g

ey

I

A REQUIREMENTS SPECIFICATION MODEL FOR A
PRODUCT LINE

SALAH KEMILEMBE KABANDA

(20044965)

2005

A REQUIREMENTS SPECIFICATION MODEL FOR A
PRODUCT LINE

SALAH KEMILEMBE KABANDA

(20044985)

A dissertation submitted to the Faculty of Science and Agriculture in fulfillment of

the requirements for the degree

of

MASTERS OF SCIENCE
in

COMPUTER SCIENCE

Department of Computer Science

University of Zululand

December 2005

DECLARATION

This dissertation represents research work carried out by the author and has
not been submitted in any form to another University for a degree. Ali sources

used have been duly acknowledged in the text.

Salah Kabanda Date

DEDICATION

| dedicate this work to my mother, Leilah Rugachwa Kabanda, for believing
and encouraging me through the difficult times and to my late grandfather,

Tibangayuka Kabanda for instilling the value of education in our family.

ACKNOWLEDGMENTS

First, | thank the Lord for all the blessings bestowed on me in seeing this
research work through. Secondly, | would like to extend special thanks to my
supervisor Prof. M.O Adigun, who is most responsible for helping me
complete the writing of this dissertation as well as the challenging research
that lies behind it. | would like to thank his continuous fatherly support and

mostly for believing in me when the challenge became difficult.

Besides my adviser, | thank all staff members and fellow colleagues in the
Department of Computer Science at the University of Zululand for their
continuous encouragement and support. Many thanks to Dr. Eyono-Obono of
Durban Institute of Technology for having confidence in me and for listening to
my complaints and frustrations. | thank Mr. P. Mudali for his support and
assistance during the programming phase. Lastly, | thank my family who have
put up with my busy schedule, but still provided me with their unconditional
support, love and encouragement to pursue my interests. Your everyday

prayers were not wasted.

TABLE OF CONTENTS

DECLARATION .ottt ettt bt ee et e s s e sme e seeneeee e i
DE D G AT ION Lttt et et e e en e, i
ACKNOWLEDGMENTS ...t e iv
TABLE OF CONTENT S ettt s v
LIST OF FIGURES. ..ottt ettt aresn et smae s ix
LIST OF TABLES ...ttt e e oo Xi
LIST OF EQUATIONS it Xii
ACRONYMS AND ABBREVIATIONS ... Xiii
ABSTRACT ..ottt ettt st e e e et e e eaae ot et n e XV
CHAPTER ONE .ottt se e een s 1
1.0 INTRODUCTION ..ottt 1

1T OVBIVIBW .ottt e 1
1.2 The need for new Requirement Engineering models......................ccoe 2
1.2.1 Model Driven Architecture (MDA) ... 3

1.2.2 Web tier Application Framework (WAF). ..., 4

1.3 Problem Statement ... 5
T4 JUSHRICAION ... 8
1.5 Goaland Objectives ..ot 8
1.6 Research Methodology ... ieeerir e 8
1.7 Scope and LImitation ... 9

1.8 Overview of the rest of the dissertationccoo oo, 9

CHAPTER TWO .. oottt en e eat e e e sae e an e smennnn e 11
20 BACKGROUND CONCEPTS AND LITERATURE REVIEW................ 11
2.1 INOAUCHON ..o i et 11
2.2 Requirements Engineering Concepts.........ocooviiiiiiiniicccie e 11

2.21 Users’ WISHES.cio et e 12
222 Stakeholder NEeOS.oooiiiiii e 13
2.3 Product Line Software Engineering............cco oo, 14
231 Product Line Software Engineering Methodologies..................... 16
232 Product Line Software Engineering supporting tools. 25
2.3.3 Analysis of Product Line Software Engineering Tools 30
2.4 The Model Driven Architecture Approach (MDA)..............cco e 31
2.5 RSPL as a tool for PL Requirements Generation and Specification..... .32

CHAPTER THREE ..ot vttt et 35
3.0 MODEL DEVELOPMENT ..ot e, 35
B OVBIVIBW oot e 35
3.2 A Model-Driven Requirement Specification for a Product Line............. 37

3.21 Domain Knowledge ..o 39
322 USEr PersPeCtiVEccooveiieieee et 41
3.2.3 The Requirements Generation Process...........oooovieoeiiieeee ., 45
3.3 A Web-Tier Application Framework for RSPL................................ 49

CHAPTER FOUR ...ttt e 51

40 RSPL TOOL DESIGN AND IMPLEMENTATION ... 51

41 INIOAUCHON . e 51
4.2 RSPL Tool Decomposition ... 52
421 Tool Requirements Definition Phase...............cccoevviecicvceeeiie 52

422 RSPL Requirements Analysis ..o 54

423 ToolDesigN ... e 59
CHAPTER FIVE ettt 66
5.0 RSPLTOOL CASE STUDY ...ooiiiiiii e 66
5.1 INIrOQUCHON . 66

5.2 Case Study: Generation and Specification of requirements for the

E-Commerce DOMAIN ..o et 66
5.2.1 Rationale for an E-Commerce Domain ..., 66
522 ThePoralinterface . ..o 68
523 User Authenticationco.ooooiii oo 69
5.24 Elicitation and Scoping Interfacecocoooeoeii e 70
52.5 Specification and Generation Interface............ocoeeeoeeeeieee . 72

53 Evaluation of Resul...........ccoooevee i e UUOP P R 75

it

CHAPTER SIX e i s 76

6.0 CONCLUSION AND FUTURE WORKooiiieceiii e 76
B.1 CONCIISION ..ot et 76
8.2 FUITE WOIK ..ottt 78
REFERENCES ...ttt ettt et are b e e r e 80

LiIST OF FIGURES

Figure 1: Domain modeling for a family of systems [16]................................ 15
Figure 2: A Requirement metamodel for a product ine [32] ... 20
Figure 3: A requirements elicitation proCess ... 26
Figure 4: Example of a Use Case in the PLUC notation taken from [66] 29
Figure 5: The flow of an MDA generator. ... 31
Figure 6. The Modetl Driven RSPL Architecture...........ccooi i 38
Figure 7: Product Line Requirement Metamodel ... 40
Figure 8: Domain Object Template ... 42
Figure 9: Textual Product Object Template ... 45
Figure 10: A Requirements Specification Document ... 49
Figure 11: RSPL USE CASC......oii i 23
Figure 12: A sequence diagram forthe loginuse case ... 55
Figure 13: Elicitation and Scoping Sequence Diagramoooo.oii L 57
Figure 14. Requirements Specification Sequence diagram................................... 29
Figure 15: RSPL Tool ArchiteCtureoocoo oo 59
Figure 16: Detailed MVC architecture of RSPL Tool ..., 62
Figure 17: RSPL Porial Inferfacecocoioiiiiiiocoeeiceeeeeeeeee 69
Figure 18: RSPL Login Pagec.ocoovoveveceeeeee e e, 69
Figure 19: Domain Template Elicitation ... 70
Figure 20: Product SCOPING ..oov it 71

Figure 21: Specifying qualitative features ... 71
Figure 22: Domain Template Specification ... 72
Figure 23: Selection of a product Instance............cc i 72
Figure 24: Feature specification..............oocooiiiiin e 73
Figure 25: Sub Feature Specification.............cco i 73
Figure 26: A partial metadata representation of the Entity Domain. 74
Figure 27: A partial RSD for the Oniine Ecommerce Application 74

LIST OF TABLES

Table 1: Quality Profilescc..ooiieee et 24
Table 2: Textual Use Case template [5]...cco oo 27
Table 3: Mapping MVC features i0 RSPL ... e 50
Table 4: RSPL 100l packages...........ooiiiiiiiii e 65

LIST OF EQUATIONS

Equation 1: Transaction Throughput............ccooi i 21
Equation 2: Workload. ..o 22
Equation 3: Maintenance constraint............ccocooiii i, 23
Equation 4: Defect Densityrate...............coooo 23

ACRONYMS AND ABBREVIATIONS

RE Requirement Engineering

SDLC Software Development Life Cycle
RSPL Requirements Specification Model for a Product Line
RSL Requirements Specification Language
RSD Requirement Specification Document
MDA Mode! Driven Architecture

WAF Web tier Application Framework

PL Product Line

PLSE Product Line Software Engineering
DK Domain Knowledge

KB Knowledge Base
up User Perspective
MvC Modei-View-Controiler

PLUC Product Line Use Case

LOC

SE

NFR

FODA

FORM

SME

Lines of Code

Transaction Throughput

Workload

Transaction Volume

Service Element

Non Functional Requirement

Feature-Oriented Domain Analysis

Feature-Oriented Reuse Method

Small and Medium Enterprises

ABSTRACT

This research work focuses on developing a new requirement engineering
model (RSPL) based on a Model Driven Architecture and Web-tier application
framework, to support automatic and interactive requirements generation and
specification when creating families of systems. In realizing the model, two
goals were targeted namely (i) to construct a requirement engineering model
that support automatic transformation of domain features into actor-specific
requirements; and (ii) to design and implement an interactive web based
requirement engineering tool that demonstrates the requirements generation
and specification process for a product line. The result obtained is twofold: (i)
a model driven architecture for rapid requirements generation and
specification for a product line that reduces costs and development time; (i)
toof implementation based on a web tier application framework that supports
different client and actor types. In conclusion, the study is a contribution to a
recently advocated idea that requirements generation and specification for
product line development could be model-driven. The result shows that the
idea is promising with respect to requirement reuse and improving

communication barriers among members of a system development team.

CHAPTER ONE

1.0 INTRODUCTION

1.1 Overview

Requirements Engineering (RE) is a set of activities that heip develop the
understanding of a system’s domain, constraints, characteristics and
systems functionaliies as per stakehoiders view, as well as the
documentation of the systems specification for all stakeholders involved in
systems development [7]. The deliverable from RE is a Software
Requirements Specification document (RSD) that fully describes the
extemal behavior of the application, its nonfunctional requirements,
design constraints and other factors necessary to provide a complete and

comprehensive description of the requirements for the software.

in the past, requirements engineers elicited and specified requirements
using manual methods, which proved to be too slow and error prone to
maintain a competitive position in the global economy. Therefore, the
need for faster, better and less expensive methods of developing complex
applications to meet market demands and still maintain a competitive
status quo became desirable. The notion of automatic requirements tools
was believed to be the solution to most challenges imposed by traditional

methods of RE. Automatic tools implied that requirements are stored in a

requirements repository as individuat objects instead of a paper document
for easier maintenance and reusability purposes [12]. Although this was a
breakthrough in the RE field, the challenge had just begun. Most tools
were made for a single product development, making the task difficuit

when a family of systems had to be considered.

A family of systems is a set of applications with very similar requirements
and few key differences that can be configured to provide reusable assets
[24, 25, 26]. Developing software for a family of systems is not an easy
task as in a single product development. it requires that the family domain
be critically analyzed to identify and define common and variable features

that can be used to create individual product instances.

The common features if exploited could achieve substantial cost savings
(improvements in productivity; time to market, product quality and
customer satisfaction) through reuse. This means that each time a new
product is introduced to the domain the same asset repository can be

reused leading to direct savings.

1.2 The need for new Requirement Engineering models

Tools and methods that assist with the production of better requirements
have been reported in the literature [15, 16, 20, 32, 34, 35, 41]. Although
they have been adopied in industry arena, poor requirements that do not
meet stakeholders standards are still being produced, especially in the

case of product line development. Poor requirements could be a result of

2

i tools inability to perform full RE tasks that meet stakeholder

expectations;

ii. requirements engineers’ inability to properly use the iool to
its most potential due to the tool's fack of an interactive
interface and its availability {(web-based as opposed to

traditional stand alone application) and

iil. lack of necessary features such as automatlic requirement
metadata generation and support for different client types

(WAP and i-Mode clients).

Recently, Software Engineers have started to rethink RE models that are
used to develop automatic tools. This work is a contribution to the idea
that the Model Driven Architecture (MDA) and the web-tier application
framework (WAF) could serve as a pattern for addressing RE problems.
We are of the view that using MDA during the early stage of the software
development life cycle, could positively impact and improve the

requirements generation process.

1.2.1 Model Driven Architecture (MDA)

MDA is a framework that promises many benefits such as reusability,
automatic code generation, portability, and many more. MDA is generally
used from system design to implementation whereby a platform-

independent model is automatically transformed into a platform specific

(%]

model through mapping principles. In other words, MDA converis a

business model into a specific technology context (code) [3, 9].

Atthough MDA has worked very well during system development, it has
not been specifically applied in the requirements engineering phase of
system development. MDA features during the design and implementation
phase of SDLC as it is concemed with transforming the design model
(design phase) into a plaifform specific technology, ie. code
(implementation phase). The outcome is vast cost savings due to rapid
system development and less errors due to lack of human intervention.
This work is an attempt to extend the MDA benefits to the requirements
phase. To realize even greater benefits, MDA will be supporied with an
interactive environment that supporis multiple client types. The next sub

section presents a discussion on a web tier application for a RE model.

1.2.2 Web tier Application Framework (WAF)

Most RE toals are still stand-alone applications that are location and time-
dependent still have difficuty in supporting e-business application
requirements and still have no support for various client types. A web tier
application framework based on a Model-View Controller (MVC) pattern is
one step forward in solving these problems. WAF provides interactive
applications and provides a host of design benefits such as separating
design concemns (data persistence and behavior, presentation, and

control), decreasing code duplication, centralizing control, and making the

da

application more easily modifiable {13]. This work aims to use WAF as a

supplementary framework to MDA in RE implementation.

1.3 Problem Statement

Advances in requirements engineering modeis and tools has still not
produced high quality requirements that meet stakeholders’ needs [41].
Most RE tools for a family of products do not produce requirement
specification, but lay much emphasis on the elicitation, scoping and

analysis phases.

Requirement Specification is an important component of the RE
deliverable that helps to capture different views of various stakeholders.
Each stakeholder has different views of the same system and wants their
views to be considered. Confliciing views and goals require that
stakeholders negotiate and arrive at realistic requirements that satisfy all

parties. Negotiation becomes difficult if RE tools:

i. are stand alone application that are not interactive and

difficult to access at any time and at any location and

ii. use a requirement specification languages (RSL) that

stakeholders have o leam.

Web-based tools distributed and multi-user capability offer considerable
potential to requirements engineers and developers. Important

stakeholders who are ofien difficult to invelve in the requirements process

5

can now coniribute their goals, expectations, negotiation limits and
preferences to the wider RE process [39] as time and location is no longer
a barrier. This ensures that stakeholders specifications and expectations
are properly integrated during system development, thereby producing

‘better requirements.

The Model Driven Architecture and a Web Tier Application framework
have been identified as the architectural basis of this work. Using both
MDA and WAF as starting points, the research questions to be answered

are:

i. Can MDA’s success in code generation be replicated in
Requirements Engineering tasks {(elicitation, verification and

specification of requirements) for a family of systems?

i, Can we, therefore, provide a reusable implementation of the

model for different client types?

1.4 Justification

Much research in RE for a family of systems has focused on its initial
stage — requirements elicitation and scoping, whereby the domain is
defined to identify areas of potential reuse. Application development
depends not only on elicitation and scoping of requirements. but greatly

on requirements specification which describe what stakeholders want.

b

To produce better requiremenis while at the same time experiencing
significant cost savings in terms of overhead costs and time, tools and RE
models need to support the full RE phase, support requirements
reusability and web-based. This research proposes to adopt the Model
Driven Architecture as a patiern in addressing the mentioned aspects.

The reason for adopting MDA in this work is because MDA:

i. Supports reuse when creating families of systems

ii. Encourages efiicient use of system models in the software

development process;

iil. Tends to address enterprise architectures supported by

atitomated tools and services and

iv. Provides a conceptual framework for using models and
applying transformations between them as part of a

controlied, efficient software development process.

This work envisions an interactive requirements generation and
specification mode! for a family of systems from which specific product
line requiremenis can be automatically constructed from pre-existing
domair knowledge. To ensure that requirements are automnatically
generated and specified, an MDA approach has been suggested. A web-
tier application framework is adopted o ensure a web-based tool that is

robust, scalable and easier to maintain.

1.5 Goal and Objectives

The goal of this research is to develop a requirements generation and
specification model for a product line (RSPL) from pre-existing generic

domain knowledge that has been analyzed, processed and structured.

The goal is decomposed into two specific research objectives:

i. To formulate a requirement engineering model for a family of
systems that supporis automatic transformation of domain

features into actor-specific requirements and

H. To develop an interactive web based requirement

engineering tool that implements the model.

1.6 Research Methodology

In order to achieve each mentioned objective, the research uses the
Madel Driven Architecture approach and Web tier architecture to
formulate the model for a family of systems that supporis automatic
transformation of domain features into actor-specific requirements. In
addition, the study adopts a survey research design in which simple
random sampling is employed. A questionnaire is used to coliect empirical
data from Small and Medium Enterprises (SME). This data is used to
establish SME requirements for developing an interactive web based

requirements engineering tool that implements the model.

1.7 Scope and Limitation

This work envisions an interactive requirements generation and
specification model for a family of systems from which specific product
line requirements can be automatically constructed from pre-existing
domain knowledge. The iool does not have a validation capability
essential for checking requirements completeness and consistency and
nor was it designed with specific security, scalability and performance
quality of service in mind. For it to be used in a production environment,
design criteria for the Quality of Services issues must be evaluated first.
The model does not also provide validation capabilities. These aspects of

the research are deferred to the future.

1.8 Overview of the rest of the dissertation

The remainder of this dissertation is organized as foliows: Chapter two
provides a discussion of work done in RE, supporting tools and
background information on the development and influential factors of the
RSPL model. These faciors include the Product Line Software
Engineering, the Mode! Driven Architecture, and the Requirement

Specification Languages.

Chapter three presents a detailed description of the model-driven RSPL
architecture as well as the components that lead to the RSPL
development. Then, a web tier application framework is discussed in

relation with RSPL. Chapter four provides a typical illustration of how the

presented model could become the heart of an interactive, web based
toal. Chapter five demonstrates an implementation of the RSPL. tool using
a case study and further presents the result obtained. Chapter six
concludes the disseriation. Limitations of the study and recommendation
thereof are also presented. Finally, directions for fuiure work are

suggested.

10

CHAPTER TWO

2.0 BACKGROUND CONCEPTS AND LITERATURE

REVIEW

2.1 Introduction

In chapter one, RSPL was presented as a tool for responding to some of
the challenges of requirements engineering. In this chapter, the
foundational principles behind RSPL are discussed. These principles
included but are not limited to Product Line Software Engineering (PLSE)
and the Mode! Driven Architecture (MDA). The objective of the chapter is,
therefore, to show that RSPL builds on a number of emerging software

engineering issues.

2.2 Requirements Engineering Concepts

Requirements Engineering (RE) is the branch of systems engineering
concemed with the needs and wishes of software-intensive systems, the
goals to be achieved in the software’'s environment, and assumptions
about the environment [48, 47]. While needs represent application
constraints which can be supported by toois, wishes describe application
solutions and are difficult to achieve as they are always changing due to

changing business environment.

2.2.1 Users’ Wishes

Wishes are desired properties that users would like the application to
have. Wishes are complex because they are environment dependent. To
understand them, requirements engineers iteratively set shor targets that
they can achieve within few days for each wish. Once compieted, they
meet with the user to deliver some quanta of business vaiue. Thomas and
Hunt [47] observed that the short targets or the concept of iterative
development provided a way of controlling costs, mitigating risks;

capturing and verifying requirements according to the user's wishes.

iterative development led to agile methodologies such as extreme
programming, SCRUM and Crystal methods among others. Agile
methodologies atiempt to minimize risk by developing software in short
“imeboxes”, called iterations, which typically last one to four weeks.
iteration includes all the tasks (planning, requirements analysis, design,
coding, testing, and documentation) necessary to release a sub project

[51].

Prior to agile methods, engineering methods tried to plan out a large part
of the software process in great detail for a long span of time. This only
worked well when there are no requirements change as result of business
changes. Traditional engineering methods have a nature of resisting
change and as a result deliver a product that does not satisfy user

requirements [50]. Agile methods are adaptive rather than predictive

12

meaning that they welcome change and emphasize real-time
communication, preferably face-to-face to enable easier incorporation of

all users’ who have to contribute their needs to the wider RE process.

2.2 .2 Stakeholder Needs

On the other hand, stakeholder needs are supporied by tools that facilitate
the requirements engineering process. Software tools that support
software engineering tasks are typically available as stand-alone
applications and their advantages have been practically observed by
industries and Software Development Team [40]. Sofiware tools increase
productivity, decrease overhead costs and due to limited human

intervention, ensure that qualitative products are developed.

Most RE tools are elicitation, communication, modeiing, verification or
management oriented tools or a combination of one or two of these
features and have been designed or developed for a single product

instance development and not for a given domain or a family of systems.

The term domain is used to denote a set of systems or functional areas,
within systems, that exhibit similar functionality [21]. Domain engineering
is the foundation for emerging "product line software engineering”
approaches that affect the maintainability, understandability, usability, and

reusability characteristics of a system or family of similar systems.

13

2.3 Product Line Software Engineering

The body of knowledge known as automatic requirements engineering
has received considerable attention from researchers as can be seen in
literature [10, 15, 16, 24, 25, 33, 34, 35, 38, 41]. This aspect of software
engineering develaped from the concept of family of systems was first
suggested by Pamas in 1976 [35]. Parnas was of the opinion that
substantial savings could be achieved by reusing the common features in
programs that are developed as a family. The widespread attention given
by the research community resulted in Product Line Sofiware Engineering

(PLSE).

PLSE is an emerging sofiware development altemative to developing
every sofiware system from scratch. However, PLSE will only be adopted
if it makes business sense, that is, helps shareholders maximize their
profit. Whether this investment results in greater profit depends on the

particular strategy adoptled.

To this end, a number of methodologies have been proposed to address
this challenge. These methodologies require that a domain model be
construcied to document ali domain artifacts. The model results from
domain analysis whose goal is to scope the domain with an aim of
identifying similarites and varations. Once the domain mode! is
constructed, it is docurmented in the Domain Reuse Library as a reusable

artifact for appfication development.

14

Typically as shown in figure 1, a domain reuse library is built for creating

reusable requirements specification from raw domain requirements and

secondly cataloging the specification as reusable artifacts in the library. it

is a repository for storing reusable assets and allowing users to search for

assetfs in the repository [48].

Domain
Requirernenis | Dotmai
Modehng
Target Systern
Requirements

Reusable Specification

Targer Systern Target System
Generaton

Unsausfied Requirements, Errors, Adaptation

Figure 1 Domain medeling for a family of systems 118]

The following sub section describes a number of proposed Product Line

Software Engineering methodologies for requirements engineering.

f—

n

v

2.3.1 Product Line Software Engineering Methodologies

2.3.1.1 Kemel and View approach

The Kernel and View approach was introduced by Gomaa [15] who was
of the view that a domain model should constitute the core of PLSE as it
represents the entire family requirements. According to Gomaa, the
domain mode! is formulated from one of the either two approaches

namely the kernel or view approach.

While the view is an integration of multiple viewpoints (the Aggregation
Hierarchy, Object Communication Diagrams,
Generalization/Specialization Hierarchy, Feature /Object dependencies
and the State Transition Diagram), the kemel encapsulates the common
features that represents one or more domain requirements [6, 10, 17, 26].
individual members of the family are then generated by tailoring the
domain model constructed from either a kernel approach or a view
approach. This study requires that the domain model be viewed from both
the kemel and the view perspective as both describe the domain
differently. Kang et al suggested the FODA approach that allowed the

integration of both perspectives during product line development.

2.3.1.2 Feature —Oriented Domain Analysis (FODA)

As both the kernel and the view approach intend to describe the domain,
Weiss and Kang [24, 25] suggested that both methods should be

considered/ integraied in the requirements engineering process for a

16

family of systems because they compliment one another in the
development of an application instance of the domain. They proposed a
two-fold approach for a family of systems (i) domain engineering and (ii)
application engineering. During domain engineering, domain experis
strive to ideniify and define product family requirements in terms of
features while during application engineering, family members are
produced by selecting or tailoring features that will constitute the product

instance,

The use of features is motivated by the fact that customers and engineers
often speak of product characteristics in terms of features the product has
and/delivers [48] The use of features led to the Feature—COriented Domain
Analysis (FODA) approach that defines techniques for developing,
paramelrizing and configuring reusable assets plus a specific process of
commonality and variability analysis [26]. The result is a feature modei
that supports both the domain engineering of reusable artifacts and

development of applications using domain anifacts.

Although stakeholder requirements (features) are essential inputs for core
asset development, they are not sufficient on their own as they are
constantly changing with the business environment. This study requires
that the business environment should also be incorporated into the
domain model together with the stakeholder requirements. Kang [24]

suggests that FODA be extended to support a marketing and product plan

perspective (MPP) as well as explore analysis and design issues from that
perspective. MPP helps to identify the information to gather during the
marketing and business analysis. Such information inciudes marketing
analysis and strategies, product features and delivery methods. These
suggestions led to the development of the Feature-Oriented Reuse

Method (FORM).

2.3.1.3 Feature-Oriented Reuse Method (FORM)

FORM is a systematic method that focuses on capturing commonalities
and differences in a domain in terms of features and using the analysis
results to develop domain architectures and components. FORM consists
of two major processes namely (i) asset development — a process that
includes capturing and analyzing the commonalities and vanabilities such
as marketing and product plan development and refinement; feature
modeling and requirements analysis and a (ii) Product development — a
process that entails analyzing requirements and selecting and adopting

features for the product [24].

FORM staris with capturing domain information and analyzing common
elements in temms of services, operating environment, domain
technologies and implementation techniques to generate a feature model.
A feature model is used to define parameterized reference architecture
and appropriate reusable components instanfiatable during product

development [48]. During product development. product features are

13

selected from the domainffeature model to be instantiated. Product
features are classified into two main categories: Functional and
Nonfunctional. While Functional Features (Functional Requirement - FR)
are services that provide behavioral characteristics, which define the
activities inherent in the domain; Nonfunctional Features (Nonfunctional
Requirements - NFR) are end-user-visible application characteristics that
cannot be identified in terms of services or operations {24]. They present

the qualitative aspects of the domain.

Moon et al [32] suggest that product features for a family of systems be
represented using a Requirements Metamodel. A metamodel is a model
that describes another model. it consists of appropriate constructs
reflecting the declarations of data-definiion and data-manipulation
languages that represent the constructs or the building blocks of the
product. The metamodel also provides a bridge between organizational
structure aspects and business subprocess, minimizing the complexity of
business process definition and at the same time improving the efficiency
and quality of it [32, 37]. its purpose, according to Moon et al [32] is to /ay

down an overall scheme for representing domain requirements.

Figure 2 presents a typical metamodel for domain requirements. The core
model element of a requirement metamode! is the Domain Requirement
as it represents one general requirement that can be reused as a core

asset of developing systems in a product fine [32]. The Domain

Requirement consists of Functional Requirement and Non Functional

Requirement with variants to distinguish one product feature from the

other. Variations are captured using the Variability element and can either

be optional or mandatory. A mandatory feature signifies commonality and

potential area of reuse. Functional Requirement consists of services

rendered to other parties within the domain (either to other domains,

products within the domain or to another service). A service defines the

functionalities or activities which a product within the domain pursue to

fulfili their goails. Services are, therefore, like use cases or scenarios. A

service can have multiple sub services and can also be refined to a

service element.
Dormair Requirement
e AN
Vanability Requrement 4 }
| e
1
i5_reabed_dhrough L
l T 0...® has_mihence_on 1 o i
i
- 1 l
e __< J o : Quahy Fearure

Propenty Service | : —

1 i -_i has_relanons_wih i
A A] i} SR |
1
Mandarory Optional |
f 1 |
Vacanon Poiar f Service % ~ 7

; Element Y7] —
{ f Performance | Maintenance Relabalire If

Figure 2. A Reguirement metamadel for 2 product line {32

20

A service element is the smallest unit that cannot be further decomposed
to sub services. A service can be influenced by NFR features. NFR is
composed of three qualitative features: performance, maintenance and

reliability.

a. Performance

Performance is concerned with the efficiency rate at which the application
performs its functionalities when subjected to a particular workioad. It is
affected by the available resources and how they are used and shared.
is during the requirements phase of the SDLC that performance
objectives, workflow, and key service elements (scenarios) are defined.
The workloads and estimated volumes for each service element are then
considered [1). There are two performance objectives that this research
pays attention to: Transaction Throughput (TT) and Workload (W). TT is
the number of requests (service elements) that can be served or
completed by the application per unit time (T), for example, fetching and
updating a row. We, therefore, measure TT as the number of service

elements per time unit as depicted in equation 1.

................ E{qm:}()n]

Workload is total number of users and concurmrent active users {(A) at a

given time unit or transaction volumes (TV) expected to be handled by the

application in a given time unit (T) [1]. Equation 2 depicts a workload

equation using transaction volumes.

™ _ e e . EURTIOT 2

When actors are building or generating requirements for an application
instance, the workload which their application will handle has to be
estimated. The transaction volumes to be expected are determined by the

number of features which a domain possesses.

b Maintenance

Maintenance is concemned with the component's ability o change when
requirements change. According to Bosch, change categories tend to be
organized around the interfaces the application has to its environment and
are best captured using change scenarios. Change scenarios are given a
relative weight which indicates the likelihood of that scenario occurring
during that period. Such change is measured by the number of lines of
code (LOC) that have to be changed to accommodate the scenario or
service element. An actor is, therefore, expected to provide an estimate of

LOC that will be required to change over the life cycle.

For each feature, the cost for developing a service element (SEcharce) is
determined. Then a maximum range {SEuaxcharce) IS imposed on the

existing LOC {o determine the highest estimated cost of maintaining that

service element. When there is a change to be expected as a result of
changing environmental requirements, the LOC of the service element to
be changed should not exceed LOC of SEumaxcraree a@s indicated in

equation 3.

Servte Pemen Mainenance (08t {minmal = Soree
Servce Fipmert Ma Tanance CCS (magmum) = SEyue rarce
Costof Senace Elsment [56 changsa = rewSE,

A e X
Stower SRR[Fquaton3

(o4 Reliability

Kan [2, 23, 42] proposes that reliability can be measured using two
metrics: defect density rate (DDM) and Mean Time To Failure (MTTF).
DDM measures defects relative to software size measured in lines of code

during a specific time frame.

ODM = Defects

Lo e L quanem 4

The expected number of defects over a certain time period is important for
cost and resource estimates of the maintenance phase of the software life
cycle and, therefore, is rendered as a beneficial metric for reliability and
maintenance phase of the software life cycle {22, 23, 43]. Another benefit
of DDM is that it can be applied to general-purpose computer systems or

commercial-use-software for which there is no typicat user profile of the

23

software. In a product line oriented approach, a generic assessment of the
domain (commaon reliability metrics) can be used as a building block for

reliability assessment of application instances in the domain.

MTTF measures the time beiween failures. Implementing MTTF for
general-purpose computer systems or commercial-use software, for which
there is no typical user profile of the sofiware is more difficult than for
special-purpose software systems such as the air traffic control systems
or the space shutile control systems. MTTF requires that the operations
profile and scenarios/service elements should be defined, the activities
and sequential occurrence in the software system should also be
provided. For generic system, this would be time consuming and an
expensive process to have to record the occurrence time of each software

failure at a high degree of accuracy for the results to be useful.

Bosch [1] described the quality attributes in terms of profiles and
associated properties. A profile is a set of scenarios, generally with some
relative impartance associated with each scenario [1]. The different types

of profiles for each quality attribute are depicted in table 1.

—_

Performance ' Usage
Maintainability _ Change
Reliability Component interaction.

Table 1. Quality Profiles

The Performance quality is associated with the general efficiency with
which the system performs its functionality and, therefore, key words that
characterize it include: response time and/or usage scenarios. The
Maintainability quality is associated with how the architecture can be
affected by requirements change and therefore has change(s) scenario as
its main key word. Reliability is associated with components interaction

during operation and the effects of component error.

2.3.2 Product Line Software Engineering supporting tools.
As Product Line Software Engineering Methodologies continue to emerge,
so is their adoption in the development of automatic requirements tools for
a family of systems. A support tool is a natural consequence of industrial
practice if it is to become mature. This explains why systems engineering
and software development organizations are under pressure to construct
tools that would automatically generate requirements and even an entire
system code. A number of tools are, therefore, coming into existence as

natural evolution from methodologies.

2.3.2.1 Elicitation Tools

Requirements elicitation is an early process of the RE that tries to capture
the information and knowledge of the system under construction [12].
Figure 3 shows a fypical requirements elicitation process, whereby
information needed to build requirements specification for a single system

or a product line model is nomally elicited by domain expert with

knowledge in the problem or application domain (the processes and

products in product line engineering).

Figure 3: A requirements elicitation process

Use Cases have been proposed as an effective approach for PLSE
elicitation to capture product features (especially functional requirements)
for software systems [55, 56]. Use cases allow structuring requirements
documents with use goals and provide a means to specify the interaction
between an actor and its environment [5]. The term actor is used to
describe the person or system that has a goal against the system under
discussion. There are two main actors namely the primary and the
secondary actor. While a primary actor triggers the system behavior in
order to achieve a certain goal, 2 secondary actor interacts with the

system but does not trigger.

According to Fantechi et al [56], a Use Case is completed successfully
when its goal is satisfied and is extensively described in the Use Case
“Description”. Use Case descriptions also include possible extensions as
reflected in Cockbur’s Use Case in Table 2 [56] The “Description”
seclion is express in natural language sentences, describing a sequence
of actions of the system while Variations are expressed (in the
"Extensions" section) as alternatives to the main flow, linked by their index

to the point of the main flow from which they branch as a variation {5].

USE CASE# <the name is the goal as a short active verh phrase>
Goal in Context <a longer statement of the goal in context if needed>
| <what system is being considered black box under design>
Scope & Level <gne of Summary; Primary Task, Sub Function>
! Preconditions <what we expect is aiready the state of the world>
: Success £nd Condition ;. <the state of the world upon successful completion>
Failed End Condition <the state of the word if goal is abandoned>

<a role name or description for the primary actor>

Primary, Secondary Actars <Other systems refied upon to accomplish the use case>

Trigger | <the action upon the system that starts the Use Case>

: ' Step . Action

i Description 1 “<put here the steps of the scenario .
from trigger to goai delivery, and any .

i clean up>
Step . Branching Action

Extension ﬁ <condition causing branching>

1a . <action or name of sub-Use Case>

: Step Branching Action

Sub Variations | :

: | 1 <list of variations>

Tabie 2 Textual Use Case tempiate [5]

Variations are described and specified by tags that indicate those paris of
the product line requirements needing to be instantiated for a specific
product in a product related document. The tags represent three kinds of

variability as defined by Fantechi in [56]:

i Alternative, expressing the possibility to instantiate the
requirement by selecting an instance among a predefined set
of possible choices, each of them depending on the

occurrence of a condition;

ii. Parametric/Mandatory, from which instantiation is connected
fo the actual value of a parameter in the requirements for the

specific product; and

ii. Optional of which the instantiation can be done by selecting
indifferently among a set of values, which are optional

features for a denved product.

An example of use Case in the Product Line Use Case (PLUC)
notation, taken from [56] is presented in Figure 4. The Use Case
describes the activities related to the submission of a project document.
They suppose that it can be possible to submit different two types of
documents: slides (in the .ppt format) or papers (in .doc, pdf. or ps
format), variables (here V1 and V2) describe the variation points within

the use case.

e {"ase Name: Submission of 3 document
Priemaary Acior: the author
Geal: Preparaiion and submission of 3 project Socument
Secowradary Actor - Project’s web senver

| mmﬁﬁgﬁmﬁwhﬂ‘ﬂw ciass}

2 Auﬂ!qpmsﬁ\ednume:nmmeplnjeﬁdnummt
fepOSIFY
Exterssions:
13, The aihor msses the submisgon geven deadine:
A remind is sent in the author from the web sefver manager

Variadhities:
Vi: 1. Sides V1 shemative
2. Pzper
Vi o Vi=) then e pp V2 parametric/ optional

gise & V1=2 then fle.doc or file pdf or fie pst.

Figure 4: Example of a Use Case in the PLUC notation taken from [56]

T he possible instantiaions and the type of the variations is given within
thhe use case and the possible values are described with logical

eXpressions.

2.3.2.2 Scoping Tools
Dyomain scoping is an activity that helps determine the systems and the
system features that should be included in the system family [57],
b»ecause it may not be beneficial to include all systems and features in the
systemn-family. Most scoping tools have elicitation functionalities as well.

Examples of scoping tools inciude TruScope [8] and PulLSE BEAT [39].

2.3.2.3 Verfication Tools

Before developing a particular feature or component of a product, it is
iTmportant to venify that the system family supports ail features defined

29

during scoping, that it can be easily instantiated for each of the systems in
the system family and that planned new features can be easily
incorporated [57]. Verification tools attempt to confirm the completeness
and consistency of new members of the product line. An example of

verification tool is DECIMAL [34].

2.3.3 Analysis of Product Line Software Engineering Tools

A thorough analysis of the product line software engineering tools reveals

that:

i. Most of the tools do not support the full life cycle of
requirements generation. They either focus on cne or two of
the phases of requirements engineering such as the

elicitation, scoping or verification phases and

ii. Most tools are stand-alone applications that lead to
unnecessary time wastage, hinder comrmunication among

stakeholders and reduce the retum on investment.

Tools and methodologies which support the full requirements
generation process while at the same time ensuring minimal
deveiopment time and increased retum on investments are still to be
researched into. This research work presents the Model Driven

Architecture approach to RE.

24 The Model Driven Architecture Approach (MDA)

The code generation expectation is not a recent development, what is
new is the recent interest in Model Driven Architecture (MDA) as a model
for code generation. MDA consists of three viewpoints namely, the
Computation Independent Model (CIM), the Platform independent Model

(PIM} and the Platform Specific Model (PSM) [52].

The MDA starts with CIM which represents a model of the business that is
completely independent of any IT systems (structure and implementation
of the system are hidden, or possibly not yet implemented). The second
viewpoint, the PIM focuses on the operation of the system while hiding the
platform-dependent details, that is, an implementation-independent model
of the functionality of an T system. It may use a general-purpose,
platform-independent modeling language such as UML. The final
viewpoint, the PSM focuses on the implementation details of a certain
platform. It is a technical model of an IT system that considers
architectural constraints given by a chosen platform (e.g. J2EE, .NET or

CORBA).

1 1
H 1
S - — —
.’]
e 1] _E. BRIl i Code

Wt ke 2 - e 4

Figure 5: The flew of an MDA generator

The Muodel Driven Architecture approach aims at separating the business

legic in PIM from the underlying platform specific module/technology and

represents this logic with precise semantic models as depicted in figure 5.
The MDA assumes that the design already exists and represented as
CIM. Given a requirements design in UML (Unified Modeling Language),
an MDA generator transforms the requirements into its equivalent code
based on its specific platform technology. The MDA is becoming popular

due to a number of reported benefits {3, 9, 43] such as:

i. reduced cost throughout the application life-cycle;

ii. reduced development time for new applications;

iii. increased return on technology investments (ROI) and

iv. rapid inclusion of emerging technology benefits into existing systems.

The MDA is not a RE generation and specification approach but an
approach for automatically generating code from a design, resulting in

quick system development and return on investment.

2.5 RSPL as a tool for PL Requirements Generation and
Specification
Qur approach to requirements generation and specification for product
lines is based on the Model Driven Architecture and supported by Kang's
Feature Oriented Reuse Method (FORM) to scope and elicit product line

features. The use of the Model Driven Architecture is based on the notion

that requirements can be automatically generated from pre-existing

domain information that has been analyzed, processed and structured to
suit a particular standard Requirements Specification Language. RSPL is

a contribution to RE with the foliowing characteristics:

i a scoping and elicitation tool for a family of systems;

ii. a specification tool for describing the requirements for a

family of systems; and

iii. an enabler for bridging the communication gap between the
software development team members, with particular

reference to software engineers and domain experts.

The RSPL approach, therefore, aliows the separation of the interface logic
from the underlying business logic. The interface logic is the point of
interaction between users (domain expert, analyst and developer) and the
tool. The domain Expert's role is to define the domain boundaries
capiured as domain features characteristics. The process involves domain
definition, characterization and scoping. The analyst's responsibility is to
identify and define individual product instances. A product instance is
defined by its business functionalities and domain-specific behaviors. The
developer's position and relationships with RSPL is to refine the
requirements into design-usable form. This is achieved by adding
perspectives that transforms domain requirements info “ready-to-use”

requirements specifications.

(WY
3

The RSPL process is actor-driven, therefore, a portal-type interface to the
tool is proposed. Each user is associated with an actor use case template
that drives an actor-specific interface of the portal. In the heart of this
portal is the RSPL tool which transforms each users contributions into
domain knowledge. The tool uses appropriate rules to iransform the
knowledge into Requirements Specifications that are ready for a software

engineer to use.

(¥
Ja

CHAPTER THREE

3.0 MODEL DEVELOPMENT

3.1 Overview

A typical requirements engineering process involves all stakeholders
(customer, domain expert, analyst and developer), but it is mainly the
job of the requirements engineers fo generate specifications from
specified needs. While there has been previous work in the literature
that attempted to develop automatic requirements tools for a family of
systems [1, 2, 29, 38], most are either scoping or modeling tools. They
do not generate specific requirements nor do they offer support for all
client types, thus ieading to communication bariers among the
software development team members (Domain Expert, System Analyst
and Developer) and other stakeholders such as the customer. Existing
tools are mainly designed with the System Analyst's knowiedge in mind
with litle consideration for the developers perspective. Hence, the

need to delineate roles in the software development process.

We associate requirements engineers with the actual initiation of the
application development process which entails: eliciting domain
information, identifying domain features, and developing application

instances of the domain. There are three actors playing the

requirements engineering role namely Domain Expert, System Analyst

and the Developer.

The reasoning behind delegating requirements engineering to three

actors is that:

i Domain experts are not expected to be familiar with the
software development process but are a good source for

domain knowiedge information [35] and

. System Analyst and the Developer are responsible
members of the sofiware development team who define
requirements for an application instance. But what a
System Analyst considers input to a given model or
component, the developer couid regard as an output
element. This phenomenon which could constitute

communication barrier is totally avoided in our scheme.

The RSPL model automates the interactive construction of generic
product line requirements. The model consists of a tool for producing
specific textual application requirements. RSPL aims at bridging the
communication gap between the software development actors, thus
enhancing the requirements generation process. The tool is GUI
(graphical user interface) driven to enhance easier actor interaction and

has automated functionaiity for the different levels of actors.

The Domain Expert's role is to identify domain characteristics that
define and distinguish one domain from another. The role entails
interacting with the customers to identify user requirements. The
knowledge gathered during the interaction is stored in a Domain

Knowledge base for the analyst and developers to utilize.

The System Analyst role is to analyze the content of the domain
knowledge in order to identify product instances and their features.
During this process, all products that belong to a domain are identified
and their features defined. Features abstract a products characteristics,
functionality and relational constraints. Features provide system
analysts with a ciear distinction of potential areas where reuse can be
applied. The Developer's role is that of tailoring domain knowledge to
suit his preferences whilst generating requirements. He chooses

specific requirements from a set of existing generic requirements.

3.2 A Model-Driven Requirement Specification for a
Product Line

RSPL posits that, given a domain knowledge, it should be possible to
generate specific application requirements using various
transformational rules and templates. First, RSPL requires the user to
elicit, scope and store domain knowledge in the knowledge base. The
domain knowledge is generic in nature in the sense that it does not

reference any particular system implementation or technology. In other

(3}

words, it is based on a computation-independent model (CIM) that
captures the information viewpoint of a target application or a

conceptualization of the application.

Second, actors using their expertise and experience, tailor domain
knowledge to suit requirements for a specific application instance.
Tailoring of requirements entails iransforming the generic domain
knowledge into specific requirements. Finally, requirements are then
generated using standardized templates. Therefore, RSPL adopted the
Model Driven Architecture as a pattem for generating prototype

requirements from domain knowledge.

a® B ES AP RO HRBIEPPEERES .‘lll.....".'l~
+ Transformation interpretation

-
L]
-
L]
I EERE FN N RNNEEREN]

Domain
Requirements

Knowledge Perspective

Figure 6. The Model Driven RSPL Architacture

RSPL defines three main components shown in figure 6, namely:
Domain Knowiedge, User Perspective and Requirements component.
The first component Domain Knowledge stores all elicited and
documented requirements. These requirements are generic in nature

because they represent domain features. Secondly, we have the User

Perspective component, an actor-oriented mechanism for tailoring the
domain knowledge according to the actor's preferences to suit the
product whose requirements is to be generated. The third component is
generated automatically by interpreting actor-specific knowledge into

requirements specifications.

3.2.1 Domain Knowiedge

The Domain Knowledge (DK) is a central repository that supporis
documenting and processing of domain knowledge artifacts. Two main

processes are associated with DK as a knowledge base:

i. Elicitation and scoping of domain features, which involve
capturing of domain information and identification of a domain
scope i.e. the task of bounding the domains that are supposed to
be relevant to the product line [8]. It is a process of gathering
information; recognizing reusable assets and core artifacts of the
product line to form RSPL requirement metamodel. RSPL
Requirement metamode! is presented in figure 7. It is based on
the Requirement metamode! of figure 2. The RSPL metamodel
emanates from three interrelated objects namely Domain, Product
and Feature. Each object is explained in detail under the User

Perspective component in section 3.2.2.

Evaluafion and documentation of elicited features. This process

involves analyzing the impact of each identified asset in terms of

the risks it poses and gains it will provide to the product line; and

documenting the artifacts as relational objects.

FEATURE

1®

CONSi5ts of 1

i0: Sirng

Name String
Commonalcy, commanaliy
/siation Vanatien

SRODUCT

Name: String
Descrpton Sting
Goar Sinng

DOMAIN

Name: Smnng
Desznptan. Sirng
Goal' 3tring
Produce: Peaduct

comanEntre])
—rapagesinmant

1
FeatursEtry(; 1
+managerestruresh
Q(‘)
YARIATION NFR COMMONALTY
i Sng - -
Name' Stinz Name: Sinng D Stang

iﬁescnp'ncn. Sirng
satisiyStraiege. Sinng
HenaviguralRessanss Stung

Opersingtrv Stimg

Features. Feature cannave |
proguctEntry]
manageFraduc)
Under Evistrg PL Cantdate
Cevsigpment o
disziay]) dizpiagl)
d.spiayl}

IFREyi COMEnreg
—maragelFRY ranagsCOMG
displayi:

<Inimerzions

Hymbar
Texn

A NumEer
CuTEnCy

wEE

Figure 7: Product Line Requirement Metamodel

40

3.2.2 User Perspective

The User Perspective (UP) component is a portal-type interface in which
the requirements ¢licitation, scoping and specification take place with the
aim of gathering the expert knowledge of the application domain and
specify requirements. UP implements the tailoring of the DK information to
suit the application to be developed. Tailoring activities include requesting,
manipulating and accepting user-type data pertaining to the problem

domain.

There are two main iemplates designed for elicitation and scoping of
domain information. Domain Template and Product Template. The
templates originate from the Domain and Product objects in the RSPL
metamodel (see figure 7). The templates define features of the domain or
product in terms of domain-specific or product specific services. The
technigues used in the template include questionnaire elicitation approach
that consists of both closed and open-ended questions. This technique
enables sufficient information to be captured and allows flexibility. Ciose-
ended questions are more specific and take up less time than open-ended
gquestions. The questionnaires are set up as Textual Use Cases as
suggested by Cockbum {39] and Fantechi et ai [55] to elicit domain and

product information.

#H

3.2.2.1 Domain Object Template
A domain template provides the mechanism to collect information
pertaining to domain characteristics and constraint relationships with
other domains. The essence of capturing domain characteristics is 0
specify information that uniquely differentiates one domain from the

other. Figure 8 is an iliustration of the RSPL domain template.

Naturally, domain information includes the domain name, followed by a
short but comprehensive narration of what the domain entails and its
expected features. The other elements are goal and objectives the
domain is pursuing; an actor who is either primary or secondary
depending on the role played; variation points expressed by using the
term Extension; and variation status (optional, alternative or mandatory)

captured as the Variabilities feature.

Donsam Name : Nume that umigrely dentifies the domam

Description: Short but compuehensive narmation of what the donsein entais and
its expected foatures

Goak A longer statemsent of the goal in cantext if nesded

Actor Main user of the domain

Other Actor: Secoriary users
Extensions: Variston points
Yanamlimes: Faziston Status

Figure 8: Domain Object Template

3.2.2.2 Product Object Template
A product template elicits the features of a product in terms of its
functionality and feature relationships. The template is derived from
defined product features. An RSPL product template consists of elements

such as:

i A list of product characteristics: These include product
identiiy (ID); product name, product type, goal, actors to
name a few (see figure 9.0). The product type determines
the category of the product. A product can be in any one of
the three main categories: (i) a product already in existence
within the family or domain; (ii) a product that could become
an instance of the product line, implying that it does not exist
in the domain but is a viable product line candidate; or (i) a
product that has been identified for future instantiation in the
product line, that is, the product has been acknowledged in

the domain but has not yet undergone development.

il A set of functional requirements: The behavioral
characteristics of a product are elicited by using the Service
property on the template. Each service property is itself
described on a Functional Use Case template (see figure
9.1). Associated with a service are other features such as

event trigger, which activaies the use case; and pre and post

frn
o5}

iv.

conditions which provide the state of the worid before and

after the use case is executed.

A number of variation points: Variability in a product is
expressed as the presence, absence or substitute of Service
features. Therefore, each product instance has varation
points called extensions. An extension is a named service
feature: optional, alternative, or mandatory. An optional
feature may be present or absent. An altemative connotes
the existence of a substitute and mandatory implies the

features must be present in the product instance.

A set of quality constraints: The Product template has a
Constraint feature, used for specifying possible constriction
on the product. Typical constraints include quality attributes
such as performance, reliabiity and maintenance
characteristics of the product. Each quality attribute is
specified by using a Nonfunctional Use Case Child
Template. The tempiate captures quality characteristics
using features called (i) Notion and (i) Behavicral
Responses features (figure 9.2). Notion is a brief description
of a product's NFR. The behavioral response specifies the
implication of each use case in the Product using a set of

predetermined profile scenarios from Bosch [1] such as

usage scenario for Performance and change scenario for

maintenance requirements.

Relational Constraints: If we assume that the domain is a

universe, then products constitute sets in the universe.

Normal set relationships are defined between products, the

features from which products are composed and the

services that interact to implement a feature. A formal

description of the relational constraints is outside the scope

of this dissertation.

An ideriifser to umiquely wderssfy the product from otlers
fz the dorriasx

Naxm of the product urstexe

product emtels and ity expecied fhxey

A loopee stdunaers: of the gol i corrhent if needed
Product cstegory or differemiiction
Muin [Tser of the daerer

Secondary usess

Use case stxies desatbiog, peodoct Ranchionaley
Expoess vedahility
Varishiliy types sd comtrants

Figure 9 Taxtual Product Object Tempiate

Usa Casa Ik

A erdifier to ey iderdify the use case from ofhen

Use Case Name: Name of fine wse cane
Geak A longee sbiberen of the goal 21 cortest if needed
Avrae Mgt User of the use case
Orher Actee Secondary users
Preconditians What we empect is aleady the state of the wordd
Peswandivon: Stabe of e wodd upan sawesshd copaplerion
Trgger: Actiomyupon the syster Shat staxts the use case
Exmncismns: Eapeess veniabaltey
Variahilicier: Vssabiliy types and corstrmnts

Figure 8.1 Functional Use Case Child Template
Use Case IDx An identsbe to unquely dentsfy the use cise from athess
Use Cace Noome: Nare of the use c1se
Natiox Edetoneerny ofthe use cose snd s fondarentsl selations

gtk atheryuse ctses.

Behrgierl Respamse: Specfy the comnsteivn of the we case in the poduct

Figure 9.2: Non Functionai Use Case Child Template

Sejection of a template in the domain: An actor triggers the

3.2.3 The Requirements Generation Process

The Requirement Generation process is dictated by both the domain and
product templates. When an actor creates a product instance by tailoring
domain and product features, the requirements generation pracess is

activated. The requirements generation process consists of the foliowing

requirements-generation process by selecting a domain from

46

i

iii.

which requirements are to be generated. Each domain is
characterized by one or more generic product templates.
RSPL presents these genenc product templates to the actor

who makes a selection of one of the templates.

Selection of one of the listed instances or creation of a new
instance: RSPL refrieves a number of existing product
instances that are related to the specific pre-selected product
template, from domain knowledge. The actor chooses the
product instance that meeis his curent requirements or
creates a new product instance if none of the available
instances fits his current wishes, a new product instance is
created by tailoring the domain knowledge and identifying

variation points.

Retneve the corresponding data set from the Domain
Knowledge: Once an instance is selected or created, RSPL
retrieves the data set corresponding to that product instance

and maps it to the RSD document features.

Populate Empty RSD with data set value: Each time a data
set is selected from the Domain Knowledge, the RSD as
reflected in figure 10, is automatically populated with
corresponding data set and becomes the generic reference

for product instances within that category.

37

The deliverable from the for-step process above is a requirements
specification document (RSD). An RSD is, therefore, a union of both
specific domain and product template features that is automatically
generated during the requirements generation process. Moreover, an
RSD is made up of five parts namely (i) an Introduction or epilogue
section which presents requirements overview of the application instance
to be developed; (i) Functional Requirements section, which outlines
features to be reused for each implementation, without being re-invented
in each separate implementation; (iii) Quality Requirements section that
presents the NFR properties; (iv) a2 variability section, what and how
services will vary; and (v) a Glossary section of domain terms. Before an
actor invokes the requirements specification process, the RSD document
parts are empty. Each of the paris is filled in once the requirements

specification process is completed.

Fequrement Spaciicution Docimmeet : g =

RSO}

g e oo : ol
airess E;f?ﬁ%fkauiﬁSﬁ?nxyﬂiknuxﬁ%nd;tﬂ;{__:j

Figure 10. A Requirements Specification Document

3.3 A Web-Tier Application Framework for RSPL

A web-tier application framework design, based on the Model-View-
Controlier (MVC) pattem has been adopted in this research with a view
to make the tool interactive, robust and scalable. A web tier application
framework consists of three components: client tier, middle tier and

information tier.

The client tier models the interaction with the user. {t communicates with
the middle tier via standard protocols and sends and receives standard
data formats that meet user's needs. Clients supported by RSPL range
from devices running standard Web browsers to pervasive devices such

as PDAs.

The middle ter includes standard-based web servers for interacting with
the client tier and executing business logic functions. It collects and
assembies web pages composed from static to dynamic contents and
delivers them to the ciients. The Information tier is the data store for all
application artifacts such as existing and new internal applications,

services and data.

MVC has been recommended as the architectural design paftern for

interactive applications that provide a host of design benefits such as

49

separating design concemns from content presentation of the web-tier
application framework [19]. MVC separates design concerns from
presentation content using three parts namely the Model logic
responsible for handling business logic and functionality of the
application in the middle tier. The MVC View is designated for content
presentation to different client types. The Controller logic processes user
inputs and requests by communicating between the information and
client tiers. Table 3 illustrates how RSPL maps to the features of MVC

and web tier framework.

) RSPL ; MVC | Web tier |
l Domain Knowledge ' Model ! information tier -
User Perspective View Client
Requirements Generator . Controiler Middie tier

Table 3. Mapping MVC features to R.SF’L

The RSPL Domain Knowledge component is mainly responsible for
storage and documentation of domain artifacts that resuited from
elicitation, scoping and specification of requirements as well as business

functionalities from the domain.

With respect to MVC and the web tier application. the Domain Knowledge
part maps to the Information tier and the Model component of MVC as
they both signify the business logic, or application functionality and data
storage. The RSPL User Perspective component is equated with the View

portion of MVC as they both represent the presentation logic that provide

S0

the interaction interface between an actor and the tool. Actors make their
contributions to RSD construction (elicit, scope, and tailor requirements)

through this component.

The RSPL Requirements Generator processes actor input and requests
and, therefore, maps to the Controller part of the MVC pattem. in MVC,
the Controller communicates with the Model to process View requests,
while in RSPL, the Requirement Generator communicates with the
domain Knowledge to turn actor-perspective into concrete requirements

specifications.

CHAPTER FOUR

4.0 RSPL TOOL DESIGN AND IMPLEMENTATION

4.1 Introduction

This chapter provides a typical iilustration of how the presented model
could become the heart of an interactive, web based tool - RSPL. Initially
the model is anaiyzed to identify and determine toof requirements. The
analysis uses object-oriented techniques to model the tool requirements.
The design is then presented to depict how the tool is to be implemented

on a web tier application framework.

4.2 RSPL Tool Decomposition

The purpose of this section is to obtain requirements that necessitate the
development of the tool. A system development life cycle approach
supported by object-criented analysis techniques was adopted to
facilitate the identification of requirements. The system development
cycle consists of five main phases namely Requirements Gathering,
Requirements Analysis, Design, Implementation and Testing. These

phases are described in deiail in the subsections that follow.

4.2.1 Tool Requirements Definition Phase
RSPL identifies three actors who interact with the tool. The actors
include the Domain Expert responsible for elicitation, the System Analyst
responsible for scoping and the Developer responsibie for requirements
specification. Based on this preliminary requirements gathering, the too!

implements the following key functionalities (see figure 11);

i. Logon Management: for identifying the actor currently using

the tool and maintaining their profiles:

ii. Requirements Elicitation: for eliciting domain information

from business operating environment;

i, Domain scoping: to identify commonality and varable
features from elicited and analyzed information;

32

iv. Requirements specification: for tailoring and customizing

requirements or features to suit actor perspective;

V. Requirements generation and

Vi, Administration: to aliow actors access the information they

need, e.g., search, suggested content, links, etc.

Elcit domain
information

Identify and
scope features

Figure 110 RSPL Use case

L
(%)

4 2.2 RSPL Requirements Analysis

4221 Logon
The Logon use case is responsible for ensuring that security protocols
are observed such as confiming that the right actor is using the system.
Each actor is assigned administrative rights depending on the role being
played i.e. domain expert, analyst or developer. For example, a domain
expert whose role is eliciting information from the domain environment
may not be presented with a requirement specification web page but with
a domain elicitation and scoping page. Administrative rights require that
an actor logs onto the system; and provides his particulars, such as level
of expertise (job title/actor role), username and password. User name
and password are checked for authentication purposes. Once
authenticated, an appropriate message is sent back to the actor stating
as either a success or a failure in the login status. If access is granted,
the tool directs the actor to the respective web page that performs that
functionality or transaction. Altematively if the logon failed the actor is

requested to try once again.

Figure 12 shows a sequence diagram of a logon use case. The flow of
time is shown from top to botiom, that is, messages higher on the
diagram happen before those lower down. The horizontal boxes are
instances of the represented classes, and the vertical bars below are

timelines. The arrows (links) are messages - operation calls and returns

from operations. The hide and show messages use guards to determine
which fo cali. Constraints on the message are presented using square

brackets [] and a message is sent only if the constraint is satisfied.

i Loganilisicg LogonManager ESPLDatsbase
Actor
i 4 T T
=pply0) i ! |
L
o
s walidate] agon
usemams, password) -
: executeQuary
{query string to chack
usememe and
password with database)
i
‘
Bogin succonsful] - bised
E flogen feited]: show()

Fuymare 12: A sequence diagram far the login use case

The messages are labeled with the operation being called and
parameters are shown. An RSPLDatabase class allows the queries to be
executed against the database. When a query string is sent the
ResultSet of the data is retumed. The administrator administers the
portal {0 ensure security issues are adhered to. He is to guarantee that
only specific users are able to access the tool and use specific web

pages. A single sign on approach is adopted to allow users to log on and

have access to the tool once. The tool then passes their authentication

sites to other sites so that no logging in again is required.

4.2.2.2 Requirements Elicitation and Scoping
Requiremenis elicitation and scoping are interwoven processes,
meaning that they depend on each other. Requirements Scoping
depends on elicited information. Elicitation is a process in which actors,
domain experts in pariicular, identify and document new or improved
domain features for the purposes of acquiring sufficient and
comprehensive domain knowledge about the problem domain. Domain
scoping aims at selecting, based on the results of the elicited
information, the systems that are included in the system-family and,
secondly, what features are shared in the system-family [57]. it helps to
describe the problem domain features, that is, system functions,
interfaces, business rules, forms and reports, system performance
factors, and qualily attributes. Because the two processes are dependent

on each other, a singie sequence diagram was constructed in figure 13.

The flow of time is shown from top to bottom, meaning that elicitation
takes precedence followed by scoping. An actor triggers the tool when
he/she requests to define or elicit features. When an actor submits
defined features during eficitation, the toal requests the actor to confirm

the defined feaiures. Once confirmed, the features are documented and

added as new domain information. During scoping of the domain, elicited
information is retrieved and analyzed to identify reusable features. Once
identified, features are checked by the FeatureManager as to whether
they conform to business integrity rules before documentation as domain

knowledge in the RSPLDatabase.

- 5 "
feepardwing i ! i
Famrdarage | RETLasimce

: DomanFzatre . '
CEfnefEanres]) i | . L m !
Actor ’
: > !
i ¢
< ------------------------------------
: en el T armEsC ;
iexfirmes SemanFaats] — — SRS
A ; i uncorimmed ComanT RazyE; : : {
i - s ; ‘ ?
T
scepersalres) | ORIty &N YENEhif, .
i -
. ERETL s
Ty UEs sETy i | - -
— “prergrT et e row gy
! : L
| . :
j ;
i .
i : : 1
! . 1
I

Fuure 137 Elicitation and Scoping Sequence Diagram

4.2.2.3 Requirements Specification Use Case
Requirements Specification is an actor as well as template-driven

process. An actor friggers the specification process once helshe

requests to tailor the domain features to generate specific requirements.

The tailoring of features takes place using the FeatureDialog which then

communicates to the FeatureManager,

requesting actor specific

requirements. The FeatureManager retrieves the feature datasets from

RSPLDatabase, and via FeatureDialog, presents them to the actor who

makes a choice of either to select one of them or to create/add new

features. Figure 14 illustrates a Requirements Specification Sequence

diagram. RSPL will then request the confirmation of selected features. if

confirmed, RSPL slots it into the appropriate RSD template section

otherwise those features are removed.

X

1
Engmelining Fostrdiamger | RSP Dababase
Actor ,g
] ‘ T
!
’ n . F ‘.
‘ mtw;ﬂy
{quey simng 0
> wm with Seishase}
& H
E —
|
;; ol e N
1 e i
!
! § coufirnnd Spectiudicainm:] raceafirel SpecfiniFouzre .
: e} - s} !
' [i
! | ‘
—» e ; i

Figure 14: Requirements Specification Sequence diagram

4.2.3 Tool Design
The six use cases were repackaged into four tool capabilities that must be
provided in order to accomplish the RSPL goals. These capabilities are
shown in figure 15 as: Domain Browsing, Editoring, Requirement

Generation, and Knowledge Base.

Eddor

Temyloie wopesis

Dase

Figure 15 RSPL Tool Archiecture

4231 Browsing
The Domain Browser provides the interactive user interface between an
actor and the tool, making it possible for them to make requests such as
viewing and requesting information from the knowledge base. Actors view
the application output in the browser and click hyperlinks and form buttons

fo interact with the application. When an actor makes a request, the

59

browser communicates with the Requirement Generator to retrieve data

from the Knowiedge Base, i.e. Domain Knowledge.

Each web page (servlel) empioys an XSL transformer to generate
appropriate presentations for each client type. Each client type requires
that the application have a separate set of XSL transformations for it to

deliver the content.

4232 Ediing
The Editing capability provides the necessary software support for tasks
such as elicitation, scoping and tailoring of domain information to generate
specific requirements according to the respective actor's perspective and

preferences. The Editing capability supports the foliowing operations:

i. Addition of new features: creation of either a new product

instance, or simply incorporation of additional features;

ii. Deletion of a feature: removing that feature from the domain:

i Updating a feature: making changes to current or existing
features to ensure that they have cument or up-to-date

information and

iv. Searching: finding specific features in the domain

knowledge.

GO

4.2.3.3 Requirement Generation (RG)
The Requirement Generation process requires that the content of the
knowledge base is fransformed into the view presented to the user by the
domain browser. The process consists among other steps of querying the
Knowledge Base and retrieving requested specified requirements. The
web tier application framework enables RG to have a number of web
components and extensions such as Enterprise JavaBeans (EJB); Java
Database Connectivity for accessing database services; and support for

creating, parsing and transiating XML documents.

Figure 16 provides a detailed architecture of RSPL, illustrating how it
relates to the web tier-application framework and MVC. Further
explanation is provided by Deitel et al in [58]. One of the supported web
components are Java serviets to provide mast of the user interactivity
features. The Domain Knowledge component and Requirement Generator
are supported by the enterprise JavaBeans (EJB) components provided
by web applications server. The figure shows how different clients
communicate with the web server which forwards the requests to the
serviets running in the application server's serviet container. Each client's
request is transformed using XML Stylesheet Language (XSL)
implemented at the presentation logic. The XSL processor allows the
actor to take the abstract semantics of an XML document and transform it

into a presentation language suitable for the client type (for example WAP

61

and i-Model clients). MVC makes this possible by adapting the new client

type to operate as an MVC view.

Clienr Tier
WAP -mode Web
Chent Clienc Browser
Muddle Tier , X v
Web Server
5
4 A 4 A 4
Servler Conminer
XL Transtomer XSI Transformer XL
WML 1T Trnsfomer
PHTMI
F Y h 3 h 3 3
Servle (Servie ! (Serviet '
EIB Conaumner
i EB { KB j N 4515 I
+ owe
¥
Information Tier

RSPL RIDIBMS

Figure 16: Detailed MVC architecture of RSPL Tooi

View

Controller

Model

RG is a stateful session EJB that represents an actor's specifications,

stored in an RSD template. The RSD stateful session EJB manages the

actor's specifications and is the primary RG component in the RSPL tool.

62

This is because sometimes actors browse through the tool and add
features to their RSD, only to discover later on that those features do not
meet their requirements. Rather than storing such an RSD, the EJB
container removes the RSD EJB instance from RG. RG also implements
the application’s presentation logic, making it possible to present content

to different client types.

4234 Knowledge Base (KB)
The Knowledge Base represents the information tier logic, responsible for
data maintenance of elicited and scoped information as well as generated
domain artifacts. KB supplies the feature and function of an object-
relational database to RSPL applications that include querying and
updating access {o database information through £JB using Structured

Query Language, JAVA SQL and JDBC interfaces.

KB provides logical database description, i.e. the schema, used to
describe and specify the artifacts and the relationships among them.
Arifacts in this aspect include entities or classes, attributes and their
relationships. It also provides a specific view of the data item types and
record types to be used by an actor. The KB consists of a catalogue of all
data types in the Knowledge Base that is used to document and manage
domain vocapulary. A domain vocabulary gives the data type's names,
definitions and characteristics of each domain artifacts. The adopted web-

tier application framework design enables RSPL to separate design

concemns from its presentation and control logic by having three
packages: Serviet, Model and EJB. The different MVC components ie.
Model, View and Controller are shown on the horizontal top row. The
RSPL packages are indicated vertically from top to bottom on the first
column in Table 4 shows how each RSPL package maps to an MVC

component.

54

Package/MVC Modei View Interface Controlier
Serviet XsL
Xalan and Xerces XML Serviet
XSL Transformer
Register and Login
Add/Remove and Update
Search/View
RSD {Requirement
Specification Document)
g ;
Modei Domain
Product
Feature
Service
Actor
EJB RSD EJB | R3D Remote and RSD Home
Domain EJB ’ Domain Remote and Home
Product EJB Product Remate and Home
Feature EJ8 | Feature Remote and Home
Service EJB Service Remote and Home
Acior E4B : Aclor Remate and Home

Tabie 4 RSPL tacl packages

CHAPTER FIVE

5.0 RSPL TOOL CASE STUDY

5.1 Introduction

The goal of this chapter is to demonstrate how the RSPL tool was
implemented by transforming artifacts from analysis and design into an
executable system. The content is a follow up to design and
implementation reported in chapter four. An e-Commerce domain has

been selected to demonstrate the working of the tool.

5.2 Case Study: Generation and Specification of
requirements for the E-Commerce Domain

5.2.1 Rationale for an E-Commerce Domain

E-Commerce is the means of selling goods and services on the Internet
in a digital format. The increasing demand of E-Commerce Customers’
expectations requires software engineers {o have tool support that will
heip in the provision of timely information and services. Wierling [60]
observed that E-commerce development environment involves shorter
release cycles, higher quality releases, and ever-changing end user
demands. To this effect, the tool support becomes a necessity in meeting
customers changing expectations. This case study is presented as an

online web store consisting of two main product categories namely, the

66

ordinary online web store and the mobile web store. Each product

category is differentiated into three different instances depending on the

number or level of features. The instances include:

ii.

Mini Web Store (MWS) fealures: These are necessary
features that are required for a web store to be functional.
MWS online web siore will have two minimal features:
Catalogue Management which includes controlling and
displaying product range; and an Ordering System

responsible for placing and processing customer orders.

Standard Web Store (SWS) features: These are average
features that include minimal web store features and
additiona} features that offer differentiated characteristics.
SWS online web store category will implement Catalogue
Management; eSales Management which involves orders
and billing management, reports generation and analysis,
marketing and advertisement though banners; and
Procurement which includes handling inventory and
integrating transaction between buyers and suppiiers either

by event notification such as SMS or email.

iii. Deluxe Web Store (DWS) features: These are specialized
features that include both mini and standard web store
features. Compulsory features implemented will include
Catalogue Management; eSales Management; Procurement;
Customer Relationship Management, ensuring provision of
customer self services and direct marketing using PDAs for
subscribed customers; and Website Management to handle

content layout, web load testing and functional testing.

This case study looks at the possibility of RSPL generating specific
requirements for the SDLC actors who intend to provide QOnline Web

Store services for the tourism industry sector.

5.2.2 The Portal interface

The Domain Browser provides an interactive interface between the actor
and the tool. Figure 17 presents a prototype of an RSPL portal interface.
Links from various tool sources (other web pages) have been
consolidated to provide a single portal entry access to information. To
ensure that the tool is easier to use, actors are provided with a
walkthrough link about the tool and a tutorial that provides them

necessary assistance with using tool functionalities.

63

This is a first release of the RSPL tool

vements are still being made.
| To start using the tocl, login in by cliking here.
In case of any exrors, report them by sending

.' n emasl to sarah kabanda@vshoo com until
February 2006.

Figure 17: RSPL Portal Interface

5.2.3 User Authentication

User authentication is a process of confirming each actor’s information
before using the tool. An actor is required to log onto the system and
provide his/her particulars such as level of expertise (job title/actor role),
username and password (UseriD). The system then checks whether the
actor exists within RSPLDatabase. Figure 18 shows the scenario of a

logon session.

" Figure 18 RSPL Login Page

69

5.2.4 Elicitation and Scoping Interface

Requirements elicitation is carried out by the domain expert who has full
understanding of the domain in terms of the stakeholder needs and
possible environmental changes. Requirement templates for eliciting and
scoping are structured to capture domain features such as domain
name, its description, goal and actors. A domain template snapshot that
elicits elementary domain features is presented in figure 19. While figure
20 elicits and scopes behavioral features, figure 21 elicits quality

features.

Deseription e —

Goal im Combest Fﬂumwm)muw
Pimaydcer [Fotome

Otherdcior [Semice Provider

Figure 19: Domain Template Elicitation

70

5.2.5 Specification and Generation Interface

The model that drives this process is domain knowledge derived from
various domain sources such as actor perspectives, domain vocabulary
and knowledge base. Each source is a dynamic content repository

corresponding to a web mini application on a portal server.

The requirements specification process requires that an actor selects
features from predefined domain knowledge. Figure 22 shows an actor
specifying the domain types, which in this case study, is the e-Commerce
domain. The different product instances that characterize the domain are
displayed in figure 23 and the actor makes a choice of deluxe web store

that offers specialized services.

Flzase choose a domain nams

Figure 22: Domain Tempiate Specification

Please chocse a product inst

Figure 23: Selection of a product Instance

Automatic generation of a deluxe Online Web store features are reflected
in figure 24. The actor is then allowed to specify product features as per
product requirements. Any selected feature can have sub features that
also require specification, for example, figure 25 shows sub features of
figure 24 of the selected feature. If no further sub features are found, an
RSD is then automatically generated. In this case, a choice of Layout
Maintenance is selected although further choices can also be made. The
Layout Maintenance feature has no further sub features to be specified.
This allows the automatic generation of abstract semantics in figure 26

and a partial RSD in figure 27.

Ee EENEC e S z;;.

Flease chooss a feature semace
3 Procurement

- eSalesManagemant

1_ CustemearRaistionshipManagement(CRM)
P WebsasManagament

Figure 24 Feature specification

Help mbous RSFL Take attonsl Poot Ex

Flease choose @ festure ssnace

= LayoutMaintanance
SearchEnginaeRemgstration

— DomainMNameSstup

— EmaiSetup

- B

Figure 25: Sub Feature Specification

73

b o

-rdbms-bean FUBLIC "-//EEa

Figure 6: A partial metadata talmn of the Entity Domain.

i>description</bes
> Description”<

REQUIREMENTS SPECIFICATION BOCUMEST TEMPLATE
B AbogRDL TakesTworhl Pree Exi

ETR0BUCTION

Doy Hgme: o Commerrs Spplicstion
Damyn Desciption: Selling goods o serviess in dighal ot
Goal: Daalep gpliction Bty withi this domain
Copsmae: DSk i chtaming ol stakesbe e pibmation ¥ some may mot.
Beman Fessms
Prodnes stanes- Deltmm Webston Sevices
Description: Specisitnd Bafrmes that inclods both mini o tnderd Satns a5

well o compaisary et
T Wi site Mmarmere

CostenerRulafiomdiin Marasenert{ (R

sSulsshigarenae

Procmenes

FUBCTIGEALTTIES

Heass Sescion

Mo Commer
A Szebiae

FIQUFE“27i A pérﬁal RSD for the Online Ecommerce Apphcation

5.3 Evaluation of Result

The development of the RSPL tool using a web-tier application
framework and a model-driven architecture made it possible to

implement a tool with the following functionalities or capabilities:

i. Tool support for requirements engineering tasks such as

elicitation, scoping and specification;

il. Generation of requirements metadata during product
requiremenis specification phase such that ifs equivalent
metadata is automatically generated without the actor's

efforts and

jii. Support for mobile client types using J2EE platform.

CHAPTER SIX

6.0 CONCLUSION AND FUTURE WORK

6.1 Conclusion

As software development moves from a single product development to a
family of systems, requirements engineers need to rethink new modeis for
tool support. The tool support is an essential part in softiware development
as it () decreases time to market by automatically generating
requirements or code (ii) decrease erors due to limited human
intervention (iii} increases return on investment by decreasing overhead
costs. The Model Driven Architecture (MDA) benefits seem to provide
solutions to software engineers RE problems. Aithough the MDA benefits
have featured in application design and implementation phase of system
development, this work extends the MDA benefits to the requirements
phase as a solution to tool support for product line development. This
research work addresses tool support concems by proposing a
requirements engineering model (RSPL) for product line software

engineering.

The first objective was to construct a model to support automatic
transformation of domain features inio actor-specific reguirements.

Foliowing the Model Driven Architecture principles, a Requirement

hH

Specification Model for a product line (RSPL) based on three constructs
() Domain Knowledge (i) User Perspective and (ifi} Requirement

Generation was formulated.

it has been shown that the Domain Knowledge component is a
centralized repository that does not reference any particular system
implementation or technology, but is responsible for capturing and
documenting the information viewpoint of a target application or a
conceptualization of the application. The study further shows how through
the User Perspective component, actors are able to tailor domain
knowledge to suit requirements for a specific application instance using
two main templates (i) domain template and (ii) product template. The
tailoring of requirements entail transforming the generic domain
knowledge into specific requirements through a portal-type interface.
Requirements are then generated using standardized templates through
the Requirements Generator component. The requirement generation
process is dictated by actor specific requirements, specified using both
domain and product templates. The generated requirements are then

presented to the actor in a requirements specification document.

The Second objective was to provide a reusable implementation of the
model for different client types. This was achieved by adapting a web tier
application framewark which provides interactive applications, mutti-user

capability (support for different client types) and provision of a host of

design benefits. The implementation is achieved using an e-Commerce
application domain case study which demonstrates how the RSPL tool
was implemented. Moreover, the tool offers guidance and active support
o novice users and those from different background, through tutorial and

proposing various kinds of links auiomatically.

The RSPL tool is not a full feature tool like Holmes Tool [61] but it serves
the purpose for which it is designed. The underlying model proves that a
model-driven software requirements factory is a future possibility. A true
factory will allow actors to play specialized roles in the production line as
RSPL. has demonstrated while delivering an automatically generated

finished product.

The tool does not have a validation capability but this can be plugged into
a production version. it however demonstrates that both requirements
artifacts and design artifacts can be stored side by side in the knowledge
base for collaborative update. Any part of software documentation can

then be generated just as in the case of requirements.

6.2 Future Work

The RSPL model was not designed with specific security, scalability and
performance quality of service in mind. For it to be used in a production
environment, design criteria for the Quality of Services issues must be
evaluated first. The model does not also provide validation capabilities

essential for checking requiremenis completeness and consistency. A

-

decision model that flags requirements inconsistency and dependency
constraints based on the approach by Feather in [59] can be adopted
before introducing RSPL to the production environment. These aspects of

the research are deferred to the future.

Another weakness of cumrent RSPL tool implementation is that while MDA
and MVC architectures provided opportunity for reuse, this would have
been enhanced by using porilet iechnology to structure the portal
impiementation. With the advent of portal technology APl and SDK, all
future versions of this tool will take advantage of the extra modularity,

orthogonality and maintainability that portlets present.

RSPL has been designed with multimodality in mind, however, the model
should be enriched further in future to enable concrete extensions for

mobile clients either micro-browser or operating environments.

9

REFERENCES

[1] Bosch, J. (2000). Design and Use of Software architectures:

Adopting and evolving a product fine approach. Addison Wesley

Professional.

[21 Bowen, B. J. (1978). Are cumrent approaches sufficient for

measuring software quality? ACM SIGMETRICS Performance

Evaluation Review, vol.7, issue 3-4, pp. 148 — 155.

[3] Brown, A. (2004). An introduction to Model Driven Architecture Part
I: MDA and today’s systems. The Rational Edge: Copyright iBM
Corporation. Available at hitp://www-

128.ibm.com/developerworks/rational/library/content/RationalEdge/

feb04/3100.pdf Date last accessed November 2004

[4] Bryant, B. and Pan, A. (1991). Formal Specification of Software
Systemns using Two-Level-Gramma. COMPASAC’'S1 15th Annual

intl. Computer Software and Applications Conf. pp155-160.

[5] Cockburn, A. (2001). Writing Effective Use Cases. The Crystal

Collection for Software Professionals. Addison Wesley.

[6] Cohen, S. and Northrop, L. {1998). Object-Oriented Technoiogy

and Domain Analysis. Fifth International Conference on Software

Reuse (iICSR'98), pp86.

[7] Cox, K. {2000). Fitting Scenarios to the Requirements Process.
IEEE Proceedings of the 11th Intemational Workshop on Database

and Expert Systems Applications (DEXA’00), pp. 995.

[8] DeBaud, J. (2000). TrueScope Technologies Inc, Software Product

Families Solutions.

[9] Deelstra, S. Sinnema, M. Van Gurp J. and Bosch, J. {2003). Mode!
Driven Architecture as Approach to Manage Variability in Soffware
Product Families. Proceedings of the Waorkshop on Model Driven
Architecture: Foundations and Applications (MDAFA 2003). CTIT
Technical Report TR-CTIT-03-27, University of Twente, pp.109-

114.

[10] Dionisi Vici, A. Argentieri, A. Mansour, A d'Alessandro, M.
Favaro, J. (1898). FODAcom: An Experience with Domain
Modeling in the Italian Telecom industry, Proceedings of IEEE

ICSRS5, pp 166.

[11] Du Bois, P. (1995). The Albert Il Language — On the Design and
the Use of a Formal Specification Language for Requirements
Analysis. PhD. thesis, Dept. of Computer Science, University of

Namur, Namur, Belgium.

{12] Firesmith, D. (2003). Modern Requirements Specification. Journal

of Object Technology, V0i.2, No.2, March-April 2003, pp.53-64.

51

{13] Flurry, G. and Vicknair, W. (2001). The [IBM Application
Framework for e- business. |BM Systems Joumal, Vo!l.40, No.1 pp
8. Available at

htip://www.research.ibm.com/journal/si/401flurry. him!. Date Ilast

accessed August 2005.

[14] Frincke, D. Wolber, D. Fisher, G. and Cohen, G. (1992).
Requirements Specification Language (RSL) and Supporting
Tools. Avallabie at

http://ntrs. nasa.qov/archive/nasa/casi.ntrs.nasa.qov/18930003157

1993003157.pdf Date last accessed June 2004.

[15] Gomaa, H. Kerschberg, L and Farrukh, G.A. (2000). Domain
Modeling of Software Process Models. Sixth IEEE Intemational

Conference on Complex Computer Systems (ICECCS'00), pp50.

[16] Gomaa, H. and Kerschberg, L. (1995). Domain Modeling for
Software Reuse and Evolution. Proc. {EEE International CASE

Conference, Rio de Janeiro, Brazil.

[17] Grunbacher, P. and Braunsberger, P. (2003). Too! Support for
Distributed Requirements Negotiation. in Cooperative methods and
tools for distributed software processes, Cimititle, A., De Lucia, A.,

and Gall, H., Editors. FrancoAngeli: Milano, Italy. pp 56-66.

[18] Hepper, S and Hesmer, S, (2005). /Infroducing the Portlet
Specification, Part 1. JavaWarld.com, an IDG company. Retrieved

from http://www.javaworld.com/iavaworld/jw-08-2003/jw-0801-

portlet.htmi. Date last accessed May 2004.

[19] Herlea, D.E. (1998). Users involvement in requirements
engineering. in the Proceedings of the Workshop on Internet-based
groupware for users involvement in software development, Seattle,
USA. Available at

http://ksi.cpsc.ucalgary.ca/KAW/KAWS6/heriea/FINAL .html Date

last accessed September 2004.

{20] IEEE, (1993). Standard VHDL Language Reference Manual.

Standard 1073-1993, New York.

[21] Jarzabek, S. Chun, O. W and Zhang, H. (2003). Handiing Variant
Requirements in Domain Modeling. Joumal of Systems and

Software. Vol.68, No. 3, pp 171- 182 .

{22]John, |. and Dormet, J. (2003). Exiracting Product Line Model
Elements from User Documentation. Technical Report, Fraunhofer

IESE. Available at http.//www.iese fhg.de/pdf filesliese-112 03.pdf

Date last accessed July 2004.

[23] Kan, S. H. (2003). Metrics and Models in Software Quality

Engineering. 2nd Edition. Addison Wesley Professional.

e
[WF}]

[24] Kang, K. C. Lee, J and Donohoe, P. (2002). Feature-Oriented

Product Line Engineering. |\EEE Software 19, (4) (July/August

2002), pp 58-65.

[25] Kang, K. Cohen, S. Hess, J. Novak, W. and Peterson, A. {1990).

Feature-Oriented Domain Analysis Technical Report No. CMU/SEI-

90-TR-21, Software Engineering Instituie.

{25]

[26]

{27]

Kassel, W.N. and Malloy, B.A. (2003). An Approach to
Automate Requirements Elicitation and Specification.
Proceedings of the 7th IASTED international Conference
Softiware Engineering and Applications, pp 397-029. Available

at hitp://'www.cs.clemson.edu/~malioy/papers/sea03/iasted. pdf

Date last accessed September 2004.

Griss, M. Favaro, J. and D'Alessandro, M. (1998). Integrating
Feature Modeling with the RSEB. Proceedings of Fifth
International Conference on Software Reuse. Available at
http:/fiwww favaro.net/john/home/publications/rseb.pdf Date last

accessed November 2004,

Maiden, N.A M. ARTSCENE Scenaric Presenter. Available at
www soi.city.ac.uk/artscene. Date last accessed November

2005.

[28]

[29]

(30]

[31]

Meier, J.D. Vasireddy, S. Babbar, A. and Mackman, A. (2004).
Chapter 1 — Fundamentals of Engineering for Performance:
Improving .NET Application Performance and Scalability.
Available at
hitp://msdn.microsoft.com/library/default.asp?uri=/library/en-

us/dnpag/htmifscalenetchapt01.asp. Date last accessed June

2005.

Meservy, T.0. and Fenstermacher, K.D. (2005). Transforming
Software Development: An MDA Road Map. IEEE Computer

Society.

Metzner C. Cortez L. and Chacin D. {2005). Using Blackboard
Architecture in a web application. Issues in Informing Science
and Information Technology, pp 743 - 755. Available at

http://2005papers.iisit. org/I58f73Metz pdf Date last accessed

Aprit 2005.

Moon, M and Heung, S.C. (2005). An Approach to Developing
Domain Requirements as a Core Asset Based on Commonality
and Varnability Analysis in a Product Line. |IEEE Transactions on

Software Engineering, July 2005 Voli. 31, No.7. pp 551 - 569.

[)
(1]

[32]

[33]

[34]

[35]

[36]

Object Management Group. (1999). OMG Unifies Modeling
Language Specification UML v1.3. Technical Report, Document

ad/99-06-08, Object Management Group (OMG).

Padmanabhan, P. (2001). DECIMAL: A Requirements
Engineering Tool for Product Famifies. Oiwa State University.
Ames, lowa. Available at

htip://archives.cs.iastate . edu/documents/disk(0/00/00/02/79/000

00279-00/thesis.pdf Date last accessed September 2004,

Parnas, D.L. (1976). On the design and development of
program of families. IEEE Transactions on Software

Engineering, vol.2, no. 2, pp 1-9.

Regnell, B. Kimbler, K. WessXn A. (1995). Improving the Use
Case Driven Approach to Requirements Engineering. In
Proceedings of the Second IEEE International Symposium on

Requirements Engineering, pp 40-47.

Smith, JRW and Reed, R. (1988). Telecormmmunications
Systems Engineering using SDL. Amsterdam. The

Netherlands: NorthHoliand /Elsevier.

36

[37]

[38]

[39]

[40]

Schmid, K. (2002). A Comprehensive Product Line Scoping
Approach and Its Validation. International Conference on
Software Engineering, Proceedings of the 24th International

Conference on Software Engineering., pp. 593-602.

Schmidt, K. Shank, M. (2000). PuLSE-BEAT: A Decision
Support Tool for Scoping Product Lines. Third International
Workshop on Sofiware Architectures for Product Families,

pp197-203.

Seyff, N. Grunbacher, P. Maiden, N. Toscar, A. (2004).
Requirements Engineering Tools Go Mobile. Intemnational
Conference on Software Engineering. Proceedings of the 26"
international Conference on Software Engineering, pp 713 -
714. Available at

http://csdi2.computer org/comp/proceedings/icse/2004/2163/00/

21630713.pdf Date iast accessed May 2005.

Sidky, A.S. (2003). RGML: A Specification Language that
Supports the Characterization of Requirements Generation
Processes. Available at
http://scholar.lib.vt. edu/theses/available/etd-07292003-

112122/unrestricted/Sidky_Thesis.pdf. Date last accessed

February 2005.

[41]

[42]

[43]

[44]

[49]

Spafford, G. (2004). Understanding '‘Mean Time Between
Failure. JupiterWeb networks. Available at

http://itmanagement.earthweb.com/columns/article.php/335419

1. Date last accessed June 2005.

Stento, R. Persistent Data Architecture Approach. Available at

www.objectstore.com. Date last accessed March 2005.

Sun Microsystems Inc. (2002). Designing Enferprise
Applications with the J2EETM Platform. 2™ ed. Sun Developer
Network. Available at

hitp://java.sun.com/blueprints/quidelines/designing enterprise

applications 2e/ Date last accessed February 2005.

Teichroew, D. Hersey i, E.A. (1982). PSL/PSA: a computer
aided technique for structured documentation and analysis of
information processing Ssystems. In Advanced System
Development/Feasibility Techniques, Wiley, New York, pp315-

329.

Wieringa, R. and Ebert, C. 2004. RE'03: Practical Requirements
Engineering Solutions, pp 16-18. |EEE Software Computer
Society. Available at

hitp//csdi2 computer.org/comp/mags/so/2004/02/52016.pdf

Date last accessed February 2004,

88

[46]

[47]

[48]

[49]

[50]

Tomas, D and Hunt, A. (2004). Nurturing Regquirements.

Software, |IEEE Volume 21, No.2, pp 13 - 15.

Kang, K.C. Kim, S. Lee, J. Kim, K. Shin, E. Huh, M. (1998).
FORM: A feature-Oriented Reuse Method with Domain-Specific
Reference Architecture. Annals of Software Engineering,

Volume 5, No. 1, pp. 143-168.

Frakes, W.B and Kang, K. (2005). Sofiware Reuse Research:
Status and Future. IEEE Transactions on Software Engineering,
Vol. 31, No. 7, pp 528-536. Available at

hitp://selab.postech.ac. kr/publication/2005 TSE SoftwareReus

eResearch.pdf Date iast accessed June 2005.

Fowler, M. The New Methodology. Available at

http://'www . martinfowler.com/articles/newMethodology htmi,

2005. Date last accessed April 2005.

Wikipedia. Agife software development. Available at
hitp:/fen. wikipedia.org/wiki/Agile_software_development. Date

last accessed December 2004.

50

[51]

[52]

[53]

[54]

Kontio, M. (2005). Architeciural manifesto. MDA for the
enterprise. An architects approach to more productive
development. Available at http.//www-

128.ibm.com/developerworks/library/wi-arch16/ Date last

accessed August 2005.

Letelier, P. (2002). A Framework for Requirements Traceability
in UML-based Projects. In Proc. of 1st International Workshop
on Traceability in Emerging Forms of Software Engineering. In
conjunction with the 17th IEEE Intemmational Conference on

Automated Software Engineering, pp. 32-41. U.K: Edinburgh.

Sabat, N. J. Leite Prado, J and Cysneiros, L.M. (2000). Non-
Functional Requirements for Object-Oriented Modeling. |l
Workshop de Engenharia de Requisitos, pp 109-125. Available

at http://wer.inf puc-

rio.br/ WERpapers/artigos/artigos WERQQ/sabat neto.pdf Date

last accessed November 2005.

John, | and Dorr, J. (2003). Elicitation of Requirements from

User Documentation, Available at http://crinfo.univ-

paris! fr/REFSQ/03/papers/PO1-John.pdf Date last accessed

June 2004.

O

[53]

[56]

[57]

[58]

[59]

Fantechi, A. Gnesi, S. John, |. Lami, G. and Dorr, J. (2002)
Elicitation of Use Cases for Product Lines. Sth IEEE
Conference and Workshops on Engineering of Computer-Based

Systems. Available at hitp://fmt.isti.cnr it VWEBPAPER/25-PFE-

ucf.pdf Date last accessed March 2005.

Bosch, J. (1999). On the Design of System Family

Architecfures. Available at hitp://www.serc.nlflac/LAC-2001/lac-

1999/docs/ian bosch.pdf. Date last accessed June 2004.

Deitel, HM. Deitei, P.J. and Santry, S.E. (2002). Advanced

Java 2 Platform: How fo Program. Prentice Hall.

Feather, M.S. (1998). Rapid Application of Lightweight Format
Methods for Consistency Analyses. |EEE Transactions on

Software Engineering, vol.24, no.11, pp 948 — 959.

Wierling, A. (2001). Requirements for E-Business Success.
Technology Builders, inc. Available at

http://www techlinks.net/DesktopModules/Community%20Publis

hing/Rss.aspx?TabiD=982&ModuleiD=430&CateqorylD=5 Data

last accessed August 2004.

&1

[6Q) Succi, G. Yip, J and Pedrycz, W. (2001). Holmes: An Intelligent
System to Support Software Product Line Development pp.
0829 Proceedings of the 23™ International Conference on
Software Engineering. Canada: Toronto. Available at

hitp://iwww.unibz. ittweb4archiv/objects/pdf/ics library/holmes-

anintelligentsystemiosupportsoftwareproductlinedevelopment.p

df Last accessed September 2005.

92

	Table of contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

