MODELLING PERSONALIZATIONS IN
THE DESIGN OF MOBILE
PUBLISH/SUBSCRIBE
ARCHITECTURAL FRAMEWOQORK FOR
SOUTH AFRICAN NATIONAL PARKS.

Mcebo Brendon Linda

(012298)

A dissertation submitted in fulfilment of the requirements for the
degree of

Master of Science {(Computer Science)

Department of Computer Science, Faculty of Science and
Agriculture, University of Zululand

2006

DECLARATION

I, Mcebe Brendon Linda declare that this dissertation represents research work carried
out by myself and that it has not been submitted in any form for another degree at any
university or higher learning institution. All information used from published or

unpublished work of others has been acknowledged in the text.

Signature of Student

DEDICATION

I dedicate this work to my mother, Emmelinah Nogogo Linda, for understanding,
believing and encouraging me to excel in education in order to bear her name since she
never had the opportunity to do so. The work is also dedicated to my siblings (brothers
and sisters), especially my young sister Thulile “Tina” and my mother’s last born
Ntuthuko “Mfana” as they still have a chance to follow in my footsteps by instilling the

value of education in our family.

il

ACKNOWLEDGMENTS

[would like to express my deep gratitude to all people who supported me throughout my

research.

In particular, | offer my sincerest gratitude to my supervisor, Prof. M.O Adigun. He
introduced me to research and kept me on the right track with his advice, while giving me

the freedom and the possibility to pursue my research ideas.

I especially wish to thank Dr. Xulu for his continuous fatherly support and mostly for

believing in me when the challenge became tough.

It is also my pleasure to acknowledge the great collaboration of our Department with the
following research team, Dr. Adeoromu, Dr Justice Emuoyobafarhe, Dr. Ojo and Mr.

Johnson Iyilade. They really made a great contribution to the completion of my work.

To my colleagues and friends, Edgar Jembere and Pragasen Mudali, [owe many thanks
for our frequent meetings, your generous help and considerable input that led to the
success of this thesis. | would also like to thank Mr. Klaas Kabini for his time that he
dedicated in order to solve the problems that I encountered to make the development of

the prototype a reality.

Besides the above mentioned people, I thank all staff members and fellow celleagues in
the Department of Computer Science at the University of Zululand for their continuous

encouragement and support.

To my mother Emmelinah and my siblings, Thulile “Tina” Hazel, Nwuthuko ‘Mfana’
Cyril, my twin sister Cebisile Brenda Linda, | am eternally grateful for their endiess love
and support. Finally, my entire family, has been a constant inspiration in my life and an

infinite source of energy and motivation.

Finally, I would like to thank Telkom Company for funding my studies. Without their

financial support the completion of this work would not be a success.

TABLE OF CONTENTS

DECLARATION ..ot st e st et s e e s ream e st e es s b et s bde e ks e emeas s e b b bm e e b e mthae e e sn s be e snn ii
[21 1 (NG I (6) O U T OSSO OPPROUOON iii
ACKNOWLEDGMENTS ..ottt tes e st meae s mme e ases e e e smr e s ba s s eeaeaereesaebeemneeaan v
TABLE OF CONTENTS ...ttt eeiee st eeeea et seeem st s sc e s e s s e e seeren s e vsemrasenaeasenanesncenene vi
LIST OF FIGURES ... oot eeieeieter e e sce et et e e st eme e oo e s s s e s e e e s e e s e amserameesanens X
LIST OF TABLES ... oot ee et smca bt e s e e s s e oo e st e ceee et e eemns xii
ABSTRACT oot ceiereteieee ettt e s reeasas s sers s e s s b e s em e s s s e nme st eat s 1eesamn e e saese s smtate st bemseasmrantaeennenanbamerens Xiii
CHAPTER ONE ..ottt et e e et es e e n e s e e s e ase s s ssanes camensmeeonteaemenemsaseeesnenres 1
INTRODUCTION AND BACKGROUND ..ottt et 1
Fo L PIEAMBIE oot e e e et e et e e e r e e n et e s nernean 1

1.2 BACKZTOUNT ..ottt st e a e s san e eb e 3

1.3 Statement 0f the problemi oo e 5

1.4 Motivation for the sty ..o et 5

1.5 Research Goal and OBJectiVes ..oocooiiimiiii e e 7

1.5.1 Research GOal ..o v 7

1.5.2 Research ObectiVes ..ot e et a e s er e cee e e rrn b baeeevee s e 7

1.6 Research Methodo oy oo et 7

1.6.1 The Theoretical Aspect- Literature ReVIeW.........ccooiiiiiiiiiiiieieee e 7

1.6.2 The FOrmUIAtive ASPECEooceoiii ittt eee et eaen e e 8

1.6.2.1 Model Formulation ... e e e e 8

1.6.2.2 Model Implementationottt 8

1.7 The Structure of the dissertalon. ... e 9
CHAPTER TWO ..ot et s et n e e ea cir st e s et e e eavaneme e enas 10
LITERATURE REVIEW Lo ettt sr e et e et esn e 10
N I 1Y T LTl T) ¢ O OO SO SUU SR RRUP PR 0

2.2 Analysis of Publish/Subscribe SYSIems. ... e 12
2.2.1 Peer-to-peer Model...o e 13

2.2.2 Broker (Mediator) Model ..o 3

223 Implicit Model ..o e 14

vi

2.3 Representative Publish/Subscribe SYStemSccoorivmveciienr s 15

2.3.1 CORBA Event and NOtification ... 15
2.3.2 Java Message SeIVICR ... i ettt ress st e e st a e e £ e et e ne s sn e b s 19

Z BB TEDI oottt ee et etr et e e et be e eee e s e et abe e te st et aee et e eaantesesannteerneaa 22
2.3.3.1 Jedi Event and Event Patierns......cociv oo receieic ettt 23
2.3.3.2 Distributed ED Architectureocooiiiiiiii e 23

P T T T W S OSSPSR 24
2.3.4.1 Notifications, Filters, and Paltems . ..o e 25
2.3.4.2 Distributed ArChITECIUIE ... oot saae e srae e sme e 26
235 REBECA oottt et sr et e e e b st et n e n et eensen e se et s aennn 27
2.3.6 Service-Based Architectural Framework for the South African National Park

B 1+ S SO OO O SOV SR 28
2.4 Mobility Support in Publish/Subscribe Systems.....o.ooivmi i 29
2.4.1 Mobility Support inJedi........coirm e 30
2.4.2 Mobility in Siena.....cooeeeiiiiiiree e ettt ennn 31
2.4.3 Mobility in RebBeCa. ..o e 32
2.4.4 Mobility in IMS-Based SYStemS. ..ot 33
2.5 Related Technologies. (it teeeeeese et 34
2.5.1 Electronic Mailc.ooo ittt 34
2.5.2 Short MesSage SEIVICE ...ttt ettt es s eae e e e s 33
2.5.3 Multimedia Messa8e ServICE..vui et e et e e e ne e 36
2.5.4 Push TeChNOlOgy oo oeoreeieeee et et 37
2.6 A Concise Overview of the Proposed Soluton ... 38

2.6.1 Personalization in A Design of Mobile Publish/Subscribe Architectural Framework.

... 40

2.6.2 Mobility in A Publish/Subscribe Architectural Framework.o..ooveeeeeenn 41
CHAPTER THREE .ottt emeen e 43
MODEL DEVELOPMENT ... e OO UUSORRR 43
3.1 IRIOAUCHION .. ooviieee ettt a e e et a e et 43

3.2 South African National Parks Systermn Requirements................. SRR 44

3.3 Design Principles of the Publishing Personalized Data Architecture for SANPARKS .46

3.3.1 Restructuring the organizational information Architectural Framework........c.c..... 46

vit

3.3.2 Making Information Delivery Transparent in a Publish/Subscribe Architectural

FramewWorK. «...ooveeoeeeceiciececie e ere e ans s s e s e e e s s e s ne e e e e e r e e e s mns st e e s rnes 47
3.3.3 Personalization in the Publish/Subscribe Architectural Framework 47
3.4 Publish/Subscribe Architectural Framework for SANPARKS System.........c.cccocee... 51
3.4.1 Building Blocks and Components of Publish/Subscribe Architectural Framework
for South African National Parks.cocooooriiiiiiir et ne e 53
3.4.2 Functional Requirement of the SYStemcccvriiiiinicseiiin e 54
3.4.2.1 Use Case DIaZIaiMi.. . cee e eecce et ceeni e e e e s e ee s me s s 54
3.4.2.2 8equence DHABTAIMIS ...coocvveicioieercc e eccrr e s te e m s s et eneme s ee s e e e 56
3423 ALZOLITHITIS ooeeeeeeeee e s s ee s e s e e e e b e 60
3.4.2.4 Activity Diagram for the SANPARKS System ... 63
3.4.2.5 Class DIAEIAM . c.oovioiieeee ittt e st e sb b e 64
3.4.2.6 Deployment PAckages ... 67
3.4.2.7 ACCESS LAVET oot e 69
CHAPTER FOUR ... oot tes e e st e e et em e st e e e st eeste e e amesemtemsee st enene e seeeaneas 70
IMPLEMENTATION AND EVALUATION OF THE PROTOTYPE ... 70
A1 INITOQUCTION ©.oeee ettt et h et a oo e senne e 70
4.1.1 Description of the Implementation........c....coooiii e 70
4.1.2 Environment Specificalionooooooi i 71
4.1.3 Implementation Model ... 73
4.2 Implementation SCreenshols ... 74
4.2.1 Subscribing and receiving e-mails on the desktop. ..o 74
4.2.2 Service Information Publishing Process.ooooiivoon e 76
4.2.3 Service Subscription using a mobile device. ... 77
4.2 4 Retrieval of the SANPARKS services information using a mobile device. 78
4.2.5 The Internal Stnuecture of the XML Database. ... 79
4.3 Usabtlity of the ProtorypPe ..o oo ettt e 32
4.3.1 USADTIIEY TESTIIE, - vevvreeeereereeeeemresreareeeereesoeeeseeeseseses e s eeseseeeees e eemere s seeeseeeeeee 82
4.3.1 .1 Evaluating the Publisher Component (Technical Evaluation)........................82

{A) Instrument Design and AdminiStration. ... 32

{B) Analysis and Results..... .o 82
4.3.1.2 Evaluation of the Subscribers Component {Technical People)........ocooceee.. 84

(A) Instrument Design and Administration. ... 84

VHI

(B) Analysis and ResSults.......cocooooireireieecc sttt 85

4.3.1.3 Evaluation by barely 1T-literate.ococverniirieeiie et 88

(A) Instrument Design and Administration. 88

(B) Analysis and ReSHILS. ..ottt e 88
CHAPTER 5.t st re st et renea b e e e b e b m e e es s st e bbbt s e a e s e b eme e eesbdenen 90
CONCLUSION . oot vereaeeeeereseieaesieaste e eeseeaeameraataseserar e mbaattane2aabameresaseser s b e e aate st sesrsrneancs 90

S L CONCIUSION 1ot e e e s e e s e e be s s nasnea s aa e eanraan %50

5.2 COMIADULIONSeeteeeeiseoeereeareeeeeasi e e s s e e s men s sneeb e e e e e ean e e s aas mr e e ananssmvaeneanae 91

5.3 FULUFE WOTK oot m et e e s et e e s e e s e e et s 92
APPENDIX A oo oooeiiieieiaerrrerese et e aseesta e s eeas s sseeee s s seeeas s mt 2 2eseesraneteessmaneee st nnnenenes 93
USER MANUAL .ot ce e eetta e e e e et a s st e an et ses e e sesssenees 93

=% o 1 00 1 T 0 A USSR U SR ORN 103
UML DESIGN DOCUMENTATION ..o e 103
CLASS DIAGRAM AND DESCRIPTION ..ot e 103

N o i D0n T) 1 b, G O U TR TP 106
SOURCE CODE. ...t e et ar st e s et eeaaee e e emne e 106

A PP ENDEX D .o e et e e e e i e e s e e e et et e e st ta e ettt s ne e aeaneareenans 121
USABILITY TESTING INSTRUMENTS .o 121

Questionnaires for the Usability testing of the new SANPARKS Information System.. 121

REFERENCES i SRS 128

LIST OF FIGURES

Figure 2.1: Peer-to-peer Model for Publish/Subscribe Systems...........ccoooviivnnn. 13
Figure 2.2: Mediator (Broker) Model for Publish/Subscribe Systems.ccocoeeenee. 14
Figure 2.3: Implicit Model for Publish/Subscribe Systems.coovvenimrirviicineene 15
Figure 2.4: Components in the CORBA Event Service.........ccoovimmmiocinniiccnnniicceee. 15
Figure 2.5: Publish/subscribe interaction in IMS ... 21
Figure 3.1: The Restructured SANPARKS Conceptual Model.......ooovcveiinnenn, 48
Figure 3.2: Publish/Subscribe Architectural Framework for the SANPARKS System .. 52
Figure 3.3: SANPARKS Use Case Diagram ..o 54
Figure 3.4: Sequence Diagram for Subscribe Use Case ..., 56
Figure 3.5: Sequence Diagram for PublishTopicInfo Use Case.......covvivovveiieiionnnns 57
Figure 3.6: Sequence Diagram for ManageProfile Use Case ..., 59
Figure 3.7: Subscribe Algorithm ... 60
Figure 3.8: Manage Profile Algorithm ... 61
Figure 3.9: Publish Topic Information Algorithm........c.c.ooovri 62
Figure 3.10: SANPARKS System Activity Diagram ... 63
Figure 3.11: The Publish/Subscribe SANPARKS Class Diagram ...l 66
Figure 3.12: The Publish/Subscribe Subscription Package ... 67
Figure 3.13: Publish/Subscribe Publishing Package........................... 68
Figure 3.14: Access Layer of the SANPARKS Information System. ... 69
Figure 4.1: The Systemn Implementation Model ..o 73
Figure 4.2: A portal interface for SANPARKS information consumers. 74
Figure 4.3: Subscriber's Registration Interface on the Portal. ... 75
Figure 4.4; The list of E-mails on the Desktops. ..., 75
Figure 4.5: The service information delivered as an e-mail. ... 76
Figure 4.6: Publishing service information using the desktop.ccooorieeeini e 77
Figure 4.7: Subscribing on the Mobile Device. ... 78
Figure 4.8: Mobile device showing the services information delivered as a sms. 79
Figure 4.9: The Subscribers profiles stored on the XML database. ... 80
Figure 4.10: The Publishers profiles on the XML database.ooooiiiiinens, 81
Figure 4.11: The list of messages sent to the subscribers. ..., 81

Figure 4.12: Quality of the information provided to subscribers.cccoccvenriicccnne. 87
Figure 4.13: The results of Arts students interviewed for user-friendliness of the

SANPARKS SYSIEIML 1..vecceeiecianirianie cemin e vreecesassess s e nsesesseasaaen e s es e e e steeesesanans 83
Figure 4.14: The results of Arts students interviewed for user-friendliness of the

SANPARKS SYSICIM. oottt rr e e ae s enr et s e 89

xi

LIST OF TABLES

Table 1.1: Information provided by SANPARKS and respective Consumers 4
Table 3.1: The entire components and building blocks of the Architecture................... 53
Table 4.1: The number of people interviewed as both subscribers and publishers. 83
Table 4.2: The results of publishers comments on the new SANPARKS system. 83
Table 4.3: The publishers comment on the user friendliness of the new SANPARKS

21 1= 11U OOV OPRTUOPN 83
Table 4.4: The results of the quality of information provided to the Subscribers. 85

Table 4.5: The results of the quality of interaction between the SANPARKS System and

SUBSCIIDETS. ..o ettt s 85
Table 4.6: The results of using the new SANPARKS System.........ccooviinin. 36
Table 4.7: Users opinion on the user friendliness of the Subscriber Module. 86

Table 4.8: The results of the subscribers’ comments about the services provided by the

new SANPARKS System. ..o 86

X1l

ABSTRACT

The dissertation presents the adoption of publish/subscribe pattern as the existing
communication paradigm into the South African National Parks (SANPARKS)
organization. It focuses on restructuring the existing SANPARKS system into a
publish/subscribe information provider that would enable clients to receive personalized
information services delivered via sms, mms and email. A publish/subscribe architectural
framework, which supports both mobile and desktop users with the following features
was déveloped: a national park system restructured into an information provider; a portal
interface for information consumers; a mobile interface support achieved by
personalization and a highly rated usability index. This research was conducted by firstly,
surveying the theory which consisted of the literature review. Secondly. the formulative
aspect which consisted of model building, the proof of concept such as prototype and the
usability testing of the prototype. The results of this research testify that the newly
restructured SANPARKS meet the standard of the information provider entity. It also
provides a portal interface for information consumers enabled by personalization. From
the results obtained in this research the adopted publish/subscribe pattern solves the
problem of restructuring the SANPARKS system into an information provider that
enables clients to receive personalized information services delivered via sms, mms and

email.

Xill

CHAPTER ONE
INTRODUCTION AND BACKGROUND

1.1 Preamble

Tourism is a key component of Government’s macro-economic stralegy 1p achieve
growth, employment and redistribution of wealth in South Africa. Nationa] parks are the
cornerstone of nature conservation based tourism industry in South Africa. They offer
visitors the very best of leisure opportunities including game viewing, bush walks,
canoeing and exposure to cultural and historical experiences. Nationa| parks help
preserve history and the natural beauty of the nation for the benefit of all ciizens and
international visitors. Parks are places for recreation and education and Need 1 be aken
care of in a way that preserves them for future usage. Conserving the natyral wealth of
national parks can only be accomplished with the continuous support and inyolverment of
visitors and local communities. A one-stop information services systemm of South African
national parks that simplifies information access to users through persthaljzation has a
great potential in securing customer loyalty and in capturing the intefesy of pOtential

clients.

South African National Parks (SANPARKS) is the South African o8anizion that
maintains the national parks information services. There are many nation? parks iry South
Africa who are not part of the SANPARKS. In order for the national pﬂfks the part of
the SANPARKS they need to register with this organization. Currenily it SANPARKS

informatton systems are distributed and hence the need for a one-%0p informmation

provider system that would ensure that information is simplified and customised through
personalization. The current on-line SANPARKS information system does not support
personalization. Personalization is about tailoring products and services to better fit the
user, e.g. by focusing on the user needs, preferences, inlterests, expertise, workloads, task
etc (www.sanparks.org). The focus of this study is to redesign the current SANPARKS
Information System such that personalization is explored; thereby enriching the users’

experience.

There are two widely used information access communication technologies, which are
the pull and push technologies. The main advantages of the publish/subscribe system that
supports push over pull communication technology are (1) It provides a platform for
personalisation of the services to be accessed by the users, (2) users do not need to use
the small keypad to access the information as in the pull technology, since the
information will be pushed to the user when available. The proposed system will add
value to the SANPARKS through the use of push style of information services combined
with personalized messages. The achieved relevance and ease of use will increase the
number of subscribers to SANPARKS because users will receive information easily

through their mobile devices and desktops via sms, mms and emails.

Information access can be made more efficient by introducing a publish/subscribe
system, which includes both the user's and provider’s efforts as it supports push
communication. Publish/Subscribe systems ensure that information is pushed to the users

according to their preferences.

)

1.2 Background

Mobile commerce is a subset of e-Commerce where wireless digital devices are used to
initiate transactions on the web and it offers new opportunities both for mobile device
manufacturers and service providers (Zhang, et al., 2002; Pashtan, 2004). M-Commerce
differs partially from e-commerce due to the special characteristics and constraints of the
mobile devices and wireless network. The volume of mobile devices is continuously and
increasingly driven by people who need to have ubiquitous access to services,
information and entertainment. Access to these can only be made available through their
mobile -devices (Ozen, et al., 2004; Hueng, et al., 2004). With the increasing popularity of
mobile handheld devices, there is a pressing need to extend publish/subscribe services to
a mobile environment such as mobile commerce (Eugster, et al., 2003; Muhl, et al,,
2004). A scalable information delivery service, which publishes and subscribes to
systems, provide, is required to connect together information providers and consumers by
delivering events from sources to interested users (Hueng, et al., 2004). Many users of
and visitors to South African National Parks carry their mobile communication devices.
Hence, mobile devices can become access mechanism to information services of the

SANPARKS.

Currently there are 20 national parks in the country that are part of the SANPARKS
organization. These are Addo Elephant, Agulhas. Augrabies Falls, Bontebok, Golden
Gate Highlands, Karoo, Kgalagadi, Knysna, Kruger, Mapungubwe, Marakele, Mountain

Zebra, Namaqua. Richtersveld. Table Mountain, Tankwa Karoo. Tsitstkamma, Vaalbos,

()

West coast and Wilderness (www.sanparks.org). The major activity of SANPARKS

includes but is not limited to the following: firstly, a repository of nature conservation

data that can be used by researchers, conservationists and tourists. Secondly, it integrates

multiple repositories to form a single infrastructure for all the national parks. The mission

of the SANPARKS is to transform an established system for managing the natural

environment into one which encompasses cultural resources, and which engages all

sections of the community (www.sanparks.org).

The activities of SANPARKS are broadly categorized by services and consumers into

three categories namely: tourists, conservationists and researchers (see Tablel.1).

Table 1. 1: Information provided by SANPARKS and respective Consumers {Khumalo, 2004)

DELIVERY MECHANISM

INFORMATION PROVIDED CONSUMERS
I. Plant Researchers, Conservationist B
2 Animal Researchers, Conservationist

Features (Scenic and Cultural).

Accommeodation

Archives

Researchers, Tourists

Tourists, Researchers

Tourists, Conservationists and

t Researchers

SANPARKS are still inhibited
by legacies of the past with the |

use of static web pages that !
were designed to inform

public about services or;

products offerings.

1.3 Statement of the problem

The operational activities of SANPARKS consist of nature conservation, information
service provision and delivery of available services to interested parties. An investigation

of the current operational structure identified the need to address a number of issues:

First, the South African National Parks system can be enhanced beyond its present
capability such that all the communities of South Africa can benefit from its activities.
Secondly, the era of using static web pages previously designed to inform the public

about services or products offerings should come to an end.

The issues above are addressed in this research by (i) restructuring the SANPARKS
system into an information-provider entity. (ii) creating a corresponding
publish/subscribe model and thereby producing valuable enough information that could
be sold to information consumers; and implementing a prototype of the model that
emphasizes personalisation, and thus make it possible for customers to be rewarded in
future. It is necessary to generate information that is so valuable that consumers are

willing to buy.

1.4 Motivation for the study

This research study is meant to provide a one-stop SANPARKS information system for
nature conservation. Such a system would ensure easy access to information being a one-

stop portal interface to the distributed SANPARKS information systems. Incorporation of

publish/subscribe techniques in the system would include personalisation of information
to be accessed by mobile users. Given the fact that the mobile environment is
characterized by poor power supply, a poor user interface and flaky network connection,
personalisation will simplify information access under these conditions. Pushing of
information according to the user’s interests would subsequently add value to the
SANPARKS that we have today. This would be achieved by reusing and extending

related systems where possible to suite the need of the investigation.

Information and notification services for communicating time-sensitive data have proved
their usability in the Internet domain. The huge success of Short Message Service (SMS)
and the increased acceptance of Multimedia Message Service (MMS) advocate the
extension of the initial application domain to mobile environments, and encourage further
efforts to implement and deploy content dissemination services in mobile environments.
However, mobile scenarios introduce additional requirements regarding the service:
Mobile users want to be served with relevant and personalized content in a timely
manner. Moreover, the content must be customized to their current presence status, and
directed to the terminal they are currently using. Therefore, service flexibility and its
ability to deliver personalized content that provokes no nuisance to end users is of major
importance for the wide acceptance of the service. Support for personal mobility is
needed to assure timely information dissemination in accordance with the user’s present

status.

1.5 Research Goal and Objectives

1.5.1 Research Goal

The focus of this study was to restructure the existing SANPARKS system into a
publish/subscribe information provider that would enable clients to receive personalized

information services delivered via sms, mms and email.

1.5.2 Research Objectives

The objective of this study was to develop a Publish/Subscribe architectural framework
that supports mobile and desktop users and has the following features: A national park
system restructured into an information provider, A portal interface for information
consumers; A mobile interface support achieved by personalization and a highly rated

usability index.

1.6 Research Methodology

The research approach is both theoretical and formulative in nature. consisting of
literature review, model building and the proof of concept such as prototype

implementation. The details are given below.

1.6.1 The Theoretical Aspect- Literature Review

The theoretical aspect of this research involves literature review. An investigation of
existing information systems for SANPARKS, sources of information on nature
conservation, tourism and publish/subscribe. personalisation and portal user imerface

strategies for mobile environment was carried out.

1.6.2 The Formulative Aspect

The knowledge gained from the literature survey was used to construct a theoretical
background of the formulative part of this research. The formulative part of this research
involved model formulation and proof of concept through software based conceptual

analysis and implementation of the prototype.

1.6.2.1 Model Formulation

This involved formulating requirements to fit the following purpose: A distributed
SANPARK information system; a publish/subscribe engine that drives the system; and a
user interface that supports personalized mobile users. Existing patterns were used as the
building blocks for creating the core publish-subscribe model from which the information

system evolved.

1.6.2.2 Model Implementation

A prototype of the proposed model was implemented as a proof of the concept using Java
as the programming language to demonstrate the applicability of our model. The
prototype was then evaluated against the models from which it was developed and other

closely related work such as (Khumalo, 2004).

1.7 The Structure of the dissertation.

The remainder of this dissertation is structured as follows: Chapter two gives an overview
of existing solution and systems related to content dissemination in publish/subscribe
systems: In this chapter the author analyses and compares the characteristics of prominent
publish/subscribe systems, and related solutions, such as SMS, MMS, E-mails and push
systems. Chapter three introduces the proposed system model of publish/subscribe
systems that is used as the solution to current problems of the SANPARKS in order to

improve dissemination of notifications to mobile subscribers and desktops subscribers.

Chapter four presents the computational implementation of the proposed
Publish/Subscribe Architectural Framework and the impiementation results. This chapter
also gives the detailed usability analysis of implemented prototype. Finally chapter five
presents the conclusion which consists of how the research objectives were achieved and

possible future work for further research and results.

CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

The publish/subscribe model represents an emerging paradigm for de-coupled and
asynchronous connections between application components (publishers and subscribers).
In other words, a publish/subscribe model may support two types of models which are
mediator and implicit models as these models support decoupling and asynchronous
connections between application components in contrast to peer-to-peer model only
support coupling and synchronous connection between application components. The
mediator and implicit models form the basis foundation of the architecture of our
research. This research focuses on adopting the publish/subscribe communication model
that allows de-coupled and asynchronous connection between publishers and subscribers.
The adoption of publish/subscribe communication paradigm allows the SANPARKS
organization to integrate the publish/subscribe engine where the information consumer

get information without knowing the source.

SANPARKS is organized in such a way that it has to deal with publishing information on
plants, animals, features (scenic and cultural) and accommodation. Subscribers or clients
need to be notified when events that represent information items and published content
occur. This model is event-driven because the act of publishing is periodic and guided by

the availability of new or modified information item, or by a publisher’s state change.

0

Publishers produce the information and subsequently publish it for dissemination to
interested subscribers: Publishers are notification producers, while subscribers act as
notification consumers. Notification must be preceded by declaring an interest in
receiving specific categories (plants, animals, features and accommodation) of
notification. When a notification is published, it will be delivered specifically to all
registered subscribers. Publishers and subscribers may optionally interact directly by

adopting peer-to-peer model but this is not supported by the SANPARKS model.

The mediator model introduces an intermediary, an “information bus” responsible for
efficient notification delivery from publishers to subscribers. The intermediary ensures
the anonymity of the communicating parties: Publishers and subscribers do not
necessarily need to know each other and the infrastructure keeps track of subscriptions
and publications. Furthermore, the interaction style enables one-to-many multicast-style
communication such that a published notification is delivered to all interested

subscribers.

The implicit model introduces the concept of intermediary, an “information bus™ between
the subscribers and the publishers. The subscribers register for the types of topics when
one would like to receive notification when it becomes availabie to the system. Publishers
are responsible for publishing information that is related to the available topics on the
system.

Most publish/subscribe systems adopt either mediator or implicit models. This is mainly

because these models. as discussed above, avoid the need for a subscriber to know the

i1

publisher of the information subscribed for and vice versa, hence the delivery of

notifications are guaranteed even if the subscribers are disconnected from the network.

Systems that implement the publish/subscribe interaction style usually fall the category of
software infrastructure built on top of the network operating system, that offers generic
services for the development of distributed applications. The main purpose of software
infrastructure of this nature in practice is to simplify the implementation of distributed
systems and is referred to as middleware (Emmerirc, 2000). In this research work, the
middleware played a major role in simplifying the implementation of the envisaged
SANPARKS Information System which was a one-stop information provider system.
Publish/subscribe systems are often classified as event-based middleware because of the
event-driven communication and cooperation model that uses notification for carrying the
information that is passed among the communicating parties (Meier, 2000). Tanenbaum
(2002) classifies publish/subscribe as coordination systems to stress that the

publish/subscribe interaction coordinates the activities between distributed processes.

2.2 Analysis of Publish/Subscribe Systems

Our analysis of publish/subscribe system study identifies that publish/subscribe
historically are variants or a combination of the following communication styles: Peer-to-

peer/listener model; broker (mediator) model and implicit model.

2.2.1 Peer-to-peer Model

In the peer-to-peer model, subscribers register at specifically named publishing entities
and the publishing entities deliver events to specific named subscribing entities directly.
The interaction style enables one-to-one communication because the published
notification is delivered to one interested subscriber that requests the notification from the
publisher which acts as the server in that particular time. The communicating parties of
this model have the knowledge of each other since they hold the reference of each other

as they are communicating.

Client

Figure 2. 1: Peer-to-peer Model for Publish/Subscribe Systems (Fiege, et al., 2003).

2.2.2 Broker (Mediator) Model
[n the broker (mediator) model the subscribers register their subscriptions with a
common event mediator which introduces an intermediary. The intermediary ensures the

anonymity of the communicating parties: publishers and subscribers do not necessarily

need to know each other and the infrastructure keeps track of their subscriptions and
publications. Furthermore, the interaction style enables one-to-many multicast-style
communication because the published notification is delivered to all interested
subscribers. The Publisher forwards events to the common event mediator, who in turn
takes care of receiving events from publishers and delivers them to all interested

subscribers.

1. Messages are
published...

, 2.PubSub matches ’ —
= against subscriptions... :’ .

3.Results are delivered
to subscribers.

Figure 2. 2: Mediator (Broker) Model for Publish/Subscribe Systems (Eugster, et al., 2003).

2.2.3 Implicit Model

The implicit model requires the subscribing entities to subscribe to (or register) a
particular event type rather than with a mediator or publishing entity e.g.; in figure 2.3, S
represents subscribers, therefore S needs to subscribe to a Topic as the event type for the
purpose of receiving the related topics from P who is the Publisher. Consequently, the
publishing entities generate events of some type, which are delivered to subscribing
entities. Finally publishers or subscribers need not hold explicit reference to mediators or

publish/subscribe entities (Quah, et al., 2002).

14

Figure 2. 3: Implicit Model for Publish/Subscribe Systems (Quah, et al., 2002).

2.3 Representative Publish/Subscribe Systems
This section discusses the different kinds of existing publish/subscribe systems that
demonstrate the features set out by the concept and categories of publish/subscribe

models.

2.3.1 CORBA Event and Notification

The CORBA Event Service: The CORBA Event Service provides a decoupled
communication mode! that addresses the limitations with the CORBA SMI (and AMI)
invocation mechanisms outlined above. As shown in Figure 2.4, the Event Service

defines three reles:

Figure 2. 4: Components in the CORBA Fvent Service (Objeet Management Group, 2861)

[
L

o Suppliers, which produce event data;
o Consumers, which receive and process event data;
o Event channel, which is the mediator through which multiple consumers and

suppliers communicate asynchronously.

This type of publish/subscribe system is based on the mediator model since it uses the
mediator as the “information bus” between the suppliers and consumers to avoid the prior
knowledge of each other as they exchange notifications. The communication style
between the suppliers and consumers is multicasting because many suppliers produce
event notifications consumed by many consumers just like in a publish/subscribe

communication paradigm.

In a simple scenario consumers and suppliers can interact directly, without a channel, by
invoking each other’s interface methods. A mediated scenario involves a channel that
acts as both a supplier and a consumer of events. Event channels enable anonymous
many-to-many communication between suppliers and consumers. However, event
channels offer no means for event filtering: All channel consumers receive all events
published on the channel.

CORBA event service supports both the push and pull approaches to communication
initiation: The push model allows suppliers to Initiate the distribution of notifications to
consumers. The puil model allows consumers to request notifications from suppliers.
Push suppliers actively send notifications to the event channel, while pull suppliers wait

for requests coming from the channel. Push consumers passively wait for events that are

eventually sent through the channel, while pull consumers regularly check if new evenis

arc available on the channel.

The event service defines simple means for event propagation and has a number of
drawbacks. It is not adequate for mobile scenarios because consumers must be connected
to the channel at the time of event publication. CORBA event service does not support
event persistence. The second drawback is that event channels offer no means for event
filtering. If event types are to be differentiated, it is necessary to use separate channels for
each event type. Finally, the specification does not dictate the reliability requirements for
the communication service and offers no guarantees concerning the delivery of events. It
can have either “at-most-once” or “exactly once” semantics, depending on the particular

service implementation.

Notification service: CORBA notification service (Object Management Group, 2002)
deals with the above-mentioned drawbacks of the event service and extends it with new
capabilities, such as filtering and configurability, according to various requirements for
quality of service (QoS). The notification service preserves the semantics of the event
service and ensures interoperability between the basic event service clients and
notification service clients. One of the extensions offered by the notification service are
content-based subscriptions and event filtering using filter objects: filter objects define a
set of constraints that affect the forwarding of an event. For example, notification service
consumer can subscribe to events of interest by associating a filter object to the proxv

through which it connects to an event channel. When an event that matches the filter

17

object is published, the proxy will forward it to the consumer. This implies that the
notification services supports personalization of services when it delivers information

from the supplier to the consumers as described on the example given above.

The notification service introduces a new type of events, structured events with a well-
known data structure into which a wide variety of event types can be mapped. Structured
events consist of a header and a body: A header is further decomposed into a fixed and a
variable part. The fixed event header consists of a domain name which identifies a
particular domain (e.g. telecommunications, finance), a type name which categorizes an
event, and an event name which can uniquely specify an event. A variable header part is
composed of a list of optional name-value pairs. Event body carries the content of an
event. The filterable portion of the body contains the most interesting event fields (name-
value pairs) used when matching the event with a filter object. The remainder of the body

is of type any and can be used to transmit large data items.

Another enhancement introduced by the notification service are standard interfaces for
controlling QoS characteristics for event delivery. The notification service enables each
channel, each connection, and each message to be configured so as to support the desired
quality of service with respect to delivery guarantees, event persistence, and event
prioritization. OMG defines a set of QoS properties, their permitted types, and the range
of values. This is an open list of parameters, and service implementers can add their own

properties. OMG has defined the following properties:

18

» Reliability is related to the event delivery policy, such as best effort, or persistent
delivery;

* Priority; by default, the notification channel will attempt to deliver messages according
to their priority level;

*» Expiry times indicate the time interval within which an event is valid;

* Earliest delivery time specifies the time after which an event can be delivered and

* Maximum events per consumer define the maximum number of events a channel can
queue on behalf of a consumer. This property prevents malicious users from overloading

a channel.

The list of supported properties provides flexible QoS configuration of a notification
channel. However, meaningless properties are not prevented which creates a serious
vulnerability that could be exploited by malicious consumers or suppliers. End-to-end
delivery policy can only be guaranteed with the cooperation of all parties, i.e., consumers,
suppliers, and the notification channel. The OMG event and notification service
specifications offer no guidelines regarding the architecture and routing strategy for

distributed event systems.

2.3.2 Java Message Service

This type of publish/subscribe system is based in all the three types of publish/subscribe
models which are peer-to-peer. implicit and mediator model. Java Message Service
(JMS) is a message-oriented specification for the Java programming language defining a

set of imterfaces and semantics, thus enabling JMS compliant clients to access the

19

services offered by a JMS messaging server. The JMS target application area is enterprise
messaging for asynchronous Business-to-Business communication over the Internet. JMS
provides two types of messaging models, point-to-point messaging and publish/subscribe
(Monson-Haefel, et al., 2001). The point-to-point messaging model relies on the classical
message-queuing communication pattern that make this system to be based on the peer-
to-peer model because as the server respond to clients which are on queue actively
waiting for the information to be delivered to them is active. JMS system uses point {0
point messaging to deliver information to interested parties. The reason for the JMS
system to be based on the implicit model is because it uses topics to represent the type of
event in which the consumers can subscribe for and wait for the information that is
relevant to the topics of their interest to be available before it can be pushed to the

matching subscribers.

This system uses both pull and push communication technology since it allows the
subscribers to pull information that is related to the topics of their choice, subscribers
have an option of waiting for the information that match their subscription to be pushed
to them by the publishers when it becomes available. Publishers publish messages to a
JMS topic, which is one of JMS destinations. Topics are created by an administrator
using the administrative tools offered by the applied JMS provider. It is assumed that
publishers will publish messages on the established topics. This approach is static and is
augmented by remporary topics: Publishers can dynamically create new temporary

topics. Subscribers subscribe to a particular topic by registering their message listeners

with the topic, as depicted in Figure 2.5. Whenever a message is published on a topic, the

listener’s method is invoked, signaling the receipt of a2 new message for the subscriber.

Publisher Subscriber
| TopicSubscriber s;
TopicPublisher p; Messagel igtener |

s _setMessagelisinener(i);

Figure 2. 5: Publish/subscribe interaction in JMS (Monson-Haefel, et al., 2001)

The JMS system is also based on the mediator model as it adopts the publish/subscribe
model that incorporates two type of JMS clients, publishers and providers, that
communicate by exchanging messages through an intermediary server, called JMS
provider. A JMS provider is a messaging server that implements JMS interfaces and
provides administrative and control features. JMS clients are programs or components
written in the Java programming language that produces and consumes messages.
Notifications are referred to as messages in JMS: Messages are Java objects that

communicate information between JMS clients.

JMS offers delivery guarantees using the concepts of durable subscriptions and persistent
messages. Subscribers can define durable subscriptions to a topic. While a durable
subscriber is disconnected from a JMS server, the server stores the published messages
matching its subscription. When the subscriber reconnects, the server sends all stored and
unexpired messages to the subscriber in the store-and-forward delivery style. Publishers

can define either persistent or non-persistent delivery mode for their messages. [n the

b

case of the non-persistent mode, the server offers at-most-once message delivery.
Persistent messages are first stored by the server, and then delivered to subscribers.
Subscribers need to confirm the receipt of a persistent message. If the acknowledgment is
missing, the server resends the message assuring at-least-once message delivery. JIMS
defines message filtering on the subscriber side using message selectors. Message
selectors are expressed as Java strings that define conditions on message properties and
headers. Message selectors need to comply with the defined subscription grammar which
supports the conditions as complex boolean expressions with equality, comparison, or
range operators. The JMS specification is a pure API specification. It does not define the

rules for building the architecture of JMS server with respect to distribution.

2.3.3 JEDI

The Java Event-based Distributed Infrastructure (JEDI) (Cugola, et al., 2001) is a
lightweight middleware infrastructure that supports the development of event-based
application. This system is based on the mediator model as it uses the types of events, in
which the subscribers subscribe for in order to gain access of information stored by the
events. JEDI is based on the concept of Active Objects (AO) and Event Dispatchers
(EDs). An AO is a special kind of object that interacts with other AOs by producing and
consuming events. An AQ can thus perform the activities of both an event publisher and
a subscriber to a particular event type. An ED is a special component responsible for
delivering events from publishing AOs to AOs that have expressed interest to receive

such events.

[
[

2.3.3.1 Jedi Event and Event Patterns

A JEDI event is an ordered set of attributes that describes event characteristic. An
attribute is a name-value pair. Both name and value are strings and, as a consequence, an
event is a sequence of strings. JEDI supports content-based event filtering that appliers
patiern matching based on regular expressions when comparing event to subscriptions.

An AO can either subscribe to a specific event, or to an event pattern.

Event patterns are ordered set of strings that represent a simple form of regular
expreséions over events. An event pattern is identified with a sequence of pairs (name,
regular expression), where pame and regular expression are both strings. A pattern-
matching algorithm is used to verify the compatibility between an event instance and an
event pattern. For example, the event pattern (Source ID, 12%); (Signal Type,*) is
compatible with all events with a value for attribute Source ID starting with 12, and with
any value of attribute Signal-Type.

An ED stores all event patterns received from subscribing AOs. When the ED receives an
event, it verifies the compatibility between the received event and each event pattern
using the pattern-matching algorithm, and delivers the event to each AO with the

matching subscription that is connected to it.

2.3.3.2 Distributed ED Architecture

An ED is a logically centralized component that needs to have a global knowledge of
AQs, their subscriptions, and published events. However, the centralized implementation

of the ED is a critical bottleneck for a distributed system. To solve the scalability

3]
2

problem, JEDI offers a distributed implementation of the ED. The distributed version of
the ED consists of a set of dispatching servers (DSs). DSs are connected to form a tree
topology. Each DS is located on a different network node and is connected to one parent
DS and to zero or more descendant DSs. A DS with no parent DS is the root of the tree,
while DSs with no descendant DSs are the leaves of the tree. AOs can connect to all DSs

that form the ED.

DSs use a coordination protocol that distributes the information about subscriptions and
events among them. The distribution protocol is designed to minimize the network load
generated by control messages exchanged among the DSs. JEDI uses the hierarchical
strategy to distribute events, subscriptions, and unsubscription messages between DSs:
Subscriptions are propagated upwards in the tree, so that all ancestors of a DS receive it;
when a DS receives a new event, it needs to send it to its connected AOs with a matching
event pattern, its descendant DSs that have subscribed with a matching pattern, and its
parent. This strategy ensures that all relevant nodes and the connected AOs receive the
published event messages. However, this strategy has a significant weakness since events
are always sent upward to the root DS which may become a serious performance

bottleneck.

2.3.4 Siepa

Scalable Internet Event Notification Architecture (Siena) (Carzaniga, 2001) is a
middieware infrastructure that supports the implementation of publish/subscribe-based
applications with the main objective to provide a scalable Internet-scale notification

service. Siena is implemented as a distributed overlay nerwork of servers that provide

clients with access points to a publish/subscribe interface. Notifications are produced by
objects of interest and consumed by interested parties. Siena offers an advertisement
mechanism that enables objects of interest to announce the type of notifications they
intend to publish. Interested parties subscribe to notifications by defining an event pattern
that serves their interests. The event paitern that has been defined by the interested parties
makes this system to be based on the mediator model. Siena servers which act as
mediators are responsible for selecting the notifications of interest and for delivering

them to interested parties.

2.3.4.1 Notifications, Filters, and Patterns

Siena notifications are untyped set of typed attributes. Each attribute is a triple consisting
of type, name, and value. A filter selects notifications by specifying attributes and
constraints on the values of those attributes. Constraints are expressed using equality and
ordering relations, substrings, prefix, and suffix operators for strings, ant the operator any
matching any value. A filter is matched against a single notification based on the
notification’s attribute values. Additionally, Siena offers a limited support for composite
events. It is possible to investigate a combination of notifications through the use of
patterns. A pattern is defined as a sequence of ﬁ[teré that is matched against a temporally
ordered sequence of notifications. For example, if two notifications are received one after
the other and they match two filters that compose the client’s pattern those notification

will be delivered to the client.

N3
LN

2.3.4.2 Distributed Architecture

Siena is designed to offer scalable event distribution in wide area networks. A network of
interconnected Siena servers builds the service infrastructure. Reference (Carzaniga,
2001) defines and analyzes four different server topologies: centralized, hierarchical,
acyclic peer-to-peer, and general peer-to-peer. A control algorithm based on the principle
of reverse path forwarding is applied in hierarchical and peer-to-peer topologies. The
main idea behind the routing algorithm is to send notifications only to those servers that
have clients interested in receiving such notifications. The algorithm is based on the
principies found in [P multicast:

Downstream replication; a notification is routed in one copy as far as possible and
replicated only downstream, as close as possible to the parties interested in it.

Upstream evaluation; filers are applied and assembled upstream, as close as possible to
the sources of notification.

The forwarding of advertisements decreases the number of control messages that update
subscription information since a subscription update is sent only to those servers who
must generate the matching notifications. Advertisements set the routing path for
subscription, which in turn set the path for notifications. Every advertisement is broadcast
to all Siena servers. When a server receives a subscription, it propagates the subscription
in the reverse direction, along the path to the advertiser, and activates the path for

notification forwarding.

2.3.5 REBECA

The REBECA notification service (Fiege, 2003) is a content-based publish/subscribe
infrastructure that consists of a set of interconnected brokers (mediators) that allow
clients to publish notifications for interested users. Brokers are divided into two
categories: Local brokers serve as access points for publisher and subscriber processes,

while routers are used for forwarding messages between their neighbouring brokers.

A notification in REBECA is a message that contains information about an event that has
occurred. A notification consists of a set of attributes where each attribute is a name-
value pair. Notification filters are defined as boolean functions that can be applied to
notifications. Filters can be either simple atomic predicates or compound filters. Simple
atomic predicates contrast attributes to values using the operators such as equality,
comparison, set operators, or string operators. A compound filter is a conjunction of

simple filters.

The notification service is distributed and relies on a set of routing algorithms for
delivering notifications: simple routing, identity-based routing, covering-based routing,
and merging-based routing. All algorithms are bésed on the reverse path forwarding
approach and can apply advertisements to avoid subscription flooding. In simple routing,
all active filters are added to the broker routing tables with the identity of the link they
originated from. This approach is not optimal because the routing tables grow linearly
with the number of subscriptions. The straightforward improvement of the approach is to

combine equal filters in routing tables, the approach used in identity-based routing.

Further improvement is the covering routing strategy which considers covering among
filters to decrease the size of the routing tables. Finaily, the most complex approach
emerging that is to use to create new filters that cover existing filters (Muhl, 2001). The
REBECA working prototype has been used to evaluate and compare the listed routing

strategies in (Muhl, 2002).

2.3.6 Service-Based Architectural Framework for the South African National Park
System

This system is based only on the peer-to-peer model because every time the subscriber
accesses the SANPARKS services information he or she request the information stored
on the static database. This system does not support the push communication technology
in delivering the services information to the interested parties. This automatically
declares that each time subscribers need to access the SANPARKS services have to place
the request to the SANPARKS server. Generally this system supports client/server kind
of communication because the subscriber acts as the client and the publisher acts as

SCIvVer.

The Service-Based Architectural Framework for South African National Parks system
{Khumalo, 2004) does not support mobility when it delivers information to the
subscribers. It only uses simple desktop interfaces to exchange information between the
publisher and the subscriber. [t also does not provide the related approach of delivering
messages or information from the publisher to the subscriber. The related approaches that
can be used to deliver notifications are SMS, MMS and Emails. The new proposed

system in the last section of this chapter aims to improve the work that has been done by

28

(Khumalo, 2004) in order to provide the system subscribers with the personalized
information about the SANPARKS services. The system designed in (Khumalo, 2004)
supports both, the push and pull approaches to communication. The push model allows
suppliers to initiate the distribution of notifications to consumers. The pull model allows
consumers to request notifications from the suppliers. Push suppliers actively send
notifications to the event channel, while pull suppliers wait for requests coming from the
channel. Push consumers passively wait for events that are eventually sent through the

channel, while pull consumers regularly check if new events are available on the channel.

This system only supports unicasting and also considers the issue of personalization when
it delivers information about South African National Parks services to the subscribers.
This system does not solve the issue of context awareness for mobility. The system
{(Khumalo, 2004), only cater for people who have subscribed to the system as customers
of this system. It allows subscribers to unsubscribe from the system if they are no longer

interested in receiving the services information from SANPARKS.

2.4 Mobility Support in Publish/Subscribe Systems

Most of the existing publish/subscribe systems have been designed and optimized for
stationary environments where publishers and subscribers are static, and the
infrastructure itself remains fixed. The mobility-related operation is dealt with at the
application laver through a sequence of subscribe-unsubscribe-subscribe request. A
subscriber from the application layer first defines new subscriptions and unsubscribes

prior to disconnecting from the publish/subscribe system. After reconnecting to the

29

system, the subscriber needs to re-subscribe to make the system aware of its
subscriptions. However, the subscriber will not receive notifications that have been

published during the time of disconnection.

Podnar, (2002) argues that the publish/subscribe middleware itself must offer the
mobility support by ensuring seamless reconnection to a new broker and by preserving
notifications published during disconnection. Zeidler (2003) agrees that mobility-related
issues should be addressed by the publish/subscribe middieware, and not delegated to the
applicétion layer. Some publish/subscribe systems address the problem of client mobility
and disconnection by using a common solution of storing each notification published
during disconnection in a special subscriber queue and deliver the notifications after
subscriber reconnection. The existing solutions, in systems like Jedi, Siena, Jms and
Rebeca extend the established stationary publish/subscribe systems to cope with client
mobility while keeping the infrastructure stationary (Caporuscio, 2003). In the
subsections below we look at the extent to which mobility is being supported in systems

like Jedi, Siena, Jms and Rebeca.

2.4.1 Mobility Support in Jedi

JEDI (Cugola, 2001) offers two mobility-related operations: moveln, and moveQut. A
subscriber uses moveQut to disconnect from a broker and moveln to reconnect possibly
to a new broker. A client can detach from the system, serialize its current state, and later
reconnect. The old broker stores events on behalf of the subscriber during the

disconnection period and transmits them to a new broker upon reconnection. The

approach solves the queuing problem, however, no details regarding the handover

procedure from the old to the new broker, or the change of the delivery path is given.

2.4.2 Mobility in Siena

The authors of Siena present a support service for mobile, wireless clients of a distributed
publish/subscribe system in (Caporuscio, 2003). The mobility service enables the
movement of subscribers between different access points of a publish/subscribe system.
The service uses client proxies and a special client library to manage subscriptions and
notifications on behalf of a subscriber, both while the subscriber is disconnected and
during the handover between different access points. A client proxy runs as a special
component at an access point and stores messages for a disconnected subscriber in a
spectal queue. The client library mediates subscriptions, and initiates a move-out
procedure. It submits subscriptions to the client proxy and submits the address of the old
proxy. The old and new proxy start a special handover procedure that transfers messages

from the old proxy to the new one and then to the subscriber.

The mobility service implements a special synchronization mechanism to avoid lost
notifications. The main principle is quite simple: when transferring subscriptions from A
in order to be active on B, the systemn needs to make sure that subscriptions are active on
B before terminating subscriptions on A. It is possible that during the procedure both A
and B will receive the same messages. The mobility service implementation permits that
a subscriber receives duplicated messages. The presented system is independent from the

underlying publish/subscribe middleware: The portability of the mobility service has

been proved through an implementation on top of three different publish/subscribe
systems (Siena, JMS and Elvin). The client library wraps the targets publish/subscribe
APT and needs to be implemented specially for each API by adding the move-in and
move-out functions, and by overriding the subscribe function of the original APL

Caporuscio (2003) gives the results of an experiment that shows the applicability of the
implementation. The evaluation is limited since the experiment was performed on a
broker network consisting of three broker nodes, a single publisher, and a single mobile
subscriber that moves only once. The experiment included the performance evaluation if
a subscriber uses a GPRS network which has been simulated to access the

publish/subscribe service.

2.4.3 Mobility in Rebeca

The approach taken within the project REBECA is to extend and modify the existing
publish/subscribe system to support mobile and location-dependent applications (Fiege,
et al. 2003). The mobility service aims o support two different types of mobility:
physical mobility and logical mobility. Physical mobility is similar to terminal mobility:
A client is physically mobile and roams between different network domains. It can
disconnect from the system and later on reconnect possibly to another broker in a
different network. Its subscriptions are valid and the system stores notifications published
during the disconnected period. Logical mobility is related to geographical location: as a
client changes its geographical position, its subscriptions dynamically change because the

published information is location-dependent.

[9%}
(o9

The algorithm that is developed for physical mobility is designed for a distributed
network of brokers. It applies the “queuing” approach: The old broker stores notifications
for a disconnected subscriber. When the subscriber connects to a new broker, it re-issues
its subscriptions, but keeps no record of the old broker address. The algorithm finds the
old broker by locating a broker that is at the junction of delivery paths for the new and the
old broker. It is clear how this junction broker is found if simple routing is used. Each
broker stores active subscriptions for all subscribers with the subscriber identifier, and
since the subscription from the old broker is still active in the system, it is simple to find
the juﬁction broker leading to both the old and the new broker. The notifications stored
by the old broker are routed through the junction to the new broker and delivered to the
subscriber. With simple routing the routing tables can become rather large because all
brokers have to knowledge all subscriptions. Routing algorithms that use covering and
merging are better suited for mobile environments where subscriptions change more
often that in static scenarios. The proposed algorithm needs further extensions in case
routing based on covering or merging is applied since the process of finding a broker
junction is not straightforward. The designed algorithm appears to be rather complex and

there are currently no evaluation results that shows its applicability and performance.

2.4.4 Mobility in JMS-Based Systems.

Recently, some of the systems that implement the JMS specification offer support for
mobility (Yoneki. et al., 2003). Such systems offer a lightweight JMS compliant API for
Java-enabled mobile terminals that can be used to implement JMS-based publishers and

subscribers. 1Bus//Mobile is a commercial IMS-compliant implementation. It integrates a

Gl
L

special gateway that serves as a mediator between a JMS provider, and JMS clients. It
offers support for native clients with no JMS support. Native clients can publish and
receive SMS or MMS messages that are transformed into JMS messages that can interact
with the JMS provider. iBus//Mobile supports TCP, UDP, HTTP, and HTTPS as
transport protocols for JMS messages. JROM is an open source project that has recently
published a client API called kJROM that adjusted to J2ZME devices. Pronto (Yoneki, et
al. 2003) is an academic project. It provides a JMS-compliant middleware system that
supports mobility of JMS publishers and subscribers, and implements a mobile JMS API
that can run on resource-limited devices. It incorporates a mobile gateway that supports
JMS in wireless networks and employs SMS, or mail as transport mechanisms for native

devices that do not support Java and JMS.

2.5 Related Technologies.

Notification is very essential to this research. Hence the need to survey technologies that
can serve as candidate mechanism for notification. Those discussed in this section are

electronic mail, sms, mms and push technologies.

2.5.1 Electronic Mail

Electronic mail is one of the first services on the Internet for distributing messages with
arbitrary content. The introduction of mailing lists provides a powerful tool for one-to-
many content dissemination. Tools for creating and maintaining mailing lists facilitate the
users to subscribe to and unsubscribe from mailing lists automatically. and enables topic-

based publish/subscribe interaction. The main disadvantage of using mail for

disseminating content to large mailing lists is resource consumption. The typical mail
distribution method creates a separate mail copy for each receiver from the mailing list
and sends each copy separately to the receiver even if several receivers use the same mail
server. This approach can cause considerable computing load and bandwidth

consumption which can lead to significant delivery delays.

Contrary to the huge success and primacy on the Intemet, electronic mail is not currently
widely used in the mobile domain. The main reasons for Its poor acceptance are
bandwidth limitations and scheduled pull-style retrieval of mail messages which require
permanent network connection. Mail readers for mobile devices that apply standard
Internet protocols (POP3 and IMAP) are currently available. To solve the problems
related to the pull-style operation, proprietary solutions that employ push-style message
retrieval have recently been developed. These solutions send notifications to the user’s

mobile terminal when a new mail message arrives at the mail server.

2.5.2 Short Message Service

Short Message Service (SMS) is a simple messaging service widely used in today’s
mobile networks (Le Bodic, 2003; Peersman, ret al., 2000). An SMS transports
alphanumeric messages using the store-and forward paradigm. Messages are temporarily
stored if users cannot retrieve them at the time of message publication. A stored message
is delivered to the user terminal when it reconnects to the network. An SMS offers a
point-to-point service that enables person-to-person and machine-to-person message

exchange carryving at most 140 bytes of payload, either 160 7-bit characters, or 140 8-bit

)
LA

characters. In addition to the point-to-point communication, an SMS offers the so-called
cell broadcast service for transmitting messages to all active terminals in a cell that have
subscribed to the particular information service. This feature enables the deployment of
information services carrying for example weather updates and financial reports that are
examples of machine-to-person SMS usage scenarios. SMS is an extremely popular

messaging service, but limited by the low bandwidth communication channels.

2.5.3 Multimedia Message Service

Multimedia Message Service (MMS) is an enhanced messaging service that exploits the
access to higher bandwidth in 2.5G and 3G networks (Le Bodic, 2003). MMS enables the
exchange of multimedia messages carrying text, audio, and pictures in the context of
person-to-person and machine-to-person scenarios. MMS supports interoperability with
electronic mail which gives rise to various usage scenarios. The concept of message
notification allows deferred retrieval of messages and relies on persistent network-based
storage of messages. Messages can be stored persistently in the network and controlled
remotely via mobile terminals. Value-added services such as weather notifications, news
updates, or location-based information are typical content dissemination applications that
can be deployed using MMS as a transport mechanirsm, These services lack the flexibility
of subscription found in publish/subscribe systems: The subscription to value-added
services is static and currently offers no means for adjusting the service to user
preferences and up-to-date needs. It would be useful to extend the MMS architecture

which would then publish/subscribe interaction principles.

2.5.4 Push Technology

The Push technology offers timely delivery of possibly large amounts of content to many
subscribers in wide area networks. The technology requires that channels are used to
classify the content that is published to subscribers, and the term push service is used to
stress that the content is actively pushed to subscribers. Push systems and
publish/subscribe systems are closely related. The basic interaction model is the same.
Subscribers subscribe to the service and receive the published content in the push style.
The main difference between the two types of systems is that push systems offer services
o end users, while publish/subscribe systems are middleware. Push systems offer
channel-based subscription criteria to their users, while publish/subscribe systems
provide flexible and expressive subscription capabilities. The extensive comparison of
push systems and publish/subscribe middleware can be found in Minstrel (Hauswirth,

1999),

Minstrel is a Java-based push system developed at the Technical University of Vienna.
The main goal is to provide flexible and secure content delivery in the area of e-
commerce, and to ensure system scalability. Minstrel has a distributed architecture and
employs a proprietary application-layer protocol for efficient content distribution to
numerous users across a wide arca network. The main Minstrel components are a
broadcaster and a receiver. A broadcaster i1s responsible for managing channels and
sending information along channels. A receiver component is responsible for subscribing

a user to available channels and for receiving the content. The current receiver

implementation is designed for desktop computers, and the system does not support

receiver mobility.

2.6 A Concise Overview of the Proposed Solution

In this dissertation a Publish/Subscribe Architectural Framework for SANPARKS is
proposed for use by mobile and web-based applications. This research combines both the
broker (mediator) model and implicit models into a design that encompasses the
fcliow.ing criteria:
l. Restructuring — Restructure the SANPARK system fit for the status of
information provider;
2. Transparent Information Delivery — Integrate a publish/subscribe engine that
allows a consumer to get information without knowing the source;

Personalization — Enhance the engine to serve mobile users in a personalized

LI

manner.

The adoption of m-commerce in this research will help us in the definition of the
architectural framework envisaged. From the point of view of access modalities. m-
commerce services can be characterized as ¢ither subscribed or un-subscribed.
Subscribed services are mostly used in both e-commerce and m-commerce, because they
have stronger security level due to the personalization of services for specific users
(Quah, et al., 2002; Ozen, et al., 2004). Un-subscribed services due to their time-limited
nature always need more compleX interaction between the user and the system, which

implies a longer time to access the service.

This research work considers only subscribed access modalities because of the finite
nature of services provided in the South African national parks. The work which has been
done in (Posland, et al., 2001) and (Schmidt-Belz, et al.,, 2002) gave rise to a
personalized, location-aware tourism support, implemented as a multi-agent system with
the concept of service mediation and interaction facilitation. Personalization is one of the
key features to facilitate the use of complex services on mobile devices (Barkhuus, et al.,
2003). Personalization is where applications let the user specify his own settings for how
the application should behave in a given situation (Yoneki, et al., 2003; Barkhuus, et al.,

2003).-We have architectural components needed to realize a personalization system.

These components include user profiles, where preferences are stored, and
personalization rules that match user attributes and content (Pashtan, 2005). Finally the
combination of localization and personalization would create a new channel/business
opportunity for reaching and attracting customers. The system seeks to implement and
trial tourism-related value-added services for nomadic users across mobile and fixed

nerworks.

SMS and E-mail have been chosen as the delivery approach to subscribers since the aim
is to publish SANPARKS services information to consumers in terms of text using both
mobile devices and normal computers and these approaches are suitable for that. We then
introduced personalization in order for the proposed solution to meet the standard of

certifying user’s preference. In order to achieve a comparable resuit with similar research

endeavours, the MVC pattern has been adopted in the design.The following subsections

discuss the issues of personalization and mobility in the new systemn.

2.6.1 Personalization in A Design of Mobile Publish/Subscribe Architectural
Framework.

A Mobile Publish/Subscribe Architectural Framework only supports the push approach to
communication. The push model allows service suppliers to initiate the distribution of
notification to consumers that already subscribe to the system in order to achieve the
publisﬁ/subscribe paradigm. Services Suppliers which are known as Publishers in this
system actively send notifications to the mediator for the mediator to check the matching
subscribers and push the notifications to subscribers. In the push approach of
communication Service Consumers passively wait for event notifications sent through the
mediator, unlike in the pull approach where service consumers regularly check if new

events are available at the mediator.

The model supports both unicasting and multicasting. It also enables personalization such
that consumers receive information from South African National Parks services in a
personalized manner. Personalization is the basic goal of this research work and without

its achievement the research is not successful.
This solution uses the SMS (Short Message Service) and F-mail technologies to deliver

the services information to the subscribers. This implies easy access 0 SANPARKS

information services by the subscribers. In reality most of the people can not afford the

40

types of cell phones that support all the available delivery approaches that are available
currently e.g. MMS and Push systems etc. Therefore SMS and Emails are the methods
for delivering the information services to the people as most of the mobile devices and

desktops users can manage to access these delivery mechanisms.

Another important focus of this work is to accommodate mobile users. Hence there is the
need to explain mobility in existing systems and also in the proposed system because
mobility is crucial for achieving the expected capability of sending notification to

SANPARK subscribers’ mobile devices and desktops.

2.6.2 Mobility in A Publish/Subscribe Architectural Framework.

The architectural model uses a mediator which receives notifications on behalf of a
subscriber during disconnections. The mediator acts as a subscriber proxy, and can
register interest in subscriber’s location. When the subscriber reconnects to the system,
the mediator will get a notification with the new subscriber’s location, and then deliver
the saved messages to the subscriber. An interesting part of the model is that it relies on
the publish/subscribe infrastructure itself to transmit the information about changing
subscriber locations. However, this raises a serious security concern. A malicious party
could play the role of a mediator, track subscribers, therefore jeopardizing location

privacy, and delivering bogus notifications after subscriber reconnection.

In chapter three a detailed account of the proposed model will be given to show how the

mediator and implicit models were combined into the new proposed model. To the best

41

of the author’s knowledge, all the existing systems that were represented in this work are
based on models crafted using the already existing publish/subscribe models that were
also represented in this thesis. Due to the understanding of the existing system in
publish/subscribe communication paradigm and existing model of the publish/subscribe
communication paradigm, the model that is further discussed in chapter three is crafted
using some of the existing modeis of publish/subscribe paradigm to form one model as

the solution to the problems given in this study.

42

CHAPTER THREE
MODEL DEVELOPMENT

3.1 Introduction

The increasing popularity of information services that rely on content delivery in mobile
environments motivates the need for a mobile content dissemination service, which is an
efficient and scalable service that enables the delivery of personalized and customized
content to mobile and desktops users. Publish/subscribe middleware offers mechanisms
for content personalization. Subscribers define the characteristics of content that is of
interest to them in order to receive notification when such content becomes available. We
list and analyze the requirements of the SANPARKS system and the content
dissemination service supporting mobile users of SANPARKS business services. The
possibile design principles that can be handled by our model are analyzed and defined in
this chapter. Our new model should accommodate both mobile devices and desktop users

to ensure equal access to services.

This chapter is organised as follows: Section 3.2 states the requirements formulation of
our system. Section 3.3 defines the design principles that drove the creation of the new
model. Then the rest of the sections of this chapter define the development of the new

model for SANPARKS system.

3.2 South African National Parks System Requirements

In order for SANPARKS customers to receive services information in a more concise
manner than what is currently available. The organization needs to adopt the
publish/subscribe communication paradigm. This will allow customers to subscribe to the
system and set their preferences during the activation of the subscription in order to be

notified with information that is relevant to their interest.

SANPARKS also need to consider the mobile commerce service model such that their
business can be extended to mobile device users. This has a potential of increasing the
number of customers that support the business as mobile devices are very popular and
affordable. Mobile devices users will be able to enjoy the services information offered by

SANPARKS anytime and anywhere.

It goes without saying that SANPARKS also need to give access to people that are using
desktops. This category of people would like to gain access to information via

SANPARKS desktop interfaces whether at home or in the oftice.

Therefore there is the need to restructure the current organisational architecture into an
information-provider entity before the publish/subscribe communication paradigm can be

adopted in the current system.

The wide acceptance of content information service depends on the precondition that the

system delivers only highly personalized and customized content in accordance with user

preferences and current presence status. This may bring about the creation of a “branded”
dissemination service that is invulnerable to spam. The service could become a trusted
intermediary between content publishers and subscribers that filters information
according to user’s needs. The design requirements that need to be satisfied are outlined

next.

Push-based content delivery: Service users must be able to define the type of content
they want to receive, and be served with the published information as soon as it is
available. The push-style content delivery eliminates the burden of querying for
information at regular intervals and is in accordance with the stochastic nature of content

creation and publication.

Content filtering and personalization: Content filtering is enabled through user
subscriptions to minimize the number of received message that are not of interest. This
feature requires that services are personalized and adopted to user context. The

concomitant effect is that information overload on a user is reduce to the barest minimum

Scalability: This requirement connotes that service is optimized for the particular
application area with respect to the number of publishers and subscribers in the svstem,

and the size and frequency of published content.

3.3 Design Principles of the Publishing Personalized Data Architecture
for SANPARKS

The Publish/Subscribe Architectural Framework for SANPARKS is based on two related
models that were defined in section 2.6 which is the broker (mediator) and implicit

models because they satisfy the following design criteria:
e Restructuring - Restructure the SANPARK system into an information provider;

e Transparent Information Delivery - Integrate a publish/subscribe engine that

-allows a consumer to get information without knowing the source and

¢ Personalization - Enhance the information delivery engine to serve mobile users

in a personalized manner

The subsection to be discussed in the pages to follow detail the overview of the design

principle that have been introduced earlier on.

3.3.1 Restructuring the organizational information Architectural Framework.

Some of the SANPARKS are interested in enabling most if not all the communities of
South Africa to benefit from its activities. Historically, static web pages were used to
inform the public about services or products offerings excluding the content that
information consumers are willing to buy. If the cuwrrent information delivery to
customers through static web pages are not simplified and personalized then there will be
no need to restructure the SANPARKS system into an information-provider entity that
will make sure that information is simplified. Restructuring the existing entails
identifying the system or component that would be modified to achieve the goal of

simplifying information. The usability testing that will be done during testing phase of

46

this system would identify whether the new SANPARKS Information System developed
is the information provider entity or not.

3.3.2 Making Information Delivery Transparent in a Publish/Subscribe
Architectural Framework.

The SANPARKS Information architecture is currently not associated with any
communication style and therefore we explore the obvious gap by introducing an delivery
mechanism that allows customers to get information without knowing the source.
Adopting the publish/subscribe communication mechanism provides no prior knowledge
betweén the subscriber as the consumer and the publisher as the source, since the
publish/subscribe communication paradigm is the engine that allows a consumer to get
information without knowing the source. This design principle promotes the notion of

making information sources transparent to the user.

3.3.3 Personalization in the Publish/Subscribe Architectural Framework

Personalization is about tailoring products and services to better fit the user, e.g. by
Jocusing on the user needs, preferences, interests, expertise, workloads, task etc. The
heart of this study is to bring user context into focus as the means of capturing all of the
above. In this way, information delivery serve to both mobile and desktop users is done
in a personalized manner. The notion of personalization in this work requires that the
subscriber provides his/her preferences and profiles before the system can guarantee that

the information published will meet the subscriber’s expertise, needs and interest.

47

The foregoing design principles provide the basis for converting existing static web pages

into a dynamic e-commerce based information delivery enterprise. In order to start

trading conservation information as a commodity, via the Internet, the SANPARKS

model had to be restructured as conceptualized in fig 3.1.

§ ‘ SANPARKS SYSTEM

- ‘ have ‘ Subscribe to
Service Sources Ii
]_ Proviges anc updates PP i
| % ’
! Services Information | = siocates P | SANPARKS Database
| Subset of l
| | |
— ;
; | A i
<> Caontains I
}
Plants Info [} Arimas Info | | Features Info | | Accommodation Services | - Delivered to P Services Congumers
Suppliers Suppliers Supgliers Infa Suppliers ; {Researcher/Tourist)
F Contains W
T T ‘ .
Fiants Animals| Features | Accommodation Typeﬁ
| info infa | Info : A
Pushsend info
| Seif {
Scenic Cum_graj f Catenng § | Reguiar
Bares features ;
T 1 i I]
‘[Chalet [| Camp W Lodge | i Camp |

- L

Publish ian 1.
whish informatian 1 | Wireless Gateway |

{Meadiator}

Figure 3. 1: The Restructured SANPARKS Conceptual Model

The SANPARKS conceptual model given in Fig 3.1 adopts a service-oriented approach

to conceptually show information entities and their relationships. The goal is to enable

the SANPARKS entities become information publishers. The overall information

architecture of the restructured SANPARKS has been conceptually modeled. What

remains is to describe the identifiable architectural elements.

43

SANPARKS SYSTEM consists of the South African National Parks forming a
unified business or system that provides service comsumers with access to
personalized information about services conserved in the SANPARKS, this
business has many service suppliers.

Service Sources are divided into four categories in the SANPARKS system; we
have Plants Info Suppliers, Animals Info Suppliers, Features Info Suppliers
and Accommodation Info Suppliers. In this case Info fully stands for
Information. Service sources act as repositories for, and disseminate specific type
of information commodity. A mediator exists through whom service suppliers
publish their information to consumers.

Services consist of the tasks performed in response to users requests concerning
plants, animals, features and accommodation in most cases; information is
retrieved, and packaged to meet users’ specific needs.

Features information can be categorized into scenic features and cuitural
features where scenic features can be mountains or a river, the cultural features
can be a tribal village.

Accommodation types can be classified into regular and self catering type of
accommodation. Regular accommodation consists of the lodge type or camping
type. The self-catering category consists of chalet or camping type as well.
Service Consamers will subscribe in order to receive the available SANPARKS
services information and products information matching their interest according

to the preferences supplied at subscription time.

49

e SANPARKS Database holds the filtered services information of the distributed
national parks that is ready to be disseminated to the relevant subscribers by the
SANPARKS system using the mediator.

o Mediator acts as the software bus between the Service Suppliers and Service
Consumers. (Eugster, et al., 2003} prescribe that 2 good publish/subscribe system
should not allow Service Suppliers and Service Consumers to have prior
knowledge of cach other/or should not exchange services information directly.
The mediator is the mechanism used to avoid direct communication between the

two entities. The mediator waits for information to be published by Suppliers and
matches published information to the relevant corresponding consumers, once the
relevant consumers become available then the mediator pushes the published

information to service consumers.

The conceptual model for the SANPARKS Information system already described above
requires the newly constructed publish/subscribe architectural framework that support the
implementation of adopting the publish/subscribe communication paradigm into the
SANPARKS environment. This would enable the subscribers 1o receive the personalized
services information using their desktops and mobile devices without knowing the

source.

3.4 Publish/Subscribe Architectural Framework for SANPARKS
System

The Architectural Framework presented in fig 3.2 combines both the mediator and the
implicit models. This architecture seeks to support the newly concepiualized
SANPARKS model in fig 3.1 in order to make it fit for the information provider entity
that enables information consumers to receive the personalized information through their
mobile devices or desktop computers. This architecture also presents the adoption of

publish/subscribe paradigm into the SANPARKS environment.

The model ensures that communication between end points is anonymous, asynchronous
and loosely coupled. In other words, the architecture ensures that the system decouples
publishers and subscribers in time, space and flow. This decoupling of subscribers and
publishers in time, space and flow makes publish/subscribe systems highly scalable by
removing all explicit dependencies between the interacting parties. It also helps the
system to adapt quickly to a dynamic environment. Decoupling in space allows the
subscriber to move from one location to another without informing the publisher while
decoupling in time allows for disconnected operations of the subscriber. The following
section identifies and discusses all the component or building blocks used to craft the

Publish/Subscribe Architectural Framework.

Publich informarien
and
=1 admewledmment National Park
DB1
4
Natiomal Park Openaipiis owm
Siee 1
| 4 1:
{ LN{l/Many pais ase invobed)
]
]
Send mquest and gt mepanse .
i Coniging in of fhe
Natiomal Par Siie 1
Somdefiemd 7,
Imternet
—_— —>
M
[—————]
Conpeemd ®
Confaing indh of the
National Park S 0. Publich mbrmaton
aad
21 wimowie dEsrmenr

Figure 3. 2: Publish/Subscribe Architectural Framework for the SANPARKS System

3.4.1 Building Blocks and Components of Publish/Subscribe Architectural
Framework for South African National Parks.

The architecture mainly comprises three different components together with their nodes

as the buildings blocks of the entire architecture. The components and nodes of the

architecture are defined using the tabular form as follows:

Table 3. 1: The entire components and building blocks of the Architecture

Publisker Component

Mediator Component

!

Publishers: This node declares its
intention to send publicatiops and
describe publication types and
patterns. Generally this node
publishes all the information that is
available about SANPARKS services
to the mediator.

Publisher’s Server; This server is
connected to the network and it holds
all information of the national parks
databases.

| Mediater: This node is the software

! services

! SANPARKS system.

bus which allows the communication
between the publishers and
subscribers. It is also kmown as the
controller since it is responsible for
controlling the entire functionality of
the architecture. This node allows the
exchange of information between the
publishers and subscribers. This node
ensures the transparent information
delivery between the subscribers and
publishers.

Infermation Filter: This node is the
one that summarizes and categorize
the services information send by the
publisher. We call it the information

filter because as the publisher
publishes the available services
information 1o the mediator |

automatically that information has to
be summarized and categorized
according to topics/preferences by
this node. The mediator interacts with
this node by alerting it to filter the
distributed information before it can
be stored on the SANPARKS
database.

User Profiles: This node holds ail
the information of the subscribers
which is needed by the mediator
during the matching phase in order o
determine the relevant subseribers to
receive the information that is send |
by the publisher 10 the mediator.

i
SANPARKS Filtered Darabase:
This damabase holds the filtered
information of the
distributed national parks that is
ready 1t be disseminated 1o ihe
relevant subscribers by the

Subscriber Component

Subscribers: This node registers

. . . L I
interest in receiving publications and]

specifies the subscriptions to the

subscribers’ server. This node waits !
for the information to be pushed to
hitvher in order to gain access to it
by viewing that information. |
Subscriber’s Server: This server
holds all the information requested by

the network from the mediator in |

order to push it to the relevant

subscribers when they reconnect 10 |

the network.

()]
sl

3.4.2 Functional Requirement of the System

3.4.2.1 Use Case Diagram

This section presents the use cases for the prototype of the publish/subscribe architectural

framework for SANPARKS to be implemented in this research work for usage in the

SANPARKS organization.
Subscribe
<<exterds>>
[—
PublishTopicInf
. T

ManageProfile
UpdateProfile DeletePrefile

Figure 3. 3: SANPARKS Use Case Diagram

The usage scenarios of the system indicate that the system has two actors that are
participating in the system as the publisher and the subscriber. These actors determine the
occurrence of the adopted publish/subscribe communication pattern in the SANPARKS
domain. In detail, a publisher In this system is the information sources of plants, animals,
features and accommodation. The information sources deal with publishing SANPARKS
services information as the house-keeping process rather than a public process to the

mediator in order for the mediator to notify the subscribers with the SANPARKS services

54

information that meets their interest. The subscriber can subscribe for the topics of
his/her own choice on the mediator in order to be notified with the SANPARKS services
information which meets his/her preferences that s’he specifies during the subscription

process on the system. The overall functionality of the system use cases is given below.

Subscribe: A subscriber can subscribe for the topics on the mediator to be able to receive
notification about the available SANPARKS services information of his/her interests.

CreateProfile; A user defines the profile when s/he first uses the system for the system
to authenticate him/her when s/he uses the system in future. The user needs to specify the
personal details for the creation of the profile. The information to be provided by the user

is the usemarmne, password, full name, e-mail address, and mobile phone number.

PublishTopicInformation: The information sources of plants, animals, features and
accommodation publishes the SANPARKS services information to the mediator, and
then the information is filtered by the mediator’s information filter according to the
appropriate topics category that is stored on the SANPARKS database. Finally the
mediator as the controller of the system matches the services information that is on the
SANPARKS database with the user profiles of the system and disseminates that

information to the corresponding subscribers.

ManageProfile: The subscriber is able to manage his/her profiles from the SANPARKS
Information System. Managing Profiles can be achieved by updating or deleting.

Updating the profile occurs when the user makes some changes in his/her profile.

th
LA

Deleting the profile occurs when the user prompts the system to permanently withdraw or

delete his/her profile from the system database.

UpdateProfile: This use case is part of managing the profile by the system users. This
indicates that the subscriber of the system can be able to update his/her profiles.
DeleteProfile: This use case is also part of managing the profile by the system users.
This indicates that the subscriber of the system can be able to update his/her profiles.
3.4.2.2 Sequence Diagrams

Based on the use cases identified above, the following sequence diagrams were

constructed in order to show the flow of information of the above use cases:

SubscriberU] ProfileManager Pmofile

Subscrber

.rmy
..

_] Subscribe ()

—*

~} createProfite ()

lsetProﬁ.le()
profile setted

|

]
e T]

Displaynotification r :

e S

Figure 3. 4: Sequence Diagram for Subscribe Use Case

Figure 3.4 shows a sequence diagram of the Subscribe use case. The flow of fime is

shown from top to bottom, that is, messages higher on the diagram happen before those

56

lower down. The arrows (links) are messages - operation calls and returns from
operations. In the SANPARKS domain the subscriber can be either a researcher or
tourists who use the system for the first time. The subscriber uses the graphical user
interface provided in the national park system to define his‘her profile. In the process of
defining the user profile, the subscriber provides his personal details (id, cell number, e-
mail address etc) and preferences (plants, animals, features and accommodation as the
additional feature) for the system to be able to identify and authenticate him/her when
s/he access the SANPARKS services. For mobile phone users, the system should use the
mobile phone number as the username and allow the subscriber to create his/her own
password. The subscription and provision of preferences makes it easier for the system to
present the user with relevant information during the push-based dissemination of
information to avoid time consuming if accessing to the information. The following Fig

3.5 is the PublishTopicInfo sequence diagram that is explained in details below the figure.

% Pub lisher(T Mediabor Topwe whseribe

Infsrmatien Seurces E ? ,5
_] Subscribe () ;
7 publiskTepicinfo () :

1

: 'lsetTnpiclnfn ¢ i
._mm:..smm_[i

. i
: ushTopicInfi(3 :
noti fyPublishedJ1 () H !

Display potification i i 5

a » : i

Figure 3. 5: Sequence Diagram for PublishTopicinfo Use Case.

57

Figure 3.5 shows a sequence diagram of a PublishTopiclnfo use case. The flow of time is
shown from top to bottom, that is, messages higher on the diagram happen before those
lower down. The arrows (links) are messages - operation calls and returns from
operations. In the SANPARKS domain the information sources are responsible for
publishing information which is done as house-keeping process rather than public
process. The information sources use the graphical user interface provided behind the
scene to publish the information to the mediator. The reason of publishing information
behind the scene is that SANPARKS organization is not interested in observing the way
of publishing information to the subscribers but to ensure that subscribers receive the
simplified and personalized information at the end of the day. The mediator then sets the
topics information according to the relevant subscribers and pushes that information to

the relevant subscribers.

Finally the mediator notifies the publisher as to whether the information was sent
successfully or not. The figure 3.6 is the ManageProfile sequence diagram that gives the
overview of the flow of information in the ManageProfile use case. The flow of
information takes place when the subscriber activates the manage profile process in order
to update or delete his/her profile. The subscriber interacts with the manage profile
graphical user interface to either delete or update their profile. In updating the profile, the
subscriber needs to provide the system with the new information to replace the one h/she
is updating. In deleting the profile the subscriber need not provide the system with any
information; all h/she needs is to specify that h/she is deleting his/her profiles on the

system. The profile of the subscriber is then permanently deleted by the system.

--...---.--!.u---....--..!--.----..-4.._“

retrieveProfile(id)
profile reirieved

o g B A . Pl A A T S ﬂ

—[_Updahﬁeleter&)

upd b ProfilefidydeletProfilelid)

rofile deloted

updakProfila(}/delew P filal)
yofile o

R o,

|

Figure 3. 6: Sequence Diagram for ManageProfile Use Case

Display Message

3.4.2.3 Algorithms
This gives the overview of the use case specification using program design language that

shows how the system use cases are going to be functioning after the completion of the

system.

sersisted)

Figure 3. 7: Subscribe Algerithm
The figure 3.7 shows the algorithm of the Subscribe use case that gives an overview of
the functionality of the subscribe use case. The subscriber requests to subscribe to the
system then the system provide the subscriber with the subscribing user interface for the
subscriber to fill in the required information. On cémpletion of providing the system with
the required information, the system checks the validity of the information provided by
the subscriber. If the information is valid the system successfully registers the subscriber,
but if the information is invalid the subscriber is then requested to re-enter the valid

information.

60

nformation validity -
on is invalid} then
ssage o

Figure 3. 8: Manage Profile Algorithm

Figure 3.8 is for the Manage Profile algorithm that gives an overview of the functionality
of the ManageProfile use case. The subscriber as an actor in the SANPARKS model is
responsible of managing his/he profiles in terms of deleting or updating the profiles. The

subscriber can also update his/her profile by editing the information which is no longer

relevant to him/her and provides the system with the new relevant information.

: ic ‘information validity
fi GpTc: 3.11}:::{'[:&%:1011 is A,I]_Valid) then
d}.sp’ay Eryolr message
_g_ax.o G_t,ep zo

~Figure 3. 9: Publish Topic Information Algorithm

The figure 3.9 is the Publish Topic Information algorithm that gives an overview
tunctionality of the PublishTopicInfo use case. The information sources are responsible

of performing this process by interacting with the user interface that is provided behind

the scene of the SANPARKS Information System because this process is meant for

house-keeping process rather than the public process.

3.4.2.4 Activity Diagram for the SANPARKS System

Figure 3.10 is a UML activity diagram showing actions taken during a session of
accessing the service by the subscriber in the SANPARKS Information System. The
initial action taken in order to be successful in accessing the service is to subscribe to the
system. This will allow the subscriber to read message that has been sent to the desktop
as e-mails or to the subscriber mobile device as a sms. Subscribing to the system also
allows subscribers to update or delete profiles. The actions of updating and deleting
profiles are only possible if subscribers have been authenticated by the system as the
owners of the profiles they need to delete or update. All the actions discussed in this
section can be achieved by using the desktop and mobile device for only subscribing to

the system.

®

I

[a subscriber comes inl
|
I

y [not a cument subscriber) /’—”ﬁ\\
R
! fFavalid
[current subscriber] / = I\\
5‘ {Read messagesiUpdate Profile on deskiop) /;Z—‘\ [valia] ~—
: X,

[rrobiie subscriber] T T T,
f : Head Pubished Messages |
] AN /

i [upgate profie]

{read m&ssages]

t/

tvadia}

/ “ s i
Enter PIN ‘%Q__%’\ Read Publisned Messages m———\f%@

5, /
\ s

\\
nvad u:/

Figure 3. 10: SANPARKS System Activity Diagram

3.4.2.5 Class Diagram

Figure 3.11 is the class diagram that represents the classes of the system implementation
together with their attributes and operations {methods). The implementation of the system

is covered by nine classes as follows:

Publisher: This class represents a bean that defines properties and behaviors for handling

information of the publisher entity.

Subscriber: This class represents a bean that defines properties and behaviors for

handling information of the subscriber entity.

Message: This class is responsible for storing messages in an XML storage format which
acts as a mailbox for emails. The XML storage is only for subscribers who chose email as
a delivery method. The Message class defines methods for saving, deleting and retrieving

emails. Furthermore the class defines methods for marking read messages.

TopicObserver: This class is responsible for listening to messages published to a topic,
and then sends the message to potential subscribers when publication is received. This
class applies the Observer design pattern in modeling collaboration between system

objects.

64

Topic: This class represents a bean that defines properties and behaviors for handling
topic publications. This class is a convergence of four properties the title, category, body
and a keyword.

Profile: This class represents a generic class for both the subscriber’s profile and the
publisher’s profile. Furthermore, it is a bean class with a defined properties and behaviors

that are supposed to be shared among its descendant.

SubscriberProfile: This class is a derivation from the super class Profile. Added to this,
it is a specialized bean that defines properties and behaviors for handling information

pertinent subscriber profile.

PublisherProfile: This class is a derivation of the super class Profile. It is also a
specialized bean that defines properties and behaviors for handling information pertinent

publishers’ profile.

Preferences: This is a delegate in class SubscriberProfile and it is responsible for
capturing and querying subscriber preferences. It defines attributes that enables

subscriber preferences to be persisted to permanent storage.

=
h

—abserves TopicOhsarver -utilizes
- -topic - Topic e
] +TopicCbserver(in observableTopic : Topic) 1
+update()
1 -produces
1. -praduced by
Message
-messagelD - int
-senderAddress : String
-observed by 1.7 ~destinationAddress : Sting
-subject : String
- -content : String
Topic -receivedDate - String
-tite : String -status - String
-category : String +setMessageiD(in messagelD : String)
-body : String +setSenderAddress(in SenderAddress String) -consumed by
i keyWord : String +setDestinationAddress(in destinationAddress : String)
-published by [Topicq +setSubiectlin subject : String) 4.
+setTile(in tite . String) +setContent{in content ; String) -
4= +setCategory(in category ;. String) +setReceivedDate(in receiveDate : String)
. +setBody(in body : String} +setStatus(in status | String)
+seti(ayWard(in keyWord : String) +getMessagelD()
+getTitle) : Sting +getSenderAddress{) : String
+getCategory() : String +getDestinationAddress() . Stiing
+getBody() : String +getSubject() : String
+geyKeyWord() - String +getContent() : String
I +getReceivedDate() : String
+getStatus(} : String 1. -consymes
i E -receives subscriptons
] -subscribes Subscriber
-publishes 1 1.
Fabl Profile a
ublisher - !
-password - String 1 | -defines
~cellNumber @ String :
-emailAddress ; String i
 — +Profiie(y i
+setPassword(in password | String)
1 ~defines +setMobileNumber(in mobileNumber - String) :
+setEmailAddress(irc emaitaddress - String)
+getPassward() - String | ; :
| +getMobileNumbe) ; String i :
+getEmailAddress() : String :
: l i
1 | -defined by :
| :
PublisherProfite SubscriberProfile :
~defined by publishertD - Sting -subscriberD : sting . i
L“"F’leiiSh&!’Fl’Gﬁlé() -preferences | Preferences i
1 +setPublisher D{in publishenD : String) "SUbSGﬂbe-_rPrnﬁte_())) i
+getPublisherlD() - String +setSubscribedDdn suhscribedD | String) : vowd utilized by

+setPreferences(in preferences : Freferences) | void
+getSubscriberD(} : String
+getPreferencas() : String

-topicCategory © String

-deliveryMethcd - Sting

-keyWord | String

+Freferences{)

+setTopicCategory(in topicCategory | String) © void
+setDeliverMathod(in deliveryMethod : String) ; veid
+setkeyWerd(in keyWord : String) © void
+getTopicCategorny) . String

+getDaliverMethod(l | SEing

+getkayWord() . String

Figure 3. 11: The Publish/Subscribe SANPARKS Class Diagram

3.4.2.6 Deployment Packages

Fig 3.12 illustrates a business package for handling subscribers’ requests for subscribing
to the service. This package illustrates a business model that defines business classes
which models the functionalities of subscription. The business model illustrated in the
above subscription business package is comprised of business classes that can be
implemented as bean components, such as classes like Message, Profile, Preferences and
SubscriberProfile. Only the SubscriberProfile class attributes can be persisted to a

permanent storage.

/"/;:bstr'yﬁnn Package

Message

jfmessagelD - int
Faencer Acdress : Siring
-mmnwcrm . Biring

l-numem Saing
[ecenvecDate - Sirng Profile
| tmtus | Srng f passwora - Sawg
seMassAget NN messagetD | Stringi Lomi Mumber | Suwng
fr seTSater ACCrass{ i SencarAncmas - Snng: FemalACCress | Sring
-setDestinationAacresslin cestinatonacarsss : Singt PTG)

jreetSubjectn subgect : Sting: seiPassaorcin passwois . Sinng:
[sotComerefin comtant - String)) Hsetiiobile™umberiin mobkshumber © Stng:
—sstﬁsuam_vdi}aw’ﬂ receivelald | String) - setEmatl Address i amaiAddress | Stng)
f-so1Szakssn staa.ls * Bwng; Hoe P assword 1 - Sing

hgﬂwu) g Mo ahumben § - Strg

j~get SencerAdcress(} . Stng HomtEmad Accsessi) - Sying
ogﬂDﬁB\M} . Suting
frpatS twect) | Sting

[+ getConiant]; - Soing
[-getRecorecDated) - Syng
|oetStarusd § - String

SubscriberProfie

b aont et | Strng

fpreferences - Preferences

fe SubscnbwesrFrofiker |

b setSubscnbedOim subeirbenD | Shrng) @ ol
F-5olre iarencesn prefersnuas | Praferences: | voud
FrpecSobsonberiDd; - Srng

[-gePreforences{} - Suimg

1
Prederences

HCECC Stegiry | STnG
FosireryfMotihod © Sinng
Heey'duons - Strng
- Prafersnoest }
551 T opicC aeganytin topicCategory ° D vosC
[-setDaivertiathocih oaveryMethod - Smrn;' N
St oy Worcia kay'Wvord - Syng; - voke
o TopacCategoryt r - Siring

:Dhedis oo } . Strwag
griKentord | St

Figure 3. 12: The Publish/Subscribe Subscription Package

67

Fig 3.13 is a Publish/Subscribe publishing package and defines a business model
responsible for handling the publishing request initiated by the publisher. The business
model defines business classes, which can be implemented as bean components such as
classes like Profile, PublisherProfile and Topic. Both the Publisher and Topic class

attributes can be persisted to a permanent storage.

/‘
Publishing Package

Topic
ﬁmm Profile
M, w'asmm-smg celNumbes - Stirg
Topicl . I-amawt:kess Sting

A e FProfie])

Hset Tite(in tide - String) : <o . s

. o assword(in password | Sring)
mmeg;ﬂb:éyusﬁ},%ng) MatileNumber(in mabileNomber - Sting)
WESGMW keyWord - Stng) mﬁmmszmgmm«m String;
gecTite) 5""9 1 getMobileNumber() - St
+geCategory(): Stiing g

}: Sting HoeEmadAddress{} - Stirg

qeyKeyWord) - Sting AN

PublisherProfile
i< Siry
+PyhichedProfiel)
+setPublshenDin publishen(: Stnrg)
toetPubiisheri(X): String

Figure 3. 13: Publish/Subscribe Publishing Package

68

3.4.2.7 Access Layer

Fig. 3.14 depicts the entire access layer package the SANPARKS architecture. This
package implements access methods responsible for accessing data stored in the XML

database.

Access Layer

SubscriberDB

b SubscriberDE(In profileMame : String)

b-retrieveSubscriberProfiledin subscriberiD : String, in password : Siring) | SubscnberProfile
-getSubscriberList{in topicCategory - String} * SubsariberProfie {]
H+savaSubscriberPrafile{in profie | SubscriberProfile }

+updateSubscriberProfile(in profile | SubscrberProfile}

+retrievePublisherProfile(in mbﬁshcﬁo String, in password © String} ;| PublisherProfile
HupdarePublisharProfile(in profile : PublishedProfile

NexsageDB

MessageDBiin messagePath : Sing)
l-siorebdessage(in message | Message)
LratieveMessages(in emaidAddress | String) | Massage [)
H-markMessageRead{in messagelD : int)
-delezaMessage({in massageiD | int)

Figure 3. 14: Access Layer of the SANPARKS Information System,

The Access layer package is comprised of three core access classes namely the
SubscriberDB, PublisherDB and MessageDDB.The SubscricerDB defines access methods
responsibie for accessing subscriber profiles in an XMI. database, and the PublisherDB
does the same as SubscriberDB.Lastly the MessageDB defines access methods

responsible for storing, retrieving and marking emails in an XML store.

69

CHAPTER FOUR

IMPLEMENTATION AND EVALUATION OF THE
PROTOTYPE

4.1 Introduction

The previous chapter presented the overall development of the proposed architectural
model for publishing personalized data in the access and provision of both e-services and
m-services. The focus of this work is on providing personalization of services within the
SANPARKS domain for the information consumers to gain access to information that
meets their interest. This chapter presents the design, implementation and evaluation of

the proposed publishing personalized data model discussed in Chapter 3.

4.1.1 Description of the Implementation

The SANPARKS architecture is implemented as a web application that supports
publication of messages through simple web forms processed by simple servlets running
in a web container. The published messages are disseminated to potential subscribers
either through email or SMS, dependent upon which delivery method the subscriber
specified during subscription. The support for varying message dissemination heavily
relies on the architecture’s focus on both mobile and web subscribers. Emails are stored
as simple XML documents accessed using the JAXP (Java API for XML Processing) and
SMSs are sent to potential subscribers using the WMABridge API. The WMA Bridge
API enables J2SE (Java 2 Standard Edition) applications to easily interface with MiDlets

defined by the J2ZME specification through messaging.

70

The SANPARKS architecture is crafted as a three tier implementation architecture which
is comprised of the client, middle and the information tier. The client tier is a
convergence of two MIDlets that are developed under J2ME specification and tested
using the Sun Wireless Toolkit 2.3 Beta version. The first MIDlet defines a form that
enables users to subscribe to the content dissemination application. The second MiDlet
defines an interface for receiving incoming messages published by SANPARKS
legitimate publishers. The middle tier is a convergence of various packages structured
into three standard components of business logic, access logic and presentation logic. The
middle tier runs under a web container basically the servlet container which is Apache
Tomcat Web Server 5.0.The web container is a module that handles processing of web
components, managing various aspects such as state management, concurrency control,
thereby giving the developers the freedom of developing an application without worries
of system dependent mapping and calls. The information tier is a collection of XML
documents which is referred to as an XML database. The collection is accessed through
JAXP for reading and writing to XML documents. The implementation adopted the use

of DOM Parser for it’s capable of structuring information into a hierarchical tree.

4.1.2 Environment Specification

The implementation of the software was carried out on Borland JBuilder 2005 Enterprise
Edition and it was tested using JBoss Application Server 4.0.5.The mobile environment
was simulated using the Sun Wireless Toolkit 2.3 Beta version J2ZME Emulator from Sun
Microsystems. J2ME Emulator was configured to support one of the MIDP optional AP,

the Wireless Messaging API (WMA) to facilitate message communication in the mobile

71

environment during the communication with the server. The client application is
developed to run on J2ME devices that support CLDC 1.0 and MIDP 1.0 and also

support communication through HTTP networking.

The implementation of the server was accomplished using one of the J2EE compliant
servers, the JBoss Application Server 4.0.5.The server-side components are configured to
run on any server that conforms to the J2EE Specification. The server handles messages
from clients through the use of WMA Bridge API, which facilitates message
communication on the server-side during a session with the client. The server is
comprised of web components that run within the Servlet container and also uses the
JAXP to communicate with external data source defined outside its boundary. The data
source is the information source of the entire SANPARKS application and it is defined
using an XML database, a collection of xml files stored within the same directory with

the application.

The application was tested on a desktop machine running Windows XP Professional
Edition as an operating system. The machine was equipped with an Intel Pentium [V
processor with a processing speed of 3 GHz and 512 MB of RAM. The application

consumed 5.5 MB of hard-disk storage.

4.1.3 Implementation Model

Fig. 4.1 illustrates a Publish/Subscribe implementation model which comprises three
tiers, namely the client tier, middleware tier and information tier. The client tier can
either be J2ME or web clients communicating with web components running within the
web container in the J2EE Server (the middle tier). The middle tier is a convergence of
web components running in the web container (Servlet engine) and business components
within the application logic. Lastly the information tier is implemented in terms of an
XML database which is a collection of XML (Extensible Mark-up Language) files
securely persisted on a permanent storage. The interface between the application and the

XML database is defined using JAXP (Java API for XML Processing).

Information
Tier

i Middle Tier

! i

Figure 4. 1: The System Implementation Model

73

4.2 Implementation Screenshots

This section presents some of the interfaces used to fulfill the adoption of the

publish/subscribe communication paradigm into the SANPARKS Information System.

4.2.1 Subscribing and receiving e-mails on the desktop.
Figure 4.2 is the desktop portal interface that information consumers use to subscribe to
the SANPARKS organization, to view the services information delivered as e-mails and

just to take a tour on the new SANPARKS Information System.

3 index himl - Microsoft Infernet Explorer

He E& Yew Fpoes lods bebp &

Q-0 RO Pom i @ 3-5 #5- A B

Aiiress |) herp: fiocaihoss-6080/Publishiubscrbe webComponents{web marpage] ; s s ™
e = =

Figure 4. 2: A portal interface for SANPARKS information consumers.

74

Subscriber Name:

Cell Number:

Email Address:

Passward:

Confirm Password:

3 Pianis

2 Animals

S Parks

3 Accomodaton
8 Features

Preferences:

Delivery Methed:

Figure 4. 3: Subscriber's Registration Interface on the Portal.
The figure 4.3 shows the subscriber’s user interface which assists first time users to

register and subscribing users to indicate their specific preferences.

45 Welrnme pdenaiia

¢
1

Figure 4. 4: The list of E-mails on the Desktops.

75

Figure 4.4 shows a list of sent e-mails as notification on the desktop. The user needs to

click the email of his/her choice in order to gain access to the services information.

Figure 4. 5: The service information delivered as an e-mail.

Figure 4.5 shows a notification delivered as an e-mail in response to a subscription. The
information consumer has the option of marking this e-mail as a read message by sending

it to the read message folder or deleting this e-mail.

4.2.2 Service Information Publishing Process.

The figure 4.6 shows the SANPARKS services information to be published by the
publisher to the mediator and subsequently to the subscribers. Anyway the publishing
process taking place in figure 4.6 is not meant for public because it takes place behind the
scene. This research takes the publishing of services information as the house-keeping
task that is meant for maintenance behind the scene instead of public. This is only

because our research focused on enabling the subscribers to receive the simplified and

76

personalized information, rather to observe the way of publishing the services
information by the information sources. The figure 4.6 is not meant for the public, the
reason why it is shown here is to enable the reader to see that the information received by

the subscribers is published instead of coming from nowhere.

E Pubfishing Infarface

Be Edt yew Fgvorkes -

B 3

e s — R s R 1

iess B CISAPARKS A p S bt

Publishing Interface
Category:
Title:

You can ger The
red imaruls plaac

Keywor:

IR T S e T e e Y,

Figure 4. 6: Publishing service information using the desktop.

4.2.3 Service Subscription using a mobile device.

Figure 4.7 shows the mobile user interface subscribers use to subscribe for the
SANPARKS services information. The user subscribes by giving his/her details which
are limited to name, mobile phone number, email address and a password. Then, one or

more preferred topic(s) must be specified before the subscription is submitted.

77

T3 - 5550000 - DefaultColorPhone

Figure 4. 7: Subseribing on the Mobile Device.

4.2.4 Retrieval of the SANPARKS services information using a mobile device.

The figure 4.8 shows the published SANPARKS service information delivered to the

subscriber’s mobile device as the notification. The user waits for the notification as the

78

incoming message to be delivered on his/her mobile device in order to view the

SANPARKS services information as a sms on his/her mobile device.

] -5550000 - DefaultColorPhone

Figure 4. 8: Mobile device showing the services information delivered as a sms.

4.2.5 The Internal Structure of the XML Database.

Figure 4.9 shows the list of subscribers profiles stored on the XML database as XML

files. When users subscribe to the SANPARKS Information System their information is

79

stored as the subscribers’ profiles as XML files as shown in the above figure. The
information stored in figure 4.9 as the XML structure forms the user profiles of the
subscribers and is useful during the maiching phase of services information with the
relevant subscribers. The matching process is performed by the mediator in order to
observe the relevant subscribers to receive the services information that has been

published by the information sources (plants, animals, features and accommodation).

F C:SanParksSanParks XMLDBs

He ER Yew Fgvortss Tods Hep 3

3 O BAG P krm@ 35 =-UA3

wgc subse Fes.xml v Gs
§ To help protect your secunity, Internet Explorer has restricted this fle from showing active conbent that couid access your computer, Click here for optiors...

<?zml version="1.0" encoding="UTF-2" >
- <SubscriberProfiles>
- <Subscriber>
<SubscrberiD>Klaas</SubscnberiD>
<Password>1982</Password> i
<CeliNumber>3550000</Cailumbers 2
<EmailAddress>kiass@yahoo.come/Emailaddress>
- <Preferences>
<TopicCategory>Plants</TopicCategory> |
<TopicCategory>Animals</TopicCatagory> i
<TopicCatsgong>Parks</TopicCategory>
<DeliveryMethod>8MS</DeliveryMethod>
<xeywerd>Red Amarula, Wild and Westem Cape</KeyWord> :
</Preferences> -
</Subscnbers>
- <Subscriber>
<SubscnberiD>Justice</SubscriberiD>
<Password>piper</Password>
<Ceitiumber>0761456540</CaliNumbers
<EmailAddress>piper@yahoa.com</Emaladorsss>
- <Preferences>
<TopicCategory >Plants</TopicCatagory>
<TopicCategory>Accomodation</TopicCategory>
<DelveryMethod>Email</DeliveryMetheds
<keyWord>Amarula and Hotel</XeyWord>
</Preferences>

Figure 4. 9: The Subscribers profiles stored on the XML database.
Figure 4.10 shows the XML structure for publisher actors. Publishing is an house-
keeping not a public process. A representative of SANPARKS is designated as publisher
with respect to each of the four information sources namely plant, animals, features, and

accommodation.

80

Be ER Yew Faodes Took

G O BB P = @ 3% m- H D
A © v e i . - ~ B
{5} Tahelp protect your serry, File Froen Showing ez coadd your camputer. ptions.... b
<7xm) varsion="1 0" encoding="UTF-8" ?>
- <PublisherProfies>
- <Publishers

<PublishsriD>Plants Info Publishers</fublisherit>
1 =

S22 < /C il

<Emaisddress>plant_info_p org<, i A s>
</Pubiishers
- <Subhshars
<FuplisneriD>Animais Info Publishers</PublisheriDs
<Pass SSSword>
<c;mn=mn7m&2ﬁ9</cmmmm
1: srks.org</EmadAddrass>
< Publisher>
- <Publishers>
<PuglisheriD> Info /P D>

<Passwordsfeatures</Fassword>
<Caifiumbers0834789156</CeliNumbars
<Emad, fa.

org</Emaiaddress>
</Publiishars
- <Fublisher>
<Pubhsh SrIO>AC Info /PuclisheriD>
B >
<cmmmnmaﬁﬂsmm
_info. rks . org</E

<./Duh.45har>
</PublisnerProfiss>

Figure 4. 10: The Publishers profiles on the XML database.
Figure 4.11 shows the list of published messages for the subscribers. These messages are
a combination of all the messages sent to either the desktops or mobile devices as e-mail

and sms respectively. Every message sent to the subscriber is stored by the system on the

XML database as XML files as shown in figure 4.11.

ST - =<
D= Ot Vew Foodfss Iock dep -
>3 - = o | B Cw, B -
== o H B DO Pdereoes @ - S e LE s
Ahees gcwwm ~| E3se
(§ To Peio protect your securty, Internek Sxpiorsr a3 restncted trus Fie F70m BhownS 60TV Contenk thak COuIE SCess YOU Computar. Cick hers For uooons.. 2
-~
x7umi varsion="1.0" encoding="uUTF-8" 7> 3
- <Massagws>
- <M@ssage>
<™Massageil>0cMessagelD>
<Senderado o Parks.Co.2a</SancderAQoress> s
<Dastaati justi org</Cestinationaddress>
<Sulmect>Wild Animals</Sunject> i
<Content>Yol can find information about lions and lesopards In Hiuhluws National Park.</cContents> =
<RecavsdDare>Mon Dac 04 23:34:56 PST 2006 </RecewvedDars> o
«Status>unread</Status>
<MessagE>
- <Message>
<MessageiC>2308< Messageil>
<Saendara -0 za(./‘wﬁa’kﬂdmsa
<Sastnater coTic / Dastinats
<SubiectsAmaruls ‘bﬂmﬁg_dac!)
<Content>KNP is having the promotion for plants confirmation consumers 10 win a new BMW .o/ /Cantent>
<ReceivecDare>Tue Dec G5 16:28:16 PET 2006</FecarvedDatla>
<Statuss>unread</Statuss
</Mmssages
- <MessacE>
<MesIagelD> S348c MessagalD>
<Senderadargss> Sanparks.co.za</SenderAddress>
<.as!mmnnad—a=s>Myahcm com</Destnationadoress>
<Subject>
cConfent KNP ish-uiuq the promotion for plonts confirmation consimers (0 win a new BMW. o /Cantants
<RecevedCare>Tus Dec 05 156:28:16 PST 2006</RacsivedDare>
<Stafus>unraadc/Sratuss
</Messages
- <Messages
<tMessageis>27 1/ MaIsagaln>
<Ssndsr. arks.co.za+/SenderAdcrass>
<Dest thau&’ess:pﬂt&zﬂ“yhﬁmmﬂﬁ! rstionAddress> -
3 con= 5 Sy Compautee

Fignre 4. 11: The list of messages sent to the subscribers.

g1

4.3 Usability of the Prototype

4.3.1 Usability Testing.

The model presented in this dissertation is tested for usability. The evaluation of usability
is conducted separately for the publisher module and the subscriber module being the two

main user-oriented components of the system.

4.3.1 .1 Evalnating the Publisher Component (Technical Evaluation).

The publishers’ component was evaluated along four (4) dimensions namely: user
friendliness, SANPARKS system fitness to be an information provider entity,
SANPARKS system reaching the prospective clients and quality of information provided

by the SANPARKS system.

(A) Instrument Design and Administration

The target population for this study consists of students who were from [T-related
departments. The Departments are Computer Science, Information Technology and
Library Information Systems. Forty students from the above-named depariments were
sampled randomly from the population. Some interviews were conducted to ascertain the

level of commitment of the students.

(B) Analysis and Results

Only thirty of the forty (40) sample students responded amounting to a response rate of

75%. The distribution of the respondents according to Department is shown in Table 4.1:

Fable 4. 1: The number of people interviewed as both subscribers and publishers.

Department

Number of People W

Total

Computer Science
Library & Information Science

Information Technology

Table 4.2 gives the resuits of publishers’ comments when they compared the new

SANPARKS system with the old one.

Table 4, 2: The results of publishers comments on the new SANPARKS system.

Do you notice any changes with the new SANPARKS
system compare to the old one? . Total

Department Major Few (Minor)

Computer Science 60.0% 40.0% 100.0%
Library & Information 100.0% 0.00 100.0%
Science

&y

Information technology 87.5% 12.5% 100.0%
Total 70.0% 30.0% 100.0%

Table 4.3 shows the results of the publishers’ comments on the user friendliness of the

new SANPARKS Information System.

Table 4. 3: The publishers comiment on the user friendliness of the new SANPARKS System.

In your opinion is the new system user friendly (or easy to use)? Total
Average, normal as other
Department Yes system
Computer Science 85.0% . 15.0% - 100.0%
Library & Information Science 160.0% 6.co 100.0%
&
Information technology 87.5% 12.5% 100.0%
Total 86.7% 13.3% 100.0%

Information provider entity dimension: All respondents say the system is fit for the
information provider entity when it delivers notifications to the subscribers via sms and
e-mail. Question 5 and 6 of Section A of the questionnaires that were distributed to the
information sources was used to determine this dimension. Asking questions S and 6 as
the same question in different ways helps 1o eliminate bias. The elimination of bias was
done by comparing the results of questions 5 and 6 since these questions have the
different results. Comparing these different results helps to determine the results of this

dimenston.

4.3.1.2 Evaluation of the Subscribers Component (Technical People).

‘The subscribers’ component was evaluated along seven (7) dimension and these are:
quality of interaction between the subscribers and the SANPARKS system, quality of
information provided by the SANPARKS system to the subscribers, the external features
of the SANPARKS system when using it, user friendliness of the SANPARKS system,
personalization of services information provided by the SANPARKS system and the

limitation of the information provided by the SANPARKS system to the subscribers,

(A) Instrument Design and Administration

The target population for this study consists of students who were from the [T-related
departments. The Departments are Computer Science. Information Technology and

Library & Information Science. Thirty-five students from the three departments were

sampled randomly from the population. The students were interviewed to get them

committed to the evaluation exercise.

(B) Analysis and Results

Thirty of the thirty-five (35) sample students responded making up a response of 86%.

The distribution of the respondents according to Department is shown in table 4.1. Table

4.4 gives the results obtained from evaluating the quality of information provided by the

SANPARKS system 1o the subscribets.

Table 4. 4: The results of the quality of information provided to the Subscribers.

Quality of information provided

| Tota

Good | Fair | Excellent No-Response
Department ~ Computer Science 40.0% 10.0% . 40.0% 10.0% | 100.0%
Library & Information 3 ,
Science 66.7% | 0.00 33.3% | 100.0%
! | i
Infarmation technology 57.1% | 0.00 42.9% 100.0%
Total 46.7% 67% | 40.0% 100.0%

Table 4.5 gives the results of the quality of interaction between the SANPARKS system

and subscribers.

Table 4. 5: The results of the quality of interaction between the SANPARKS System and Subseribers.

Department Qualiw of interaction Total
Good Fair Excellent
Computer Science 55.0% 5.0% 40.0% 100.0%
4, B
Library & information Science 66.7% - 0.00 . 33.3% 100.0%
Information techaolagy 71.4% 0.00 28.8% 100.0%
Total 60.0% 3.3% 36.7% 10C.0%

Table 4.6 gives the results of the subscribers afier they had used the new system. The

subscribers then express their feelings after in use of the new system.

Table 4. 6: The results of using the new SANPARKS System,

R
How do you find the SANPARKS system when taking
a four on it (using i)? Total

Depariment Enjoyabile Non-Response
Computer Science 60.0% 40.0% 100.0%

0, | =)
Library & Information Science 100.0% 0.00 100.0%

s Q,
Information technology 71.4% i 288% J 100.0%
Total 66.7% | 33.3% ! 100.0%

Table 4.7 shows the subscribers’ comments on the user friendliness of the new

SANPARKS system.

Table 4. 7: Users opinion on the user friendliness of the Subsecriber Module.

in your opinion is the new system user friendly (or easy

Department to use)? Total
Average, |
| narmal as other
Yes No very complicated system
Computer Science 85.0% ! 0.00 . 350% 100.0%
Library & Information 66.7% | 0.00 333% 100.0%
Science :
0 gy i 0,

Information technology 71.4% | 14.3% | 143% 1000%
Total 66.7% 3.3% ! 30.0% 100 0%

Table 4.8 shows the results of the subscribers’ comments about the service information

offered by the new SANPARKS system.

Tabie 4. 8: The results of the subscribers’ comments about the services provided by the new

SANPARKS System.

Does the SANPARKS system satisfy your

interest on the services? Total
Department
Yes No
Computer Science 95.0% 5.0% 100.0%
Library & Information Science 100.0% 0.00 - 100.0%
) 1 g

infarmation technology 100.0% 0.00. 1000%
Total 96.7% 33% 100.0%

86

The figure 4.12 is the results of the subscribers’ views on the information provided by the
new SANPARKS system. The respondents had two options when answering the
questionnaire. They were to select either “Yes’ or ‘No’, if ‘Yes’ this specified what
needed to be improved. When the subscriber selected ‘No’ this meant that the
information provided by the new SANPARKS information system did not provide
limited information. When selecting yes this meant that new system provided limited
information which needs to be improved. The subscriber was provided with ample space

in the questionnaire to specify the improvements.

Do you think information provided by this system is limited
and requires some more improvements?

80.00%
& 6000%
40.00%
E 20.00%
0.00% - ‘
Computer Scienre Library & Information Science Information Technology
De partment
r B Yes B No very caomplicated]

Figure 4. 12: Quality of the information provided to subscribers.

Personalization Dimension: The aspect of personalization that is measured in this
research is the personalization of services information delivered to the subscribers by
push style. The questionnaire that was distributed to subscribers was targeting to find out
whether the information disseminated to the subscribers is simplified and personalized.
The question number 7 of section A of the questionnaires was used to observe the views

of the information consumers (subscribers). The result of personalization dimension is

87

based on whether the subscribers receive the services information that they subscribe for.
All respondents said that the system supported personalization of services when it
delivers notifications to them in terms of sms and e-mail.

4.3.1.3 Evaluation by barely IT-literate.

This evaluation was conducted along two (2) dimension and these are: user friendliness

and the behavior of the SANPARKS system when using it.

(A) Instrument Design and Administration

The iarget population for this study consisted of students who have little or no [T
background. They were sampled from the departments of Psychology and Social Work.
35 students from these departments were sampled randomly from the population. A one-

on-one interview conducted helped to instruct the students on what to be done.

(B) Analysis and Results

Twenty nine of the thirty five sampled students responded by making up a response of
83%. The results of the non-technical that were interviewed is shown in figure 4.13

together with their feelings of the new SANPARKS Information system.

How do you find the SANPARKS system when
taking a tour on it{Using it)?
80% e _ : e

60%

40%

rercentage

20%

0% ———

Psychology Social Work

= Enjoyable m Satisfactory

Figure 4. 13: The results of Arts students interviewed for user-friendliness of the SANPARKS
System.

88

The Figure 4.14 gives the results of the non-technical people opinions after they have
used the new SANPARKS Information System. About 65% of the students from

psychology and about 80% of those from Social work found the system to be user

friendly.
In your opinion is this system user friendly (or easy
to use)?

100%

80%
-]
(7]

S 60%
=
D

e 40%
[+
o

20%

0%

Psychology Social Work
E Yes @ Average, namal as other system '1

Figure 4. 14: The results of Arts students interviewed for user-friendliness of the SANPARKS
System.

A comparison of the results depicted in Table 4.7 and Figure 4.14 reflects that the system
was found to be considerably user friendly by both students from the IT related and non

IT related departments.

89

CHAPTER 5

CONCLUSION

5. 1 Conclusion

The objective of this research was primarily to develop a Publish/Subscribe Architectural
Framework that supports mobile and desktop users which will have the following
features: a national park system restructured into information provider, a portal interface
for information consumers and a mobile interface achieved by personalization. The
objective of this research has been achieved by developing the Publish/Subscribe
Architectural Framework that supports mobile and desktop users among other features.
The features that were achieved in order to fulfili the objective of this research are the
national park system restructured into information provider, a portal interface for

information consumers and a mobile interface achieved by personalization.

A restructured SANPARKS system has been achieved by the support of the new
conceptualized model and the system architecture that ensures that subscribers receive
information without knowing the source. A portal interface that has been achieved allows
the information consumers to subscribe to the SANPARKS system as subscribers.
Subscribers then have an access to view the personalized SANPARKS services
information as emails using the new developed SANPARKS portal interface. The mobile
interface has also been developed which allows the subscribers to view personalized

SANPARKS services information as sms or mms using their mobile devices.

90

Moreover, an improved SANPARKS Information System that personalizes user's
subscription is implemented. The system as implemented does not consider the issue of
context awareness, which is very crucial in a mobile computing environment during the
process of pushing messages to the user. The Context Awareness requirement can be met
by incorporating the research results of another work being done in the Department of

Computer Science, University of Zululand. (Jembere, et al., 2006).

Persistence of information is very crucial in this study in order to ensure mobile users do
not loose information when temporarily disconnected from the network. The scope of this
work is limited to push information to people who are connected to the network with
their mobile devices, if the mobile device reconnects to the network it does not receive
notification of the messages that were sent during disconnection time. The
implementation serves only as a proof of concept of the publish/subscribe idea works
even without supporting persistence during intermittent network disconnections. Finally
the objectives that have been achieved on this work atfirm that the goal of the research

mentioned in chapter one has been reasonably achieved.

5.2 Contributions

The dissertation attempts to show that SANPARKS can be restructured to operate as a
distributed information service provider. Using the publish/subscribe communication
paradigm, consumers who have interest in information that SANPARKS specialize in can
be reached without using interactive approach. Once identified onlv interested consumers
receive information, from SANPARKS, as they become available. In this way, the system

is designed to support personatization.

91

5.3 Future Work

To implement a successful persistent information delivery service/engine there is a need
to adopt IMS (Java Message Services) that uses topics to temporally store the published
services information during disconnection time. This would assure the delivery of
information sent during disconnection time to the subscribers when they reconnect to the
network. This would also motivate the subscribers to keep accessing the SANPARKS
services information as they have an easy way of getting information even those sent

when they are not connected to the network.

This study is based on software but it can also be extended to the networking
environment by adopting the same publish/subscribe communication paradigm for
content dissemination. This would enable the researcher to identify some algorithm that
would be tested with the following metrics: minimal processing load, minimal bandwidth
consumption and notification delay to solve the performance of the publish/subscribe

systems in a dynamic environment especially with mobile chients.

This research could also include personal mobility as the design principle that would
allow service users to publish and receive the content using various terminals in different

networks. This feature would enable true personal mobility and offer usage flexability.

APPENDIX A

USER MANUAL

This part of the thesis describes the necessary step to using the SANPARKS

Information System in both the desktop and the mobile device.

jarprw o ar x
Yow Favortes Tods . >

GB** o BE® jimeEQ ‘B3

msssjmmrmdmr.mmﬁmmmgm : EBs o™

Figure A.1: A portal interface for SANPARKS information eonsmﬁers.

The figure A.1 is used by the information consumers to take a tour on the SANPARKS
Information system in order to familiarize themselves with the services information
provided by this system. The information consumers can be able to view the information
provided by the system by clicking the links that shows up on the left of the portal except
the subscribers link because for the consumer to access this link they need to be

registered or subscribed to the SANPARKS Information system using the same portal.

istration

Subscriber Name:
el Number:
Email Address:
Password:

Confirm Passward:

Preferences: I Plants
= Animals
I Parks
= Accomuodation
& Featares

Delivery

Figure A.2: Subscriber's Registration Interface on the SANPARKS Portal.
The figure A.2 is used by the clients to subscribe or register with the SANPARKS
system, in order to be authenticated by the system next time when they want to access the

subscribers’ services information offered by this system.

94

O=-O RRG P=ir—0 @l a- 63

Sobeceiber Satme
Passward osas |

New Spbscribers:

F T T e A R RO % x & ot

Figure A.3: Subscriber's Authentication Interface on the SANPARKS portal.
This figure A.3 is used by the subscribers for the system authentication. The subscribers
provide the information they have used when they were subscribing to the system. The

information they provide is the user name and the passwords.

¥e @ e =-

| Welcome to your mailbox.today’s date is the Tue Dec 12
| 22:24:28 PST 2006

Figure A.4: Desktop Welcoming Interface for Subscribers to access SANPARKS services
information published as E-mails.

This figure A4 is used by the subscribers when they want to access the published
services information. The subscribers has a choice of reading the unread message as new
send e-mail by clicking on the unread message link provided on the left of the figure A .4

by the system.

96

Figure A.5: The list of E-mails on the Desktop.

The figure A.5 shows the list of e-mails send as the new messages. The subscribers can
click the links appearing on the figure under subject in order to gain access to the
information that has been published. When the subscribers want to delete the messages
that they have been reading, they can do so by marking the message(s) they want to
delete and then after click the delete button appearing on figure A.S. They can also move
the same messages to the read folder, by marking the message(s) they want to move to
the read folder and then after click the Mark As Read button appearing on figure A.5.
They can even read the message moved to the read folder by clicking the Read Messages
link also appearing on the left of figure A.5. Subscribers can also manage their profiles
by deleting or updating them when they click the Manage Profile link on the same figure

A5 to finish the process of managing their profiles. Each and every time subscribers

97

perform one of the processes like moving a message or to Read Message folder, delete
messages they have been reading, managing profiles and log outing complete from the

system they are notified by the system whether they are successful or not in the

performance of their operation.

Figure A.6: The service information delivered as the e-mail.
The figure A.6 shows the service information delivered on the desktop as e-mail.
Subscribers use this figure to read the messages send as e-mail in order to gain access to

the services information.

98

Figure A.7: Welcoming Interface on the Mobile Device.

The figure A.7 shows the welcoming screen of the client’s mobile device. The above
figure A.7 shows that the clients can have two option of gaining access to the
SANPARKS services information. The new clients need to subscribe with the
SANPARKS Information by selecting subscribe option on their mobile device, then after
provides the information required by the mobile device in figure A.8. The subscribers as
people who already subscribe with the SANPARKS system need to make new messages
option to show that they are interested to gain access to the new messages being sent as

notification.

99

Figure A_8: Subscribing on the Mobile Device.

The figure A.8 shows that the information consumers can use their mobile devices to
subscribe for the SANPARKS services information to be delivered as sms on their
mobile devices or e-mail on the desktop. The subscribers need to provide all the
required information by filling the text fields provided by the mobile device in figure

A.8 in order to be successful in registering with the SANPARKS Information System.

100

Figure A.9: Mobile device on waiting state for the incoming messages,
The figure A9 shows the clients mobile device on the waiting state of the incoming
message(s). The delivered message(s) on the mobile device can be accessed by the

mobile clients as shown in figure A.10.

101

Figure A.10: Mobile device showing published information.
The figure A.10 shows the services information delivered on the mobile device as the
sms. This service information serves as the notification to the subscribers in order to be

aware of the services information available on the SANPARKS organization.

APPENDIX B
UML DESIGN DOCUMENTATION

CLASS DIAGRAM AND DESCRIPTION

_observes TopicObserver -ulilizes
-topic : Tapic
1 +TopicOQbserver(in observableTopic - Topic) p
+update()
1 -produces
1. -produced by
Message _—|
FmessagelD ; int
-senderAddress | String
-abserved by 1. LdestinatonAddress - String
-subject : Sting
- Feantant | String
Topic HreceivedDate © String
L tte - String -status © String
—category : String +setMessagell{in messagelD [String)
-body : String +setSenderAddress{in SenderAddress ; String) -consumed by
. -keyWord | String +setDestinationAddress(in destinationAddress : String) |
-putiished by +Tapicl) +setSubject(in subject : String) 1.
+setTitle{in tite : String} +setContent(in content . String) - i
- +setCategory(in category : String) HsatReceivedDate{in receiveDate | Siring) |
U esetBody(in body : Stng) +setSeatus(in statas - String) I
+setKeyVWord(in keyWord : String) +getMessagell() |
+getTite{) | String H+gatSenderAddress() : String i
+getCategory() : String +getDestinatonAddress(} - String i
+getBody({) : String +getSubjecy() : String }
+geyKeyWaord() ; String +getCantent() ;. String |
rgetReceivedDate(} : String i
! rgetStatus{) ' String 1. —Consumes
1.°] -receives subscrniptons
E_ -subscribes Subscriber
i —
—pubiishes l 1 g
I Profile |
" | H
Publisher Lpassward | String 1 L defines i
—cellNumber : Siring ; :
—emaiiAddress | String ; :
T +Profiled) i :
J +setPassword{in password : String) '
1 | -defines +setMabiieNumben(in mobileNumper : String) ; |
+setEmailAddress(in emailAddress : String) i ‘
+getPassword(} : String I
: +getMabileNumber(} | String
i +getEmailaddress() « Sting :
| -y |
i I 1 | -defined by
i h
i t
! PublisherProfile I SubscriberProfile I
-asfined ;’y puBliahenD - Swng [SubscrberD - sinng i
F = : s h i
S PublisherProfied) prefererllces references 1. i
1 |+setPublisherdD(in publisheri : Sting) | {TSubscriberProfiel) ‘))
+getPublisherlD{) © String +setSubscriber D{in subscriberdD | String) : vaid _usitized by

Figure B.1 Class Diagram of the SANPARKS Information System Implementation.

+satPreferences(in prefererces | Preferances) : void
+getSubscribertD{) : String
+getPreferences() : String

1

FPreferences
-topicCategary | String
I-deiliveryMethed : String
—keyord ¢ String
+Preferences()
+s=tTopicCategory(in topieCategary © String; . void
~serDaiiversdethadi{in delveryMeathod | Sting) woid
+setkeyWord{in key'Word : String) - voig
+getTopicCategory() | Sting
+getDeilverMethod() « Sting
i+geteyWerd{) . Suing

103

Classes Definition

Publisher: This class is represented by a bean that defines properties and behaviors for

handling information of the publisher entity.

Subscriber: This class is represented by 2 bean that defines properties and behaviors for

handling information of the subscriber entity.

Message: This class 1s responsible for storing messages in an XML storage format which
acts as a mailbox for emails. The XML storage is only for subscribers who chose email as
a delivery method. The Message class defines methods for saving, deleting and retrieving

ematls. Furthermore the class defines methods for marking read messages.

TopicObserver: This class is responsible for listening to messages published to a topic
and then sends the message to potential subscribers when publication is received. This
class applies the Observer design patiern in modeling collaboration between system

objects.
Topic: This class represents a bean that defines properties and behaviors for handling

topic publications. This class is a convergence of four properties the title, category, body

and a keyword.

104

Profile: This class represents a generic class for both the subscriber’s profile and the
publisher’s profile. Furthermore it 1s a bean class with defined properties and behaviors

that are supposed to be shared among its descendant.

SubscriberProfile: This class is a derivation from the super class Profile. Furthermore it
is a specialized bean that defines properties and behaviors for handling information

pertinent to the subscriber profile.

PublisherProfile: This class is a derivation of the super class Profile.Basically it is a
specialized bean that defines properties and behaviors for handling information pertinent

to the publisher profile.

Preferences: This is a delegate in class SubscriberProfile and it is responsible for
capturing and querying subscriber preferences. It defines attributes that enable subscriber

preferences to be persisted to permanent storage.

APPENDIX C

SOURCE CODE

Mobile Client
Subscribing on the mobile device

import javax.microedition. midler.*;
import javax.microedition. ledui.®;
import javax.microedition io.*;
Import java.io.¥;

public class Subscribe extends MIDlet smplements CommandL istener, ltemCommandL istener

{

HHCommands

private static final Command CMD_SUBMIT = tiew Command("Press”,Command ITEM, 1);
private static final Cormmand CMD_RESET = new Command("Press",Command.ITEM,1);
private static final Command CMD_EXIT = rew Command("Exit",Command EXIT,1);
private static final Command CMD_OK = new Command("OK",Command.QK.);

private List confirmScreen;

/#Subscription form tem commands
private Stringltem submir;
private Stringitemn reset:

//Subseription form
private Form frmSub;

HSubscription form texifields

private TextField txtSubscriberiD;
private TextField miCelBNumber;
private TexiFreld txtEmailAddress;
private TextField xtPassword:

private TextField paiConfirmPassword;

#Subcription form checkboxes
private ChoiceGroup topicList;
private ChoiceGroup cgDeliveryMethod;
privaie TextField oxtKevWord;

i Application Screen
private Dispiay display;

/MWelcome String
private Alert errorAlert;
FieldValidator verifier:

public Subseribe()
+

[

verifier = new FieldValidatori):

#SUBSCRIPTION

reSubscriberiD = new TextField("Name","™".15. TextField ANY):

txtCeilNumber = new TextField("Cell Number”,"". 13 TextField PHONENUMBER 1;

wrEmailAddress = new TextFieldi "Email Address”,”", 15 TextFieid EMAILADDR };

xtPassword = new TextField("Password™.”". 15 TextField PASSWORD).

mrContirmPassword = new TexField("Contirm Password™."", 1 8. TextField PASSWORD
iKevWord = new TextField{ " KeyWord™."".1 3 TextField ANY):

BN f

Swing [} topics = | "Plamis"." Animals”."Parks”." Accomodarion”, "Features"

106

Image [] topichmages = null;
topicList = new ChoiceGroup{™Topic",Choice MULTIPLE topics.topicmages;

String {] methodChoices = {"Select a detivery method”,"SMS" "Email","Both SMS and Email"};

Image {] methodImages = nall;
cgDeliveryMethod = new ChoiceGroup("Preffered Delivery Method”,CheiceGroup POPUP, methodChoices, methodlmages);

//ltemt commands mitializaton and event registration

submit = new Stringltem(""," Submit", liem BUTTON);
submit.setDefaultCommand{CMD SUBMIT);

submit. setltemCommandL istener(this};

reset = new Stringltem("","Reset”, [tem BUTTON);
sesersetDefultCommand(CMD _RESET),

reset. setltemCommandl istener(this);

{fform intitialization and event registration

frmSub = new Form("SUBSCRIPTION™);
frmSub.append(xtSubscriberID);
frmSub.append(txtCel[Number);
fitnSub. append(aEmailAddress);
frmSub.append(xtPassword);
frmSub.append{txiCeonfirmPasswaord);
frmSub.append(topicList);
trmSub.append(cgDeliveryMethod);
frmSub.append{pakeyWord);
frmSub.append{submit),
frmSub.append(reset);
frmSub.addCommand(CMD_EXIT);
frrmSub_setCommandListener(this);

errorAlert = new Aleri("Error™);
errorAliert.setType{AlertType. ERROR):
errorAlert.setTimeont(1000);

confirmScreen = new Lisy{"Subscriptien Confirmation.. ... Choice IMPLICTT);
confirmSereen.addCommand(CMD_OK):
confirmScreen.setCommandListenery(this);

3
public void startApp(}
I

[}

getDisplay().serCurrent{ frmSub);

1
H

public void pauseApp()

i

public void destroyApp(boolean unconditionz!)
¥
T
1

;ublic void command Acuon{Command ¢ frem ttern)
{ if(e = CMD_SUBMIT)
i
) Thread t= new Thread{)
{ public void run(}

]
€

Ty

String subscriberlD = sxSubsinberD getSming(mnmi

107

Siring cellNumber = txtCel[Number.getStrmg{).trim();

String emailAddress = txtEmail Address. getString().trim();
String password = txtPassword. getString().trim();

Swring conpassword = kitConfirmPassword getSimng()-rim();
String [] topics = new String[topicList size(}];

for(int i = 0;i < topics.length;i++)

{
if{topicList.isSelected(1)
i
topics{i] = topicList.getString(i);
h
} -
Smring deliveryMethod

(cgDeliveryMethod getSaing(cgDeliveryMethod getSelectedIndex())) rim();
String keyWord = xiKeyWord.getString();

if{ verifier.check Empty[D(subscriberID})

i
erroralertserSring{"ID Required™):
getDisplay().setCurrent(errorA lert, fmSub);

)
else if{verifier.checkEmpryCellNumber(celNumber)}
{
errorAlert.setSming("CellNumber Required™);
getDisplay().setCurrent{errorAlert, imSub);
H
else if(verifier.checkEmpty EmailAddress{emailAddress)}
{
emrorAlertsetStmng(" Emal Required");
getDisplay() setCurrent{errorAlert frmSub);

else if(verifier.check EmptyPassword(password))

errorAlert.setSang("Password Required”);
getDisplay() setCurrent(errorAlert. ffmSub);

¥

else if(verifier.checkEmptyConPassword(conpassword))

i
1

errorAlert setSwring{ "Please confirm password");
eetDisplay().serCurrent(errorAlert, frmSub);

} else if(verifier checkNonSelected Topics(topics))
{ emorAlert.setSuing("Please select a topic™);
getDisplay().sefCurrent(errorAlert, frmSish i
}
else
ifiverifier.checkNonSelectedDeliveryMethod(cgDeliveryMethod. getSelectedIndex()))
1

emorAlert setString("Please select 2 delivery method");
getDisplay().serCurrent(errorAlert frmSub);

——

else if{ verifier confirmPassword(password, conpassword))

iff verifier.checkEmpty KeyWord(keyWord))
keyWord = nuil;
if{verifier.validatreFmailAddress(ernail Address) &&
verifier.validatePhoneNumber{celINumber})
4
String validID = verifier processEnmptyCharstsubscriber D)
Swing validCell = verifier processEmpryCharsi celiNumnber);
String validEmail = venifier. processEmpryChars(emaiiAddress):
Sming validPassword = verifier processEmpryChars(password):
Suing validMethod = veritier processEmpty Chars(deliveryMethod
String validKevWord = verifier process EmpryChars(keyWord):
Sming response
subscribed valid D, velidPassword.vahidCell. validEmail wpics.validMethod.validKey Word):
if{response rimy().equalsignoreCase "success™;

108

Image ting = null;
confirmScreen.append("Registration completed”,mmg);
getDisplay().setCurrent(confimmSerzen);

}
else
{ . . - .
errorAlert.setString("Regisiration failed");
getDisplay(}.setCurrent(errorAlert frmSuby);
h
}
else if{!verifier.validateEmailAddress(emailAddress))
{
errorAlert.setSiring("Invalid Ermail");
getDisplay().setCurrent(errorAlert, frmSub);
'
else if{*verifier.validatePhoneNumber{cetiNumber))
{
errorAlert.setString("Invalid CellNumber"),
getDisplay().setCurrent(errorAlert frmSub):
}
1
else
{
errorAlert setString{" Password mismatch™);
getDisplay().setCurrent{errorAlert, fmSub);
H
i
catch(Exception ex)
{
ex.primSiack Trace(}),
i
; _
[N
t.start{);
H

ific == CMD_RESET)

xtSubscriberiD . setString{null);
txtPassword.setString(null);
txtConfirmPassword setSuing(nuli):
wxtCeliNumber.setSoing(null):
xtEmailAddress.setSting(null);

public void cormmandAction{Cerumand ¢,Displayable d)
{
ific = CMD_EXIT)
I
1
destroy App(false};
notify Destroyved{};

¥

e

{c==CMD_0OK)

getDisplav().serCurrent frmSub);
H
H
public Display getDisplav()
H
i
return Display. getDisplay{this):
h
public Swing subseribe(String subscriberID.Suing password.String ceilNumber Sming emailAddress Sming (1 topics.Sming
deliveryMethod Smring keyWord)

Systemn.out.printin{subscriberiD);
Systern.out_println(password);
Systern.out println{celNumber);
Systern.out printin{emailAddress);
for(int i = (;i < topics.length;i-+-
System.out. printIn(topics{i]};
System.out.println{delivervMethod);
System.out.printin(keyWord);

SwingBuffer buf = new StringBuffer();

String p1 = "hitp-//locathost:8080/PublishSubscribe WebComponents/SubscriptionHandler” + 7" +
"subscriber]D="+ subseriberID + "&" +

"password=" + password + "&" +

"celiNumber="+ cellNumber + "&" +

"emailAddress=" +emailAddress + "&";

buf.append(pl}:
for(int i = 0:i < topics.length;i++)
{

if{topics{i] = mull)
buf.append(“"topic=" + topics{i}+ "&" };
y
Sming p2 = "deliveryMethod="+ deliveryMethod+ "&"+
"keyWord="+ keyWord;
buf append(p2);

String uri = buf'toString(}:
#System.out.printin{URE};

HapConnection connector = null;

DataQutputStream out = null;

String response = nuil;

Ty

{

connector = (HitpConnection)Cormector.open{uri);
connector.setRequestMethod(HitpConnecuon. GET);
connector.setRequestProperty("User-Agent”,"Cenfiguration’'CLDC 1.1 Profiles/MIDP 2.0°):

/MWriting to a serviet
int re = (int)connector.getResponseCode(};
if(rc = HipConnection. HTTP_OK}

i

}

throw new IOException("Response code not ok™);

response = getServerResporse(connector);

catch({Exception ex)

I
1

ex.primStackTrace():
i

finally

I
3

iffconnector '=nully

i
T

ourclose();
conecor.closei),

|
¥

H

carch(Exception ex)

’1 -
ex.printStackTrace] j:

]

¥

110

return TeSponse;

{/Getting the servlet response
public String getServerResponse(HttpConnection connector)

DatalnputStrearn i = null;
String response = null;

Ty
{
in = conmector openDatanputStreamd();
int conzentl ength = (int)connector.getLength();
byte {] daa = new byte[contentLength];
int length = in.read{data};
response = new Saing(data.(,length);
' .
catch({Exception ex)
{
ex.pnntStack Trace();
!
finally
{
Ty
{
if{connector = null)
I
0
m.close();
connector close(};
}
t
catch(Exception ex}
ex.primStackTrace();
t
¥

retum response;

Receiving messages on a mobile device

impor javax.microedition.midlet.*;
mpert javax.microedition.io. *;
import javax.microedition. ledui.*;
impot javax.wireless messaging *;

import java.io.IOEXception:

public class SMSReceive extends MIDlet implements CommandListener, Runnable. MessageListener

1
Cormmand exitCommand = new Command{"Exit", Command EXIT, 2),
Command okCommand = new Command{"Read Texr Messages”. Command OK, 1)
Alert coneny;
Display dispiay:
Thread thread;
String[] conniections:
boolean dene:
Siring smsPort

111

MessageConnection smsconm;
Message msg;

Swing senderAddress;

Image im = null;

Displayable s;

List output;

public SMSReceive()

{

output = new List{ "New Messages™,Choice. IMPLICIT);
smsPort = "5000",

s =output ;

display = Display.getDisplay(this);

!
public void startApp()

{

Swing smsConnection = "sms2//:" + smsPort;
if {smsconn == nuil)

{
oy
{ .
smsconn = (MessageConnection) Cormector.open(smsCormection);
smsconn.setMessageListener(this);
catch (FOExcepuon ioex)
{
ioex.printStack Trace():
)
H

connections = PushRegistry. listConnections{true);
if {cormections = null { connections.length = 0)

{

1]

outputappend("Client waiting for messages....." im};

I3

done = false;

thread = new Thread({this},
thread start(});

display setCurrents);

public void notifyIncomingMessage(MessageConnection conn)

{
if (thread = null)
{
done = false;
thread = new Thread(this);
thread.start(};

¥
i
public void run(y
{
ry
{
msg = smsconn.receive();,
if (msg '=null)
3
L
senderAddress = msg.getAddress();
if (msg instanceof TextMessage)

output delete All{):
ourpurappend{{ TextMessageimsg). getPayioad Textij.im:

StringButter buf = new StringBuifer();
bytef} dma = {{BinaryMessageimsg).getPay loadDatai):
for (it £= G0 1 < data length; i++)

int intData = {int)datafi] & OxEF;
if (intData < 0x10)
{

}
buf append{Integer.toHexString(intData}));

buf append(’ };

buf.append("0"y,

}
outpui.delete AN(Y;
output.append(buf toString(),im);

}
display.setCurrent(s);
}
H
catch (IOException €)
{
e.printStack Trace(};
¥
}
public void pauseApp()
{
done = true;
thread = null;

s = display.geiCurrent();

public void destroyApp(boolean unconditional)
{

done = true;

thread = null;

if {smscong = null)

{

ry
s
1
smsconn.close();
4

)
catch ({OException e)

lgnore any errors on shutdown

i
I

i

public void commandAction(Command ¢, Displavable s}

{

Ty
{
if (¢ ==exitCommand § ¢ = Alert DISMISS_COMMAND)
5
Y
destroyApp(false);
notifyDeswoyedi};

1
h
else if (¢ = okCommand)
{

}

f/Do nothing

i

caich (Excepron ex)

F
t

ex printStack Trace():

3
¥

private void reply(}

Business Layer Classes

TopicObserver

package com.mcebo.sanparks.mediater. notifiers;

import
import
import
import
import
import
imporc
import
import

public
{

Messzge

com.mcebo . sanp arks .mediator.a ccesslayer.Subs criberDB;
com.mcebo.sanp arks .mediator.businesslayer.Fo lder:
com.meebs. sanp arks .mediator. businesslayer.MailBox;
com.meebo . sanp arks .mediator.businesslayer.Me ssage;

com.mcebo. sanp arks .mediztor.businesslayer.SubscriberProfile ;

com.mcebo. sanp arks -mediator.businesslayer .Topic;
java.util Arravylist;

java.util.Properties;

java.util.*;

class TopicQObserver
private Topic topic;
private SubscriberbB sDB;

private HashMap messageQueue ;
private String topicMessage;

public TopicObserver (Topic o pbservableToplic)

topic = observableTopic; .
SDB = new Subscriber DE{"subscriberprofiles.xml";;
updat el ;

fa——

public void update!;

———

boolean isConnected = false;

ArraylList subscribers = sDB.gefSubscriberlistitopic.getCategory)

Object [] o = subscribers.tolArray(];
for {int 1 = G¢; 1 < o.length;i++}

igs props

ivkvam.h

Server.sendMes sag

veryMe thed !

©F

m.setReceivedPa te (new Date () .t oString(}};
m.setMessageSub ject (topic.getTitle(});
m.setMessageCon tent {topic.getBody()) ;
m.setStatus {"un read")
Folder.saveMess age (m) ;

i

else if{deliveryMethod. egquals("Both SMS and Email"})

{

Me sSsage m = new Message();

m. setSenderhddres s ("topicsinfoas anparks.ca.za") ;
m. setDescinationh ddress (p.getEma i1Address ()} ;

. setReceivedDate (new Date().todtring()];
setMessageSubie ct {topic.getTit le{)};

. setMessageContent {topic.getBody!{)};

. setScatus {"unread";;
Fo lder.saveMessage (m);

E!EIIEEI

String destAddress = p.getMobile Number();

MessageServer.sendMes sage (topicMessa ge, descaddress, crim!};

: P

Profile

package com.mcebo.sanparks.mediator. businesslayer;

import java.io.Serial izable;

puhlic abstract c<¢lass Profile implements Serializable

protecced
protectad
protectced

//setrer methods
public void senMobile Numbsar

this.mobileMumber = mobileNumber;

=

public veid setEmailiddress{Scring emailAddress)
¢
1

return pagssword;

PublisherProfile

package com.mcebo.san parks.mediator. businesslayer;
import java.io.Serial izable;

public class PublisherProfiie extends Profile implements Serializable

{

private String publisherID;

public PublisherProfile(]{}

public void setPublisherID(String publisheriD)
{

this.publisherID = publisherID;

ublic String getPubl isherID(]

T

return publisherID;

fa—

SubscriberProfile

package com.mcebo.san parks.mediator. businesslayer;
import java.ic.Serial izahle;
public clasg SubscriberProfile extends Profile impl ements

rivate String subscr iberID;

o]

rivate Preferences preferences;

ublic Subscriher?Prof ile’]

— i

this.subscriberil = subscriberID;

public String getSubs criberID{;
¢
1

return subscriberIl;

-

116

private String topicCategory;
private String delive ryMethod;
private String keyWord;
private String parkiName;
public Preferences(){}

//Setter methods
public void setTopicCategory(String topicCategory)

{

this.topicCategory = topicCategory;

ublic void setDelive ryMethod (String deliveryMethod)

T3 e

this.deliveryMethed = deliveryMethod ;

ublic void setKeyWord{Scring keyWor d)

— -

this. keyWord = keyWor d;

}

public veoid setParkName{String parx¥N ame)

{
H

this.parkMame = parkNzame;
//Getter methods
public String getTopi cCategory ()}
return topicCategery;
public String getDel iveryMethod{;
return deliveryMechod ;
ﬁublic String getXeyWordi}
return keyword;
;ub;ic String getPark Name |
{

return parkName;

Topic

pacxage com.mcebo.sanparks.mediator. businesslayer;

import java.ic_ Serial izable;

puplic class Topic implemants Seria
{

private Str
privacse 5uY
privace Sor
jof e Str

[o Topici!

17

}

public void setBody (S tring body)

{

this.body = body:;

ublic void setKeyWord{String keyWor d)

—r e

this.keyWord = keyWor d;

//Getter merhods
public String getTitlel()

{
return title;
}
public String getCategory!(]
{

return category:
public String getBody ()
{

- return body;

ublic String getKeyWordi)

i e

return keyWord;

L—

Message

package com.mcebo.sanparks.mediator. businesglayer;

public class Message

{

=]

}

public 8tring getMessageCont ent{)

return me ssageContent;

}

public void setMessageContent (String messagelontent)

{

this.mess ageCcntent = me ssageContent;

ublic String getReceivedbatel()

ks I

return receivedbDate;

ublic void setReceivedDate{ String receivedDate)

Y

this.rece ivedDate = rece ivedDate;

}

public String getStatus{)
!
1

H

public vold setStatus(String scatus)

{

retturn st atus:

this.status = status;

ublic int getMes sageiD!)

ety

return messagelD;

gt

public void setMessageID{int mes sagelD]

this.wessagel D = messagelD;

Folder

package com.mcebo.sanparks.mediator. businegslayer:

import com.mceho.sanparks.mediator.accesslayer.Mes
impert java.util.Arraylist;

m
2]
Vel
m
jw)
ot

puplic class Folder

(

119

return folder Name;

}

public void setFo lderName (String folderName}

{

this.folderName = folderName;

//Getting rumber of new messages
puklic void setNe wMessageCount {1 nt newMessageCount)

{
i

public int getNewMessageCount (]

{

this.newMessa geCount = newMe ssageCount;

reETUrrn newM essageCounc H

/Getting the number of read mes sages
g g
public void setRe adMessageCount (int readMessage Count)

{

this.read MessageCount = readMessageCount;

}
public int getRea dMessagelount{)

- return re adMessageCount ;

//Getrting the number of total me ssages
public void setTotalMessageCount {int totalMessageCount)

{
}

public int getTot alMessageCount {

{

this.totalMes sageCount = tot alMessageCount;

return totalMessageCount;

public void markAsReadMessages{ inc messagelD:

{
!

//Gecting &ll new messages
public Message[] getMesszges |(String emaillddress;

{

=]

ralllDB.ma rkAsReadMessage 8 imessage D) ;

-
u]

i
om
[

mw oo

s |
W

L
Wwoo
v a0

Nt
" Il
== e
o ;
=
n

o My e
Q
»
2l
rr
"

setNewhes

1. p

W

m
b
'

APPENDIX D
USABILITY TESTING INSTRUMENTS

Questionnaires for the Usability testing of the new SANPARKS Information
System.

Performance Evaluation of the new SANPARKS Information Svstem!!

We base the evaluation of the new system on usability testing, since the aim of this
research is to improve the users’ friendliness of the system. In order to achieve that goal,
there is the need to interact with users by means of instrument (Questionnaires) to capture

the view of the users about the new system.

SECTION A — People from IT-related Discipline

System development is the result of applying programming languages and software
related courses to achieve the solution of the defined problem in a particular study.
People who are much involved in systems development are Computer Science,
Information Technology and Library Information Systems students. We will then
interview some students from the above mentioned departments in order to check
whether restructured SANPARKS system meets the following design criteria:
Restructuring, Transparent Information Delivery and Personalization. Below is the full

meamng of the design criteria’s.

1. Restructuring - Make the SANPARK system fit for the status of information provider.

2. Transparent Information Delivery - Integrate a publish/subscribe engine that allows a
consurmer to get information without knowing the source.
3. Personalization - Enhance the engine to serve mobile users in a personalized manner.

The students suppose to take a tour on the system and use the system by subscribing to
the system and wait for the information to be delivered to them by the publishing
students. When the information is already delivered, students need to check whether the
information meets their interest. Students suppose to divide themselves according to two
categories as this system is the publish/subscribe system. The must be students that will
playa role of subscribers and some will be publishers. In completion students needs to

mswer the following questions.

Please mote: The questionnaire is in two phase (Subscriber/Publisher).

Iastructions: Shade circles or simple mark X in response.

Subseribers (Students) Questionnaires

|. Please also tick your department from the list below.
Q Computer Science
O library Information System

O Iformation Technology
2. Which level of study are you doing?
O Frst year

O Second year

122

O Final year
QO Honors
O Masters

O Doctorate

3. How 1s the restructured SANPARKS system respond in terms of the following?

" Parameters Good Fair Excellent

1. Quality of

Interaction

| 2. Quality of
Information
Provided

4. How do you find the SANPARKS system when taking a tour on it {using it)?
O Enjoyable
O Boring

O Satisfactory

5. In your opinion is this system user friendly (or easy to use)?
OYes
O No very complicated

O Average, normal as other system

6. Does this SANPARKS system satisfv vour interest of the services?
O Yes

) No

o
8]
LS

7. Does this system support personalization of services when it delivers notifications to
you as a client?

O Yes

O Not at all
8. Do you think information provided by this system is limited and requires some more
improvements?

O Yes

O No, if yes specifies what need to be improved.

124

Publishers (Students) Questionnaires

1. Please also tick your department from the list below.
O Computer Science
O Library Information System

O Information Technology

4. Which level of study are you doing?
O First year
O Second year
O Final year
O Honors
O Masters

O Doctorate

5. Is this SANPARKS system fit for the information provider entity?
O Yes

QO No

6. Do you think the new SANPARKS system able to reach correct prospective clients?
O Yes

O No

—
[~
h

	Declaration
	Dedication
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abstract
	Chapter one - Introduction and background
	Chapter two - Literature review
	Chapter three - Model development
	Chapter four - Implementation and evaluation of the prototype
	Chapter five - Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D

