with the production of better requirements

have been reported in the literature [15, 16, 20, 32, 34, 35, 41J. Although

they have been adopted in industry arena, poor requirements that do not

meet stakeholders standards are still being produced, especially in the

case of product line development. Poor requirements could be a result of:

2



I. tools inability to perform full RE tasks that meet stakeholder

expectations;

ii. requirements engineers' inability to properly use the tool to

its most potential due to the tool's lack of an interactive

interface and its availability (web-based as opposed to

traditional stand alone application) and

iii. lack of necessary features such as automatic requirement

metadata generation and support for different client types

0JVAP and i-Mode clients).

Recently, Software Engineers have started to rethink RE models that are

used to develop automatic tools. This work is a contribution to the idea

that the Model Driven Architecture (MDA) and the web-tier application

framework 0JVAF) could serve as a pattem for addressing RE problems.

We are of the view that using MDA during the early stage of the software

development life cycle, could positively impact and improve the

requirements generation process.

1.2.1 Model Driven Architecture (MDA)

MDA is a framework that promises many benefits such as reusability,

automatic code generation, portability, and many more. MDA is generally

used from system design to implementation whereby a platform­

independent model is automatically transformed into a platform specific

3



model through mapping principles. In other words, MOA converts a

business model into a specific technology context (code) [3, 9J.

Although MOA has worked very well during system development, it has

not been specifically applied in the requirements engineering phase of

system development. MOA features during the design and implementation

phase of SOLC as it is concemed with transforming the design model

(design phase) into a platform specific technology, Le. code

(implementation phase). The outcome is vast cost savings due to rapid

system development and less errors due to lack of human intervention.

This work is an attempt to extend the MOA benefits to the requirements

phase. To realize even greater benefits, MOA will be supported with an

interactive environment that supports mUltiple client types. The next sub

section presents a discussion on a web tier application for a RE model.

1.2.2 Web tier Application Framework (WAF)

Most RE tools are still stand-alone applications that are location and time­

dependent still have difficulty in supporting e-business application

requirements and still have no support for various client types. A web tier

application framework based on a Model-View Controller (MVC) pattem is

one step forward in solving these problems. WAF provides interactive

applications and provides a host of design benefits such as separating

design concems (data persistence and behavior, presentation, and

control), decreasing code duplication, centralizing control, and making the



application more easily modifiable [13J. This work aims to use WAF as a

supplementary framework to MDA in RE implementation.

1.3 Problem Statement

Advances in requirements engineering models and tools has still not

produced high quality requirements that meet stakeholders' needs [41J.

Most RE tools for a family of products do not produce requirement

specification, but lay much emphasis on the elicitation, scoping and

analysis phases.

Requirement Specification is an important component of the RE

deliverable that helps to capture different views of various stakeholders.

Each stakeholder has different views of the same system and wants their

views to be considered. Conflicting views and goals require that

stakeholders negotiate and arrive at realistic requirements that satisfy all

parties. Negotiation becomes difficult if RE tools:

i. are stand alone application that are not interactive and

difficult to access at any time and at any location and

ii. use a requirement specification languages (RSL) that

stakeholders have to leam.

Web-based tools distributed and multi-user capability offer considerable

potential to requirements engineers and developers. Important

stakeholders who are often difficult to involve in the requirements process



can now contribute their goals, expectations, negotiation limits and

preferences to the wider RE process [39] as time and location is no longer

a barrier. This ensures that stakeholders specifications and expectations

are properly integrated during system development, thereby producing

'better' requirements.

The Model Driven Architecture and a Web Tier Application framework

have been identified as the architectural basis of this work. Using both

MDA and WAF as starting points, the research questions to be answered

are:

i. Can MDA's success in code generation be replicated in

Requirements Engineering tasks (elicitation, verification and

specification of requirements) for a family of systems?

ii. Can we, therefore, provide a reusable implementation of the

model for different client types?

1.4 Justification

Much research in RE for a family of systems has focused on its initial

stage - requirements elicitation and scoping, Whereby the domain is

defined to identify areas of potential reuse. Application development

depends not only on elicitation and scoping of requirements. but greatly

on requirements specification which describe what stakeholders want.

6



To produce better requirements while at the same time experiencing

significant cost savings in terms of overhead costs and time, tools and RE

models need to support the full RE phase, support requirements

reusability and web-based. This research proposes to adopt the Model

Driven Architecture as a pattem in addressing the mentioned aspects.

The reason for adopting MDA in this work is because MDA:

i. Supports reuse when creating families of systems

ii. Encourages efficient use of system models in the software

development process;

iii. Tends to address enterprise architectures supported by

automated tools and services and

iv. Provides a conceptual framework for using models and

applying transformations between them as part of a

controlled, efficient software development process.

This work envisions an interactive requirements generation and

specification model for a family of systems from which specific product

line requirements can be automatically constructed from pre-existing

domain knowledge. To ensure that requirements are automatically

generated and specified, an MDA approach has been suggested. A web­

tier application framework is adopted to ensure a web-based tool that is

robust, scalable and easier to maintain.



1.5 Goal and Objectives

The goal of this research is to develop a requirements generation and

specification model for a product line (RSPL) from pre-existing generic

domain knowledge that has been analyzed, processed and structured.

The goal is decomposed into two specific research objectives:

I. To formulate a requirement engineering model for a family of

systems that supports automatic transformation of domain

features into actor-specific requirements and

ii. To develop an interactive web based requirement

engineering tool that implements the model.

1.6 Research Methodology

In order to achieve each mentioned objective, the research uses the

Model Driven Architecture approach and Web tier architecture to

formulate the model for a family of systems that supports automatic

transformation of domain features into actor-specific requirements. In

addition, the study adopts a survey research design in which simple

random sampling is employed. A questionnaire is used to collect empirical

data from Small and Medium Enterprises (SME). This data is used to

establish SME requirements for developing an interactive web based

requirements engineering tool that implements the model.



1.7 Scope and limitation

This work envisions an interactive requirements generation and

specification model for a family of systems from which specific product

line requirements can be automatically constructed from pre-existing

domain knowledge. The tool does not have a validation capability

essential for checking requirements completeness and consistency and

nor was it designed with specific security, scalability and performance

quality of service in mind. For it to be used in a production environment,

design criteria for the Quality of Services issues must be evaluated first.

The model does not also provide validation capabilities. These aspects of

the research are deferred to the future.

1.8 Overview of the rest of the dissertation

The remainder of this dissertation is organized as follows: Chapter two

provides a discussion of work done in RE, supporting tools and

background information on the development and influential factors of the

RSPL model. These factors include the Product Line Software

Engineering, the Model Driven Architecture, and the Requirement

Specification Languages.

Chapter three presents a detailed description of the model-driven RSPL

architecture as well as the components that lead to the RSPL

development. Then, a web tier application framework is discussed in

relation with RSPL. Chapter four provides a typical illustration of how the

9



presented model could become the heart of an interactive, web based

tool. Chapter five demonstrates an implementation of the RSPl tool using

a case study and further presents the result obtained. Chapter six

concludes the dissertation. limitations of the study and recommendation

thereof are also presented. Finally, directions for future work are

suggested.

10



CHAPTER TWO

2.0 BACKGROUND CONCEPTS AND LITERATURE

REVIEW

2.1 Introduction

In chapter one, RSPL was presented as a tool for responding to some of

the challenges of requirements engineering. In this chapter, the

foundational principles behind RSPL are discussed. These principles

included but are not limited to Product Line Software Engineering (PLSE)

and the Model Driven Architecture (MDA). The objective of the chapter is,

therefore, to show that RSPL builds on a number of emerging software

engineering issues.

2.2 Requirements Engineering Concepts

Requirements Engineering (RE) is the branch of systems engineering

concemed with the needs and wishes of software-intensive systems, the

goals to be achieved in the software's environment, and assumptions

about the environment [46, 47J. While needs represent application

constraints which can be supported by tools, wishes describe application

solutions and are difficult to achieve as they are always changing due to

changing business environment.

11



2.2.1 Users' Wishes

Wishes are desired properties that users would like the application to

have. Wishes are complex because they are environment dependent. To

understand them, requirements engineers iteratively set short targets that

they can achieve within few days for each wish. Once completed, they

meet with the user to deliver some quanta of business value. Thomas and

Hunt [47] observed that the short targets or the concept of iterative

development provided a way of controlling costs; mitigating risks;

capturing and verifying requirements a=rding to the user's wishes.

Iterative development led to agile methodologies such as extreme

programming, SCRUM and Crystal methods among others. Agile

methodologies attempt to minimize risk by developing software in short

"timeboxes", called iterations, which typically last one to four weeks.

Iteration includes all the tasks (planning, requirements analysis, design,

coding, testing, and documentation) necessary to release a sub project

[51].

Prior to agile methods, engineering methods tried to plan out a large part

of the software process in great detail for a long span of lime. This only

worked well when there are no requirements change as result of business

changes. Traditional engineering methods have a nature of resisting

change and as a result deliver a product that does not satisfy user

requirements [50]. Agile methods are adaptive rather than predictive

12



meaning that they welcome change and emphasize real-time

communication, preferably face-to-face to enable easier incorporation of

all users' who have to contribute their needs to the wider RE process.

2.2.2 Stakeholder Needs

On the other hand, stakeholder needs are supported by tools that facilitate

the requirements engineering process. Software tools that support

software engineering tasks are typically available as stand-alone

applications and their advantages have been practically observed by

industries and Software Development Team (40]. Software tools increase

productivity, decrease overhead costs and due to limited human

intervention, ensure that qualitative prodUcts are developed.

Most RE tools are elicitation, communication, modeling, verification or

management oriented tools or a combination of one or two of these

features and have been designed or developed for a single product

instance development and not for a given domain or a family of systems.

The term domain is used to denote a set of systems or functional areas,

within systems, that exhibit similar functionality [21]. Domain engineering

is the foundation for emerging "product line software engineering"

approaches that affect the maintainability, understandability, usability, and

reusability characteristics of a system or family of similar systems.

13



2.3 Product Line Software Engineering

The body of knowledge known as automatic requirements engineering

has received considerable attention from researchers as can be seen in

literature [10.15, 16.24,25.33,34,35,38,41]. This aspect of software

engineering developed from the concept of family of systems was first

suggested by Pamas in 1976 [35]. Pamas was of the opinion that

substantial savings could be achieved by reusing the common features in

programs that are developed as a family. The widespread attention given

by the research community resulted in Product Line Software Engineering

(PLSE).

PLSE is an emerging software development alternative to developing

every software system from scratch. However, PLSE will only be adopted

if it makes business sense, that is. helps shareholders maximize their

profit. Whether this investment results in greater profit depends on the

particular strategy adopted.

To this end, a number of methodologies have been proposed to address

this challenge. These methodologies require that a domain model be

constructed to document all domain artifacts. The model results from

domain analysis whose goal is to scope the domain with an aim of

identifying similarities and variations. Once the domain model is

constructed, it is documented in the Domain Reuse Library as a reusable

artifact for application development.

14



Typically as shown in figure 1, a domain reuse library is built for creating

reusable requirements specification from raw domain requirements and

secondly cataloging the specification as reusable artifacts in the library. It

is a repository for storing reusable assets and allowing users to search for

assets in the repository [49].

emenrs _
Domain

Modeling Reusable Specification

,..-
'-- ---Domain

Reuse
library

"-

Target System
Requiremen[S

• I
Target SYStLTI1 Target System

Generation

Domain
ReqUlI

Cnsatisfied Requiremen[S, Errors, ;\daptation

Figure 1· Domain modeling for a family of systems {16]

The following sub section describes a number of proposed Product Line

Software Engineering methodologies for requirements engineering.

15



2.3.1 Product Line Software Engineering Methodologies

2.3.1.1 Kernel and View approach

The Kemel and View approach was introduced by Gomaa [15] who was

of the view that a domain model should constitute the core of PLSE as it

represents the entire family requirements. According to Gomaa, the

domain model is formulated from one of the either two approaches

namely the kemel or view approach.

While the view is an integration of multiple viewpoints (the Aggregation

Hierarchy, Object Communication Diagrams,

Generalization/Specialization Hierarchy, Feature /Object dependencies

and the State Transition Diagram), the kemel encapsulates the common

features that represents one or more domain requirements [6,10, 17,26].

Individual members of the family are then generated by tailoring the

domain model constructed from either a kemel approach or a view

approach. This study requires that the domain model be viewed from both

the kemel and the view perspective as both describe the domain

differently. Kang et al suggested the FODA approach that allowed the

integration of both perspectives during product line development

2.3.1.2 Feature -Oriented Domain Analysis (FODA)

As both the kemel and the view approach intend to describe the domain,

Weiss and Kang [24, 25] suggested that both methods should be

considered! integrated in the requirements engineering process for a

16



family of systems because they compliment one another in the

development of an application instance of the domain. They proposed a

two-fold approach for a family of systems (i) domain engineering and (ii)

application engineering. During domain engineering, domain experts

strive to identify and define product family requirements in terms of

features while during application engineering, family members are

produced by selecting or tailoring features that will constitute the product

instance.

The use of features is motivated by the fact that customers and engineers

often speak of product characteristics in terms of features the product has

and/delivers [481. The use of features led to the Feature-Oriented Domain

Analysis (FODA) approach that defines techniques for developing,

parametrizing and configuring reusable assets plus a specific process of

commonality and variability analysis [26]. The result is a feature model

that supports both the domain engineering of reusable artifacts and

development of applications using domain artifacts.

Although stakeholder requirements (features) are essential inputs for core

asset development, they are not sufficient on their own as they are

constantly changing with the business enVironment. This study requires

that the business environment should also be incorporated into the

domain model together with the stakeholder requirements. Kang [24]

suggests that FODA be extended to support a marketing and product plan



perspective (MPP) as well as explore analysis and design issues from that

perspective. MPP helps to identify the information to gather during the

marketing and business analysis. Such information includes marketing

analysis and strategies, product features and delivery methods. These

suggestions led to the development of the Feature-Oriented Reuse

Method (FORM).

2.3.1.3 Feature-Oriented Reuse Method (FORM)

FORM is a systematic method that focuses on capturing commonalities

and differences in a domain in terms of features and using the analysis

results to develop domain architectures and components. FORM consists

of two major processes namely (i) asset development - a process that

includes capturing and analyzing the commonalities and variabilities such

as marketing and product plan development and refinement; feature

modeling and requirements analysis and a (ii) Product development - a

process that entails analyzing requirements and selecting and adopting

features for the product [24].

FORM starts with capturing domain information and analyzing common

elements in terms of services, operating environment, domain

technologies and implementation techniques to generate a feature model.

A feature model is used to define parameterized reference architecture

and appropriate reusable components instantiatable during product

development [48]. During product development. product features are

18



selected from the domainlfeature model to be instantiated. Product

features are classified into two main categories: Functional and

Nonfunctional. While Functional Features (Functional Requirement - FR)

are services that provide behavioral characteristics, which define the

activities inherent in the domain; Nonfunctional Features (Nonfunctional

Requirements - NFR) are end-user-visible application characteristics that

cannot be identified in terms of services or operations [24]. They present

the qualitative aspects of the domain.

Moon et al [32] suggest that product features for a family of systems be

represented using a ReqUirements Metamodel. A metamodel is a model

that describes another model. It consists of appropriate constructs

reflecting the declarations of data-definition and data-manipulation

languages that represent the constructs or the building blocks of the

product. The metamodel also provides a bridge between organizational

structure aspects and business subprocess, minimizing the complexity of

business process definition and at the same time improving the efficiency

and quality of it [32, 37]. Its purpose, according to Moon et al [32] is to lay

down an overall scheme for representing domain requirements.

Figure 2 presents a typical metamodel for domain requirements. The core

model element of a requirement metamodel is the Domain Requirement

as it represents one general requirement that can be reused as a core

asset of developing systems in a product line [32]. The Domain

19



Requirement consists of Functional Requirement and Non Functional

Requirement with variants to distinguish one product feature from the

other. Variations are captured using the Variability element and can either

be optional or mandatory. A mandatory feature signifies commonality and

potential area of reuse. Functional Requirement consists of services

rendered to other parties within the domain (either to other domains,

products within the domain or to another service). A service defines the

functionalities or activities which a product within the domain pursue to

fulfill their goals. Services are, therefore, like use cases or scenarios. A

service can have multiple sub services and can also be refined to a

service element.

I R.eliabilirr

--,--__"!_}uah_IT-,--F_eatur_'e---r----Jh
I 'J.l-J

i

;V

;-..;on Functional
Requirement

Functional
Requirement

~1,--------00-=:..-._Re-.:-quir_em_enr_-,f ----.J

.----1 \'mabili~ I
I

I

Figure 2: A Requirement metamodel for a product line [32]

20



A service element is the smallest unit that cannot be further decomposed

to sub services. A service can be influenced by NFR features. NFR is

composed of three qualitative features: performance, maintenance and

reliability.

a. Performance

Performance is concemed with the efficiency rate at which the application

performs its functionalities when SUbjected to a particular workload. It is

affected by the available resources and how they are used and shared. It

is during the requirements phase of the SOLe that performance

objectives, workflow, and key service elements (scenarios) are defined.

The workloads and estimated volumes for each service element are then

considered [1]. There are two performance objectives that this research

pays attention to: Transaction Throughput (TT) and Workload \'N). n is

the number of requests (service elements) that can be served or

completed by the application per unit time (T), for example, fetching and

updating a row. We, therefore, measure n as the number of service

elements per time unit as depicted in equation 1.

TI= SE

T

... Eqwtion 1

Workload is total number of users and concurrent active users (A) at a

given time unit or transaction volumes (TV) expected to be handled by the

21



application in a given time unit (T) [1]. Equation 2 depicts a workload

equation using transaction volumes.

TV
V

T

___ •• __ ••• >. ••••••••••••• .Equarion 2

When actors are building or generating requirements for an application

instance, the workload which their application will handle has to be

estimated. The transaction volumes to be expected are detenmined by the

number of features which a domain possesses.

b. Maintenance

Maintenance is concerned with the component's ability to change when

requirements change. According to Bosch, change categories tend to be

organized around the interfaces the application has to its environment and

are best captured using change scenarios. Change scenarios are given a

relative weight which indicates the likelihood of that scenario occurring

during that period. Such change is measured by the number of lines of

code (LOC) that have to be changed to accommodate the scenario or

service element. An actor is, therefore, expected to provide an estimate of

LOC that will be required to change over the life cycle.

For each feature, the cost for developing a service element (SEcHARGE) is

determined. Then a maximum range (SEMAXc~ARGE) is imposed on the

existing LOC to detenmine the highest estimated cost of maintaining that



service element When there is a change to be expected as a result of

changing environmental requirements, the LOC of the service element to

be changed should not exceed LOC of SEMAXCHARGE as indicated in

equation 3.

Sffi'lce BernentMal 'ITsnanc& ccs: 1mBlmUiT) :: SQw.CI-A%t

..... Eqwr.ion 3

c. Reliability

Kan [2, 23, 42J proposes that reliability can be measured using two

metrics: defect density rate (OOM) and Mean Time To Failure (MTIF).

ODM measures defects relative to software size measured in lines of code

during a specific time frame.

DOfrrl4 =Defects

LOC ....Eqwnon 4-

The expected number of defects over a certain time period is important for

cost and resource estimates of the maintenance phase of the software life

cycle and, therefore, is rendered as a beneficial metric for reliability and

maintenance phase of the software life cycle [22, 23, 43]. Another benefit

of DOM is that it can be applied to general-purpose computer systems or

commercial-use-software for which there is no typical user profile of the



software. In a product line oriented approach, a generic assessment of the

domain (common reliability metrics) can be used as a building block for

reliability assessment of application instances in the domain.

MTIF measures the time between failures. Implementing MTIF for

general-purpose computer systems or commercial-use software, for which

there is no typical user profile of the software is more difficult than for

special-purpose software systems such as the air traffic control systems

or the space shuttle control systems. MTIF requires that the operations

profile and scenarios/service elements should be defined, the activities

and sequential occurrence in the software system should also be

provided. For generic system, this would be time consuming and an

expensive process to have to record the occurrence time of each software

failure at a high degree of accuracy for the results to be useful.

Bosch [1] described the quality attributes in terms of profiles and

associated properties. A profile is a set of scenarios, generally with some

relative importance associated with each scenario [1]. The different types

of profiles for each quality attribute are depicted in table 1.

Ouaity Asrocialed Profile/scenario

Performance Usage

Mainiainability Change

Reliability Component interaction.

Table l' Quality Profiles

24



The Performance quality is associated with the general efficiency with

which the system performs its functionality and, therefore, key words that

characterize it include: response time and/or usage scenarios. The

Maintainability quality is associated with how the architecture can be

affected by requirements change and therefore has change(s) scenario as

its main key word. Reliability is associated with components interaction

during operation and the effects of component error.

2.3.2 Product Line Software Engineering supporting tools.

As Product Line Software Engineering Methodologies continue to emerge,

so is their adoption in the development of automatic requirements tools for

a family of systems. A support tool is a natural consequence of industrial

practice if it is to become mature. This explains why systems engineering

and software development organizations are under pressure to construct

tools that would automatically generate requirements and even an entire

system code. A number of tools are, therefore, coming into existence as

natural evolution from methodologies.

2.3.2.1 Elicitation Tools

Requirements elicitation is an early process of the RE that tries to capture

the information and knowledge of the system under construction [12].

Figure 3 shows a typical requirements elicitation process, whereby

information needed to build requirements specification for a single system

or a product line model is normally elicited by domain expert with



knowledge in the problem or application domain (the processes and

products in product line engineering).

I\rw*•••-jon

of_Mit""

(PI, .....rtu-J
Recr llS

Figure 3: A requirements elicilation process

Use Cases have been proposed as an effective approach for PLSE

elicitation to capture product features (especially functional requirements)

for software systems [55, 56]_ Use cases allow structuring requirements

documents with use goals and provide a means to specify the interaction

between an actor and its environment [5]. The term actor is used to

describe the person or system that has a goal against the system under

discussion. There are two main actors namely the primary and the

secondary actor. While a primary actor triggers the system behavior in

order to achieve a certain goal, a secondary actor interacts with the

system but does not trigger.

26



According to Fantechi et al [56], a Use Case is completed successfully

when its goal is satisfied and is extensively described in the Use Case

"Description". Use Case descriptions also include possible extensions as

reflected in Cockbum's Use Case in Table 2 [56]. The "Description"

section is express in natural language sentences, describing a sequence

of actions of the system while Variations are expressed (in the

"Extensions" section) as altematives to the main flow, linked by their index

to the point of the main flow from which they branch as a variation [5].

USECASE#

Goal in Context

Scope & Level

Preconditions

Success End Condition

Failed End Condition

Primary, Secondary Actors

Trigger

I <the name is the goal as a short active verb phrase>

I <a longer statement of the goal,n context if needed>

! <wtTat system is being considered black box under design>

I <one of. Summary; Primary Task, Sub Function>
•
! <what we expect is alreedy the state of the world>

: <the state of the world upon successful completion>

l <the state of the world if goal IS abandoned>

i <a role name or description for the primary actor>

i <Other systems relied upon to a=mplish the use case>
!

i <the action upon the system mat starts the Use Case>

Description

Extension

Sub Variations

: Step

.2

3

Step

1a

Step

1

Action

<put here the steps of the scenario

from trigger to goal delivery. and any

dean up>

< >

Branching Action

; <condition causing branching>

<action or name of sub-Use Case>

Branching Action

<list of variations>

Table 2 TextJaI Use Case template [5]



Variations are described and specified by tags that indicate those parts of

the product line requirements needing to be instantiated for a specific

product in a product related document. The tags represent three kinds of

variability as defined by Fantechi in [56]:

i. Alternative, expressing the possibility to instantiate the

requirement by selecting an instance among a predefined set

of possible choices, each of them depending on the

occurrence of a condition;

ii. Parametric/Mandatory, from which instantiation is connected

to the actual value of a parameter in the requirements for the

specific product; and

iii. Optional of which the instantiation can be done by selecting

indifferently among a set of values, which are optional

features for a derived product.

An example of use Case in the Product Line Use Case (PLUG)

notation, taken from [56] is presented in Figure 4. The Use Case

describes the activities related to the submission of a project document.

They suppose that it can be possible to submit different two types of

documents: slides (in the .ppt format) or papers (in .doc, pdf. or .ps

format), variables (here V1 and V2) describe the variation points within

the use case.

28



Use e-NaIe: Submissioo at a clDaJment

PrilDaoy Aci<Ir: Ihe auhlr

Goal::~ and submission ata pmjed dcaJment

Steoftt;ay AdJlr: Projec(s web_

..... 5uo:cI!s5 Scenario:

1- The a'IIIo....rites a document 1lV1J of. cenait class}
acc:oomg lD fle!lV2l appRlIlrialE} bmat .om Ihe
!ibnissiDn cleadMe

2- AuIhor puts 1he doctanent en t!Ie project doament
~

EzlI!nsiofts:

ta. The aJ1hlr misses 1Ilo submissioo gMn dea<me:

AJ1!miId is _10 111. auIlarfrnm 1he web senrer momger

Vii; aftij1i:5:
~:1_SOO~ V1~

2-~

V2: 'I V1=11llon fie .jl!Il V2 pmmetrici~

else if VI=2 llen Iile.ciDc or iilo.pdt ... filo.ps1.

Figure 4: Example of a Use Case in the PLUC notation taken from [56]

The possible instantiations and the type of the variations is given within

the use case and the possible values are described with logical

expressions.

2.3.2.2 Seoping Tools

Domain scoping is an activity that helps determine the systems and the

system features that should be included in the system family [57],

t>ecause it may not be beneficial to include all systems and features in the

system-family. Most scoping tools have elicitation functionalities as well.

Examples ofscoping tools include TruScope [8] and PuLSE BEAT [39].

2.3.2.3 Verification Tools

Before developing a particular feature or component of a product, it is

important to verify that the system family supports all features defined

29



during seeping, that it can be easily instantiated for each of the systems in

the system family and that planned new features can be easily

incorporated [57]. Verification tools attempt to confirm the completeness

and consistency of new members of the product line. An example of

verification tool is DECIMAL [34].

2.3.3 Analysis of Product Line Software Engineering Tools

A thorough analysis of the product line software engineering tools reveals

that:

I. Most of the tools do not support the full life cycle of

requirements generation. They either focus on one or two of

the phases of requirements engineering such as the

elicitation, scoping or verification phases and

ii. Most tools are stand-alone applications that lead to

unnecessary time wastage, hinder communication among

stakeholders and reduce the retum on investment.

Tools and methodologies which support the full requirements

generation process while at the same time ensuring minimal

development time and increased retum on investments are still to be

researched into. This research work presents the Model Driven

Architecture approach to RE.

31.)



2.4 The Model Driven Architecture Approach (MDA)

The code generation expectation is not a recent development, what is

new is the recent interest in Model Driven Architecture (MDA) as a model

for code generation. MDA consists of three viewpoints namely, the

Computation Independent Model (CIM), the Platform Independent Model

(PIM) and the Platform Specific Model (PSM) [52].

The MDA starts with CIM which represents a model of the business that is

completely independent of any IT systems (structure and implementation

of the system are hidden, or possibly not yet implemented). The second

viewpoint, the PIM focuses on the operation of the system while hiding the

platform-dependent details, that is, an implementation-independent model

of the functionality of an IT system. It may use a general-purpose,

platform-independent modeling language such as UML The final

viewpoint, the PSM focuses on the implementation details of a certain

platform. It is a technical model of an IT system that considers

architectural constraints given by a chosen platform (e.g. J2EE, .NET or

CORBA).

,--------, I - - - ...
: Transtcrnan·-OI1 : Tf:~3r€'s 1

~u L-;-r-~_:_~;~;~-~,---Cod-"--.,
~~_ .._-----_.!~ Q

Figure 5: The flow of an MDA generator

The Model Driven Architecture approach aims at separating the business

logic in PIM from the underlying platform specific module/technology and

31



represents this logic with precise semantic models as depicted in figure 5.

The MDA assumes that the design already exists and represented as

elM. Given a requirements design in UML (Unified Modeling Language),

an MDA generator transforms the requirements into its equivalent code

based on its specific platform technology. The MDA is becoming popular

due to a number of reported benefits [3, 9, 43] such as:

L reduced cost throughout the application life-cycle;

iL reduced development time for new applications;

iiL increased return on technology investments (ROI) and

iv. rapid inclusion of emerging technology benefits into existing systems.

The MDA is not a RE generation and specification approach but an

approach for automatically generating code from a design, resulting in

quick system development and return on investment

2.5 RSPL as a tool for PL Requirements Generation and

Specification

Our approach to requirements generation and specification for product

lines is based on the Model Driven Architecture and supported by Kang's

Feature Oriented Reuse Method (FORM) to scope and elicit product line

features. The use of the Model Driven Architecture is based on the notion

that requirements can be automatically generated from pre-existing



domain information that has been analyzed, processed and structured to

suit a particular standard Requirements Specification Language. RSPL is

a contribution to RE with the following characteristics:

I. a seeping and elicitation tool for a family of systems;

ii. a specification tool for describing the requirements for a

family of systems; and

iil. an enabler for bridging the communication gap between the

software development team members, with particular

reference to software engineers and domain experts.

The RSPL approach, therefore, allows the separation of the interface logic

from the underlying business logic. The interface logic is the point of

interaction between users (domain expert, analyst and developer) and the

tool. The domain Expert's role is to define the domain boundaries

captured as domain features characteristics. The process involves domain

definition, characterization and scoping. The analysfs responsibility is to

identify and define individual product instances. A product instance is

defined by its business functionalities and domain-specific behaviors. The

developer's position and relationships with RSPL is to refine the

requirements into design-usable form. This is achieved by adding

perspectives that transforms domain requirements into "ready-ta-use"

requirements specifications.



The RSPL process is actor-driven, therefore, a portal-type interface to the

tool is proposed. Each user is associated with an actor use case template

that drives an actor-specific interface of the portal. In the heart of this

portal is the RSPL tool which transforms each user's contributions into

domain knowledge. The tool uses appropriate rules to transform the

knowledge into Requirements Specifications that are ready for a software

engineer to use.



CHAPTER THREE

3.0 MODEL DEVELOPMENT

3.1 Overview

A typical requirements engineering process involves all stakeholders

(customer, domain expert, analyst and developer), but it is mainly the

job of the requirements engineers to generate specifications from

specified needs. While there has been previous work in the literature

that attempted to develop automatic requirements tools for a family of

systems [1, 2, 29, 38], most are either scoping or modeling tools. They

do not generate specific requirements nor do they offer support for all

client types, thus leading to communication barriers among the

software development team members (Domain Expert, System Analyst

and Developer) and other stakeholders such as the customer. EXisting

tools are mainly designed with the System Analyst's knowledge in mind

with little consideration for the developer's perspective. Hence, the

need to delineate roles in the software development process.

We associate requirements engineers with the actual initiation of the

application development process which entails: eliciting domain

information, identifying domain features, and developing application

instances of the domain. There are three actors playing the

35



requirements engineering role namely Domain Expert, System Analyst

and the Developer.

The reasoning behind delegating requirements engineering to three

actors is that:

i. Domain experts are not expected to be familiar with the

software development process but are a good source for

domain knowledge infonmation [35] and

ii. System Analyst and tile Developer are responsible

members of the software development team who define

requirements for an application instance. But what a

System Analyst considers input to a given model or

component, the developer could regard as an output

element. This phenomenon which could constitute

communication barrier is totally avoided in our scheme.

The RSPL model automates the interactive construction of generic

product line requirements. The model consists of a tool for producing

specific textual application requirements. RSPL aims at bridging the

communication gap between the software development actors, thus

enhancing the requirements generation process. The tool is GUI

(graphical user interface) driven to enhance easier actor interaction and

has automated functionality for the different levels of actors.

36



The Domain Expert's role is to identify domain characteristics that

define and distinguish one domain from another. The role entails

interacting with the customers to identify user requirements. The

knowledge gathered during the interaction is stored in a Domain

Knowledge base for the analyst and developers to utilize.

The System Analyst role is to analyze the content of the domain

knowledge in order to identify product instances and their features.

During this process, all products that belong to a domain are identified

and their features defined. Features abstract a products characteristics,

functionality and relational constraints. Features provide system

analysts with a clear distinction of potential areas where reuse can be

applied. The Developer's role is that of tailoring domain knowledge to

suit his preferences whilst generating requirements. He chooses

specific requirements from a set of existing generic requirements.

3.2 A Model-Driven Requirement Specification for a

Product Line

RSPL posits that, given a domain knOWledge, it should be possible to

generate specific application requirements using various

transformational rules and templates. First, RSPL requires the user to

elicit, scope and store domain knowledge in the knowledge base. The

domain knowledge is generic in nature in the sense that it does not

reference any particular system implementation or technology. In other



words, it is based on a computation-independent model (elM) that

captures the information viewpoint of a target application or a

conceptualization of the application,

Second, actors using their expertise and experience, tailor domain

knowledge to suit requirements for a specific application instance.

Tailoring of reqUirements entails transforming the generic domain

knOWledge into specific requirements. Finally, requirements are then

generated using standardized templates, Therefore, RSPL adopted the

Model Driven Architecture as a pattern for generating prototype

requirements from domain knowledge.

.....•..............
• •
• Transfonnation •• •• •.....•.•..•........ ~

Domain

Knowledge

•••••
J

s-············· ..
: Interpretation :
• •• •...............•

••••

Figure 6: The Model Driven RSPL ArchITecture

RSPL defines three main components shown in figure 6, namely:

Domain Knowledge, User Perspective and Requirements component

The first component Domain KnOWledge stores all elicited and

documented requirements. These requirements are generic in nature

because they represent domain features, Secondly, we have the User

38



Perspective component, an actor-oriented mechanism for tailoring the

domain knowledge according to the actor's preferences to suit the

product whose requirements is to be generated. The third component is

generated automatically by interpreting actor-specific knowledge into

requirements specifications.

3.2.1 Domain Knowledge

The Domain Knowledge (OK) is a central repository that supports

documenting and processing of domain knowledge artifacts. Two main

processes are associated with OK as a knowledge base:

i. Elicitation and scoping of domain features, which involve

capturing of domain information and identification of a domain

scope i.e. the task of bounding the domains that are supposed to

be relevant to the product line [8]. It is a process of gathering

information; recognizing reusable assets and core artifacts of the

product line to form RSPL requirement metamodel. RSPL

Requirement metamodel is presented in figure 7. It is based on

the Requirement metamodel of figure 2. The RSPL metamodel

emanates from three interrelated objects namely Domain, Product

and Feature. Each object is explained in detail under the User

Perspective component in section 3.2.2.

39



ii. Evaluation and documentation of elicited features. This process

involves analyzing the impact of each identified asset in terms of

the risks it poses and gains it will provide to the product line; and

documenting the artifacts as relational objects.

?RODUCT
DOW,JN

fEATJJ:1E
L·

ID Srnng
Name: String
C:mmanaky: comm,maUr/
Vaiaticn: Variation

consists elf

Name: String
Descriproll String
Goai: Stnng
F~atJlrea Feature

productEntryC
rranagePmduc:O

( • Name S:rtng
:. 0 Des:rtllin~ Sir:ng

Goal Stnl1:
can r.a...-e: Praducr: P:':dlJC':

o:mainEmi)'C
-manageUD'1"aJ.nO

FeatureE1!}O
+manageFeiitrJ~sO

NFR

I

-----y--
r--=':-y-

I
Under

D~iap~errt

E1iSt1~g

Frocuc:

I
P:'" Cam::dac€

<E~,-,m&'~: on)
E..te-nscr

---tOo:,arJ
:;'~ema:,YE­

Man-:atcry _-I

<::~...:me~_:r,)
Tf~

'~li~ber

Ten
Au"::t<o;.;r:ter
C;,;r=r;CJ

ciis:iay0

rput Strr.'1
c'..:tpu: Strm~

=r.,,;:r.ci:t:cr. :::trinc
PCS7:CM:!icl' Stn~,;
T'7gqs,"E<B'h St!'Tf"J"
A-rrib..:le:s: StJm~ -
7!~s :fPl; i

SER\,::E

':CME"itryO
~dfIageCJMC

:D St,~ng

OpernmgEr1'i~ SI~"l"Ig

:0 String
Name Stl'ir:c
Cesc~pt.1Gn: ·Stntg
'7",:e ""rpf:
Ce31\iitJalue. Stir-:g
rea,;,,:reiO S,~ng

~.bme String
DeSCl1ptlcn S:rrg
SiitsrySt"ai:~~: 5tnl19
aeit~GlJJ-aIRescanse_-Strnq

NFP=mryC
-ma:-ageNFriO

bE=.:,;;\e"'_"s'-'O:"'--_-FdiS='P:::Ia::.}'f::..J .1 c --'
VAPEmr-p:,
~aragJ:'../A.R(!

Figure 7: Product LJne ReqUIrement Metamoctel



3.2.2 User Perspective

The User Perspective (UP) component is a portal-type interface in which

the requirements elicitation, scoping and specification take place with the

aim of gathering the expert knowledge of the application domain and

specify requirements. UP implements the tailoring of the OK information to

suit the application to be developed. Tailoring activities include requesting,

manipulating and accepting user-type data pertaining to the problem

domain.

There are two main templates designed for elicitation and scoping of

domain information: Domain Template and Product Template. The

templates originate from the Domain and Product objects in the RSPL

metamodel (see figure 7). The templates define features of the domain or

product in terms of domain-specific or product specific services. The

techniques used in the template indude questionnaire elicitation approach

that consists of both dosed and open-ended questions. This technique

enables suflident information to be captured and allows flexibility. Close­

ended questions are more specific and take up less time than open-ended

questions. The questionnaires are set up as Textual Use Cases as

suggested by Cockbum [39] and Fantechi et al [55] to elicit domain and

product information.

41



3.2.2.1 Domain Object Template

A domain template provides the mechanism to collect information

pertaining to domain characteristics and constraint relationships with

other domains. The essence of capturing domain characteristics is to

specify information that uniquely differentiates one domain from the

other. Figure 8 is an illustration of the RSPL domain template.

Naturally, domain information includes the domain name, followed by a

short but comprehensive narration of what the domain entails and its

expected features. The other elements are goal and objectives the

domain is pursuing; an actor who is either primary or secondary

depending on the role played; variation points expressed by using the

term Extension; and variation status (optional, alternative or mandatory)

captured as the VariabiJities feature.

EJhribiiiK:

'i'arilln1ities:

~ that~1y iIe1Itifa the dcmain

SImtb1ll cmnprhencM Ilamlimofwllo1 the dcmain enWJs aM

its apectad feoIl1IIllS

ADlF.blIIimeDl oftheplinCOIlleIl iflleeded

Main_ of the domain

Seco!daly-=

'i'erialim poiIlrl

'i'erialimStatuo

Figure 8: Domain Object Template

42



3.2.2.2 Product Object Template

A product template elicits the features of a product in terms of its

functionality and feature relationships. The template is derived from

defined product features. An RSPl product template consists of elements

such as:

L A list of product characteristics: These include product

identity (ID); product name, product type, goal, actors to

name a few (see figure 9.0). The product type determines

the category of the product. A product can be in anyone of

the three main categories: (i) a product already in existence

within the family or domain; (ii) a product that could become

an instance of the product line, implying that it does not exist

in the domain but is a viable product line candidate; or (iii) a

product that has been identified for future instantiation in the

product line, that is, the product has been acknowledged in

the domain but has not yet undergone development.

11. A set of functional requirements: The behavioral

characteristics of a product are elicited by using the Service

property on the template. Each service property is itself

described on a Functional Use Case template (see figure

9.1). Associated with a service are other features such as

event trigger, which activates the use case; and pre and post

43



conditions which provide the state of the world before and

after the use case is executed.

iii. A number of variation points: Variability in a product is

expressed as the presence, absence or substitute of Service

features. Therefore, each product instance has variation

points called extensions. An extension is a named service

feature: optional, altemative, or mandatory. An optional

feature may be present or absent. An altemative connotes

the existence of a substitute and mandatory implies the

features must be present in the product instance.

IV. A set of quality constraints: The Product template has a

Constraint feature, used for specifying possible constriction

on the product. Typical constraints include quality attributes

such as performance, reliability and maintenance

characteristics of the prodUct. Each quality attribute is

specified by using a Nonfunctional Use Case Child

Template. The template captures quality characteristics

using features called (i) Notion and (ii) Behavioral

Responses features (figure 9.2). Notion is a brief description

of a product's NFR. The behavioral response specifies the

implication of each use case in the Product using a set of

predetermined profile scenarios from Bosch [1] such as



usage scenario for Performance and change scenario for

maintenance requirements.

v. Relational Constraints: If we assume that the domain is a

universe, then products constitute sets in the universe.

Normal set relationships are defined between products, the

features from which products are composed and the

services that interact to implement a feature. A formal

description of the relational constraints is outside the scope

of this dissertation.

Om r ;•

E

V..,,;-! T .

Shod:aut 1: .... n I· O'T af-.t tia

A laap< ....__oflbo ~al""""""'"if__

SI d"'J l,J8G

Figure 9: TextuaJ Product Object Tempiate



u..e-m.

u..e-_

-
E

v; • J z·

Sed...,usm.

bpau~

V~'Jpe.md .,."

Figure 9.1 Functional Use Case Child Template

Figure 9.2: Non Functional Use Case Child Template

3.2.3 The Requirements Generation Process

The Requirement Generation process is dictated by both the domain and

product templates. When an actor creates a product instance by tailoring

domain and product features, the requirements generation process is

activated. The requirements generation process consists of the following

steps:

I. Selection of a template in the domain: An actor triggers the

requirements-generation process by selecting a domain from



which requirements are to be generated. Each domain is

characterized by one or more generic product templates.

RSPL presents these generic product templates to the actor

who makes a selection of one of the templates.

ii. Selection of one of the listed instances or creation of a new

instance: RSPL retrieves a number of existing product

instances that are related to the specific pre-selected product

template, from domain knowledge. The actor chooses the

product instance that meets his current requirements or

creates a new product instance if none of the available

instances fits his current wishes, a new product instance is

created by tailoring the domain knowledge and identifying

variation points.

Hi. Retrieve the corresponding data set from the Domain

Knowledge: Once an instance is selected or created, RSPL

retrieves the data set corresponding to that product instance

and maps it to the RSD document features.

iv. Populate Empty RSD with data set value: Each time a data

set is selected from the Domain Knowledge, the RSD as

reflected in figure 10, is automatically populated with

corresponding data set and becomes the generic reference

for prodUct instances within that category.

47



The deliverable from the for-step process above is a requirements

specification document (RSD). An RSD is, therefore, a union of both

specific domain and product template features that is automatically

generated during the requirements generation process. Moreover, an

RSD is made up of five parts namely (i) an Introduction or epilogue

section which presents requirements overview of the application instance

to be developed; (ii) Functional Requirements section, which outlines

features to be reused for each implementation, without being re-invented

in each separate implementation; (iii) Quality Requirements section that

presents the NFR properties; (iv) a variability section, what and how

services will vary; and (v) a Glossary section of domain terms. Before an

actor invokes the requirements specification process, the RSD document

parts are empty. Each of the parts is filled in once the requirements

specification process is completed.

'!.X
a. Edt",.."~ T«i5 HiIIpo ~ 0 ~
~~T~ ....

StrTim· . Qm'y!ir«

3.bt!r ~""~_p1Od&Jcf~

Stgpt Q • VrYiJWy

.$ke:~ poirJes ft:iic=Dr

f cP n
Pu 2'rwII' '*29"WT

48



Figure 10: A Requirements Specification Document

3.3 A Web-Tier Application Framework for RSPl

A web-tier application framework design, based on the Model-View­

Controller (MVC) pattern has been adopted in this research with a view

to make the tool interactive, robust and scalable. A web tier application

framework consists of three components: client tier, middle tier and

information tier.

The client tier models the interaction with the user. It communicates with

the middle tier via standard protocols and sends and receives standard

data formats that meet user's needs. Clients supported by RSPL range

from devices running standard Web browsers to pervasive devices such

as PDAs.

The middle tier includes standard-based web servers for interacting with

the client tier and executing business logic functions. It collects and

assembles web pages composed from static to dynamic contents and

delivers them to the clients. The Information tier is the data store for all

application artifacts such as existing and new internal applications,

services and data.

MVC has been recommended as the architectural design pattern for

interactive applications that provide a host of design benefits such as

.+9



separating design concerns from content presentation of the web-tier

application framework [19J. MVC separates design concerns from

presentation content using three parts namely the Model logic

responsible for handling business logic and functionality of the

application in the middle tier. The MVC View is designated for content

presentation to different client types. The Controller logic processes user

inputs and requests by communicating between the information and

client tiers. Table 3 illustrates how RSPL maps to the features of MVC

and web tier framework.

RSPL

Domain Knowledge

User Perspective

wc

Model

VIew

Web tier

Information tier

Client

Requirements Generator Controller

Table 3: Mapping MVC features to RSPL

Middle tier

The RSPL Domain Knowledge component is mainly responsible for

storage and documentation of domain artifacts that resulted from

elicnation, scoping and specification of requirements as well as business

functionalities from the domain.

With respect to MVC and the web tier application, the Domain Knowledge

part maps to the Information tier and the Model component of MVC as

they both signify the business logic, or application functionality and data

storage. The RSPL User Perspective component is equated with the View

portion of MVC as they both represent the presentation logic that provide

50



the interaction interface between an actor and the tool. Actors make their

contributions to RSD construction (elicit, scope, and tailor requirements)

through this component.

The RSPL Requirements Generator processes actor input and requests

and, therefore, maps to the Controller part of the MVC pattem. In MVC,

the Controller communicates with the Model to process View requests,

while in RSPL, the Requirement Generator communicates with the

domain Knowledge to tum actor-perspective into concrete requirements

specifications.

CHAPTER FOUR

4.0 RSPL TOOL DESIGN AND IMPLEMENTATION

4.1 Introduction

This chapter provides a typical illustration of how the presented model

could become the heart of an interactive, web based tool - RSPL. Initially

the model is analyzed to identify and determine tool requirements. The

analysis uses object-oriented techniques to model the tool requirements.

The design is then presented to depict how the tool is to be implemented

on a web tier application framework.

51



4.2 RSPL Tool Decomposition

The purpose of this section is to obtain requirements that necessitate the

development of the tool. A system development life cycle approach

supported by object-oriented analysis techniques was adopted to

facilitate the identification of requirements. The system development

cycle consists of five main phases namely Requirements Gathering,

Requirements Analysis, Design, Implementation and Testing. These

phases are described in detail in the subsections that follow.

4.2.1 Tool Requirements Definition Phase

RSPL identifies three actors who interact with the tool. The actors

include the Domain Expert responsible for elicitation, the System Analyst

responsible for scoping and the Developer responsible for requirements

specification. Based on this preliminary requirements gathering, the tool

implements the following key functionalities (see figure 11):

i. Logon Management: for identifying the actor currently using

the tool and maintaining their profiles;

ii. Requirements Elicitation: for eliciting domain information

from business operating environment;

iii. Domain scoping: to identify commonality and variable

features from elicited and analyzed information;

52



iv. Requirements specification: for tailoring and customizing

requirements or features to suit actor perspective;

v. Requirements generation and

vi. Administration: to allow actors access the information they

need, e.g., search, suggested content, links, etc.

Lagon

Elicit domain
inform.ation

Identity and
scope features

Figure 11: RSPL Use case

53



4.2.2 RSPL Requirements Analysis

4.2.2.1 Lagon

The Logan use case is responsible for ensuring that security protocols

are observed such as confirming that the right actor is using the system.

Each actor is assigned administrative rights depending on the role being

played Le. domain expert, analyst or developer. For example, a domain

expert whose role is eliciting information from the domain environment

may not be presented with a requirement specification web page but with

a domain elicitation and scoping page. Administrative rights require that

an actor logs onto the system; and provides his particulars, such as level

of expertise (job title/actor role), usemame and password. User name

and password are checked for authentication purposes. Once

authenticated, an appropriate message is sent back to the actor stating

as either a success or a failure in the login status. If access is granted,

the tool directs the actor to the respective web page that performs that

functionality or transaction. Alternatively if the logan failed the actor is

requested to try once again.

Figure 12 shows a sequence diagram of a logan use case. The flow of

time is shown from top to bottom, that is, messages higher on the

diagram happen before those lower down. The horizontal boxes are

instances of the represented classes, and the vertical bars below are

timelines. The arrows (links) are messages - operation calls and returns

54



from operations. The hide and show messages use guards to determine

which to call. Constraints on the message are presented using square

brackets [] and a message is sent only if the constraint is satisfied.

I I

I----,~f-.---_r-- -

, ...cuUQ=y
(quay string to wo.
us_end
password with database)

41: .

41:........•.............

[101!in succaul\>lj '1lidoO

r:- efWdJ show()

Figure 12: A sequence diagram far the logln use case

The messages are labeled with the operation being called and

parameters are shown. An RSPLDatabase class allows the queries to be

executed against the database. When a query string is sent the

ResultSet of the data is retumed. The administrator administers the

portal to ensure security issues are adhered to. He is to guarantee that

only specific users are able to access the tool and use specific web

pages. A single sign on approach is adopted to allow users to log on and



have access to the tool once. The tool then passes their authentication

sites to other sites so that no logging in again is required.

4.2.2.2 Requirements Elicitation and Seoping

Requirements elicitation and scoping are interwoven processes,

meaning that they depend on each other. Requirements Scoping

depends on elicited information. Elicitation is a process in which actors,

domain experts in particular, identify and document new or improved

domain features for the purposes of acquiring sufficient and

comprehensive domain knowledge about the problem domain. Domain

scoping aims at selecting, based on the results of the elicited

information, the systems that are included in the system-family and,

secondly, what features are shared in the system-family [57). It helps to

describe the problem domain features, that is, system functions,

interfaces, business rules, forms and reports, system performance

factors, and quality attributes. Because the two processes are dependent

on each other, a single sequence diagram was constructed in figure 13.

The flow of time is shown from top to bottom. meaning that elicitation

takes precedence followed by scoping. An actor triggers the tool when

he/she requests to define or elicit features. When an actor submits

defined features during elicitation, the tool requests the actor to confirm

the defined features. Once confirmed, the features are documented and

56



added as new domain infonnation. During sroping of the domain, elicited

information is retrieved and analyzed to identify reusable features. Once

identified. features are checked by the FeatureManager as to whether

they conform to business integrity rules before documentation as domain

knowledge in the RSPLDatabase.

Oomatnr:;aLre

Actor

;::"'"'I4rmec GCr:'a'rFeatlf?i
11Cet;1

I

I
~,

~
I

,I
I

[I1KCmrmec DCiT',atnFe2.lrei
:::r!0if! ,:

•

..

e:'-e:,-~'~~CE

_,':lL:eri ::,r; t: :rsef.,
Ccma,rFean..re:

:::"B';~i ""Lies S-.£:cs:f'J;' ~j:C

~

=:'_:::~~'_~C2

:;1.E/"0.":J:C :r5E:1
::::;;:5-: ;e:::L~~S; ..

Figtll"C 13: Elicitatlon and Seeping Sequence Diagram

4.2.2.3 Requirements Specification Use Case

Requirements Specification is an actor as well as template-driven

process. An actor triggers the specification process once he/she



requests to tailor the domain features to generate specific requirements.

The tailoring of features takes place using the FeatureDialog which then

communicates to the FeatureManager, requesting actor specific

requirements. The FeatureManager retrieves the feature datasets from

RSPLDatabase, and via FeatureDialog, presents them to the actor who

makes a choice of either to select one of them or to create/add new

features. Figure 14 illustrates a Requirements Specification Sequence

diagram. RSPL will then request the confirmation of selected features. If

confirmed, RSPL slots it into the appropriate RSD template section

otherwise those features are removed.

il

I

~
In, nl.~n· .=,.,

I, I' I I' (l""Y """i '"
[ I ' ,....,..-'P"'fji). I __

f-----.~I Sped,.- i ....cu-)

1
1
' Ch' H_l I i n

I I ' '

1 I LJ ,'~JFP (

I i -----4-----~~',, I

i I ..···.+.j
, I I I I ;

I[--=-Jj 1,-,- l~;r-l i I
r---t I,

i --I!.-J I i
L w L..---1

58



Figure 14, Requirements Spedtication Sequence diagram

4.2.3 Tool Design

The six use cases were repackaged into four tool capabilities that must be

provided in order to accomplish the RSPL goals. These capabilities are

shown in figure 15 as: Domain Browsing, Editoring, Requirement

Generation, and Knowledge Base.

Ji ---
•

'''0" f
\I.,;·h
~.J--./.""------

Editor
r-.om.
~

Do-.
s-.

I+-< ~eII1

n. a--
r.....-"

~s..,

Figure 15: RSPL Tool ArcMecture

4.2.3.1 Browsing

The Domain Browser provides the interactive user interface between an

actor and the tool, making it possible for them to make requests such as

viewing and requesting information from the knowledge base. Actors view

the application output in the browser and click hyperJinks and form buttons

to interact with the application. When an actor makes a request, the

59



browser communicates with the Requirement Generator to retrieve data

from the Knowledge Base, i.e. Domain Knowledge.

Each web page (servlet) employs an XSL transformer to generate

appropriate presentations for each client type. Each client type requires

that the application have a separate set of XSL transformations for it to

deliver the content.

4.2.3.2 Editing

The Editing capability provides the necessary software support for tasks

such as elicitation, scoping and tailoring of domain information to generate

specific requirements according to the respective actors perspective and

preferences. The Editing capability supports the following operations:

i. Addition of new features: creation of either a new product

instance, or simply incorporation of additional features;

ii. Deletion of a feature: removing that feature from the domain;

iii. Updating a feature: making changes to current or existing

features to ensure that they have current or up-t<Xlate

information and

iv. Searching: finding specific features in the domain

knowledge.

60



4.2.3.3 Requirement Generation (RG)

The Requirement Generation process requires that the content of the

knowledge base is transformed into the view presented to the user by the

domain browser. The process consists among other steps of querying the

Knowledge Base and retrieving requested specified requirements. The

web tier application framework enables RG to have a number of web

components and extensions such as Enterprise JavaBeans (EJB); Java

Database Connectivity for accessing database services; and support for

creating, parsing and translating XML documents.

Figure 16 provides a detailed architecture of RSPL, illustrating how it

relates to the web tier-application framework and MVC. Further

explanation is provided by Deitel et al in [58]. One of the supported web

components are Java servlets to provide most of the user interactivity

features. The Domain Knowledge component and Requirement Generator

are supported by the enterprise JavaBeans (EJB) components provided

by web applications server. The figure shows how different clients

communicate with the web server which forwards the requests to the

servlets running in the application server's servfet container. Each client's

request is transformed using XML Stylesheet Language (XSL)

implemented at the presentation logic. The XSL processor allows the

actor to take the abstract semantics of an XML document and transform it

into a presentation language suitable for the client type (for example WAP

61



and i-Model clients). MVC makes this possible by adapting the new client

type to operate as an MVC view.

Oi=.tTu

\t-'AP i-mode Web
Oi=, Oi=, Bro.....-ser

•
I

Middle Tu 1
I Web Server

t t t
Setv:lcr Container

XSL Tnnstutrne:I" XSL Tnnsio~r I XSI. I
('W"IJ") tdn:.IJ.; I Tr.lfl~i()1'TIlLT

(XIO'\.fi.;

t t i
x:iL ] ~ ~

G:-5errlet G I

Em C(mc:uner

I( 'JE ) I~ r;-;;;I
~ ~ :

t JDBI':

InfonnorionTu I

~5PLRDB\f0

Figme 16: Deiailed MIle architecture of RSPL Tool

View

Controller

Model

RG is a stateful session EJB that represents an actor's specifications,

stored in an RSD template. The RSD stateful session EJ8 manages the

actor's specifications and is the primary RG component in the RSPL tool.

62



This is because sometimes actors browse through the tool and add

features to their RSO, only to discover later on that those features do not

meet their requirements. Rather than storing such an RSO, the EJB

container removes the RSO EJB instance from RG. RG also implements

the application's presentation logic, making it possible to present content

to different client types.

4.2.3.4 Knowledge Base (KB)

The Knowledge Base represents the information tier logic, responsible for

data maintenance of elicited and scoped information as well as generated

domain artifacts. KB supplies the feature and function of an object­

relational database to RSPl applications that include querying and

updating access to database information through EJB using Structured

Query language, JAVA SQl and JOBe interfaces.

KB provides logical database description, i.e. the schema, used to

describe and specify the artifacts and the relationships among them.

Artifacts in this aspect include entities or classes, attributes and their

relationships. It also provides a specific view of the data item types and

record types to be used by an actor. The KB consists of a catalogue of all

data types in the Knowledge Base that is used to document and manage

domain vocabulary. A domain vocabulary gives the data type's names,

definitions and characteristics of each domain artifacts. The adopted web­

tier application framewori< design enables RSPL to separate design

63



concerns from its presentation and control logic by having three

packages: Servlet, Model and EJB. The different MVC components Le.

Model, View and Controller are shown on the horizontal top row. The

RSPL packages are indicated vertically from top to bottom on the first

column in Table 4 shows how each RSPL package maps to an MVC

component.

64



IP800geIMVC I Model View InIefface Controller
II I,

ISem XSL

I
Xalan and Xerces XMLServJet

XSL Transformer

Register and Login

Add/Remove and Update

SearchNiew

RSD (Requirement

Specification Document)

Domain

Product

Fealllre

Service

Actor

EJB RSD EJB RSD Remote and RSD Home

Domain EJB Domain Remote and Home

Product EJB Product Remote and Home

Fealllre EJB Fealllre Remote and Home

Service EJB
Service Remote and Home

ActorEJB Actor Remote and Home

Table 4 RSPL tooi pad<ages

65



CHAPTER FIVE

5.0 RSPL TOOL CASE STUDY

5.1 Introduction

The goal of this chapter is to demonstrate how the RSPL tool was

implemented by transforming artifacts from analysis and design into an

executable system. The content is a follow up to design and

implementation reported in chapter four. An e-Commerce domain has

been selected to demonstrate the working of the tool.

5.2 Case Study: Generation and Specification of

requirements for the E-Commerce Domain

5.2.1 Rationale for an E-Commerce Domain

E-Commerce is the means of selling goods and services on the Internet

in a digital format. The increasing demand of E-Commerce Customers'

expectations requires software engineers to have tool support that will

help in the provision of timely information and services. Wierling [601

observed that E-commeree development environment involves shorter

release cycles, higher quality releases, and ever-changing end user

demands. To this effect, the tool support becomes a necessity in meeting

customers changing expectations. This case study is presented as an

online web store consisting of two main product categories namely, the

66



ordinary online web store and the mobile web store. Each product

category is differentiated into three different instances depending on the

number or level of features. The instances include:

i. Mini Web Store (MWS) features: These are necessary

features that are required for a web store to be functional.

MWS online web store will have two minimal features:

Catalogue Management which includes controlling and

displaying product range; and an Ordering System

responsible for placing and processing customer orders.

H. Standard Web Store (SWS) features: These are average

features that include minimal web store features and

additional features that offer differentiated characteristics.

SWS online web store category will implement Catalogue

Management; eSales Management which involves orders

and billing management. reports generation and analysis.

marketing and advertisement though banners; and

Procurement which includes handling inventory and

integrating transaction between buyers and suppliers either

by event notification such as SMS or email.



iii. Oeluxe Web Store (OWS) features: These are specialized

features that include both mini and standard web store

features. Compulsory features implemented will include

Catalogue Management; eSales Management; Procurement;

Customer Relationship Management, ensuring provision of

customer self services and direct marketing using PDAs for

subscribed customers; and Website Management to handle

content layout, web load testing and functional testing.

This case study looks at the possibility of RSPL generating specific

requirements for the SDLC actors who intend to provide On line Web

Store services for the tourism industry sector.

5.2.2 The Portal Interface

The Domain Browser provides an interactive interface between the actor

and the tool. Figure 17 presents a prototype of an RSPL portal interface.

Links from various tool sources (other web pages) have been

consolidated to provide a single portal entry access to information. To

ensure that the tool is easier to use, actors are provided with a

walkthrough link about the tool and a tutorial that proVides them

necessary assistance with using tool functionalities.

6R



RSPL-

W.-_RSPL.l.D

is l!. first rdea.se oithe RSPL tool.r-==.ems ere stillbemgmade.

o start u.s:ing tha toa:1.login.in by c1ilr::i::o.g her'!.

cue of UJ.Y euors,. report them by sending
an e:me:i1 to sarsh ka..band@ytilioo_COttl until
et..u..y 2006.

F;gure 17: RSPL Portal Interface

5.2.3 User Authentication

User authentication is a process of confirming each actor's information

before using the tool. An actor is required to log onto the system and

provide hislher particulars such as level of expertise Gob title/actor role).

usemame and password (UserlD). The system then checks whether the

actor exists within RSPLDatabase. Figure 18 shows the scenario of a

logan session.

Toell.D

Usulf__ ~

U_ID 1=;;;;;;----

Figure 18: RSPL Login Page

69



5.2.4 Elicitation and Scoping Interface

Requirements elicitation is carried out by the domain expert who has full

understanding of the domain in terms of the stakeholder needs and

possible environmental changes. Requirement templates for eliciting and

scoping are structured to capture domain features such as domain

name, its description, goal and actors. A domain template snapshot that

elicits elementary domain features is presented in figure 19. While figure

20 elicits and scopes behavioral features, figure 21 elicits quality

features.

omJllef'Ct

~mCmdut E-G' .pplic.D~~')lIllIittlin this: domain

~Adm ~..mti

co.: Adcr Pt1lliCII PlIMder

Figure 19: Domain Template Bicilation

70



5.2.5 Specification and Generation Interface

The model that drives this process is domain knowledge derived from

various domain sources such as actor perspectives, domain vocabulary

and knowledge base. Each source is a dynamic content repository

corresponding to a web mini application on a portal server.

The requirements specification process requires that an actor selects

features from predefined domain knowledge. Figure 22 shows an actor

specifying the domain types, which in this case study, is the e-Commerce

domain. The different product instances that characterize the domain are

displayed in figure 23 and the actor makes a choice of deluxe web store

that offers specialized services.

n-aT' c [:ai~ -.. J5 1

~. AboutRSPL Take atutonu. Pant. Ent.

~........dLo<o~Please choose a domain namej--;;;;;;­;.::::::.:
:3

I
Figure 22: Domain Template Specification

= m $•

Please choese a product instanceF... -......... ::3

_______"i~~ L
Figure 23: Selection of a product Instance

72



Automatic generation of a deluxe Online Web store features are reflected

in figure 24. The actor is then allowed to specify product features as per

product requirements. Any selected feature can have sub features that

also require specification, for example, figure 25 shows sub features of

figure 24 of the selected feature. If no further sub features are found, an

RSD is then automatically generated. In this case, a choice of Layout

Maintenance is selected although further choices can also be made. The

Layout Maintenance feature has no further sub features to be specified.

This allows the automatic generation of abstract semantics in figure 26

and a partial RSD in figure 27.

- ...-

.Sal••~...ag...._

Custo......R_",pM~(CR"")

W.bstle"'_ag_

-
Rgure 24: Feature specification

- -:':":=:.==
~"'bmQR'5'1 Tap-u· ..~~

Plea•• c.hoo••• lW_UN _Ca

i? LayoutMeM'lten...ca

r SearchEngmeRegllJtratlon

C OornalnNarnaS.wp

C ErnaotSetup -
FIQure 25: Sub Feature Specification

73



::i-""" '!:; • ~ f.~ ~~ j4rAAi.U
1=.1 ".rs:Lon-"~~.O~?>

<lDCC'!'"'/P!': .eb~cq:..e-rd.!:l:ul-oeU1 PtnU.IC ·-IJSU 3yst......s, I:ne_/ID'!'1> liiebLog:Le S.1_0 ~ F

"ilolc.::;:..~- ;:-dbm.>!-n" ..n>
<F';c:-n!.::o.e><- ;-~-Jl-r.=~>

<-:'llc':"e-n=e>'D~fc'<=bl,,-n=,.:>
<,,~t:.-:!.!::oU":~-::~;::>

-< ..bJ aC"':- ~,;,..;-",,>

<1:: .... :::- ~=_;!.>~ b .. a...",- =,.':':i>
<cir:"",- :",~<=r..>'11.... ' < ~~,,-::o_ =..,,;l>

-< ob:e<;,,:-.2...l.:a>
<cb: ,,<;-:.-1::.:>.<;>

<te.. .,-::..e':'~>d.5CriptiaD<'Dear.-:::.e~c>
<.:ib:::,,- o:l-,=r>'De5Cripciou'<_ ~"=.!I-.:el=>

- 0:': e-:-:'- _l..:.Jl>

<hell::- : ... ,,':':i.>g0&1.<. be..c- !.i.._::z>
<ci~:::",-:~lu:r>·GoaJ.·<_~=Ss-:c:~~

ob] ,,<,";- :":..nil>

<cb) ..::~_-l::.:u>
<oell:::- ~~'::i.>eon.=&i.nt=ll< DII! ..r.- :':'l!~d>

<"1::",,,- :Jl..:=.r;>'Cons-aai=-< ::z.t.m,,-colo.=r>

<:-0) "e-:.-:::.:-.i>
<l>""".-=:L!!':':I>~ =....r::-r:..,,_:i>
<o:ihm<o-:-'.l--",--,>'a-'oC d~,,-- D.=r.>

< 0'",-"",,-1 ... :-,,->
<, .,:,r:LD'-'-":"-"'4~

oC=:":-::l"=-~':""?

<'i::L..-:lCe.->

T_t_ ... ~

Figure 26: A partial metadala representation of the Entity Domain.

UOU1iiailBsn:mrrA1IIIIJOC1DlDTIIJIP.U.D

!1!l! ~l r" .!lJl=! Pm. En

_.olaililcoll__......""!'n

.. ~ClXDCIim

w..w~
~!m,..cn1"! eae:dt::P.Ji1
t~~

Pt"",,,,",,,

me "'liltmlS

wsur c Jh !. !itjes:

Figure 27: A partial RSa for the Online Ecommerce Application

74



5.3 Evaluation of Result

The development of the RSPL tool using a web-tier application

framework and a model--driven architecture made it possible to

implement a tool with the following functionalities or capabilities:

i. Tool support for requirements engineering tasks such as

elicitation, scoping and specification;

ii. Generation of requirements metadata during product

requirements specification phase such that its equivalent

metadata is automatically generated without the actor's

efforts and

iii. Support for mobile client types using J2EE platform



CHAPTER SIX

6.0 CONCLUSION AND FUTURE WORK

6.1 Conclusion

As software development moves from a single product development to a

family of systems, requirements engineers need to rethink new models for

tool support. The tool support is an essential part in software development

as it (i) decreases time to market by automatically generating

requirements or code (ii) decrease errors due to limited human

intervention (iii) increases return on investment by decreasing overhead

costs. The Model Driven Architecture (MDA) benefits seem to provide

solutions to software engineers RE problems. Although the MDA benefits

have featured in application design and implementation phase of system

development, this work extends the MDA benefits to the requirements

phase as a solution to tool support for product line development. This

research work addresses tool support concerns by proposing a

requirements engineering model (RSPL) for product line software

engineering.

The first objective was to construct a model to support automatic

transformation of domain features into actor-specific requirements.

Following the Model Driven Architecture principles, a Requirement



Specification Model for a product line (RSPL) based on three constructs

(i) Domain Knowledge (ii) User Perspective and (iii) Requirement

Generation was formulated.

It has been shown that the Domain Knowledge component is a

centralized repository that does not reference any particular system

implementation or technology, but is responsible for capturing and

documenting the information viewpoint of a target application or a

conceptualization of the application. The study further shows how through

the User Perspective component, actors are able to tailor domain

knowledge to suit requirements for a specific application instance using

two main templates (i) domain template and (ii) product template. The

tailoring of requirements entail transforming the generic domain

knowledge into specific requirements through a portal-type interface.

Requirements are then generated using standardized templates through

the Requirements Generator component. The requirement generation

process is dictated by actor specific requirements, specified using both

domain and product templates. The generated requirements are then

presented to the actor in a requirements specification document.

The Second objective was to provide a reusable implementation of the

model for different client types. This was achieved by adapting a web tier

application framework which provides interactive applications, multi-user

capability (support for different client types) and provision of a host of



design benefits. The implementation is achieved using an e-Commerce

application domain case study which demonstrates how the RSPL tool

was implemented. Moreover, the tool offers guidance and active support

to novice users and those from different background, through tutorial and

proposing various kinds of links automatically.

The RSPL tool is not a full feature tool like Holmes Tool [61] but it serves

the purpose for which it is designed. The underlying model proves that a

model-driven software requirements factory is a future possibility. A true

factory will allow actors to play specialized roles in the production line as

RSPL has demonstrated while delivering an automatically generated

finished product.

The tool does not have a validation capability but this can be plugged into

a production version. It however demonstrates that both requirements

artifacts and design artifacts can be stored side by side in the knowledge

base for collaborative update. Any part of software documentation can

then be generated just as in the case of requirements.

6.2 Future Work

The RSPL model was not designed with specific security, scalability and

performance quality of service in mind. For it to be used in a production

environment, design criteria for the Quality of Services issues must be

evaluated first. The model does not also provide validation capabilities

essential for checking requirements completeness and consistency. A

~8



decision model that flags requirements inconsistency and dependency

constraints based on the approach by Feather in [591 can be adopted

before introducing RSPL to the production environment. These aspects of

the research are deferred to the future.

Another weakness of current RSPL tool implementation is that while MDA

and MVC architectures provided opportunity for reuse, this would have

been enhanced by using portlet technology to structure the portal

implementation. With the advent of portal technology API and SDK, all

future versions of this tool will take advantage of the extra modularity,

orthogonality and maintainability that portlets present.

RSPL has been designed with multimodality in mind, however, the model

should be enriched further in future to enable concrete extensions for

mobile clients either micro-browser or operating environments.



REFERENCES

[1] Bosch, J. (2000). Design and Use of Software architectures:

Adopting and evolving a product line approach. Addison Wesley

Professional.

[2] Bowen, B. J. (1978). Are current approaches sufficient for

measuring software quality? ACM SrGMETRICS Performance

Evaluation Review, vol.7, Issue 3-4, pp. 148 -155.

[3] Brown, A. (2004). An introduction to Model Driven Architecture Part

I: MDA and today's systems. The Rational Edge: Copyright IBM

Corporation. Available at http://www­

128.ibm.com/developerworks/rationalllibrary/contentlRationaIEdgel

feb04/3100.pdf Date last aceessed November 2004.

[4] Bryant, B. and Pan, A. (1991). Formal Specification of Software

Systems using Two-Level-Gramma. COMPASAC'91 15th Annual

Intl. Computer Software and Applications Conf. pp155-160.

[5] Cockbum, A. (2001). Writing Effective Use Cases. The Crystal

Collection for Software Professionals. Addison Wesley.

[6] Cohen, S. and Northrop, L. (1998). Object-Oriented Technology

and Domain Analysis. Fifth Intemational Conference on Software

Reuse (ICSR'98), pp86.

80



[7] Cox, K. (2000). Fitting Scenarios to the Requirements Process.

IEEE Proceedings of the 11th International Workshop on Database

and Expert Systems Applications (DEXA'OO), pp. 995.

[8] DeBaud, J. (2000). TrueScope Technologies Inc, Software Product

Families Solutions.

[9] Deelstra, S. Sinnema, M. Van Gurp J. and Bosch, J. (2003). Model

Driven Architecture as Approach to Manage Variability in Software

Product Families. Proceedings of the Workshop on Model Driven

Architecture: Foundations and Applications (MDAFA 2003). CTIT

Technical Report TR-CTIT-Q3-27, University of Twente, pp.109­

114.

[10] Dionisi Vici, A. Argentieri, A. Mansour, A. d'Alessandro, M.

Favaro, J. (1998). FODAcom: An Experience with Domain

Modeling in the Italian Telecom Industry, Proceedings of IEEE

ICSR5, pp 166.

[11] Du Bois, P. (1995). The Albert IJ Language - On the Design and

the Use of a Formal Specification Language for Requirements

Analysis. PhD. thesis, Dept. of Computer Science, University of

Namur, Namur, Belgium.

[12] Firesmith, D. (2003). Modem Requirements Specification. Journal

of Object Technology, Vo1.2, No.2, March-April 2003, pp.53-64.

81



[13] Flurry, G. and Vicknair, W. (2001). The IBM Application

Framework for e- business. IBM Systems Joumal, Vol.40, NO.1 pp

8. Available at

http://www.research.ibm.com/joumal/sj/401/f1urrv.html. Date last

accessed August 2005.

[14] Frincke, D. Wolber, D. Fisher, G. and Cohen, G. (1992).

Requirements Specification Language (RSL) and Supporting

Tools. Available at

http://ntrs.nasa.gov/archive/nasaJcasi.ntrs.nasa.gov/19930003157

1993003157.pdf Date last accessed June 2004.

[15] Gomaa, H. Kerschberg, Land Farrukh, G.A. (2000). Domain

ModeJing of Software Process Models. Sixth IEEE Intemational

Conference on Complex Computer Systems (ICECCS'OO). pp50.

[16] Gomaa, H. and Kerschberg, L. (1995). Domain Modeling for

Software Reuse and Evolution. Proc. IEEE International CASE

Conference, Rio de Janeiro, Brazil.

[17] Grunbacher, P. and Braunsberger, P. (2003). Tool Support for

Distributed Requirements Negotiation. In Cooperative methods and

tools for distributed software processes, Cimititle, A., De Lucia, A.,

and Gall, H., Editors. FrancoAngeli: Milano, Italy. pp 56-66.

82



[18] Hepper, Sand Hesmer, S, (2005). Introducing the Portlet

Specification, Part 1. JavaWorld.com, an lOG company. Retrieved

from http://www.javaworld.com/javaworld/jw-08-2003/jw-0801­

portlet.html. Date last accessed May 2004.

[19] Herlea, DE (1998). Users involvement in requirements

engineering. In the Proceedings of the Workshop on Internet-based

groupware for users involvement in software development, Seattle,

USA. Available at

http://ksi.cpsc.ucalgary.ca/KAW/KAW96/herlea/FINAL.htmIDate

last accessed September 2004.

[20] IEEE, (1993). Standard VHDL Language Reference Manual.

Standard 1073-1993, New York.

[21] Jarzabek, S. Chun, O. Wand Zhang, H. (2003). Handling Variant

Requirements in Domain Modeling. Journal of Systems and

Software. Vo1.68, No. 3, pp 171 - 182 .

[22] John, I. and Dorret, J. (2003). Extracting Product Une Model

Elements from User Documentation. Technical Report, Fraunhofer

IESE. Available at http://www.iese.fhQ.de/pdf filesliese-112 03.pdf

Date last accessed July 2004.

[23J Kan, S. H. (2003). Metrics and Models in Software Quality

Engineering. 2nd Edition. Addison Wesley Professional.

83



[24] Kang, K. C. Lee, J and Donohoe, P. (2002). Feature-Oriented

Product Une Engineering. IEEE Software 19, (4) (July/August

2002), pp 58-65.

[25] Kang, K. Cohen, S. Hess, J. Novak, W. and Peterson, A (1990).

Feature-Oriented Domain Analysis Technical Report No. CMU/SEI­

90-TR-21, Software Engineering Institute.

[25J Kassel, W.N. and Malloy, BA (2003). An Approach to

Automate Requirements E/icitation and Specification.

Proceedings of the 7th lASTED International Conference

Software Engineering and Applications, pp 397-029. Available

at httpl/www.cs.c1emson.edu/-malloy/papers/sea03/iasted.pdf

Date last accessed September 2004.

[26] Griss, M. Favaro, J. and D'Alessandro, M. (1998). Integrating

Feature Modeling with the RSEB. Proceedings of Fifth

International Conference on Software Reuse. Available at

http://wwwJavaro.netljohnlhome/publicationslrseb.pdf Date last

accessed November 2004.

[27] Maiden, NAM. ARTSCENE Scenario Presenter. Available at

www.soLcity.ac.uklartscene. Date last accessed November

2005.

84



[28J Meier, J.O. Vasireddy, S. Babbar, A. and Mackman, A. (2004).

Chapter 1 - Fundamentals of Engineering for Performance:

Improving .NET Application Performance and Scalability.

Available at

http://msdn.microsoft.com/library/default.asp?url=/Iibrary/en­

us/dnpag/html/scalenetchapt01.asp. Date last accessed June

2005.

[29] Meservy, T.O. and Fenstermacher, K.O. (2005). Transforming

Software Development: An MDA Road Map. IEEE Computer

Society.

[30] Metzner C. Cortez L. and Chacin O. (2005). Using Blackboard

Architecture in a web application. Issues in Informing Science

and Information Technology, pp 743 - 755. Available at

http://200Spapers.iisit.org/158f73Metz.pdf Date last accessed

April 2005.

[31] Moon, M and Heung, S.C. (2005). An Approach to Developing

Domain Requirements as a Core Asset Based on Commonality

and Variability Analysis in a Product Une. IEEE Transactions on

Software Engineering, July 2005 Vol. 31, NO.7. pp 551 - 569.

85



[32] Object Management Group. (1999). OMG Unifies Modeling

Language Specification UML v1.3. Technical Report, Document

ad/99-06-Q8, Object Management Group (OMG).

[33] Padmanabhan, P. (2001). DECIMAL: A Requirements

Engineering Tool for Product Families. Oiwa State University.

Ames, Iowa. Available at

http://archives.cs. iastate.eduldocumentsld iskOl00100102/79/000

00279-00/thesis.pdf Date last accessed September 2004.

[34] Pamas, D.L. (1976). On the design and development of

program of families. IEEE Transactions on Software

Engineering, vol.2, no. 2, pp 1-9.

[35] Regnell, B. Kimbler, K. WessXn A (1995). Improving the Use

Case Driven Approach to Requirements Engineering In

Proceedings of the Second IEEE International Symposium on

Requirements Engineering, pp 40-47.

[36] Smith, J.R.W and Reed, R. (1989). Telecommunications

Systems Engineering using SOL. Amsterdam. The

Netherlands: NorthHolland IElsevier.

86



[37] Schmid, K. (2002). A Comprehensive Product Une Seoping

Approach and Its Validation. Intemational Conference on

Software Engineering, Proceedings of the 24th International

Conference on Software Engineering., pp. 593-602.

[38] Schmidt, K. Shank, M. (2000). PuLSE-BEAT: A Decision

Support Tool for Scoping Product Unes. Third International

Workshop on Software Architectures for Product Families,

pp197-203.

[39] Seyff, N. Grunbacher, P. Maiden, N. Toscar, A. (2004).

Requirements Engineering Tools Go Mobile. Intemational

Conference on Software Engineering. Proceedings of the 26th

International Conference on Software Engineering, pp 713 ­

714. Available at

http://csdI2.computer.org/comp/proceedinas/icse/2004/2163/001

21630713.pdf Date last accessed May 2005.

[40] Sidky, A.S. (2003). RGML: A Specification Language that

Supports the Characterization of Requirements Generation

Processes. Available at

http://scholar.lib.vt.edultheses/available/etd-07292003­

112122/unrestrictedlSidkLThesis.pdf. Date last accessed

February 2005.



[41] Spafford, G. (2004). Understanding 'Mean Time Between

Failure. JupiterWeb networks. Available at

http://itmanagemenl.earthweb.corn/columns/article.php/335419

1. Date last accessed June 2005.

[42] Stento, R. Persistent Data Architecture Approach. Available at

www.objectstore.com. Date last accessed March 2005.

[43] Sun Microsystems Inc. (2002). Designing Enterprise

Applications with the J2EETM Platform. 2nd ed. Sun Developer

Network. Available at

http://java.sun.com/blueprints/guidelines/designing enterprise

applications 2el Date last accessed February 2005.

[44] Teichroew, D. Hersey Ill, EA (1982). PSUPSA: a computer

aided technique for structured documentation and analysis of

information processing systems. In Advanced System

DevelopmenUFeasibility Techniques, Wiley, New York, pp315­

329.

[45] Wieringa, R. and Ebert, C. 2004. RE'03: Practical Requirements

Engineering Solutions, pp 16-18. IEEE Software Computer

Society. Available at

http://csd 12.computer.org/comp/mags/so/2004/02/s2016.pdf

Date last accessed February 2004.

88



[46] Tomas, D and Hunt, A. (2004). Nurturing Requirements.

Software, IEEE Volume 21, No.2, pp 13 - 15.

[47] Kang, K.C. Kim, S. Lee, J. Kim, K. Shin, E. Huh, M. (1998).

FORM: A feature-Oriented Reuse Method with Domain-Specific

Reference Architecture. Annals of Software Engineering,

Volume 5, No. 1, pp. 143-168.

[48] Frakes, W.S and Kang, K. (2005). Software Reuse Research:

Status and Future. IEEE Transactions on Software Engineering,

Vol. 31, No. 7, pp 529-536. Available at

http://selab.postech.ac.kr/publication/2005 TSE SoftwareReus

eResearch.pdf Date last accessed June 2005.

[49] Fowler, M. The New Methodology. Available at

http://www.martinfowler.com/articles/newMethodology.html.

2005. Date last accessed April 2005.

[50] Wikipedia. Agile software development. Available at

htlp:llen.wikipedia.org/wikiJAgile_software_development. Date

last accessed December 2004.

89



[51] Kontio, M. (2005). Architectural manifesto: MDA for the

enterprise: An architect's approach to more productive

development. Available at http://www-

128.ibm.com/developerworks/library/wi-arch16/ Date last

accessed August 2005.

[52] Letelier, P. (2002). A Framework for Requirements Traceability

in UML-based Projects. In Proc. of 1st Intemational Workshop

on Traceability in Emerging Forms of Software Engineering. In

conjunction with the 17th IEEE Intemational Conference on

Automated Software Engineering, pp. 32-41. U.K: Edinburgh.

[53] Sabat, N. J. Leite Prado, J and Cysneiros, L.M. (2000). Non­

Functional Requirements for Object-Oriented Modeling. III

Workshop de Engenharia de Requisitos, pp 109-125. Available

at http://wer.infpuc­

rio.briWERpapers/artigos/artigos WEROO/sabat neto.pdf Date

last accessed November 2005.

[54] John, and Dorr, J. (2003). Elicitation of Requirements from

User Documentation, Available at http://crinfo.univ­

paris1.fr/REFSQ/03/papers/P01-John.pdf Date last accessed

June 2004.

90



[55J Fantechi, A. Gnesi, S. John, I. Lami, G. and Dorr, J. (2002)

EJicitation of Use Cases for Product Unes. 9th IEEE

Conference and Workshops on Engineering of Computer-Based

Systems. Available at http://fmt.isti.cnr.itMIEBPAPERJ25-PFE­

ucf.pdf Date last accessed March 2005.

[56J Bosch, J. (1999). On the Design of System Family

Architectures. Available at htto:Jlwww.serc.nlJlacJLAC-20011Iac­

1999JdocsJjan bosch.pdf. Date last accessed June 2004.

[57] Deitel, H.M. Deitel, P.J. and Santry, SE (2002). Advanced

Java 2 Platform: How to Program Prentice Hall.

[58J Feather, M.S. (1998). Rapid Application of Lightweight Format

Methods for Consistency Analyses. IEEE Transactions on

Software Engineering, vo1.24, nO.11. pp 949 - 959.

[59J Wierling, A. (2001). Requirements for E-Business Success.

Technology Builders, Inc. Available at

http://www.techlinks.netlDesktopModules/Communitv%20Publis

hing/Rss.aspx?TabID=92&Modulel D=430&Categoryl 0=5 Data

last accessed August 2004.

91



[60] Succi, G. Vip, J and Pedrycz, W. (2001). Holmes: An Intelligent

System to Support Software Product Une Development, pp.

0829 Proceedings of the 23fd International Conference on

Software Engineering. Canada: Toronto. Available at

htto:llwww.unibz.itlweb4archiv/objects/pdf/cs library/holmes­

anintelligentsystemtosupportsoftwareproductlinedevelopment.p

df Last accessed September 2005.

92


	Table of contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

