
MODELLING PERSONALIZATIONS IN
THE DESIGN OF MOBILE

PUBLISH/SUBSCRIBE
ARCHITECTURAL FRAMEWORK FOR
SOUTH AFRICAN NATIONAL PARKS.

Mcebo Brendon Linda

(012298)

A dissertation submitted in fulfilment of the requirements for the
degree of

Master of Science (Computer Science)

Department of Computer Science, Faculty of Science and
Agriculture, University of Zululand

2006

DECLARATION

I, Mcebo Brendon Linda declare that this dissertation represents research work carried

out by myself and that it has not been submitted in any form for another degree at any

university or higher learning institution. All information used from published or

unpublished work of others has been acknowledged in the text.

Signature of Student

11

DEDICATION

I dedicate this work to my mother, Emmelinah Nogogo Linda, for understanding,

believing and encouraging me to excel in education in order to bear her name since she

never had the opportunity to do so. The work is also dedicated to my siblings (brothers

and sisters), especially my young sister Thulile "Tina" and my mother's last born

Ntuthuko "Mfana" as they still have a chance to follow in my footsteps by instilling the

value of education in our family.

ACKNOWLEDGMENTS

I would like to express my deep gratitude to all people who supported me throughout my

research.

In particular, I offer my sincerest gratitude to my supervisor, Prof. M.O Adigun. He

introduced me to research and kept me on the right track with his advice, while giving me

the freedom and the possibility to pursue my research ideas.

I especially wish to thank Dr. Xulu for his continuous fatherly support and mostly for

believing in me when the challenge became tough.

It is also my pleasure to acknowledge the great collaboration of our Department with the

following research team, Dr. Adeoromu, Dr Justice Emuoyobafarhe, Dr. Ojo and Mr.

Johnson Iyilade. They really made a great contribution to the completion of my work.

To my colleagues and friends, Edgar Jembere and Pragasen Mudali, I owe many thanks

for our frequent meetings, your generous help and considerable input that led to the

success of this thesis. I would also like to thank Mr. Klaas Kabini for his time that he

dedicated in order to solve the problems that I encountered to make the development of

the prototype a reality.

IV

Besides the above mentioned people, I thank all staff members and fellow colleagues in

the Department of Computer Science at the University of Zululand for their continuous

encouragement and support.

To my mother Emmelinah and my siblings, Thulile "Tina" Hazel, Ntuthuko 'Mfana'

Cyril, my twin sister Cebisile Brenda Linda, I am eternally grateful for their endless love

and support. Finally, my entire family, has been a constant inspiration in my life and an

infinite source of energy and motivation.

Finally, I would like to thank Telkom Company for funding my studies. Without their

financial support the completion of this work would not be a success.

TABLE OF CONTENTS

DECLARATION ii

DEDICATION iii

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS vi

LIST OF FIGURES x

LIST OF TABLES xii

ABSTRACT xiii

CHAPTER ONE 1

INTRODUCTION AND BACKGROUND 1

1.1 Preamble 1

1.2 Background 3

1.3 Statement of the problem 5

lA Motivation for the study 5

1.5 Research Goal and Objectives 7

1.5.1 Research Goal 7

1.5.2 Research Objectives 7

1.6 Research Methodology 7

1.6.1 The Theoretical Aspect- Literature Review 7

1.6.2 The Formulative Aspect 8

1.6.2.1 Model Formulation 8

1.6.2.2 Model Implementation 8

1.7 The Structure of the dissertation 9

CHAPTER TWO 10

LITERATURE REViEW 10

2.1 Introduction , 10

2.2 Analysis of Publish/Subscribe Systems 12

2.2.1 Peer-to-peer ModeL , 13

2.2.2 Broker (Mediator) Model.. . 13

2.2.3 Implicit Model . 14

VI

2.3 Representative Publish/Subscribe Systems 15

2.3.1 CORBA Event and Notification 15

2.3.2 Java Message Service 19

2.3.3 JED! 22

2.3.3.1 ledi Event and Event Patterns 23

2.3.3.2 Distributed ED Architecture 23

2.3.4 Siena 24

2.3.4.1 Notifications, Filters, and Patterns 25

2.3.4.2 Distributed Architecture 26

2.3.5 REBECA 27

2.3.6 Service-Based Architectural Framework for the South African National Park

System 28

2.4 Mobility Support in Publish/Subscribe Systems 29

2.4.1 Mobility Support in Jedi 30

2.4.2 Mobility in Siena 31

2.4.3 Mobility in Rebeca 32

2.4.4 Mobility in JMS-Based Systems 33

2.5 Related Technologies 34

2.5.1 Electronic Mail 34

2.5.2 Short Message Service 35

2.5.3 Multimedia Message Service 36

2.5.4 Push Technology 37

2.6 A Concise Overview of the Proposed Solution 38

2.6.1 Personalization in A Design of Mobile Publish/Subscribe Architectural Framework.

.. 40

2.6.2 Mobility in A Publish/Subscribe Architectural Framework .41

CHAPTER THREE .43

MODEL DEVELOPMENT 43

3.1 Introduction 43

3.2 South African National Parks System Requirements .44

3.3 Design Principles of the Publishing Personalized Data Architecture for SANPARKS ..46

3.3.1 Restructuring the organizational information Architectural Framework .46

VII

3.3.2 Making Information Delivery Transparent in a Publish/Subscribe Architectural

Framework. 47

3.3.3 Personalization in the Publish/Subscribe Architectural Framework 47

3.4 Publish/Subscribe Architectural Framework for SANPARKS System 51

3.4.1 Building Blocks and Components of Publish/Subscribe Architectural Framework

for South African National Parks 53

3.4.2 Functional Requirement of the System 54

3.4.2.1 Use Case Diagram 54

3.4.2.2 Sequence Diagrams 56

3.4.2.3 Algorithms 60

3.4.2.4 Activity Diagram for the SANPARKS System 63

3.4.2.5 Class Diagram 64

3.4.2.6 Deployment Packages 67

3.4.2.7 Access Layer 69

CHAPTER FOUR 70

lMPLEMENTAnON AND EVALUAnON OF THE PROTOTYPE 70

4.1 Introduction 70

4.1.1 Description of the Implementation 70

4. L2 Environment Specification 71

4.1.3 Implementation Model 73

4.2 Implementation Screenshots 74

4.2.\ Subscribing and receiving e-mails on the desktop 74

4.2.2 Service Information Publishing Process 76

4.2.3 Service Subscription using a mobile device 77

4.2.4 Retrieval of the SANPARKS services information using a mobile device 78

4.2.5 The Internal Structure of the XML Database 79

4.3 Usability of the Prototype 82

4.3.1 Usability Testing 82

4.3.1 .1 Evaluating the Publisher Component (Technical Evaluation) 82

(A) Instrument Design and Administration 82

(B) Analysis and Results 82

4.3.1.2 Evaluation of the Subscribers Component <Technical People)........ . 84

(A) Instrument Design and Administration... . 84

VIII

(B) Analysis and Results 85

4.3.1.3 Evaluation by barely IT-literate 88

(A) Instrument Design and Administration 88

(B) Analysis and Results 88

CHAPTER 5 90

CONCLUSiON 90

5. 1 Conclusion 90

5.2 Contributions 91

5.3 Future Work 92

APPENDIX A 93

USER MANUAL 93

APPENDIX B \03

UML DESIGN DOCUMENTATION 103

CLASS DIAGRAM AND DESCRIPTION 103

APPENDIX C]06

SOURCE CODE 106

APPENDIX D 121

USABILITY TESTING INSTRUMENTS 121

Questionnaires for tbe Usability testing of the new SANPARKS Information System.. 12]

REFERENCES \28

IX

LIST OF FIGURES

Figure 2.1: Peer-ta-peer Model for Publish/Subscribe Systems 13

Figure 2.2: Mediator (Broker) Model for Publish/Subscribe Systems 14

Figure 2.3: Implicit Model for Publish/Subscribe Systems 15

Figure 2.4: Components in the CORBA Event Service 15

Figure 2.5: Publish/subscribe interaction in JMS 21

Figure 3.1: The Restructured SANPARKS Conceptual ModeL 48

Figure 3.2: Publish/Subscribe Architectural Framework for the SANPARKS System .. 52

Figure 3.3: SANPARKS Use Case Diagram 54

Figure 3.4: Sequence Diagram for Subscribe Use Case 56

Figure 3.5: Sequence Diagram for PublishTopiclnfo Use Case 57

Figure 3.6: Sequence Diagram for ManageProfile Use Case 59

Figure 3.7: Subscribe Algorithm 60

Figure 3.8: Manage Profile Algorithm 61

Figure 3.9: Publish Topic Information Algorithm 62

Figure 3.10: SANPARKS System Activity Diagram 63

Figure 3.11: The Publish/Subscribe SANPARKS Class Diagram 66

Figure 3.12: The Publish/Subscribe Subscription Package __ 67

Figure 3.13: Publish/Subscribe Publishing Package 68

Figure 3.14: Access Layer of the SANPARKS Information System 69

Figure 4.1: The System Implementation Model 73

Figure 4.2: A portal interface for SANPARKS information consumers 74

Figure 4.3: Subscriber's Registration Interface on the Portal. 75

Figure 4.4: The list of E-mails on the Desktops 75

Figure 4.5: The service information delivered as an e-mail. 76

Figure 4.6: Publishing service information using the desktop 77

Figure 4.7: Subscribing on the Mobile Device 78

Figure 4.8: Mobile device showing the services information delivered as a sms 79

Figure 4.9: The Subscribers profiles stored on the XML database 80

Figure 4.10: The Publishers profiles on the XML database __ 81

Figure 4.11: The list of messages sent to the subscribers 81

x

Figure 4.12: Quality of the information provided to subscribers 87

Figure 4.13: The results of Arts students interviewed for user-friendliness of the

SANPARKS System 88

Figure 4.14: The results of Arts students interviewed for user-friendliness of the

SANPARKS System 89

Xl

LIST OF TABLES

Table 1.1: Information provided by SANPARKS and respective Consumers 4

Table 3.1: The entire components and building blocks of the Architecture 53

Table 4.1: The number ofpeople interviewed as both subscribers and publishers 83

Table 4.2: The results of publishers comments on the new SANPARKS system 83

Table 4.3: The publishers comment on the user friendliness of the new SANPARKS

System 83

Table 4.4: The results of the quality of information provided to the Subscribers 85

Table 4.5: The results of the quality of interaction between the SANPARKS System and

Subscribers 85

Table 4.6: The results of using the new SANPARKS System 86

Table 4.7: Users opinion on the user friendliness of the Subscriber Module 86

Table 4.8: The results of the subscribers' comments about the services provided by the

new SANPARKS System 86

XII

ABSTRACT

The dissertation presents the adoption of publish/subscribe pattern as the existing

communication paradigm into the South African National Parks (SANPARKS)

organization. It focuses on restructuring the existing SANPARKS system into a

publish/subscribe information provider that would enable clients to receive personalized

information services delivered via sms, mms and email. A publish/subscribe architectural

framework, which supports both mobile and desktop users with the following features

was developed: a national park system restructured into an information provider; a portal

interface for information consumers; a mobile interface support achieved by

personalization and a highly rated usability index. This research was conducted by firstly,

surveying the theory which consisted of the literature review. Secondly. the formulative

aspect which consisted of model building. the proof of concept such as prototype and the

usability testing of the prototype. The results of this research testify that the newly

restructured SANPARKS meet the standard of the information provider entity. It also

provides a portal interface for information consumers enabled by personalization. From

the results obtained in this research the adopted publish/subscribe pattern solves the

problem of restructuring the SANPARKS system into an information provider that

enables clients to receive personalized information services delivered via sms. mms and

email.

XIII

CHAPTER ONE

INTRODUCTION AND BACKGROlIND

1.1 Preamble

Tourism is a key component of Government's macro-economic strategy to achieve

growth, employment and redistribution of wealth in South Africa. National parks are the

cornerstone of nature conservation based tourism industry in South Africa. They offer

visitors the very best of leisure opportunities including game viewing, bush walks,

canoeing and exposure to cultural and historical experiences. National parl<s help

preserve history and the natural beauty of the nation for the benefit of all citizens and

international visitors. Parks are places for recreation and education and need 10 be taken

care of in a way that preserves them for future usage. Conserving the natural wealth of

national parks can only be accomplished with the continuous support and involvement of

visitors and local communities. A one-slOp information services system of South African

national parks that simplifies information access to users through personal ization has a

great potential in securing customer loyalty and in capturing the intere,t of potential

clients.

South African National Parks (SAN PARKS) is the South African organization that

maintains the national parks information services. There are manv national Parks iJ1. South

Africa who are not part of the SANPARKS. In order for the national park, to be part of

the SANPARKS they need to register with this organization. Currently the SA\PARKS

information systems are distributed and hence the need for a one-SlOp information

provider system that would ensure that information is simplified and customised through

personalization. The current on-line SANPARKS information system does not support

personalization. Personalization is about tailoring products and services to better fit the

user, e.g. byfocusing on the user needs, preferences, interests, expertise, workloads, task

etc (www.sanparks.org). The focus of this study is to redesign the current SANPARKS

Information System such that personalization is explored; thereby enriching the users'

experience.

There are two widely used information access communication technologies, which are

the pull and push technologies. The main advantages of the publish/subscribe system that

supports push over pull communication technology are (I) It provides a platform for

personalisation of the services to be accessed by the users, (2) users do not need to use

the small keypad to access the information as in the pull technology, since the

information will be pushed to the user when available. The proposed system will add

value to the SANPARKS through the use of push style of information services combined

with personalized messages. The achieved relevance and ease of use will increase the

number of subscribers to SANPARKS because users will receive information easily

through their mobi le devices and desktops via sms, mms and emails.

Information access can be made more efficient by introducing a publish/subscribe

system, which includes both the user's and provider's efforts as it supports push

communication. Publish/Subscribe systems ensure that information is pushed to the users

according to their preferences.

2

1.2 Background

Mobile commerce is a subset of e-Commerce where wireless digital devices are used to

initiate transactions on the web and it offers new opportunities both for mobile device

manufacturers and service providers (Zhang, et aI., 2002; Pashtan, 2004). M-Commerce

differs partially from e-commerce due to the special characteristics and constraints of the

mobile devices and wireless network. The volume of mobile devices is continuously and

increasingly driven by people who need to have ubiquitous access to services,

information and entertainment. Access to these can only be made available through their

mobile devices (Ozen, et aI., 2004; Hueng, et aI., 2004). With the increasing popularity of

mobile handheld devices, there is a pressing need to extend publish/subscribe services to

a mobile environment such as mobile commerce (Eugster, et aI., 2003; Muhl, et aI.,

2004). A scalable information delivery service, which publishes and subscribes to

systems, provide, is required to connect together information providers and consumers by

delivering events from sources to interested users (Hueng, et al.. 2004). Many users of

and visitors to South African National Parks carry their mobile communication devices.

Hence, mobile devices can become access mechanism to information services of the

SANPARKS.

Currently there are 20 national parks in the country that are part of the SANPARKS

organization. These are Addo Elephant. Agulhas. Augrabies Falls, Bontebok. Golden

Gate Highlands. Karoo, Kgalagadi. Knysna. Kruger, Mapungubwe, Marakele, Mountain

Zebra, Namaqua. Richtersveld. Table Mountain. Tankwa Karoo, Tsitsikamma, Vaalbos,

3

West coast and Wilderness (www.sanparks.org). The major activity of SANPARKS

includes but is not limited to the following: firstly, a repository of nature conservation

data that can be used by researchers, conservationists and tourists. Secondly, it integrates

mUltiple repositories to form a single infrastructure for all the national parks. The mission

of the SANPARKS is to transform an established system for managing the natural

environment into one which encompasses cultural resources, and which engages all

sections of the community (www.sanparks.org).

The activities of SANPARKS are broadly categorized by services and consumers into

three categories namely: tourists, conservationists and researchers (see Table 1.1).

Table I. I: Information nrovided bv SANPARKS and respedive Consumers lKhumalo, 1004)

or

infonnto

servicesabout

designed

products offerings.

use of static web pages that

public

were

and

IFeatures (Scenic and Cultural).
I

IAccommodation
I

I
J Archives

I

2.

5.

3.

I !l\'FORMATlON PROVIDED CONSUMERS DELIVERY MECHANISM

I
I--:--f-;;;-c--c--------t-;~~~;o---~~~+~~;; . -._._.

1. Plant I Researchers, Conservationist SANPARKS are still inhibited

Animal i Researchers, Conservationist by legacies of the past with the

\

i
IResearchers, Tourists

I
ITourists, Researchers

I
I Tourists, Conservationists

i Researchers
!,,

4

1.3 Statement of the problem

The operational activities of SANPARKS consist of nature conservation, information

service provision and delivery of available services to interested parties. An investigation

of the current operational structure identified the need to address a number of issues:

First, the South African National Parks system can be enhanced beyond its present

capability such that all the communities of South Africa can benefit from its activities.

Secondly, the era of using static web pages previously designed to inform the public

about services or products offerings should come to an end.

The issues above are addressed in this research by (i) restructuring the SANPARKS

system into an information-provider entity. (ii) creating a corresponding

publish/subscribe model and thereby producing valuable enough information that could

be sold to information consumers: and implementing a prototype of the model that

emphasizes personalisation, and thus make it possible for customers to be rewarded in

future. It is necessary to generate information that is so valuable that consumers are

willing to buy.

1.4 Motivation for the study

This research study is meant to provide a one-stop SANPARKS information system for

nature conservation. Such a system would ensure easy access to information being a one­

stop portal interface to the distributed SANPARKS information systems. Incorporation of

5

publish/subscribe techniques in the system would include personalisation of information

to be accessed by mobile users. Given the fact that the mobile environment is

characterized by poor power supply, a poor user interface and flaky network connection,

personalisation will simplifY information access under these conditions. Pushing of

information according to the user's interests would subsequently add value to the

SANPARKS that we have today. This would be achieved by reusing and extending

related systems where possible to suite the need of the investigation.

Information and notification services for communicating time-sensitive data have proved

their usability in the Internet domain. The huge success of Short Message Service (SMS)

and the increased acceptance of Multimedia Message Service (MMS) advocate the

extension of the initial application domain to mobile environments, and encourage further

efforts to implement and deploy content dissemination services in mobile environments.

However, mobile scenarios introduce additional requirements regarding the service:

Mobile users want to be served with relevant and personalized content in a timely

manner. Moreover, the content must be customized to their current presence status, and

directed to the terminal they are currently using. Therefore, service flexibility and its

ability to deliver personalized content that provokes no nuisance to end users is of major

importance for the wide acceptance of the service. Support for personal mobility is

needed to assure timely information dissemination in accordance with the user's present

status.

6

1.5 Research Goal and Objectives

1.5.1 Research Goal

The focus of this study was to restructure the existing SANPARKS system into a

publish/subscribe information provider that would enable clients to receive personalized

information services delivered via sms, mms and email.

1.5.2 Research Objectives

The objective of this study was to develop a Publish/Subscribe architectural framework

that supports mobile and desktop users and has the following features: A national park

system restructured into an information provider; A portal interface for information

consumers; A mobile interface support achieved by personalization and a highly rated

usability index.

1.6 Research Methodology

The research approach is both theoretical and formulative in nature. consisting of

literature review, model building and the proof of concept such as prototype

implementation. The details are given below.

1.6.1 The Theoretical Aspect- Literature Review

The theoretical aspect of this research involves literature review. An investigation of

existing information systems for SANPARKS, sources of information on nature

conservation, tourism and publishJsubscribe. personalisation and portal user interface

strategies for mobile environment was carried ouI.

7

1.6.2 The Formulative Aspect

The knowledge gained from the literature survey was used to construct a theoretical

background of the formulative part of this research. The formulative part of this research

involved model formulation and proof of concept through software based conceptual

analysis and implementation of the prototype.

1.6.2.1 Model Formulation

This involved formulating requirements to fit the following purpose: A distributed

SANPARK information system; a publish/subscribe engine that drives the system; and a

user interface that supports personalized mobile users. Existing patterns were used as the

building blocks for creating the core publish-subscribe model from which the information

system evolved.

1.6.2.2 Model Implementation

A prototype of the proposed model was implemented as a proof of the concept using Java

as the programming language to demonstrate the applicability of our model. The

prototype was then evaluated against the models from which it was developed and other

closely related work such as (Khumalo. 2004).

8

1.7 The Structure of the dissertation.

The remainder of this dissertation is structured as follows: Chapter two gives an overview

of existing solution and systems related to content dissemination in publish/subscribe

systems: In this chapter the author analyses and compares the characteristics of prominent

publish/subscribe systems, and related solutions, such as SMS, MMS, E-mails and push

systems. Chapter three introduces the proposed system model of publish/subscribe

systems that is used as the solution to current problems of the SANPARKS in order to

improve dissemination of notifications to mobile subscribers and desktops subscribers.

Chapter four presents the computational implementation of the proposed

Publish/Subscribe Architectural Framework and the implementation results. This chapter

also gives the detailed usability analysis of implemented prototype. Finally chapter five

presents the conclusion which consists of how the research objectives were achieved and

possible future work for further research and results.

9

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The publish/subscribe model represents an emerging paradigm for de-coupled and

asynchronous connections between application components (publishers and subscribers).

In other words, a publish/subscribe model may support two types of models which are

mediator and implicit models as these models support decoupling and asynchronous

connections between application components in contrast to peer-to-peer model only

support coupling and synchronous connection between appl ication components. The

mediator and implicit models form the basis foundation of the architecture of our

research. This research focuses on adopting the publish/subscribe communication model

that allows de-eoupled and asynchronous connection between publishers and subscribers.

The adoption of publish/subscribe communication paradigm allows the SANPARKS

organization to integrate the publish/subscribe engine where the information consumer

get information without knowing the source.

SANPARKS is organized in such a way that it has to deal with publishing information on

plants, animals, features (scenic and cultural) and accommodation. Subscribers or clients

need to be notified when events that represent information items and published content

occur. This model is event-driven because the act of publishing is periodic and guided by

the availability of new or modified information item, or by a publisher's state change.

10

Publishers produce the information and subsequently publish it for dissemination to

interested subscribers: Publishers are notification producers, while subscribers act as

notification consumers. Notification must be preceded by declaring an interest III

receiving specific categories (plants, animals, features and accommodation) of

notification. When a notification is published, it will be delivered specifically to all

registered subscribers. Publishers and subscribers may optionally interact directly by

adopting peer-to-peer model but this is not supported by the SANPARKS model.

The mediator model introduces an intermediary, an "information bus" responsible for

efficient notification delivery from publishers to subscribers. The intermediary ensures

the anonymity of the communicating parties: Publishers and subscribers do not

necessarily need to know each other and the infrastructure keeps track of subscriptions

and publications. Furthermore, the interaction style enables one-to-many multicast-style

communication such that a published notification is delivered to all interested

subscribers.

The implicit model introduces the concept of intermediary, an "information bus" between

the subscribers and the publishers. The subscribers register for the types of topics when

one would like to receive notification when it becomes available to the system. Publishers

are responsible for publishing information that is related to the available topics on the

system.

Most publish/subscribe systems adopt either mediator or implicit models. This is mainly

because these models. as discussed above. avoid the need for a subscriber to know the

I I

publisher of the information subscribed for and vice versa, hence the delivery of

notifications are guaranteed even if the subscribers are disconnected from the network.

Systems that implement the publish/subscribe interaction style usually fall the category of

software infrastructure built on top of the network operating system, that offers generic

services for the development of distributed applications. The main purpose of software

infrastructure of this nature in practice is to simplify the implementation of distributed

systems and is referred to as middleware (Emmerirc, 2000). In this research work, the

middleware played a major role in simplifying the implementation of the envisaged

SANPARKS Information System which was a one-stop information provider system.

Publish/subscribe systems are often classified as event-based middleware because of the

event-driven communication and cooperation model that uses notification for carrying the

information that is passed among the communicating parties (Meier, 2000). Tanenbaum

(2002) classifies publish/subscribe as coordination systems to stress that the

publish/subscribe interaction coordinates the activities between distributed processes.

2.2 Analysis of Publish/Subscribe Systems

Our analysis of publish/subscribe system study identifies that publish/subscribe

historically are variants or a combination of the following communication stvles: Peer-to­

peer/listener model; broker (mediator) model and implicit model.

12

2.2.1 Peer-tG-peer Model

In the peer-tG-peer model, subscribers register at specifically named publishing entities

and the publishing entities deliver events to specific named subscribing entities directly.

The interaction style enables one-to-one communication because the published

notification is delivered to one interested subscriber that requests the notification from the

publisher which acts as the server in that particular time. The communicating parties of

this model have the knowledge of each other since they hold the reference of each other

as they w:e communicating.

Figure 2. I: Peer-tt>-peer Model for Publi5h1Subscribe Systems (Fiege, et aI., 2003).

2.2.2 Broker (Mediator) Model

In the broker (mediator) model the subscribers register their sUbscriptions with a

common event mediator which introduces an intermediary. The intermediary ensures the

anonymity of the communicating parties: publishers and subscribers do not necessarily

13

need to know each other and the infrastructure keeps track of their subscriptions and

publications. Furthermore, the interaction style enables one-to-many multicast-style

communication because the published notification is delivered to all interested

subscribers. The Publisher forwards events to the common event mediator, who in turn

takes care of receiving events from publishers and delivers them to all interested

subscribers.

1. Men"g... "re
published...

2. PubSub matches
against subscription s...

g
3. Results are delivered

to .ub.uiber•.

Figure 2.2: Mediator (Broker) Model for Publish/Subscribe Systems (Lugster, et aI., 2003).

2.2.3 Implicit Model

The implicit model requires the subscribing entities to subscribe to (or register) a

particular event type rather than with a mediator or publishing entity e.g.; in figure 2.3, S

represents subscribers, therefore S needs to subscribe to a Topic as the event type for the

purpose of receiving the related topics from P who is the Publisher. Consequently, the

publishing entities generate events of some type, which are delivered to subscribing

entities. Finally publishers or subscribers need not hold explicit reference to mediators or

publish/subscribe entities (Quah, et aI., 2002).

14

Figure 2. 3: Implicit Model for PublishfSubscribe Systems (Quah, el aI., 2002).

2.3 Representative Publish/Subscribe Systems

This section discusses the different kinds of existing publish/subscribe systems that

demonstrate the features set out by the concept and categories of publishlsubscribe

models.

2.3.1 CORBA Event and Notification

The CORBA Ennt Service: The CORBA Event Service provides a decoupled

communication model that addresses the limitations with the CORBA S:YlI (and A:Yl!)

invocation mechanisms outlined above. As sho\\n in Figure 2.4. the Event Service

defines three roles:

E-'.ent Chanre:

, S ...~!= ~..
"-------'

figure 2.4: Components in the CORBA EH:nt Service (Obje-ct _\lanagemcnt Group~ 2001)

15

• Suppliers, which produce event data;

• Consumers, which receive and process event data;

• Event channel, which is the mediator through which multiple consumers and

suppliers communicate asynchronously.

This type of publish/subscribe system is based on the mediator model since it uses the

mediator as the "information bus" between the suppliers and consumers to avoid the prior

knowledge of each other as they exchange notifications. The communication style

between the suppliers and consumers is multicasting because many suppliers produce

event notifications consumed by many consumers just like in a publish/subscribe

communication paradigm.

In a simple scenario consumers and suppliers can interact directly, without a channel, by

invoking each other's interface methods. A mediated scenario involves a channel that

acts as both a supplier and a consumer of events. Event channels enable anonymous

many-to-many communication between suppliers and consumers. However, event

channels offer no means for event filtering: All channel consumers receive all events

published on the channel.

CORBA event service supports both the push and pull approaches to communication

initiation: The push model allows suppliers to initiate the distribution of notifications to

consumers. The pull model allows consumers to request notifications from suppliers.

Push suppliers actively send notifications to the event channel, while pull suppliers wait

for requests coming from the channel. Push consumers passively wait for events that are

16

eventually sent through the channel, while pull consumers regularly check if new events

are available on the channel.

The event service defines simple means for event propagation and has a number of

drawbacks. It is not adequate for mobile scenarios because consumers must be connected

to the channel at the time of event publication. CORBA event service does not support

event persistence. The second drawback is that event channels offer no means for event

filtering. If event types are to be differentiated, it is necessary to use separate channels for

each event type. Finally, the specification does not dictate the reliability requirements for

the communication service and offers no guarantees concerning the delivery of events. It

can have either "at-most-once" or "exactly once" semantics, depending on the particular

service implementation.

Notification service: CORBA notification service (Object Management Group, 2002)

deals with the above-mentioned drawbacks of the event service and extends it with new

capabilities, such as filtering and configurability, according to various requirements for

quality of service (QoS). The notification service preserves the semantics of the event

service and ensures interoperability between the basic event service clients and

notification service clients. One of the extensions offered by the notification service are

content-based subscriptions and event filtering using filter objects: filter objects define a

set of constraints that affect the forwarding of an event. For example, notification service

consumer can subscribe to events of interest by associating a filter object to the proxy

through which it connects to an event channel. When an event that matches the fi Iter

17

object is published, the proxy will forward it to the consumer. This implies that the

notification services supports personalization of services when it delivers information

from the supplier to the consumers as described on the example given above.

The notification service introduces a new type of events, structured events with a well­

known data structure into which a wide variety of event types can be mapped. Structured

events consist of a header and a body: A header is further decomposed into a fixed and a

variable part. The fixed event header consists of a domain_name which identifies a

particular domain (e.g. telecommunications, finance), a type_name which categorizes an

event, and an event_name which can uniquely specifY an event. A variable header part is

composed of a list of optional name-value pairs. Event body carries the content of an

event. The filterable portion of the body contains the most interesting event fields (name­

value pairs) used when matching the event with a filter object. The remainder of the body

is of type any and can be used to transmit large data items.

Another enhancement introduced by the notification service are standard interfaces for

controlling QoS characteristics tor event delivery. The notification service enables each

channel, each connection, and each message to be configured so as to support the desired

quality of service with respect to delivery guarantees, event persistence, and event

prioritization. OMG detlnes a set of QoS properties, their permitted types, and the range

of values. This is an open list of parameters, and service implementers can add their own

properties. OMG has detined the following properties:

18

• Reliability is related to the event delivery policy, such as best effort, or persistent

delivery;

• Priority; by default, the notification channel will attempt to deliver messages according

to their priority level;

• Expiry times indicate the time interval within which an event is valid;

• Earliest delivery time specifies the time after which an event can be delivered and

• Maximum events per consumer define the maximum number of events a channel can

queue on behalf of a consumer. This property prevents malicious users from overloading

a channel.

The list of supported properties provides flexible QoS configuration of a notification

channel. However, meaningless properties are not prevented which creates a serious

vulnerability that could be exploited by malicious consumers or suppliers. End-to-end

delivery policy can only be guaranteed with the cooperation of all parties, i.e., consumers,

suppliers, and the notification channel. The OMG event and notification service

specifications offer no guidelines regarding the architecture and routing strategy for

distributed event systems.

2.3.2 Java Message Service

This type of publish/subscribe system is based in all the three types of publish/subscribe

models which are peer-to-peer, implicit and mediator model. Java Message Service

(JMS) is a message-oriented specification for the Java programming language defining a

set of interfaces and semantics, thus enabling JMS compliant clients to access the

19

services offered by a JMS messaging server. The JMS target application area is enterprise

messaging for asynchronous Business-to-Business communication over the Internet. JMS

provides two types of messaging models, point-to-point messaging and publish/subscribe

(Monson-Haefel, et aI., 2001). The point-to-point messaging model relies on the classical

message-queuing communication pattern that make this system to be based on the peer­

to-peer model because as the server respond to clients which are on queue actively

waiting for the information to be delivered to them is active. JMS system uses point to

point messaging to deliver information to interested parties. The reason for the JMS

system to be based on the implicit model is because it uses topics to represent the type of

event in which the consumers can subscribe for and wait for the information that is

relevant to the topics of their interest to be available before it can be pushed to the

matching subscribers.

This system uses both pull and push communication technology SInce it allows the

subscribers to pull information that is related to the topics of their choice, subscribers

have an option of waiting for the information that match their subscription to be pushed

to them by the publishers when it becomes available. Publishers publish messages to a

JlvfS topic, which is one of JMS destinations. Topics are created by an administrator

using the administrative tools offered by the applied JMS provider. It is assumed that

publishers will publish messages on the established topics. This approach is static and is

augmented by temporary topics: Publishers can dynamically create new temporary

topics. Subscribers subscribe to a particular topic by registering their message listeners

20

with the topic, as depicted in Figure 2.5. Whenever a message is published on a topic, the

listener's method is invoked, signaling the receipt ofa new message for the subscriber.

•ge(m)
TopicSubsctiber s;

-------iol M sageUstener I;TopIcPubIisher p;

Figure 2. 5: Publish/subscribe iuteraction iD JMS (MoDson-Haerel, et al., 2001)

The JMS system is also based on the mediator model as it adopts the publish/subscribe

model that incorporates two type of JMS clients, publishers and providers, that

communicate by exchanging messages through an intermediary server, called JMS

provider. A JMS provider is a messaging server that implements JMS interfaces and

provides administrative and control features. JA1S clients are programs or components

written in the Java programming language that produces and consumes messages.

Notifications are referred to as messages in JMS: Messages are Java objects that

communicate information between JMS clients.

JMS offers delivery guarantees using the concepts of durable subscriptions and persistent

messages. Subscribers can define durable subscriptions to a topic. While a durable

subscriber is disconnected from a JMS server, the server stores the published messages

matching its subscription. When the subscriber reconnects, the server sends all stored and

unexpired messages to the subscriber in the store-andjonrard delivery style. Publishers

can define either persistent or non-persistent delivery mode for their messages. In the

)1-,

case of the non-persistent mode, the server offers at-most-once message delivery.

Persistent messages are first stored by the server, and then delivered to subscribers.

Subscribers need to confirm the receipt of a persistent message. If the acknowledgment is

missing, the server resends the message assuring at-least-once message delivery. JMS

defines message filtering on the subscriber side using message selectors. Message

selectors are expressed as Java strings that define conditions on message properties and

headers. Message selectors need to comply with the defined subscription grammar which

supports the conditions as complex boolean expressions with equality, comparison, or

range operators. The JMS specification is a pure API specification. It does not define the

rules for building the architecture of JMS server with respect to distribution.

2.3.3 JEDI

The Java Event-based Distributed Infrastructure (JED!) (Cugola, et aI., 2001) is a

lightweight middleware infrastructure that supports the development of event-based

application. This system is based on the mediator model as it uses the types of events, in

which the subscribers subscribe for in order to gain access of information stored by the

events. JED! is based on the concept of Active Objects (AD) and Event Dispatchers

(EDs). An AD is a special kind of object that interacts with other ADs by producing and

consuming events. An AD can thus perform the activities of both an event publisher and

a subscriber to a particular event type. An EO is a special component responsible for

delivering events from publishing ADs to ADs that have expressed interest to receive

such events.

22

2.3.3.1 Jedi Event and Event Patterns

A JEDI event is an ordered set of attributes that describes event characteristic. An

attribute is a name-value pair. Both name and value are strings and, as a consequence, an

event is a sequence of strings. JEDI supports content-based event filtering that appliers

pattern matching based on regular expressions when comparing event to subscriptions.

An AO can either subscribe to a specific event, or to an event pattern.

Event patterns are ordered set of strings that represent a simple form of regular

expressions over events. An event pattern is identified with a sequence of pairs (name,

regular expression), where name and regular expression are both strings. A pattern-

matching algorithm is used to verify the compatibility between an event instance and an

event pattern. For example, the event pattern (Source_ID, 12*); (Signal_Type,*) is

compatible with all events with a value for attribute Source_ID starting with 12, and with

any value of attribute Signal-Type.

An ED stores all event patterns received from subscribing AOs. When the EO receives an

event, it verifies the compatibility between the received event and each event pattern

using the pattern-matching algorithm, and delivers the event to each A0 with the

matching subscription that is connected to it.

2.3.3.2 Distributed ED Architecture

An ED is a logically centralized component that needs to have a global knowledge of

AOs, their subscriptions. and published events. However, the centralized implementation

of the EO is a critical bottleneck for a distributed system. To solve the scalability

7"
-~

problem, JEDI offers a distributed implementation of the ED. The distributed version of

the ED consists of a set of dispatching servers (DSs). DSs are connected to form a tree

topology. Each DS is located on a different network node and is connected to one parent

DS and to zero or more descendant DSs. A DS with no parent DS is the root of the tree,

while DSs with no descendant DSs are the leaves of the tree. AOs can connect to all DSs

that form the ED.

DSs use a coordination protocol that distributes the information about subscriptions and

events among them. The distribution protocol is designed to minimize the network load

generated by control messages exchanged among the DSs. lED! uses the hierarchical

strategy to distribute events, subscriptions, and unsubscription messages between DSs:

Subscriptions are propagated upwards in the tree, so that all ancestors of a DS receive it;

when a DS receives a new event, it needs to send it to its connected AOs with a matching

event pattern, its descendant DSs that have subscribed with a matching pattern, and its

parent. This strategy ensures that all relevant nodes and the connected AOs receive the

published event messages. However, this strategy has a significant weakness since events

are always sent upward to the root DS which may become a serious performance

bottleneck.

2.3.4 Siena

Scalable Internet Event Notification Architecture (Siena) (Carzaniga, 2001) is a

middleware infrastructure that supports the implementation of publish/subscribe-based

applications with the main objective to provide a scalable Internet-scale notification

service. Siena is implemented as a distributed overlay network of servers that provide

24

clients with access points to a publish/subscribe interface. Notifications are produced by

objects of interest and consumed by interested parties. Siena offers an advertisement

mechanism that enables objects of interest to announce the type of notifications they

intend to publish. Interested parties subscribe to notifications by defining an event pattern

that serves their interests. The event pattern that has been defined by the interested parties

makes this system to be based on the mediator model. Siena servers which act as

mediators are responsible for selecting the notifications of interest and for delivering

them to interested parties.

2.3.4.1 Notifications, Filters, and Patterns

Siena notifications are untyped set of typed attributes. Each attribute is a triple consisting

of type, name, and value. A filter selects notifications by specifying attributes and

constraints on the values of those attributes. Constraints are expressed using equality and

ordering relations, substrings, prefix, and suffix operators for strings, ant the operator any

matching any value. A filter is matched against a single notification based on the

notification's attribute values. Additionally, Siena offers a limited support for composite

events. It is possible to investigate a combination of notifications through the use of

patterns. A pattern is defined as a sequence of filters that is matched against a temporally

ordered sequence of notifications. For example, if two notifications are received one after

the other and they match two filters that compose the client's pattern those notification

will be delivered to the client.

2.3.4.2 Distributed Architecture

Siena is designed to offer scalable event distribution in wide area networks. A network of

interconnected Siena servers builds the service infrastructure. Reference (Carzaniga,

2001) defines and analyzes four different server topologies: centralized, hierarchical,

acyclic peer-to-peer, and general peer-to-peer. A control algorithm based on the principle

of reverse path forwarding is applied in hierarchical and peer-to-peer topologies. The

main idea behind the routing algorithm is to send notifications only to those servers that

have clients interested in receiving such notifications. The algorithm is based on the

principles found in IP multicast:

Downstream replication; a notification is routed in one copy as far as possible and

replicated only downstream, as close as possible to the parties interested in it.

Upstream evaluation; filers are applied and assembled upstream, as close as possible to

the sources of notification.

The forwarding of advertisements decreases the number of control messages that update

subscription information since a subscription update is sent only to those servers who

must generate the matching notifications. Advertisements set the routing path for

subscription, which in turn set the path for notifications. Every advertisement is broadcast

to all Siena servers. When a server receives a subscription, it propagates the subscription

in the reverse direction, along the path to the advertiser, and activates the path for

notification forwarding.

26

2.3.5 REBECA

The REBECA notification service (Fiege, 2003) is a content-based publish/subscribe

infrastructure that consists of a set of interconnected brokers (mediators) that allow

clients to publish notifications for interested users. Brokers are divided into two

categories: Local brokers serve as access points for publisher and subscriber processes,

while routers are used for forwarding messages between their neighbouring brokers.

A notification in REBECA is a message that contains information about an event that has

occurred. A notification consists of a set of attributes where each attribute is a name­

value pair. Notification filters are defined as boolean functions that can be applied to

notifications. Filters can be either simple atomic predicates or compound filters. Simple

atomic predicates contrast attributes to values using the operators such as equality,

comparison, set operators, or string operators. A compound filter is a conjunction of

simple filters.

The notification service is distributed and relies on a set of routing algorithms for

delivering notifications: simple routing, identity-based routing, covering-based routing,

and merging-based routing. All algorithms are based on the reverse path forwarding

approach and can apply advertisements to avoid sUbscription flooding. In simple routing,

all active filters are added to the broker routing tables with the identity of the link they

originated from. This approach is not optimal because the routing tables grow linearly

with the number of subscriptions. The straightforward improvement of the approach is to

combine equal filters in routing tables, the approach used in identity-based routing.

27

Further improvement is the covering routing strategy which considers covering among

filters to decrease the size of the routing tables. Finally, the most complex approach

emerging that is to use to create new filters that cover existing filters (MOOI, 200 I). The

REBECA working prototype has been used to evaluate and compare the listed routing

strategies in (Muhl, 2002).

2.3.6 Service-Based Architectural Framework for the South African National Park
System

This system is based only on the peer-to-peer model because every time the subscriber

accesses the SANPARKS services information he or she request the information stored

on the static database. This system does not support the push communication technology

in delivering the services information to the interested parties. This automatically

declares that each time subscribers need to access the SANPARKS services have to place

the request to the SANPARKS server. Generally this system supports client/server kind

of communication because the subscriber acts as the client and the publisher acts as

server.

The Service-Based Architectural Framework for South African National Parks system

(Khumalo, 2004) does not support mobility when it delivers information to the

subscribers. It only uses simple desktop interfaces to exchange information between the

publisher and the subscriber. It also does not provide the related approach of delivering

messages or information from the publisher to the subscriber. The related approaches that

can be used to deliver notifications are SMS, MMS and Emails. The new proposed

system in the last section of this chapter aims to improve the work that has been done by

28

(Khumalo, 2004) in order to provide the system subscribers with the personalized

information about the SANPARKS services. The system designed in (Khumalo, 2004)

supports both, the push and pull approaches to communication. The push model allows

suppliers to initiate the distribution of notifications to consumers. The pull model allows

consumers to request notifications from the suppliers. Push suppliers actively send

notifications to the event channel, while pull suppliers wait for requests coming from the

channel. Push consumers passively wait for events that are eventually sent through the

channel, while pull consumers regularly check ifnew events are available on the channel.

This system only supports unicasting and also considers the issue of personalization when

it delivers information about South African National Parks services to the subscribers.

This system does not solve the issue of context awareness for mobility. The system

(Khumalo, 2004), only cater for people who have subscribed to the system as customers

of this system. It allows subscribers to unsubscribe from the system if they are no longer

interested in receiving the services information from SANPARKS.

2.4 Mobility Support in Publish/Subscribe Systems

Most of the existing publish/subscribe systems have been designed and optimized for

stationary environments where publishers and subscribers are static, and the

infrastructure itself remains fixed. The mobility-related operation is dealt with at the

application layer through a sequence of subscribe-unsubscribe-subscribe request. A

subscriber from the application layer first defines new subscriptions and unsubscribes

prior to disconnecting from the pUblish/subscribe system. After reconnecting to the

29

system, the subscriber needs to re-subscribe to make the system aware of its

subscriptions. However, the subscriber will not receive notifications that have been

published during the time of disconnection.

Podnar, (2002) argues that the publish/subscribe middleware itself must offer the

mobility support by ensuring seamless reconnection to a new broker and by preserving

notifications published during disconnection. Zeidler (2003) agrees that mobility-related

issues should be addressed by the publish/subscribe middleware, and not delegated to the

application layer. Some publish/subscribe systems address the problem of client mobility

and disconnection by using a common solution of storing each notification published

during disconnection in a special subscriber queue and deliver the notifications after

subscriber reconnection. The existing solutions, in systems like Jedi, Siena, lms and

Rebeca extend the established stationary publish/subscribe systems to cope with client

mobility while keeping the infrastructure stationary (Caporuscio, 2003). In the

subsections below we look at the extent to which mobility is being supported in systems

like Jedi, Siena, lms and Rebeca.

2.4.1 Mobility Support in Jedi

JED! (Cugola, 2001) offers two mobility-related operations: move/n, and moveOut. A

subscriber uses moveOut to disconnect from a broker and moveln to reconnect possibly

to a new broker. A client can detach from the system, serialize its current state, and later

reconnect. The old broker stores events on behalf of the subscriber during the

disconnection period and transmits them to a new broker upon reconnection. The

30

approach solves the queuing problem, however, no details regarding the handover

procedure from the old to the new broker, or the change ofthe delivery path is given.

2.4.2 Mobility in Siena

The authors of Siena present a support service for mobile, wireless clients of a distributed

publish/subscribe system in (Caporuscio, 2003). The mobility service enables the

movement of subscribers between different access points of a publish/subscribe system.

The service uses client proxies and a special client library to manage SUbscriptions and

notifications on behalf of a subscriber, both while the subscriber is disconnected and

during the handover between different access points. A client proxy runs as a special

component at an access point and stores messages for a disconnected subscriber in a

special queue. The client library mediates subscriptions, and initiates a move-out

procedure. It submits subscriptions to the client proxy and submits the address of the old

proxy. The old and new proxy start a special handover procedure that transfers messages

from the old proxy to the new one and then to the subscriber.

The mobility service implements a special synchronization mechanism to avoid lost

notifications. The main principle is quite simple: when transferring subscriptions from A

in order to be active on B, the system needs to make sure that subscriptions are active on

B before terminating subscriptions on A. It is possible that during the procedure both A

and B will receive the same messages. The mobility service implementation permits that

a subscriber receives duplicated messages. The presented system is independent from the

underlying publish/subscribe middleware: The portability of the mobility service has

31

been proved through an implementation on top of three different publish/subscribe

systems (Siena, JMS and Elvin). The client library wraps the targets publish/subscribe

API and needs to be implemented specially for each API by adding the move-in and

move-out functions, and by overriding the subscribe function of the original API.

Caporuscio (2003) gives the results of an experiment that shows the applicability of the

implementation. The evaluation is limited since the experiment was performed on a

broker network consisting of three broker nodes, a single publisher, and a single mobile

subscriber that moves only once. The experiment included the performance evaluation if

a subscriber uses a GPRS network which has been simulated to access the

publish/subscribe service.

2.4.3 Mobility in Rebeca

The approach taken within the project REBECA is to extend and modify the existing

publish/subscribe system to support mobile and location-dependent applications (Fiege,

et at. 2003). The mobility service aims to support two different types of mobility:

physical mobility and logical mobility. Physical mobility is similar to terminal mobility:

A client is physically mobile and roams between different network domains. It can

disconnect from the system and later on reconnect possibly to another broker in a

different network. Its subscriptions are valid and the system stores notifications published

during the disconnected period. Logical mobility is related to geographical location: as a

client changes its geographical position, its subscriptions dynamically change because the

published information is location-dependent.

The algorithm that is developed for physical mobility is designed for a distributed

network of brokers. It applies the "queuing" approach: The old broker stores notifications

for a disconnected subscriber. When the subscriber connects to a new broker, it re-issues

its subscriptions, but keeps no record of the old broker address. The algorithm finds the

old broker by locating a broker that is at the junction of delivery paths for the new and the

old broker. It is clear how this junction broker is found if simple routing is used. Each

broker stores active SUbscriptions for all subscribers with the subscriber identifier, and

since the SUbscription from the old broker is still active in the system, it is simple to find

the junction broker leading to both the old and the new broker. The notifications stored

by the old broker are routed through the junction to the new broker and delivered to the

subscriber. With simple routing the routing tables can become rather large because all

brokers have to knowledge all subscriptions. Routing algorithms that use covering and

merging are better suited for mobile environments where subscriptions change more

often that in static scenarios. The proposed algorithm needs further extensions in case

routing based on covering or merging is applied since the process of finding a broker

junction is not straightforward. The designed algorithm appears to be rather complex and

there are currently no evaluation results that shows its applicability and performance.

2.4.4 Mobility in JMS-Based Systems.

Recently, some of the systems that implement the JMS specification offer support for

mobility (Yoneki, et aI., 2003). Such systems offer a lightweight JMS compliant API for

Java-cnabled mobile terminals that can be used to implement JMS-based publishers and

subscribers. iBusl!Mobile is a commercial JMS-eompliant implementation. It integrates a

special gateway that serves as a mediator between a JMS provider, and JMS clients. It

offers support for native clients with no JMS support. Native clients can publish and

receive SMS or MMS messages that are transformed into JMS messages that can interact

with the JMS provider. iBusllMobile supports Tep, UDP, HTIP, and HTfPS as

transport protocols for JMS messages. JROM is an open source project that has recently

published a client API called kJROM that adjusted to J2ME devices. Pronto (Yoneki, et

al. 2003) is an academic project. It provides a JMS-compliant middleware system that

supports mobility of JMS publishers and subscribers, and implements a mobile JMS APl

that can run on resource-limited devices. It incorporates a mobile gateway that supports

JMS in wireless networks and employs SMS, or mail as transport mechanisms for native

devices that do not support Java and JMS.

2.5 Related Technologies.

Notification is very essential to this research. Hence the need to survey technologies that

can serve as candidate mechanism for notification. Those discussed in this section are

electronic mail, SIDS, mms and push technologies.

2.5.1 Electronic Mail

Electronic mail is one of the first services on the Internet for distributing messages with

arbitrary content. The introduction of mailing lists provides a powerful tool for one-to­

many content dissemination. Tools for creating and maintaining mailing lists facilitate the

users to subscribe to and unsubscribe from mailing lists automatically. and enables topic­

based publish/subscribe interaction. The main disadvantage of usmg mail for

34

disseminating content to large mailing lists is resource consumption. The typical mail

distribution method creates a separate mail copy for each receiver from the mailing list

and sends each copy separately to the receiver even if several receivers use the same mail

server. This approach can cause considerable computing load and bandwidth

consumption which can lead to significant delivery delays.

Contrary to the huge success and primacy on the Intemet, electronic mail is not currently

widely used in the mobile domain. The main reasons for its poor acceptance are

bandwidth limitations and scheduled pull-style retrieval of mail messages which require

permanent network connection. Mail readers for mobile devices that apply standard

Internet protocols (POP3 and IMAP) are currently available. To solve the problems

related to the pull-style operation, proprietary solutions that employ push-style message

retrieval have recently been developed. These solutions send notifications to the user's

mobile terminal when a new mail message arrives at the mail server.

2.5.2 Short Message Service

Short Message Service (SMS) is a simple messaging service widely used in today's

mobile networks (Le BOOic, 2003; Peersman, et aL, 2000). An SMS transports

alphanumeric messages using the store-and forward paradigm. Messages are temporarily

stored if users cannot retrieve them at the time of message publication. A stored message

is delivered to the user terminal when it reconnects to the network. An SMS offers a

point-to-point service that enables person-ta-person and machine-ta-person message

exchange carrying at most 140 bytes of payload. either 160 7-bit characters, or 140 8-bit

35

characters. In addition to the point-to-point communication, an SMS offers the so-called

cell broadcast service for transmitting messages to all active terminals in a cell that have

subscribed to the particular information service. This feature enables the deployment of

information services carrying for example weather updates and financial reports that are

examples of machine-to-person SMS usage scenarios. SMS is an extremely popular

messaging service, but limited by the low bandwidth communication channels.

2.5.3 Multimedia Message Service

Multimedia Message Service (MMS) is an enhanced messaging service that exploits the

access to higher bandwidth in 2.5G and 3G networks (Le Bodic, 2003). MMS enables the

exchange of multimedia messages carrying text, audio, and pictures in the context of

person-to-person and machine-to-person scenarios. MMS supports interoperability with

electronic mail which gives rise to various usage scenarios. The concept of message

notification allows deferred retrieval of messages and relies on persistent network-based

storage of messages. Messages can be stored persistently in the network and controlled

remotely via mobile terminals. Value-added services such as weather notifications, news

updates, or location-based information are typical content dissemination applications that

can be deployed using MMS as a transport mechanism. These services lack the flexibility

of subscription found in publish/subscribe systems: The subscription to value-added

services is static and currently offers no means for adjusting the service to user

preferences and up-to-date needs. It would be useful to extend the MMS architecture

which would then publish/subscribe interaction principles.

36

2.5.4 Push Technology

The Push technology offers timely delivery of possibly large amounts of content to many

subscribers in wide area networks. The technology requires that channels are used to

classifY the content that is published to subscribers, and the term push service is used to

stress that the content is actively pushed to subscribers. Push systems and

publish/subscribe systems are closely related. The basic interaction model is the same.

Subscribers subscribe to the service and receive the published content in the push style.

The main difference between the two types of systems is that push systems offer services

to end users, while publish/subscribe systems are middleware. Push systems offer

channel-based subscription criteria to their users, while publish/subscribe systems

provide flexible and expressive subscription capabilities. The extensive comparison of

push systems and publish/subscribe middleware can be found in Minstrel (Hauswirth,

1999).

Minstrel is a Java-based push system developed at the Technical University of Vienna.

The main goal is to provide flexible and secure content delivery in the area of e­

commerce, and to ensure system scalability. Minstrel has a distributed architecture and

employs a proprietary application-layer protocol for efficient content distribution to

numerous users across a wide area network. The main Minstrel components are a

broadcaster and a receiver. A broadcaster is responsible for managing channels and

sending information along channels. A receiver component is responsible for subscribing

a user to available channels and for receiving the content. The current receiver

37

implementation is designed for desktop computers, and the system does not support

receiver mobility.

2.6 A Concise Overview of the Proposed Solution

In this dissertation a Publish/Subscribe Architectural Framework for SANPARKS is

proposed for use by mobile and web-based applications. This research combines both the

broker (mediator) model and implicit models into a design that encompasses the

following criteria:

I. Restructuring - Restructure the SANPARK system fit for the status of

information provider;

2. Transparent Information Delivery - Integrate a publish/subscribe engme that

allows a consumer to get information without knowing the source;

3. Personalization - Enhance the engine to serve mobile users in a personalized

manner.

The adoption of m-commerce in this research will help us in the definition of the

architectural framework envisaged. From the point of view of access modalities, m­

commerce services can be characterized as either subscribed or un-subscribed.

Subscribed services are mostly used in both e-commerce and m-commerce, because they

have stronger security level due to the personalization of services for specific users

(Quah, et aI., 2002; Ozen, et aL 2004). Un-subscribed services due to their time-limited

nature always need more complex interaction between the user and the system, which

implies a longer time to access the service.

38

This research work considers only subscribed access modalities because of the finite

nature of services provided in the South African national parks. The work which has been

done in (Posland, et aI., 2001) and (Schmidt-Belz, et aI., 2002) gave rise to a

personalized, location-aware tourism support, implemented as a multi-agent system with

the concept of service mediation and interaction facilitation. Personalization is one of the

key features to facilitate the use of complex services on mobile devices (Barkhuus, et aI.,

2003). Personalization is where applications let the user specifY his own settings for how

the application should behave in a given situation (Yoneki, et aI., 2003; Barkhuus, et aI.,

2003). We have architectural components needed to realize a personalization system.

These components include user profiles, where preferences are stored, and

personalization rules that match user attributes and content (Pashtan, 2005). Finally the

combination of localization and personalization would create a new channel/business

opportunity for reaching and attracting customers. The system seeks to implement and

trial tourism-related value-added services for nomadic users across mobile and fixed

networks.

SMS and E-mail have been chosen as the delivery approach to subscribers since the aim

is to publish SANPARKS services information to consumers in terms of text using both

mobile devices and normal computers and these approaches are suitable for that. We then

introduced personalization in order for the proposed solution to meet the standard of

certifYing user's preference. In order to achieve a comparable result with similar research

39

endeavours, the MVC pattern has been adopted in the design.The following subsections

discuss the issues ofpersonalization and mobility in the new system.

2.6.1 Personalization in A Design of Mobile Publish/Subscribe Architectural

Framework.

A Mobile Publish/Subscribe Architectural Framework only supports the push approach to

communication. The push model allows service suppliers to initiate the distribution of

notification to consumers that already subscribe to the system in order to achieve the

publish/subscribe paradigm. Services Suppliers which are known as Publishers in this

system actively send notifications to the mediator for the mediator to check the matching

subscribers and push the notifications to subscribers. In the push approach of

communication Service Consumers passively wait for event notifications sent through the

mediator, unlike in the pull approach where service consumers regularly check if new

events are available at the mediator.

The model supports both unicasting and multicasting. It also enables personalization such

that consumers receive information from South African National Parks services in a

personalized manner. Personalization is the basic goal of this research work and without

its achievement the research is not successful.

This solution uses the SMS (Short Message Service) and E-mail technologies to deliver

the services information to the subscribers. This implies easy access to SANPARKS

information services by the subscribers. In reality most of the people can not afford the

40

types of cell phones that support all the available delivery approaches that are available

currently e.g. MMS and Push systems etc. Therefore SMS and Emails are the methods

for delivering the information services to the people as most of the mobile devices and

desktops users can manage to access these delivery mechanisms.

Another important focus of this work is to accommodate mobile users. Hence there is the

need to explain mobility in existing systems and also in the proposed system because

mobility is crucial for achieving the expected capability of sending notification to

SANPARK subscribers' mobile devices and desktops.

2.6.2 Mobility in A Publish/Subscribe Architectural Framework.

The architectural model uses a mediator which receives notifications on behalf of a

subscriber during disconnections. The mediator acts as a subscriber proxy, and can

register interest in subscriber's location. When the subscriber reconnects to the system,

the mediator will get a notification with the new subscriber's location, and then deliver

the saved messages to the subscriber. An interesting part of the model is that it relies on

the publish/subscribe infrastructure itself to transmit the information about changing

subscriber locations. However, this raises a serious security concern. A malicious party

could play the role of a mediator, track subscribers, therefore jeopardizing location

privacy, and delivering bogus notifications after subscriber reconnection.

In chapter three a detailed account of the proposed model will be given to show how the

mediator and implicit models were combined into the new proposed model. To the best

41

of the author's knowledge, all the existing systems that were represented in this work are

based on models crafted using the already existing publish/subscribe models that were

also represented in this thesis. Due to the understanding of the existing system in

pUblish/subscribe communication paradigm and existing model of the publish/subscribe

communication paradigm, the model that is further discussed in chapter three is crafted

using some of the existing models of pUblish/subscribe paradigm to form one model as

the solution to the problems given in this study.

42

CHAPTER THREE

MODEL DEVELOPMENT

3.1 Introduction

The increasing popularity of information services that rely on content delivery in mobile

environments motivates the need for a mobile content dissemination service, which is an

efficient and scalable service that enables the delivery of personalized and customized

content to mobile and desktops users. Publish/subscribe middleware offers mechanisms

for content personalization. Subscribers define the characteristics of content that is of

interest to them in order to receive notification when such content becomes available. We

list and analyze the requirements of the SANPARKS system and the content

dissemination service supporting mobile users of SANPARKS business services. The

possible design principles that can be handled by our model are analyzed and defined in

this chapter. Our new model should accommodate both mobile devices and desktop users

to ensure equal access to services.

This chapter is organised as follows: Section 3.2 states the requirements formulation of

our system. Section 3.3 defines the design principles that drove the creation of the new

model. Then the rest of the sections of this chapter define the development of the new

model for SANPARKS system.

43

3.2 South Mrican National Parks System Requirements

In order for SANPARKS customers to receive services information in a more concise

manner than what is currently available. The organization needs to adopt the

publish/subscribe communication paradigm. This will allow customers to subscribe to the

system and set their preferences during the activation of the subscription in order to be

notified with information that is relevant to their interest.

SANPARKS also need to consider the mobile commerce service model such that their

business can be extended to mobile device users. This has a potential of increasing the

number of customers that support the business as mobile devices are very popular and

affordable. Mobile devices users will be able to enjoy the services information offered by

SANPARKS anytime and anywhere.

It goes without saying that SANPARKS also need to give access to people that are using

desktops. This category of people would like to gain access to information via

SANPARKS desktop interfaces whether at home or in the office.

Therefore there is the need to restructure the current organisational architecture into an

information-provider entity before the publish/subscribe communication paradigm can be

adopted in the current system.

The wide acceptance of content information service depends on the precondition that the

system delivers only highly personalized and customized content in accordance with user

44

preferences and current presence status. This may bring about the creation of a "branded"

dissemination service that is invulnerable to spam. The service could become a trusted

intermediary between content publishers and subscribers that filters information

according to user's needs. The design requirements that need to be satisfied are outlined

next.

Push-based content delivery: Service users must be able to define the type of content

they want to receive, and be served with the published information as soon as it is

available. The push-style content delivery eliminates the burden of querying for

information at regular intervals and is in accordance with the stochastic nature of content

creation and publication.

Content filtering and personalization: Content filtering is enabled through user

subscriptions to minimize the number of received message that are not of interest. This

feature requires that services are personalized and adopted to user context. The

concomitant effect is that information overload on a user is reduce to the barest minimum

Scalability: This requirement connotes that service IS optimized for the particular

application area with respect to the number of publishers and subscribers in the system,

and the size and frequency of published content.

45

3.3 Design Principles of the Publishing Personalized Data Architecture
for SANPARKS

The Publish/Subscribe Architectural Framework for SANPARKS is based on two related

models that were defined in section 2.6 which is the broker (mediator) and implicit

models because they satisfY the following design criteria:

• Restructuring - Restructure the SANPARK system into an information provider;

• Transparent Information Delivery - Integrate a publish/subscribe engine that

allows a consumer to get information without knowing the source and

• Personalization - Enhance the information delivery engine to serve mobile users

in a personalized manner

The subsection to be discussed in the pages to follow detail the overview of the design

principle that have been introduced earlier on.

3.3.1 Restructuring the organizational information Architectural Framework.

Some of the SANPARKS are interested in enabling most if not all the communities of

South Africa to benefit from its activities. Historically, static web pages were used to

inform the public about services or products offerings excluding the content that

information consumers are willing to buy. If the current information delivery to

customers through static web pages are not simplified and personalized then there will be

no need to restructure the SANPARKS system into an information-provider entity that

will make sure that information is simplified. Restructuring the existing entails

identifYing the system or component that would be modified to achieve the goal of

simplifying information. The usability testing that will be done during testing phase of

46

this system would identify whether the new SANPARKS Information System developed

is the information provider entity or not.

3.3.2 Making Information Delivery Transparent in a PublisblSubscribe
Architectural Framework.

The SANPARKS Information architecture is currently not associated with any

communication style and therefore we explore the obvious gap by introducing an delivery

mechanism that allows customers to get information without knowing the source.

Adopting the publish/subscribe communication mechanism provides no prior knowledge

between the subscriber as the consumer and the publisher as the source, since the

publish/subscribe communication paradigm is the engine that allows a consumer to get

information without knowing the source. This design principle promotes the notion of

making information sources transparent to the user.

3.3.3 Personalization in the Publish/Subscribe Architectural Framework

Personalization is about tailoring products and services to better fit the user, e.g. by

focusing on the user needs. preferences. interests, expertise, workloads, task etc. The

heart of this study is to bring user context into focus as the means of capturing all of the

above. In this way, information delivery serve to both mobile and desktop users is done

in a personalized manner. The notion of personalization in this work requires that the

subscriber provides hislher preferences and profiles before the system can guarantee that

the information published will meet the subscriber's expertise, needs and interest.

47

The foregoing design principles provide the basis for converting existing static web pages

into a dynamic e-eommerce based information delivery enterprise. In order to start

trading conservation information as a commodity, via the Internet, the SANPARKS

model had to be restructured as conceptualized in fig 3.1.

SANPARKS SYSTEM ... Subsaibe to

Service &Jurces.
Provides and updates ...

i.
: Push.'se<1(J irn",

I

~
I Camp i
L----l

Reyular i
,

SANPARKS Database

I Accommodation TYpeS!

6

!.Delivered to ...

I ~ I
~, .r--!
I, Chalet i r Camp I1 Lodge I
I L-J L...-...-J

Contains

Features i

~

services Information

I ' I' ' ! I So, IScenic I Cultural " ,. Catenng i,! featun;s, fe tuf,.aes: zs:

Animals t

1010 !

SUbset of

L Publi='=,"='-==':..":..,,_.:... i 'Ni(~ess Gateway j
! (Mediator)

Figure 3.1: Tbe Restructured SAl"lPARKS Conceptual Model

The SANPARKS conceptual model given in Fig 3.1 adopts a service-oriented approach

to conceptually show information entities and their relationships. The goal is to enable

the SANPARKS entities become information publishers. The overall information

architecture of the restructured SANPARKS has been conceptually modeled. What

remains is to describe the identifiable architectural elements.

48

• SANPARKS SYSTEM consists of the South African National Parks forming a

unified business or system that provides service consumers with access to

personalized information about services conserved in the SANPARKS, this

business has many service suppliers.

• Service Sources are divided into four categories in the SANPARKS system; we

have Plants Info Suppliers, Animals Info Suppliers, Features Info Suppliers

and Accommodation Info Suppliers. In this case Info fully stands for

Information. Service sources act as repositories for, and disseminate specific type

of information commodity. A mediator exists through whom service suppliers

publish their information to consumers.

• Services consist of the tasks performed in response to users requests concerning

plants, animals, features and accommodation in most cases; information is

retrieved, and packaged to meet users' specific needs.

• Features information can be categorized into scenic features and cultural

features where scenic features can be mountains or a river, the cultural features

can be a tribal village.

• Accommodation types can be classified into regular and self catering type of

accommodation. Regular accommodation consists of the lodge type or camping

type. The self-catering category consists of chalet or camping type as well.

• Service Consumers will subscribe in order to receive the available SANPARKS

services information and products information matching their interest according

to the preferences supplied at subscription time.

49

• SANPARKS Database holds the filtered services information of the distributed

national parks that is ready to be disseminated to the relevant subscribers by the

SANPARKS system using the mediator.

• Mediator acts as the software bus between the Service Suppliers and Service

Consumers. (Eugster, et aI., 2003) prescribe that a good publish/subscribe system

should not allow Service Suppliers and Service Consumers to have prior

knowledge of each other/or should not exchange services information directly.

The mediator is the mechanism used to avoid direct communication between the

two entities. The mediator waits for information to be published by Suppliers and

matches published information to the relevant corresponding consumers, once the

relevant consumers become available then the mediator pushes the published

information to service consumers.

The conceptual model for the SANPARKS Information system already described above

requires the newly constructed publish/subscribe architectural framework that support the

implementation of adopting the publish/subscribe communication paradigm into the

SANPARKS environment. This would enable the subscribers to receive the personalized

servIces information using their desktops and mobile devices without knowing the

source.

50

3.4 PublisblSubscribe Architectural Framework for SANPARKS
System

The Architectural Framework presented in fig 3.2 combines both the mediator and the

implicit models. This architecture seeks to support the newly conceptualized

SANPARKS model in fig 3.1 in order to make it fit for the information provider entity

that enables information consumers to receive the personalized information through their

mobile devices or desktop computers. This architecture also presents the adoption of

publish/subscribe paradigm into the SANPARKS environment.

The model ensures that communication between end points is anonymous, asynchronous

and loosely coupled. In other words, the architecture ensures that the system decouples

publishers and subscribers in time, space and flow. This decoupling of subscribers and

publishers in time, space and flow makes publish/subscribe systems highly scalable by

removing all explicit dependencies between the interacting parties. It also helps the

system to adapt quickly to a dynamic environment. Decoupling in space allows the

subscriber to move from one location to another without informing the publisher while

decoupling in time allows for disconnected operations of the subscriber. The following

section identifies and discusses all the component or building blocks used to craft the

Publish/Subscribe Architectural Framework.

51

SfBSCIMns
lImlIAIOK -

PIlll!IID

~ 11----... atmII_.
PUlisller I- SAIiP.lUSIB.

-"'&iDu- r
/' -.. --"-- ./ ...

iD 1lll0UWl1ll ""I)J 0 Naiiu.lPuk

SA.1'iPARKS m.m DBI
flLTIR[J) "-

DB
"- --'

IiBi Naiiu.IPark ~m_

1
,.. (

Siie I

,
I 1,II(l1.........-.e.il
I,
I

Seoi"P'i....'_
1___ ,

CaioOoo _ " ...

'" '"
,

~PaS.1
,

a.~_wi.,,
I
I

l;-VY-
,,
I

,
)

,
NatioalPark510....._

I-5 I
./ /

_I , DB.
'\.. ,

tNetnm> -. I= ,
= -<-l ,

I
I
I o,un.,

e-w.. ,
NaiiualPuk

Silo •
. ",

-.
CaioOoo_"...-<-l -.Pa_a

iD
00 ...--_... ~'

J J 0c--If.....
S...... l S....... NliOrra

Figure 3.2: PublisblSubscribe Arcbilectural Framework for Ibe SANPARKS System

52

3.4.1 Building Blocks and Components of Publisb/Subscribe Architectural
Framework for South Mrican National Parks.

The architecture mainly comprises three different components together with their nodes

as the buildings blocks of the entire architecture. The components and nodes of the

architecture are defined using the tabular form as follows:

Table 3. 1: Tbe entire components and bnildine: blocks ofthe Architecture
Publisher Comoonent
Publishers: This node declares its
intention to send publications and
describe publication types and
patterns.. Generally this node
publishes all the mformation that is
available about SA..NPARKS services
to the mediator.

Publisher's Senrer: This server is
connected to the network and it holds
all information of the national parks
databases.

~IediatorComoonent
Mediator: This node is the software
bus which allows the communication
between the publishers and
subscribers. It is also known as the
controller since it is responsible for
controlling the entire functionality of
the architecture. This node a11o\\'s the
exchange of infonnation bern'een the
publishers and subscribers. This node
ensures the transparent information
delivery bern'cen the subscribers and
publishers.

Information Filter. This node is the
one that summarizes and categorize
the sef\'ices infonnation send by the
publisher. We call it the information
filter because as the publisher
publishes the ayailable servIces
information to the mediator I

automatically that information has to
be summarized and categorized
according to topics/preferences by
this node. The mediator imeracts \Ylth
this node by alerting it to filter the I
distributed infonnation before it can

1

1 ~:tab=ed on thc SANPARKS I
User Profiles: This node holds all
the intonnation of the subscribers
which is needed by the mediator
during the matching phase in order to
determine the relevant subscribers to
receive the information that is send
by the publisher to the mediator.

SA..:.",\PARKS Filtered Database:
This database holds the filrered
ser.·ices information of the
distributed national parks that is
ready to be disseminated to the
rek~';ant subscribers by the
SAN"PARKS system.

53

Subscriber Comoonent
Subscribers: This node registers

interest in receiving publications and

specifies the subscriptions to the

subscribers" ser.'er. This node waits

for the infonnation ro be pushed to

himlher in order to gain access to it

by viewing that infonnation.

Subscriber'5 Sernr: This server

holds all the information requested by

the network from the mediator in

order to push it to the relevant

subscribers when thC')' reconnect to

the net\....ork.

3.4.2 Functional Requirement of the System

3.4.2.1 Use Case Diagram

This section presents the use cases for the prototype ofthe publish/subscribe architectural

framework for SANPARKS to be implemented in this research work for usage in the

SANPARKS organization.

Subscribe

CreateProfile

c PublishTOPiClnfo=:>....----r-
bdio
- ~-s....uillec

ManagePcofile

Up darePcofile CeletePcofi10

Figure 3.3: SANPARKS Use Case Diagram

The usage scenarios of the system indicate that the system has two actors that are

participating in the system as the publisher and the subscriber. These actors determine the

occurrence of the adopted publish/subscribe communication pattern in the SANPARKS

domain. In detail, a publisher in this system is the information sources of plants, animals,

features and accommodation. The information sources deal with publishing SANPARKS

services information as the house-keeping process rather than a public process to the

mediator in order for the mediator to notify the subscribers with the SANPARKS services

54

information that meets their interest. The subscriber can subscribe for the topics of

hislber own choice on the mediator in order to be notified with the SANPARKS services

information which meets hislber preferences that slbe specifies during the subscription

process on the system. The overall functionality of the system use cases is given below.

Subscribe: A subscriber can subscribe for the topics on the mediator to be able to receive

notification about the available SANPARKS services information of hislber interests.

CreateProfile: A user defines the profile when slbe first uses the system for the system

to authenticate him/her when slbe uses the system in future. The user needs to specify the

personal details for the creation of the profile. The information to be provided by the user

is the usemame, password, full name, e-mail address, and mobile phone number.

PublishTopicInformation: The information sources of plants, animals, features and

accommodation publishes the SANPARKS services information to the mediator, and

then the information is filtered by the mediator's information filter according to the

appropriate topics category that is stored on the SANPARKS database. Finally the

mediator as the controller of the system matches the services information that is on the

SANPARKS database with the user profiles of the system and disseminates that

information to the corresponding subscribers.

ManageProfile: The subscriber is able to manage his/her profiles from the SANPARKS

Information System. Managing Profiles can be achieved by updating or deleting.

Updating the profile occurs when the user makes some changes in hislber profile.

55

Deleting the profile occurs when the user prompts the system to permanently withdraw or

delete hislher profile from the system database.

UpdateProfile: This use case is part of managing the profile by the system users. This

indicates that the subscriber of the system can be able to update hislher profiles.

DeleteProme: This use case is also part of managing the profile by the system users.

This indicates that the subscriber of the system can be able to update hislher profiles.

3.4.2.2 Sequence Diagrams
Based on the use cases identified above, the following sequence diagrams were

constructed in order to show the flow of information of the above use cases:

oSubscribe ()

I~~~I c:J
: '· ,

I !· ,· ,· ,· ,· ,i 1· ," :osetProJile () :

1:-__pr_O_Jil_e_s_etted ---'O

""'0""="'''1 ~'
•••
•
I
I

Figure 3.4: Sequence Diagram for Subscribe Use Case

Figure 3.4 shows a sequence diagram of the Subscribe use case. The flow of time is

shown from top to bonom, that is, messages higher on the diagram happen before those

56

lower down. The arrows (links) are messages - operation calls and returns from

operations. In the SANPARKS domain the subscriber can be either a researcher or

tourists who use the system for the first time. The subscriber uses the graphical user

interface provided in the national park system to define hislher profile. In the process of

defining the user profile, the subscriber provides his personal details (id, cell number, e-

mail address etc) and preferences (plants, animals, features and accommodation as the

additional feature) for the system to be able to identify and authenticate him/her when

slbe access the SANPARKS services. For mobile phone users, the system should use the

mobile phone number as the username and allow the subscriber to create his/her own

password. The subscription and provision of preferences makes it easier for the system to

present the user with relevant information during the push-based dissemination of

information to avoid time consuming if accessing to the information. The following Fig

3.5 is the PublishTopicInfo sequence diagram that is explained in details below the figure.

IPnhfu;h§rUI

i
i
4

• Displaynotitica1i.an

IMOOCob11

I
:

publishTopichlfo () :

-tJ setTopicInfu () ~

· ..:· .
i. topic srtted 0· .
tJ pushTopicInfu (2i· .· .

notif;:Publisl=UI Q d !· .· .· .: :· .· .· .· .· .

I Sub~d., I

•

Figure 3. 5: Sequence Diagram for PublishTopiclnfo [se Case.

57

Figure 3.5 shows a sequence diagram of a PublishTopicInfo use case. The flow of time is

shown from top to bottom, that is, messages higher on the diagram happen before those

lower down. The arrows (links) are messages - operation calls and returns from

operations. In the SANPARKS domain the information sources are responsible for

publishing information which is done as house-keeping process rather than public

process. The information sources use the graphical user interface provided behind the

scene to publish the information to the mediator. The reason of publishing information

behind the scene is that SANPARKS organization is not interested in observing the way

of publishing information to the subscribers but to ensure that subscribers receive the

simplified and personalized information at the end of the day. The mediator then sets the

topics information according to the relevant subscribers and pushes that information to

the relevant subscribers.

Finally the mediator notifies the publisher as to whether the information was sent

successfully or not. The figure 3.6 is the ManageProfile sequence diagram that gives the

overview of the flow of information in the ManageProfile use case. The flow of

information takes place when the subscriber activates the manage profile process in order

to update or delete his/her profile. The subscriber interacts with the manage profile

graphical user interface to either delete or update their profile. In updating the profile, the

subscriber needs to provide the system with the new information to replace the one hishe

is updating. In deleting the profile the subscriber need not provide the system with any

information; all hlshe needs is to specify that h/she is deleting his/her profiles on the

system. The profile of the subscriber is then permanently deleted by the system.

58

EJ,
I••,,,,,,
••,

EJ,
•••,
•
I
I
IM.... profile

EJ
I,,,,
•,,,,
•I

, I

• I, ', ., '· ', :

h g.tP.,file (id) I
UI---------tlJ,

! h ..trie~rofile(id)
I ~.....--------.t1'1
I I q, : :profile ..trieVl!<!! l+-~ ---J
, , ,
· q' :i..1--_'~.;...:.lI"_file_ilIi:>_rm_.fym_·_--, :
~ - ~
, I

1<
,..;;.;;;:;;;;:.;;,;;;;;;;;;;;;;__...0, !,:Display 1Illi£caiicn ,

"

" :I: :
D . I

UpdaideleleFrofile () ~ !
" ." ," ,

i D\1Pdai>Prolil'(ld)ld<]"lop.,fiIe(id) i! 1-,.;..----------+.'f :

1 1 OI\1Pda!lPIofile()ldele!eP.,fiIe() l
I ' ai,
I ,

I • 0I ,
: :. p.muP#d!profile d<!leled
• I I:. 0 Isepj ssfzmetiep , •
" I :

1
4

D5~.yMes~. 0 I I
.....--------- I ! !

Subcier

Figure 3. 6: Sequence Diagram for 'tanageProfile l\se Case

59

3.4.2.3 Algorithms
This gives the overview ofthe use case specification using program design language that

shows how the system use cases are going to be functioning after the completion of the

system.

Figure 3. 7: Subscribe Algorithm

The figure 3.7 shows the algorithm of the Subscribe use case that gives an overview of

the functionality of the subscribe use case. The subscriber requests to subscribe to the

system then the system provide the subscriber with the subscribing user interface for the

subscriber to fill in the required information. On completion of providing the system with

the required information, the system checks the validity of the information provided by

the subscriber. If the information is valid the system successfully registers the subscriber,

but if the information is invalid the subscriber is then requested to re-enter the valid

information.

60

e~~l{-'-~:ili:£fo~t__~§H:),> comg-let_e~es;g
nc~~~e~:_llii;:'_:.ts:- :inc_omple-te:f then
d±~pLay err9r-me~sag~

goto step~ 6

~8: .. -:-:ehe_$R-,:_-information validity
ormation is invalid} then

rror _-.:message

~~pe~rsfrt fnformation to profiles
~ot±fy s~scribe~

~ e!'..d if
end: ±£-:-

unt-~ll~poote--process is' successfully completed)

H' fdeJ:ete is~ choseni
- do

-record us-ing an- id
-successful}r••...~~~~<.~~~. -_~~.. '.~ --~- .~~:. -.. ::.. ~~ ~l:S<,IJ""t::U'Y user

-- _-'::e1::Se-- - . _
____~_ -~~~:!Z)"3?~ :n9~~~gg:
ert~- "i-:e--

Figure 3. 8: 'Ianage Profile Algorithm

6\

Figure 3.8 is for the Manage Profile algorithm that gives an overview ofthe functionality

of the ManageProfile use case. The subscriber as an actor in the SANPARKS model is

responsible of managing his/he profiles in terms of deleting or updating the profiles. The

subscriber can also update his/her profile by editing the information which is no longer

relevant to himlher and provides the system with the new relevant information.

"hen

info:Olli.ti.on validity
,,.,=Tr iuf':>D!]"t.ion is invalid} then

"n,or message
step 2

l(tOj»i,; Lrrf,>rnlacion :is succe:~sful.ly persisted)

to a database

Figure 3. 9: Publish Topic Information Algorithm

The figure 3.9 is the Publish Topic Information algorithm that gives an overview

functionality of the PublishTopicInfo use case. The information sources are responsible

of performing this process by interacting with the user interface that is provided behind

62

the scene of the SANPARKS Information System because this process is meant for

house-keeping process rather than the public process.

3.4.2.4 Activity Diagram for the SANPARKS System

Figure 3.10 is a DML activity diagram showing actions taken during a session of

accessing the service by the subscriber in the SANPARKS Information System. The

initial action taken in order to be successful in accessing the service is to subscribe to the

system. This will allow the subscriber to read message that has been sent to the desktop

as e-mails or to the subscriber mobile device as a sms. Subscribing to the system also

allows subscribers to update or delete profiles. The actions of updating and deleting

profiles are only possible if subscribers have been authenticated by the system as the

owners of the profiles they need to delete or update. All the actions discussed in this

section can be achieved by using the desktop and mobile device for only subscribing to

the system.

•(a subscribei' comes inl

~>- I"_",_a~_,_ro_,,_.] 3>'::::::

{read messages]

figure 3.10: SA'iPARKS System Activity Diagram

63

'j

3.4.2.5 Class Diagram

Figure 3.11 is the class diagram that represents the classes of the system implementation

together with their attributes and operations (methods). The implementation of the system

is covered by nine classes as follows:

Publisher: This class represents a bean that defines properties and behaviors for handling

information of the publisher entity.

Subscriber: This class represents a bean that defines properties and behaviors for

handling information of the subscriber entity.

Message: This class is responsible for storing messages in an XML storage format which

acts as a mailbox for emails. The XML storage is only for subscribers who chose email as

a delivery method. The Message class defines methods for saving, deleting and retrieving

emails. Furthermore the class defines methods for marking read messages.

TopicObserver: This class is responsible for listening to messages published to a topic,

and then sends the message to potential subscribers when publication is received. This

class applies the Observer design pattern in modeling collaboration between system

objects.

64

Topic: This class represents a bean that defines properties and behaviors for handling

topic publications. This class is a convergence of four properties the title, category, body

and a keyword.

ProfIle: This class represents a generic class for both the subscriber's profile and the

publisher's profile. Furthermore, it is a bean class with a defined properties and behaviors

that are supposed to be shared among its descendant.

SubscriberProfile: This class is a derivation from the super class Profile. Added to this,

it is a specialized bean that defines properties and behaviors for handling information

pertinent subscriber profile.

PublisherProfile: This class is a derivation of the super class Profile. It is also a

specialized bean that defines properties and behaviors for handling information pertinent

publishers' profile.

Preferences: This is a delegate in class SubscriberProfile and it is responsible for

capturing and querying subscriber preferences. It defines attributes that enables

subscriber preferences to be persisted to permanent storage.

65

~bs"""", TopicObsal'Y1IK" utilizes
-topic: Topic

1
+TopicObserver(in observableTopic. Topic)

1+update()

1 -produces

1 . -produced by

........
-messagelD : int

. -senderAddress . String
-observed by 1. --destinatlonAddress :Stling

-subject: String

Topic
-content. String
-receivedDate : String

-title: String -status· String
-category: String +setMessageID(in messagelD . String)
-body: String +setSenderAddress(in SenderAddress String) -consumed by
-keyWord. String +setDestinationAddress(in destinationAddress . String}

ublished by +Topic() +setSubiect(in subject _String)

I
~ +setTitle(in title String) +setContent(in content: String) 1

1 • +setCategory(in category . String) +setReceivedDate(in receiveDate String)
+setBody(in body String) +setStatus(in status. String)
+setKeyWord(in keyWord : Smng) +getMessagelDO I+getTrtle{) . String +getSenderAddressO . String
+getCategoryO . String +getDestinationAddressO . String I
+getBodYO : String +getSubject() : String I
+geyKeyWordO . String +getContent() String I

I
+getReceivedDate() . String

I

+getStatusO . String 1." -consumes

1 . -.-receives subscriprons

i -subscribes

I
So_nb., II

lishes 1 1 .. ~
i Profile !Publisher
-password: String 1 -defines
-ceHNu(fIber _String

!-emailAddress String

+Pro1i\e()

-pub

-defines
+setPassword(m password Stnng}
+setMobileNumber(in mobileNumber String}
+setEmaiIAddress(in emailAddress String}
+getPassworoO Strng
+getMobileNumber() String
+getEmailAddressO . String

-defined by

-defined
PubUsherProfile SubscriberProfile

~, -publisherlO String -.-subscriberlO string

r
+PublisherProfile()

-preferences Preferences 1.. ~

1 +setPublisherlO(in publisher10 . String) +Subscriberf'rofile()

+getPublisner1DO String +setSubscribertO(in subscribectO Stling) vcid
+setpreterences(in preferences Preferences) void -utilized by

+getSubscribertDO . String
+getPfeferences() String

•
Preferences

topicCa1egory String
--deliveryMettlod String
-keyWord String

+Preferences()
+5etTOpicCategory(in topicCategory String) void
+setDeliverMe1:tlod(in deliveryMettlod String) void
+setKeyWord(in keyWord: String) void
+getTopicCategoryO. Strir1g
+getOeli\lerMe-thOOO String

I +getKeyVVordO • String

Figure 3. 11: The Publish/Subscribe SANPARKS Class Diagram

66

3.4.2.6 Deployment Packages

Fig 3.12 illustrates a business package for handling subscribers' requests for subscribing

to the service. This package illustrates a business model that defines business classes

which models the functionalities of subscription. The business model illustrated in the

above subscription business package is comprised of business classes that can be

implemented as bean components, such as classes like Message, Profile, Preferences and

SubscriberProfile. Only the SubscriberProfile class attributes can be persisted to a

permanent storage.

SwIoserip&. PUkac.1
---~,int

~ACdfess : Strtng
..6-tl....i()nAdCnJ~ : String

~.""'""Loon... •Suing
~_.s.... -slatUs : String" ~c::S!r1Ilg

~inAle6~lO String} ~INumber . S1J1rl9
~ACcf~:1n So;nc«Aa0e5.5 - 5tnngi . f8M Siring

~ine~res&_S'7inq\ j:'fc-1'MiJ
~~m sub;ea : Stmg, ~"a&lo...ord(" pass'N<W-t: Strwlgi
~...onwnu:inCQn(ent -~) '"1>9t'-totlile~ ... mobI;e~mbEw. SIrn9,1
~~teo;inr___OatJlJ strYw.J)

~tEmillilAdQr&.li6i'"- ~s: SlJV'q!
$e{~instiJ,tos. . String) ""1J6:P~d/) Siring
gm:·"age'OO "'9'J~GN4JmbenJ . SlrinoJ
~~Br~; srzr.g ~:Em<liA.odfe&.$ii - SIJing
gtd.~.'.Stt~

J: String
~j_Stling

~~~D8t~I:Smng
gers~):String

" .. _Pi ....

~~:stnr.g
~85

~}

~~IOIIn~D String; - "00
~~s.(in~~ Pffl.fen>oc_:; : 'iQOC

~"..sc-D<} . Suing
r-~~~) 5.'ring

1 T
....... e......

~i:S1rino;
."..........._......
....,"""" . &ring

}

""So6tTopic.~~in ~.-cCalEgor~ . Strino;! _,';X
560tDelt e'Medwx:linoeo....ef)'~ Str1J1l;i! ..0IIC

-seD<t;ly'illoreiin luJy'....cwd Slnng; -nr.
~~Tap;G.\Iot9gayLI S.::rin9
~o...w.:_Uf='.hco1i} S1nI>q

9ft1K"'Y'o"'on'!l.l S1rln9

Figure 3. 12: The PuhlishJSuhscrihe Subscription Package

67



Fig 3.13 is a Publish/Subscribe publishing package and defines a business model

responsible for handling the publishing request initiated by the publisher. The business

model defines business classes, which can be implemented as bean components such as

classes like Profile, PublisherProfile and Topic. Both the Publisher and Topic class

attributes can be persisted to a permanent storage.

,-/
hlIlismc Package

Topic
4ide :SIring Profile
[CilleiPY .Slmg

passwooj : Stringltxx!y:SIring
fQ;~·SlOrg:Slrirg f8naWdress :Stri1g

TC4li:()
"setTilJelil title· $lJing) )

+se!Categay(i1 tategay :StMg) ~asswonl(ir! passwooj :Slrirg)
••:...leNtntel(i1~ . String)

111 body : Strillg)
~. in emaiMTess :SIring)

in kerNcro .Stmgl
+getTrrieo ~ ... ) Stri'g

+ge(~l· StMg OSrmg
) Strirg rBSS\) Strirg

J: Stti1g f).

PoCisl""P"A

r>""""" "" '... . Slmg
~}.. ~~,:,i1 pu~. SIJirg)

. -}$tmg

Figure 3. 13: Publish/Subscribe Publisbiug Package

68



3.4.2.7 Access Layer

Fig. 3.14 depicts the entire access layer package the SANPARKS architecture. This

package implements access methods responsible for accessing data stored in the XML

database.

Acceu Layer I

Subsct1berOB(in;><_:String)

",trleveS<JbscribeoProfile{in subsaiberlD: Srrio>g. in password: String): Subscribe<f>",file
~SubscribefUst(in topicCalegcry· Srrio>gl· Subscribe<Poofile! I
__ofilo(in profile: Subscri!lerProfiloJ

updaloSubseriberProlile(in p'ofiIe : Su_K>fiIe}

+Publish<!<Oll(in"'_I
+savePubllshe<f'mfinpu_:Su_rnfiIeJ

.--.oolo(in publishef1lJ : String. in _ . S'nngl : Publish_file

.."""...__fiIo(01 pror",,: Publisl>_",fileJ

....- gDB

figure 3.14: Access Layer of the SANPARKS Information System.

The Access layer package is comprised of three core access classes namely the

SubscriberDB, PublisherDB and MessageDB.The SubscricerDB defines access methods

responsible for accessing subscriber profiles in an XML database, and the PublisherDB

does the same as SubscriberDB.Lastly the MessageDB defines access methods

responsible for storing, retrieving and marking emails in an XML store.

69



CHAPTER FOUR

IMPLEMENTATION AND EVALUATION OF THE
PROTOTYPE

4.1 Introduction

The previous chapter presented the overall development of the proposed architectural

model for publishing personalized data in the access and provision of both e-services and

m-services. The focus of this work is on providing personalization of services within the

SANPARKS domain for the information consumers to gain access to information that

meets their interest. This chapter presents the design, implementation and evaluation of

the proposed publishing personalized data model discussed in Chapter 3.

4.1.1 Description oftbe Implementation

The SANPARKS architecture is implemented as a web application that supports

publication of messages through simple web forms processed by simple servlets running

in a web container. The published messages are disseminated to potential subscribers

either through email or SMS, dependent upon which delivery method the subscriber

specified during subscription. The support for varying message dissemination heavily

relies on the architecture's focus on both mobile and web subscribers. Emails are stored

as simple Xl\1L documents accessed using the JAXP (Java API for XML Processing) and

SMSs are sent to potential subscribers using the WMABridge API. The WMA Bridge

API enables J2SE (Java 2 Standard Edition) applications to easily interface with MlDlets

defined by the J2ME specification through messaging.

70



The SANPARKS architecture is crafted as a three tier implementation architecture which

is comprised of the client, middle and the infonnation tier. The client tier is a

convergence of two MlDlets that are developed under J2ME specification and tested

using the Sun Wireless Toolkit 2.3 Beta version. The first MIDlet defines a fonn that

enables users to subscribe to the content dissemination application. The second MIDlet

defines an interface for receiving incoming messages published by SANPARKS

legitimate publishers. The middle tier is a convergence of various packages structured

into three standard components of business logic, access logic and presentation logic. The

middle tier runs under a web container basically the servlet container which is Apache

Tomcat Web Server 5.0.The web container is a module that handles processing of web

components, managing various aspects such as state management, concurrency control,

thereby giving the developers the freedom of developing an application without worries

of system dependent mapping and calls. The infonnation tier is a collection of XML

documents which is referred to as an XML database. The collection is accessed through

JAXP for reading and writing to XML documents. The implementation adopted the use

of DOM Parser for it's capable of structuring infonnation into a hierarchical tree.

4.1.2 Environment Specification

The implementation of the software was carried out on Borland JBuilder 2005 Enterprise

Edition and it was tested using JBoss Application Server 4.0.5.The mobile environment

was simulated using the Sun Wireless Toolkit 2.3 Beta version J2ME Emulator from Sun

Microsystems. J2ME Emulator was configured to support one of the MIDP optional APl,

the Wireless Messaging APl (WMA) to facilitate message communication in the mobile

71



environment during the communication with the server. The client application is

developed to run on J2ME devices that support CLDC 1.0 and MIDP 1.0 and also

support communication through HTTP networking.

The implementation of the server was accomplished using one of the J2EE compliant

servers, the 180ss Application Server 4.0.5.The server-side components are configured to

run on any server that conforms to the J2EE Specification. The server handles messages

from clients through the use of WMA Bridge API, which facilitates message

communication on the server-side during a session with the client. The server is

comprised of web components that run within the Servlet container and also uses the

JAXP to communicate with external data source defined outside its boundary. The data

source is the information source of the entire SANPARKS application and it is defined

using an XML database, a collection of xml files stored within the same directory with

the application.

The application was tested on a desktop machine running Windows XP Professional

Edition as an operating system. The machine was equipped with an Intel Pentium IV

processor with a processing speed of 3 GHz and 512 MS of RAM. The application

consumed 5.5 MS of hard-disk storage.

72



4.1.3 Implementation Model

Fig. 4.1 illustrates a Publish/Subscribe implementation model which compnses three

tiers, namely the client tier, middleware tier and information tier. The client tier can

either be J2ME or web clients communicating with web components running within the

web container in the J2EE Server (the middle tier). The middle tier is a convergence of

web components running in the web container (Servlet engine) and business components

within the application logic. Lastly the information tier is implemented in terms of an

XML database which is a collection of XML (Extensible Mark-up Language) files

securely persisted on a permanent storage. The interface between the application and the

XML database is defined using JAXP (Java APl for XML Processing).

,------1 Client Tier /-------,.-----1 Middle Tier /-- .---Iln~tion

XMl_

U§er B

figure 4. I: Tbe System Implementation Model

73



4.2 Implementation Screenshots

This section presents some of the interfaces used to fulfill the adoption of the

publish/subscribe communication paradigm into the SANPARKS Information System.

4.2.1 Subscribing and receiving e-mails on tbe desktop.

Figure 4.2 is the desktop portal interface that information consumers use to subscribe to

the SANPARKS organization, to view the services information delivered as e-mails and

just to take a tour on the new SANPARKS Information System.

Figure 4.2: A portal interface for SANPARKS information consumers.

74



Figure 4. 3: Subscriber's Registratioo loterface dd the Portal.

The figure 4.3 shows the subscriber's user interface which assists first time users to

register and subscribing users to indicate their specific preferences.

Figure 4. 4: The list of E-mails dd tbe Desktops.

75



Figure 4.4 shows a list of sent e-mails as notification on the desktop. The user needs to

click the email of his/her choice in order to gain access to the services information.

Figure 4. 5: The service information delivered as an e-maiJ.

Figure 4.5 shows a notification delivered as an e-mail in response to a subscription. The

information consumer has the option of marking this e-mail as a read message by sending

it to the read message folder or deleting this e-mail.

4.2.2 Service Information Publishing Process.

The figure 4.6 shows the SANPARKS services information to be published by the

publisher to the mediator and subsequently to the subscribers. Anyway the publishing

process taking place in figure 4.6 is not meant for public because it takes place behind the

scene. This research takes the publishing of services information as the house-keeping

task that is meant for maintenance behind the scene instead of public. This is only

because our research focused on enabling the subscribers to receive the simplified and

76



personalized information, rather to observe the way of publishing the servIces

information by the information sources. The figure 4.6 is not meant for the public, the

reason why it is shown here is to enable the reader to see that the information received by

the subscribers is published instead of coming from nowhere.

Figure 4.6: Publishing service information using the desktop.

4.2.3 Service Subscription using a mobile device:

Figure 4.7 shows the mobile user interface subscribers use to subscribe for the

SANPARKS services information. The user subscribes by giving his/her details which

are limited to name, mobile phone number, email address and a password. Then, one or

more preferred topic(s) must be specified before the subscription is submitted.

77



Figure 4.7: Subscribing on the Mobile Device.

4.2.4 Retrieval of the SANPARKS services information using a mobile device.

The figure 4.8 shows the published SANPARKS service information delivered to the

subscriber's mobile device as the notification. The user waits for the notification as the

78



incoming message to be delivered on hislher mobile device in order to view the

SANPARKS services information as a sms on hislher mobile device.

Figure 4. 8: Mobile device showing the services information delivered as a sms.

4.2.5 The Internal Structure ofthe XML Database.

Figure 4.9 shows the list of subscribers profiles stored on the XML database as XML

files. When users subscribe to the SANPARKS Information System their information is

79



stored as the subscribers' profiles as XML fLIes as shown in the above figure. The

information stored in figure 4.9 as the XML structure forms the user profiles of the

subscribers and is useful during the matching phase of services information with the

relevant subscribers. The matching process is performed by the mediator in order to

observe the relevant subscribers to receive the services information that has been

published by the information sources (plants, animals, features and accommodation).

.....!'ii!lc_....
@ To~ p-cr«t)'lU seariy. :w:sn. fxpknr has r85bi';ll!d tbs tit frool~ a:trve anart Itl4t~ aIlllH)O.I'~.CJdltw. b qD::m. •.

<?ll.mt version:'Ul' ef\c~="lJlf-e'?>
- <Sobs.c1lberPnl1iles:>

- <SubsCriber>
<5ubscnoartO>lC1Ms~D>

0'a5SWor!bl982</PilSswonh
<C~~~

<EtnailAdaess>klass.yahoo.com<,IEtnaiIAddnKs>
- OInfef1ll'lCfl>

c:TOfXCategory:>Plants</TopcCategory>
<T~ategory,.Animak</TopICC~&gOr)?

<TopicCateqot'y>PMb</Topil:Category>
<~aryMethJd>SMS<lDehetyMvthod>

<:Kevwon:bRed Am4n.llo, wild "nd Western Cape</lCeyWcrd>
<,/Pntferen!;es>

</SUbSC.-o.
-<~

<sutrseribvI1D>Justice<.,/5l.lbscriJero>
<P~anbpiper</Passwonb

<CeJtUnbeD07& 14:i63+D</Ceti..rntler>
~s>pip~yahoo.com~

- <PrafelWJefi>
< Topiccategory"PlGnts</Topr;C.iItaqOrv>
<TOJ»CCa t8lJO'Y>Aa:::omodation</Tapil:categorp
<DelNeryMethod>~thod>

dUlyWord>AmaruIa Md Hotekjl(eyWorcb
<IIW_>

~"""""
-~

~elwane<,fSubscri:lerlO>

dlasswonbmzila<./PasS\ll'Ol"lb
~50145~

~s>pdtnz~yahoo~S>

-<Pre~>

'1"'-
Figure 4. 9: Tbe Subscriben profiles stored OD Ibe XM L database.

Figure 4.10 shows the XML structure for publisher actors. Publishing IS an house-

keeping not a public process. A representative of SANPARKS is designated as publisher

with respect to each of the four infonnation sources namely plant, animals, features, and

accommodation.

80



'fSf' .¥IlL ; .eliSfi h+'!il!!i

"""'_:!IIC'~_W to__.-.~. • """'l_.-._.QIok-"""'_..

"'..,.".. " ...~1,0" .....,""""P"·...fTF_ 7:>-<--'"--,
"'_~"'_Irri'''PuI>~~~Ir>'''
~_s""""""'p~<ft>_s~

<C--....n.0Ir.l'69:z:Ul22~

<~,.:>-pSant_Inh>_uloIl_,.,..,. ...~.org~~
.-,
--~<:Put>Un...IO,. _'" lnIu P....lIst...,.,.o</F'UblI_lO>

_,.."...,.-<b Is</P-..........a:.
"'C.........,.".0760ge2679<.1C b.?
<__,."'_......"'__ II -P..blb~."'....p .........urg~.,..._"'>

~---...-,
~_O>F ,. Into p.,btI",t-rs</S'ub-.10",<P__,.<It S</P....~

<C~083 7119.t~</'C.......-...
<£m..A<1dt'oo..."'.._ ....,.-""""'~U,.IMo.....,._... ri<s •.....".......,...~,.>
~~

-~

~wtCb"e=""rnod<IU..." 1_ P~ls ....... ..........,IIsnerIO'"
__s-..OI'<'>...<:ca.........d_'On</P~,.rwonto:>

<~076.s&3~925~
<l<~,."'~lan__-JOubII,.........,.O~......-g~__"""

~

~",-'"

Figure 4. 10: The Puhlishe... profiles on tbe XML database.

Figure 4.11 shows the list of published messages for the subscribers. These messages are

a combination of all the messages sent to either the desktops or mobile devices as e-mail

and sms respectively. Every message sent to the subscriber is stored by the system on the

XML database as XML files as shown in figure 4.11.

-pas,1 Mill; Md" f,B flit ,
"- e ~. __ .;:!!l-

~-21c,~,~IiJfo ~. .... --.._ ..... <::Ja.t_. ...._.

<7 0'" oa>ng TF-IiI· 7':>0

-..-~.".

-<-~'"
"'-$"_IO>O<./l"Oe"~IO>
<_~"S"'b>f>~__.cu.:Z"'<-'5__,.>
<c..r.t......_,."'Ju$t-.jw"'I_...'"'!J~S.~ •.....-...'"
<SuIIIJ-=t>wlkt ,............,.</SuI>,..,.'"
<CCrO.en.>You c-. _ ~loon__ ....ns ...... '-0 ,. .... Hfuf>kI_. _1unaI P ..ri<.<,ICDn....,,'"
...-c ~~."._Pec:: 04 23:34,56 PST:Z0D6~ >
<5 <1</'5 .......-,

.-..-'._.....,
...-~Kb:23.....~_.lO'"
~_.. >t0pf.<::5__-----....co.:z..~_..::>

<Oes s:l'>~..ay.........c...-.<~..............-....!lOO
<'Sub]8'C.<>_ruIoI~'>
<Con.eno.II;/'I,P I" h vlng <_~Ion tor JII_" c:unfVn't_,..... co.....-...........o .......... .-W &MW.</'Coro......'"
<Rec ~••"'T o-c as 1.6,211:.t6 PaT 2~_e«J.'.'"
<5 "' .........A4<,1'5 .........::>

_0'
-~~

~~IO"'5::J~.....IO'"
~~,.>~_._p.....-t0.5.cu.:z..~.......-:r.~
<e-.......-..Cdresll"'pipe...,-"O.~t>n••__,.'"
<s..b~t>"""""'-'-h4u<l"»ub..-":b
<C en.",1tNP k _ving < Ion fa.. pJ_,. b;t.-n.-ion eoo>llU0'n8.... 10 --. .......... &MW.</C_,,,,,,,,,
<Aec ~•••"'T... gee:: 05 16:-211:16 PST 2OO6<.I'<l-=.....eodD.-t4D
<S U:o->unnoad-</S......... '"

~-~~~'"<__1O",27.t~~lD>

~__..s>.Opk:5Infu.~_cu..:z ..-o</S__..........,...->
....".,........__....-.S,."'pdn>..,iI_y-.....COo'n~.~s=-

Figure 4. 11: Tbe list of messages sent to tbe subscribe....

8\



4.3 Usability of the Prototype

4.3.1 Usability Testing.

The model presented in this dissertation is tested for usability. The evaluation of usability

is conducted separately for the publisher module and the subscriber module being the two

main user-oriented components of the system.

4.3.1 .1 Evaluating the Publisher Component (Technical Evaluation).

The publishers' component was evaluated along four (4) dimensions namely: user

friendliness, SANPARKS system fitness to be an information provider entity,

SANPARKS system reaching the prospective clients and quality of information provided

by the SANPARKS system.

(A) Instrument Design and Administration

The target population for this study consists of students who were from IT-related

departments. The Departments are Computer Science, Information Technology and

Library Information Systems. Forty students from the above-named departments were

sampled randomly from the population. Some interviews were conducted to ascertain the

level of commitment of the students.

(B) Analysis and Results

Only thirty of the forty (40) sample students responded amounting to a response rate of

75%. The distribution of the respondents according to Department is shown in Table 4.1:

82



d bl" hed b b b 'bI .b fa e . : enum er 0 t oeonte mtervlew as ot su sen ers an I DU IS ers.

Department Number ofPeople
Computer Science 20

Library & Information Science
2

Information Technology
8

Total
30

Tbl41Th

Table 4.2 gives the results of publishers' comments when they compared the new

SANPARKS system with the old one.

SANPARKS thIts f bl"hTbl42Tha e . : e resu ODU IS ers comments on t e new svs em.

Do you notice any changes with the new SANPARKS
svstem compare to the old one? .Tot§~

Department Maior \ Few (Minor)
Computer Science 60.0% 40.0% 100.0%

Library & Infoonation 100.0% 000 100.0%
Science

Information technoloQV 87.5% I 12.5% 100.0%

Total 70.0% I 30.0% 1000%

Table 4.3 shows the results of the publishers' comments on the user friendliness of the

new SANPARKS Information System.

SANPARKSSf hf' drhbl" hTbl43Tha e : euu IS en comment on t e user nen mess 0 t e new , ~ystem.

In vour opinion is the new~stem user friendly (or easy to use)? Total__

Average, normal as other
Deoartment Yes svstem

Computer Science 85.0% 15.0% 1000%

Library & Infoonation Science 100.0% 000 1000%

Infoonation technology 87.5% 125% 100.0%

Total 86.7% 13.3% 1000%

83



Information provider entity dimension: All respondents say the system is fit for the

information provider entity when it delivers notifications to the subscribers via sms and

e-mail. Question 5 and 6 of Section A of the questionnaires that were distributed to the

information sources was used to determine this dimension. Asking questions 5 and 6 as

the same question in different ways helps to eliminate bias. The elimination of bias was

done by comparing the results of questions 5 and 6 since these questions have the

different results. Comparing these different results helps to determine the results of this

dimension.

4.3.1.2 Evaluation ofthe Subscribers Component (Technical People).

The subscribers' component was evaluated along seven (7) dimension and these are:

quality of interaction between the subscribers and the SANPARKS system, quality of

information provided by the SANPARKS system to the subscribers, the external features

of the SANPARKS system when using it, user friendliness of the SANPARKS system,

personalization of services information provided by the SANPARKS system and the

limitation of the information provided by the SANPARKS system to the subscribers.

(A) Instrument Design and Administration

The target population for this study consists of students who were from the IT-related

departments. The Departments are Computer Science, Information Technology and

Library & Information Science. Thirty-five students from the three departments were

84



sampled randomly from the population. The students were interviewed to get them

committed to the evaluation exercise.

(B) Analysis and Results

Thirty of the thirty-five (35) sample students responded making up a response of 86%.

The distribution of the respondents according to Department is shown in table 4.1. Table

4.4 gives the results obtained from evaluating the quality of information provided by the

SANPARKS system to the subscribers.

Table 4. 4: The results of the Quality of iuformation provided to the Subscribers.

Qualitv of information provided

i i No-Response
!

TotalGood Fair Excellent i
Department Computer Science 40.0%

,

40.0% i 10.0% \10.0% 100.0%

Library & Information
Science 66.7% 0.00 33.3% 0.00 100.0%

I

Information technology I
571% 0.00 : 42.9% 0.00 100.0%

Total 46.7% 67% i 40.0% 6.7% 100.0%

Table 4.5 gives the results of the quality of interaction between the SANPARKS system

and subscribers.

Table 4. 5: The results ofthe Qualitv of interaction between the SANPARKS System and Subscribers.
Department Qualitv of interaction Total

Good I Fair Excellent
Computer Science 55.0% 5.0% 40.0% 100.0%

Library & Information Science
66.7% 000 33.3% 100.0%

Information technology
71.4% 000 28.6% 100.0%

Total 60.0% 3.3% 36.7% 100.0%

Table 4.6 gives the results of the subscribers after they had used the new system. The

subscribers then express their feelings after in use of the new system.

85



SSf6Tba le 4. : The results 0 usi.n2 the new ANPARKS ~ystem.

How do you find the SANPARKS system when taking
a tour on it usinG ill? Total

Deoartment Eniovable Non-ResDonse
Computer Science 60.0% 40.0% 100.0%

Library & Information Science
100.0% 0.00 100.0%

Information technology 71.4% i 28.6% 100.0%

Total 66.7% 33.3% 100.0%

Table 4.7 shows the subscribers' comments on the user friendliness of the new

SANPARKS system.

f b S b 'be M d If' dJ'tbT bl 4 7 Ua e . : sers ODIDIOD on e user nen mess 0 t e o scn r o u e.

In your opinion is the new system user friendly (or easy
Deoartment to use)? Total

Average,
,

i
normal as other

Yes ! No very complicated svstem
Computer Science 65.0% 0.00 35.0% i 100.0%

Library & Information 66.7% 0.00 33.3% 1000%
Science

Information technology 71.4% 14.3% 14.3% 1000%

Total 66.7% 3.3% 30.0% 1000%

Table 4.8 shows the results of the subscribers' comments about the service information

offered by the new SANPARKS system.

Table 4. 8: The results oftbe subscribers' comments-about the services provided by the new
SANPARKSS t~vs em.

Does the SANPARKS system satisfy your
interest on the services? Total

Department
Yes No

Computer Science 95.0% 5.0% 100.0%

Library & Information Science 100.0% 000 100.0%

Information technology 100.0% 000 100.0%

Total 96.7% 3.3% 100.0%

86



The figure 4.12 is the results of the subscribers' views on the information provided by the

new SANPARKS system. The respondents had two options when answering the

questionnaire. They were to select either 'Yes' or 'No', if 'Yes' this specified what

needed to be improved. When the subscriber selected 'No' this meant that the

information provided by the new SANPARKS information system did not provide

limited information. When selecting yes this meant that new system provided limited

information which needs to be improved. The subscriber was provided with ample space

in the questionnaire to specifY the improvements.

Do you think information provided by this system is limited
and requires sorne more improvements?

80.00% .-.=-------~---~-~-------~--_,

~ 60.00%

~ 40.00% +----­

~ 20.00%

0.00%

Department

BYes B No ve ry co"",licated

Figure 4. 12: Quality of the information provided to subscribers.

Personalization Dimension: The aspect of personalization that is measured in this

research is the personalization of services information delivered to the subscribers by

push style. The questionnaire that was distributed to subscribers was targeting to fmd out

whether the information disseminated to the subscribers is simplified and personalized.

The question number 7 of section A of the questionnaires was used to observe the views

of the information consumers (subscribers). The result of personalization dimension is

87



based on whether the subscribers receive the services information that they subscribe for.

All respondents said that the system supported personalization of services when it

delivers notifications to them in terms of sms and e-mail.

4.3.1.3 Evaluation by barely IT-literate.

This evaluation was conducted along two (2) dimension and these are: user friendliness

and the behavior of the SANPARKS system when using it.

(A) Instrument Design and Administration

The target population for this study consisted of students who have little or no IT

background. They were sampled from the departments of Psychology and Social Work.

3S students from these departments were sampled randomly from the population. A one-

on-one interview conducted helped to instruct the students on what to be done.

(B) Analysis and Results

Twenty nine of the thirty five sampled students responded by making up a response of

83%. The results of the non-technical that were interviewed is shown in figure 4.13

together with their feelings of the new SANPARKS Information system.

Ho"" do you find the SANPARKS system ""hen
taking a tour on i~(Using it)?

80%

'" 600/0

""E 400/0'"1ii
:L 200/0

0%
PsychOlogy

_ Enjoyable

Social VVork

_ Satisfactory

Figure 4.13: The results of Arts students interviewed for user-friendliness oftbe SANPARKS
System.

88



The Figure 4.14 gives the results of the non-technical people opinions after they have

used the new SANPARKS Information System. About 65% of the students from

psychology and about 80% of those from Social work found the system to be user

friendly.

In your opinion is this system user friendly (or easy
to use)?

100% -,---------------------------,

80% +----------------
Gl
C>
.f! 60% +---
c:
Gl
~ 40% +--­
Gl
ll.

20% +---

0% +---
Psychology Social Work

BYes • A\A8rage. normal as other system

Figure 4.14: Tbe r..ults of Arts students interviewed for user-friendliness oftbe SANPARKS
System.

A comparison of the results depicted in Table 4.7 and Figure 4.14 reflects that the system

was found to be considerably user friendly by both students from the IT related and non

IT related departments.

89



CHAPTERS

CONCLUSION

5. 1 Conclusion

The objective of this research was primarily to develop a Publish/Subscribe Architectural

Framework that supports mobile and desktop users which will have the following

features: a national park system restructured into information provider, a portal interface

for information consumers and a mobile interface achieved by personalization. The

objective of this research has been achieved by developing the Publish/Subscribe

Architectural Framework that supports mobile and desktop users among other features.

The features that were achieved in order to fulfill the objective of this research are the

national park system restructured into information provider, a portal interface for

information consumers and a mobile interface achieved by personalization.

A restructured SANPARKS system has been achieved by the support of the new

conceptualized model and the system architecture that ensures that subscribers receive

information without knowing the source. A portal interface that has been achieved allows

the information consumers to subscribe to the SANPARKS system as subscribers.

Subscribers then have an access to view the personalized SANPARKS services

information as emails using the new developed SANPARKS portal interface. The mobile

interface has also been developed which allows the subscribers to view personalized

SANPARKS services information as sms or mms using their mobile devices.

90



Moreover, an improved SANPARKS Information System that personalizes user's

subscription is implemented. The system as implemented does not consider the issue of

context awareness, which is very crucial in a mobile computing environment during the

process of pushing messages to the user. The Context Awareness requirement can be met

by incorporating the research results of another work being done in the Department of

Computer Science, University of Zululand. (Jembere, et a!., 2006).

Persistence of information is very crucial in this study in order to ensure mobile users do

not loose information when temporarily disconnected from the network. The scope of this

work is limited to push information to people who are connected to the network with

their mobile devices, if the mobile device reconnects to the net\vork it does not receive

notification of the messages that were sent during disconnection time. The

implementation serves only as a proof of concept of the publish/subscribe idea works

even without supporting persistence during intermittent network disconnections. Finally

the objectives that have been achieved on this work affirm that the goal of the research

mentioned in chapter one has been reasonably achieved.

5.2 Contributions

The dissertation attempts to show that SANPARKS can be restructured to operate as a

distributed information service provider. Using the publish/subscribe communication

paradigm, consumers who have interest in information that SA1'.'PARKS specialize in can

be reached without using interactive approach. Once identified only interested consumers

receive information, from SANPARKS, as they become available. In this way. the system

is designed to support personalization.

91



5.3 Future Work

To implement a successful persistent information delivery service/engine there is a need

to adopt JMS (Java Message Services) that uses topics to temporally store the published

services information during disconnection time. This would assure the delivery of

information sent during disconnection time to the subscribers when they reconnect to the

network. This would also motivate the subscribers to keep accessing the SANPARKS

services information as they have an easy way of getting information even those sent

when they are not connected to the network.

This study is based on software but it can also be extended to the networking

environment by adopting the same publish/subscribe communication paradigm for

content dissemination. This would enable the researcher to identify some algorithm that

would be tested with the following metrics: minimal processing load, minimal bandwidth

consumption and notification delay to solve the performance of the publish/subscribe

systems in a dynamic environment especially with mobile clients.

This research could also include personal mobility as the design principle that would

allow service users to publish and receive the content using various terminals in different

networks. This feature would enable true personal mobility and offer usage flexibility.

92



APPENDIX A

USER MANUAL

This part of the thesis describes the necessary step to using the SANPARKS

Information System in both the desktop and the mobile device.

Figurr A.l: A portal interfaee for SANPARKS information eOllSumers.

The figure A.I is used by the information consumers to take a tour on the SANPARKS

Information system in order to familiarize themselves with the services information

provided by this system. The information consumers can be able to view the information

provided by the system by clicking the links that shows up on the left of the portal except

the subscribers link because for the consumer to access this link they need to be

registered or subscribed to the SANPARKS Information system using the same portal.

93



Figure A.2: Subseriber', Registration Interface on the SANPARKS Portal.

The figure A.2 is used by the clients to subscribe or register with the SANPARKS

system, in order to be authenticated by the system next time when they want to access the

subscribers' services information offered by this system.

94



Figure A.3: Subscriber's Autbentication Interface on the SANPARKS portal.

This figure A.3 is used by the subscribers for the system authentication. The subscribers

provide the information they have used when they were subscribing to the system. The

information they provide is the user name and the passwords.

95



Figure AA: Desktop Welcoming Interface for Subscribers to access SANPARKS services
information published as E-mails.

This figure A.4 is used by the subscribers when they want to access the published

services infonnation. The subscribers has a choice of reading the unread message as new

send e-mail by clicking on the unread message link provided on the left of the figure A.4

by the system.

96



Figure A.S: Tbe list of E-mails on tbe Desktop.

The figure A.5 shows the list of e-mails send as the new messages. The subscribers can

click the links appearing on the figure under subject in order to gain access to the

infonnation that has been published. When the subscribers want to delete the messages

that they have been reading, they can do so by marking the message(s) they want to

delete and then after click the delete button appearing on figure A.5. They can also move

the same messages to the read folder, by marking the message(s) they want to move to

the read folder and then after click the Mark As Read button appearing on figure A.5.

They can even read the message moved to the read folder by clicking the Read Messages

link also appearing on the left of figure A.5. Subscribers can also manage their profiles

by deleting or updating them when they click the Manage Profile link on the same figure

A.5 to finish the process of managing their profiles. Each and every time subscribers

97



perform one of the processes like moving a message or to Read Message folder, delete

messages they have been reading, managing profiles and log outing complete from the

system they are notified by the system whether they are successful or not in the

performance oftheir operation.

Figure A.6: The service information delivered as the e-mail.

The figure A.6 shows the service information delivered on the desktop as e-mail.

Subscribers use this figure to read the messages send as e-mail in order to gain access to

the services information.

98



Figure A.7: Welcoming Interface OD the Mobile Device.

The figure A.7 shows the welcoming screen of the client's mobile device. The above

figure A.7 shows that the clients can have two option of gaining access to the

SANPARKS services information. The new clients need to subscribe with the

SANPARKS Information by selecting subscribe option on their mobile device, then after

provides the information required by the mobile device in figure A.S. The subscribers as

people who already subscribe with the SANPARKS system need to make new messages

option to show that they are interested to gain access to the new messages being sent as

notification.

99



FIgUre A.lI: SubscnlJiJlg OD the Mobile Devitt.

The figure A.8 shows that the information consumers can use their mobile devices to

subscribe for the SANPARKS services information to be delivered as sms on their

mobile devices or e-mail on the desktop. The subscribers need to provide all the

required information by filling the text fields provided by the mobile device in figure

A.8 in order to be successful in registering with the SANPARKS Information System.

100



Figure A.9: Mobile device 00 waiting state for tbe incoming messages.

The figure A.9 shows the clients mobile device on the waiting state of the incoming

message(s). The delivered message(s) on the mobile device can be accessed by the

mobile clients as shown in figure A.I O.

101



Figure A.IO: Mobile deYice .bowing publisbed iuformation.

The figure A.IO shows the services information delivered on the mobile device as the

sms. This service information serves as the notification to the subscribers in order to be

aware of the services information available on the SANPARKS organization.

102



APPENDIXB

UML DESIGN DOCUMENTATION

CLASS DIAGRAM AND DESCRIPTION

TopicOb$ervef" -utilizes
-topic: Topic

....TopicO!:lserver(in observableTapic Topic)
+updateO

-produces

-produced by

-observed by 1.. •

-ccmsumes

Subscribe(

--defined by

1,,·

-subscribes

Message

messagelD : int
-senderAddress String
L.ctestinatiOnAddress _ String
-subject: String
content String
receivedDate: String
status: String

+setMessageID(in me$sagelD : String)
-consull1ed+setSenderAddress(in SenderAddress ; String)

+setOestinatiortAddress(in destinationAddress String)
+setsubject(in subject: String) ,
+setContent(in content: String)
+setReceivedDate(in receilleOate : String)
+setSutus{in status String)
+getMessageID()
+getSenderAddressO: String
+getDestinationAddress() String
+getSubjeet() : String
+getcontent{) : String
+getReceivedDate(} String
+getstatusO· String 1.'

n-receives subscripm 5

PrClfilo:

~password : String
--eellNumber String
-emailAddress : String

+ProfiIeO
+setPassword(in password String)
+setMobileNumber(in mobileNumt:ler String)
+setEmailAddress(in emailAddress : String)
+getPasswordO: String
+getMobileNumber() String
+getEmailAddress() String

~,--

1 __ •

Topic

title·, String
--category; String
_body String
-keyWord: String

by -+-Topic:O

- -+-setTitle(in title: String)

1 . +setCategory{in category . String)
+setBod'j{ln body : String)
-+-setKeyWord(ln keyWor"d : String)
-+-getTitleO : String
+getCategory{) ; String
-+-getBodyO : String
+geyKeyWordO; String

-published

"""""" I
I PUb'~h" I

I

i -defines

!

PublisherProfile

-defined btY~_g~~~~~~~=:==::::===~i ublisherlD : String

+PublisherProfil e()
+setPublisheriD(in publisheriD String)
+getPubllshertDo : String

, .

Subscrib~rProfil~

-sl..lbscriber\O string
preferences· Preferences , .

+Subscribe-rProfile{)
+setSubsc:riberiD(in subscriberiO String) "old.
+set?references(in preferences Preferences) void -utillzed by

+getSubscriberlD{) String
+getPreferencesO String

•
topicCategary String

i-d~;....eryMemod String
-key'Ncrd String

...Preferences()
,+setTopicCategory(in top'cCategorl Strir.g; VOie

j+setDeii ....erMethed(in deli..-ertMethod Stringj vo,e
]+setKeyV\:ord(in key'Non::!. String) void
l+getTopicCategoryO String
!+getDeiivert'.1ethodO Strin9
l+getK"yV','cfdO ' SU"ing

Figure B.1 Class Diagram of the SA~PARKSInformation System Implementation.

103



Classes Definition

Publisher: This class is represented by a bean that defines properties and behaviors for

handling information of the publisher entity.

Subscriber: This class is represented by a bean that defmes properties and behaviors for

handling information of the subscriber entity.

Message: This class is responsible for storing messages in an XML storage format which

acts as a mailbox for emails. The XML storage is only for subscribers who chose email as

a delivery method. The Message class defmes methods for saving, deleting and retrieving

emails. Furthermore the class defines methods for marking read messages.

TopicObserver: This class is responsible for listening to messages published to a topic

and then sends the message to potential subscribers when publication is received. This

class applies the Observer design pattern in modeling collaboration between system

objects.

Topic: This class represents a bean that defmes properties and behaviors for handling

topic publications. This class is a convergence of four properties the title, category, body

and a keyword.

104



ProfIle: This class represents a generic class for both the subscriber's profile and the

publisher's profile. Furthermore it is a bean class with defined properties and behaviors

that are supposed to be shared among its descendant.

SubscriberProfile: This class is a derivation from the super class Profile. Furthermore it

is a specialized bean that defines properties and behaviors for handling information

pertinent to the subscriber profile.

PublisherProfile: This class is a derivation of the super class Profile.Basically it is a

specialized bean that defines properties and behaviors for handling information pertinent

to the publisher profile.

Preferences: This is a delegate in class SubscriberProfile and it is responsible for

capturing and querying subscriber preferences. It defines attributes that enable subscriber

preferences to be persisted to permanent storage.

105



APPENDIXC

SOURCE CODE

Mobile Client

Subscribing on the mobile device

import javax.microedition.midlet. '*;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import java.io.*;

public class Subscribe extends MIDlet implements CommandListener, ltemCommandListener
(

I/Commands
'Private static fmal Command CMD_SUBMIT = new Command("Press" ,CDIIUIJand.ITEM, I);
private static final Command C~fD_RESET = new Command("Press",Command.ITE~I,1);
private static fmal Command CMD_EXIT = new Command("Exit",Command.EXIT,l);
private static fmal Command CMD_OK = new Command("OK'''Command.OK, I);

private List contirmScreen;

JiSubscription form item commands
private StringItem submit;
private Stringltem reset;

/iSubscription fonn
private Form frmSub;

l'/Subscription form textfields
private TextFteld txtSubscriberlD:
private TextField txtCelINumber:
private TextField txtEmailAddress;
private TextField txtPasswoni
private TextField txtConfirmPass\\'ord.:

iiSubcription fonn checkboxes
private ChoiceGroup topicList;
private ChoiceGroup cgDeliveryMethod:
private TextField t'l:tKeyWord;

{,Application Screen
private Display display;

//WeIcome String
private Alert errorAlen:
FieldValidator veri tier:

pub1ic SubscribeO
(

\'entler = new Fiek!Validaton\:
"SUBSCRIPTION
txtSubscriberID = ne\", TextField("Name", "t,.15.TextField.:\.i'\Y):
tnCellNumber= ne\v TextFieldC'Celi Number","", IS.TextField.PHO:\"ENL'\-tBER):
rxtEmaiL.\ddre-ss = new Tex!FieldC'Ernail Address" ,"",! 5.TextField.E\-IAIL\DDR):
tx.tPassword = new TextfieldCPassword","", lS,TextField,PASSWORDJ;
rxtConfirmPassword = new TextField("Comlrm Password". "", 15.TextField.PASSWORD}:

htKeyWord = new TexIFieldl"KeyWord","" ,15,TextFidc.A;";'£):

String [] topics = 1"Plants",".-\nirrcals" ."Parks","Accomodarion", "Features" r:

106



Image 0 topicImages = null;
topicList = new ChoiceGroup("Topic",ChoiceMULTIPLE,topics,topiclmages);

String [] methodChoices = {"Select a delivery method" ,"SMS" ,"Emait","Both SMS and Email");
Image [] methodImages = null;
cgDeliveryMethod =" new ChoiceGroup("Preffered Delivery Method",ChoiceGroup.POPlJP,rnethodChoices,methodImages);

//Item commands initialization and event registration

submit = new Stringltem("","Submit",Item.BlITTON);
submit.setDefaultCommand(CMD SUBMIT);
sUbmit.setItemCommandListener(this);
reset = new StringItem("","Reset",ltem.BVTfON);
reseLsetDefaultCommand{CMD_RESET);
reset.setItemCommandListener(this);

!/form initialization and event registration

fnnSub = new Fonn("SUBSCRIPTION");
frmSuh.append(txtSubscriberID);
frmSub.appeod(txtCeIlNumber);
fitnSub.append(txtEmailAddress);
frmSub.append{txtPassword);
frmSub.append(tx.tConfirmPassword);
frmSub.append(topicList);
frmSub.append(cgDeliveryMethod);
fnnSub.append(txtKeyWord);
frmSub.append(submit);
frmSub.append(reset);
frmSub.addCornmand(CMD~EXIT);
frmSub.setCommandListener(this);

errorAlert = new Alert("Error");
errorAlert.setType(AlertType.ERROR):
errorAlert.setTimeout( 1000);

confumScreen = ne....' List{"Subscription Confirmation....",Choice.l:\1PLlCIT);
confirmScreen.addCornmand(CMD_OK);
confmnScreen _setCommandLisrener(this):

l
public void staJt.J\ppO
{

getDisplayO _setCurrent( frmS ub);

public void pauseAppO
{
}

public void destroyApp(boolean unconditional)
{,,
public void command...-\ction(Corrumnd c,[tem tteffij
{

Thread t == new ThreadO

I
public void nm()
{

try

String subscriberID ~ rxtSubs<..:riberLD,getSrring(p:rimU:

107



String celINumber = txtCeIINumber.getStringO·trimO;
String emailAddress = txtEmailAddress.getStringO·trirn();
String password = txt:Password.getStringO.trimO;
String conpassword:: txtConfurnPassword.getStringO·trimO;
String 0 topics = new String[topicList.sizeO];

for(int i = O;i < topics.length;i++)
{

if(topicList.isSelected(i)
(

topics[i] = topicList.getSning(i);

1
String deliveryMethod

(cgDeliveryMethodgetString(cgDeliveryMethod.getSelectedIndex())).trim();
String keyWord = txtKeyWord.getStringO;

if(verifier.checkEmptyID(subscriberID»
{

errorAlert.setString{"ID Required"):
getDisplayO.setCurrent(errorAlert,fnnSub);

}
else if(verifier.checkEmpryCeIINumher(cellNumber»
(

errorAlert.setString("CeJlNumber Required");
getDisplayO.setCurrent(errorAlert,.frmSub);

}
else if(veritier.check.EmptyEmaiLA.ddress(emailAddress»
{

erroLAJert.setString(.. Email Required");
getDisplayO.setCurrent(errorAlert, fhnSu b);

else if(verifier.checkEmpryPassword(password)}

errorAJert.setString("Password Required");
getDisplayO _setCurrent(errorAlert.frmS ub);

}
else itrverifier.checkEmptyConPassword(conpassword)
(

errorAleruetStrmg{"Please cont'inn password");
getDisp layO_setCurrent(errorAlert,frmS ub);

else itTverifier.checkNonSelectedTopics(topics) )

errorAlert.setString("Please seJect a topic");
getDisplay()_setCurrent(errorAlert,fhnSubj;

el>e
inveritier.checkNonSelectedDeliveryMethoo(cgDeliveryMethod.getSelectedIndexO»

{
errorAlen.setString("Please select a delivery method");
getDisplayO .setCurrent(errorA lert,frmSub);

else if(verifieLconfinnPassword(passv.wd,conpassword})

if(verifier.checkEmpty KeyWord(keyWord»
key\Vord = null;
if(verifier.validateEmaiL-\ddresstemai L\ddress)&&

veritier.validatePhoneNumber(cell~umber»
{

Suing validlD ~ verifier.processEn1pt)"Charsi:iubscriberlD):
String ~·alidCe!l = verifier-processEmpt!"Chars(cellI\umberJ:
String va!idEmail = verifier.processEmpty-Chars(emailAddress):
String validPassword = veriner.processEmptJCharSlpasSword):
Suing valid"-lethod = veririer_processEmptyChars(delivef)..\lethodl:
String yalidKeyWord = veriner_processEmpryChars(keyWord):

String response
subscribeivalidill, validPassworcLvalidCell.validErr"ail. topics. \alid.\lelhod.validKe\ \Vora):
if( response_trim( ).equalsIgnoreCase( "success"}) -

108



Image img = null;
confnmScreen.append("Registration completed",img);
getDisplayO.setCurrent(confumScreen);

else

errorAIertsetString( t1 Registration failed");
getDisplay().setCurrent(errorAlert,frmSub);

}
}

else if(~verifier.validateEmailAddress(emailAddress»

errorAIertsetString("Invalid Email");
getDisplay().setCurrent(errorAlert,.frmSub);

else if(!verifieLvalidatePhoneNumber(cellNumber»

errorAlert.setSning( t1 Invalid CellNumber");
getDisplayO,setCWTent(errorAlert,frmSub);

else

errorAIert.setSuing("Password mismatch");
getDisplayO_setCurrent(errorAlert,frmSub);

}
]

catch(Exception ex)

ex.printStackTrace\);

I
]

I;
tstartO;

txtSubscriberID.setSuing(null);
txtPassword.setSuing(null);
txtConfirrnPassword.setString(nul\l:
txtCellNumber.setSoing(null);
txtEmailAddress.setString(null);

public voi.dcomrnandAction(CotlUTland c,Dlsplayable d)

I
if(c~CMD_EXm

{
destroyAppl.talse);
notifY DestroyedO;

geillisplaYO .setCurrem( frmSllb);

public Display getDisplayO
{

return Display.getDisplay(this):
i

public String sub5Cribe{String subscriberID.5tring passv.ord,String ceiI:':urr.ber.Smng emaiL-\ddress.String [] t0plci5tring
de.liver):..iemod,String key\\"ordl

109



System.out.println(subscriberID);
System.out.printIn(password);
System.out.println(ceIINumber);
System.out.println(emailAddress);
for(int i = O;i < 10pics.length;i++-)

System.out.println(topics[i]);
System.out.println(deliveryMethod);
System.out.printIn(keyWord);

StringBuffer buf == new StringBuffer();

String pI = ''httpj/localliosr:8080JPublishSubscribeWebComponentslSubscriptionHandler" + "?" +
"subscriberID=" + subscriberID + "&" +
"password=" + password +- "&" +
"cellNurnbet="+ ceIINumber+ "&" +
"emailAddress=" +emailA.ddress + "&";

bufappend(pl);
for(int i = O;i < topics.Iength;i++)
{

if(topics[iJ != null)
bufappend("topic=" + topics[i]+ "&" ):

}
String p2 = "deliveryMethod=" + deliveryMethod+ "&"+
"keyWord="+ keyWord;
buf.append(p2);

String un = buf.roString(};

JISysrem.out.printIn(URf);

HttpConnection connector = null;
DataOutputStream out = null;
String response = null;
try

I
connector = (HttpConnecrion)COIUlector.open(uri);
connector.setRequestl\.fethod(HttpConnecrion.GET):
conneclOr.setRequestPropert}\"User-Agent'·,"Configurarion'CLDC ! 1 Profiles/ro.'1lDP 2J)"):

//\Vriring to a servlet

int re = (int)connecror.getResponseCodeO;
if(rc != HttpConnection.HTrP_OK)

I
throw new IOException("Response code not ok',\

response = getServerResponse\conntttor}:
)
catch(Exceprion ex)
{

ex.printStackTraceO:

finally

try
I

if(connecror !== null)
{

our-closet):
cOIU,ccror.c!ose{);

I
carch(Exceprion ex)

ex.printStackTrace(i:

110



}
retwn response;

IIGetting the servlet response
public Suing getServerResponse(HttpConnection connector)
{

DataInputStream in = null;
String response = nulI;
try
{

in = connector.openDataInputStreamO;
int contentLength = (int)connector.getLengthO;
byte [J data = new byte[contentLength1;
int length = in.read(data);
response = new String(data,O,length);

}
catch(Exception ex)
{

ex.printStackTraceO;

l
finally
(

try
{

if(connector ~= null)
{

m.closeO:
connector.closeO;

}
catch(Exception ex)
{

ex.printStackTrace();

retu.!'Tl response;

Receiving messages on a mobile device

impon javax.microedltion.midlet.*;
import javax.microedition. io _*:
import javax .microedirion.lcdui."';
imponjava.x.wire\ess.messagmg.*;

import java. io. I0 Exception:

public class SMSReceive extends MIDlet implements CommandListener. Runnable. MessageListener

Command exitComrnand = new CommandC'ExitH

, Cornmand.EXIT, 2):
Command okCorrunand= ne"," Commanc.('Read Text !\Iessages". Command_OK. I)~

Alert content;
Display display;
Thread thread;
Suing[] connections:
boo lean done:
String smsPon;

III



MessageConnection smsconn;
Message msg;
Suing senderAddress;
Image lm = nun;
Displayable s;
List output;
public SMSReceiveQ
{

output::: new List("New Messages",Choice.IMPLICIT);
smsPon= "5000";
s=output;
display = Display.getDisplay(this);

}
public void startAppO
{

String smsConnection = "sms:!!:" + smsPort;
if (smsconn = null)
{

try
{

smsconn = (MessageConnection) Connector.open(smsConnection);
srnsconn.selMessageListener(this);

}
catch (IOException ioex)
(

ioex.printStackTrace();

}
connections = PushRegistry.listConnections(true);
if (connections = null i( connections.length = 0)
{

oUlputappendrClient waiting for messages .. h" ,im);
}
done = false;
thread = new Threa.d.(this);
thread.startO;
display .setCurrent\s);

}
public void norifyIncomingr..lessage(~'1essageConnectionconn)
{

if (thread = null)
{

done = false;
thread = new Thread(this);
thread.start();

I
public void runO
I

try
{

msg = smsconn.receiveO;
if (msg 1= null)

\
senderAddress ~ msg.getA..ddressO;
if (msg instanceof Texr.\lessage)
{

ourputdeleteA11():
outpur.appendH (Text~tessage)msg).getPay joadTex tU. m):,,

else

StringBuffer buf= new StringBufferO;
b~teU data = ((Binary\lessagelm5g}.getPay]oadData<j:
tor (inl ~ ::: 0: i < data. length: j+--r-)

112



int intData ""' (int)data[i] & OxFF;
if(intData <: OxlO)
{

buf.append("O");
)
buf.append(Integer.toHexString(intData»;
bufappendC j;

I
output.deleteAl10;
output.append(buf.toStringO,im);

}
display.setCurrent(s);

)
catch (IOException e)
{

e.printStackTrace{);

public void pauseAppO
{

done = true;
thread = null;
s = display.getCurrentO;

)
public void destroyApp(boolean unconditional)
{

done = true;
thread = null;
if(smsconn!= null)
{

try
{

smsconn.closeO:

I
catch (toException e)
{
ii Ignore any errors on shutdov.n

}
public void command.Action(Command c, Displayable s)
{

try
{

if(c = exitCommand li C = A!ert.DlSMISS_COMMA·~'m)

(
destroyApp(false);
notifyDestroyedO;

I
else if(c = okCommand)

I
"/Do nOL'J.ing

}
catch (Exception ex)

i
ex.printSrackTmeet):

,
private void replyO

113



Business Layer Classes

TopicObserver

package com.mcebo.sanparks.mediator. notifiersi

imparl: corn. mcebo. sa...rtp arks. mediator. a ccesslayer. Subs criberDB;
import cOffi.fficebo. sanp arks . mediator .b usinesslayer. Fa Ider;
import cOffi.fficebo .sanp arks .mediator. businesslayer .M ailBox;
import corn. mcebo. sanp arks. mediator.b usinesslayer .Me ssage;
import corn. mcebo. sanp arks. mediator. b usinesslayer. Su bscriberProfile ;
import com.mceho .sanp arks . mediator .b uslnesslayer. To pic;
import java.util.ArrayList;
import java.util.Properties;
lmport java.util.*;

public class TopicObserver
(

private Topic topic;
privace SubscriberDB sDB;
private HashM ap messageQueue ;
privace String tcpicMessage;

public TopicO bserve:r (Topic 0 bserva'oleTopici
(

topic"" observableTopic;
sDB = new Subscriber DB ("subscriberp Yofiles .xml";' ;
updat e':,};

1
publi.c void update(;
{

boolean isConr;,ected = false;
ArrayLis t subscribers "" sDB .getSubscri nerList, topic.g etCa::egm:y'
Object [] 0 = suhscribers.toArray

fo-r {i"t i "" 0; i < o.length;i.;..;.;'

if (0 [i] ircstar.c eof Subscriber:? ro:ile
(

String deliveryMethod p. getPreferences
if :deliveryMethcd.ecr...:als:" S~S" ;

S'..iliscriber?-rofile p "" (ScDscricerProfile:o[iJ;
.get::'e=-i·,reryMe ::hcd

cry
(

P!." ope!."ties props "" Systerr,. getPn) pertiEs
pr 0PS .put "kvem. h erne", "e: \. \i'I":'K23"
St ring topicMessa ge t.o;l.ic. ge::: ~cciy (
St !."i:rH~ dest~:rurr:CE!."· = p. get:-1obi =-e~i ccrLer

MessageServer.send}!essage(topicMEs5age,dest~U,,"LE-r.trim

;':':=SBage c:; = ne·...· !'-Iessage
,:,.. set~essaSE1:' :c,le,;

,:". setSer:c:.er.t,.c:ir eSB ":::::,p:':::5ir,-::; ,:;;sar.parks. cc. 22"
"'. se::=es:::i::a::: ie ::)'·.cd:::,-ess p. S-:::::~ ~2i ~_:;.::::c.res~

114



rn.setReceivedDate(new Date() .coString());
rn. setMessageSub ject (copie .getT itle () ) ;
rn. setMessageCon tent (copie .getB ody () ) ;
rn. setStatus ("lLT1. read") ;
Folder. saveMess age (m) ;

}
else if(deliveryMethod.equals("Both 8MS a..T1d Email"})
{

Message m '" new Message();
rn. setSenderAddres s ("topicsinfo@s anparks. co. za")
rn. setDescinationAddress(p.getEmailAddress())
rn. setReceivedDate (new Date() .toString();;
rn. setMessageSubje et (topic .getTit le (J ) ;
rn. setMessageConte nt (topic .getBoei y (J )

ffi. setScatus("ll."1read";·;
Fo lder. saveMessag e (m) ;

String destAddress '" p.gecMobileNu:nber();

MessageServer. send."1es sage (topicMessa ge, destAddress. trim ()
}

Profile

package eorn.mcebo.sanparks.mediatoT. businesslayer;

import java.io.Serial izable;

public abstract class ?rofile implerr:ents Serializable

protected Stri~g mobileNurrber;
protected String emailAddress;
protected String pass '""ord;
public Profile( {}

Ilsetter methods
public void SetMobileNu~ber(StringmobileNu~ber;

(
this.mobileNurrber = mobi~eNurrber;

public void setEmailAddress::St.r':':::.g emaiLn..Criress:

i
tnis.emailAddress = e~ailAddress;

public void setPasswo rd;S::::ri:::.g pass-,.,,-or-j,:

t2is .password
}
;' Isec-:er methods

paSS"/i ord;

115



return publisherID;

String getPubl isherID ()

this _publisherIn = pu blisherID;

this. subscriberID = s ClbscriberID;

void setSubscr iberIC (String s t.:.bscriberID:'

return password;

PublisherProfile

package com.mcebo. san parks . mediator _businesslayer;

imporr: j av-a. io. Serial izable;

public class Publishe rProfile extend s Profile implements Serializa ble
(

privat e String publis herID:
public PublisherProfi le () {}
public void setPublis herID (String pu blisherID)
(

)
public
{

}

SubscriberProfile

package com.mcebo.sanparks.mediator. businesslayer;

import java.io.Serial izable;

public class SubscriberProfile extends Profile implemer:ts Serializable
(

prlVate String subscriberID;
private Preferences pre£'erences;

public Subscriber?rof i2.e
(

supey:
)
public
(

)
public String getSubs criberID

return subscriberID;

public void setPrefe:r- ences :?YefeTenc es prefeYences;,

this .pTeferences = pr ererences;

public Prefere"ces ge c:?refere:1ces"

retcrn preferences;

Preferences

;::..:..:J':':'C class ~references ir:-,p::'e",Er'cts Ser:'2.i-:.za::le,

116



this.keyWord = keyword;

this. topicCategory =" topicCategory;

this. deliveryMethod = deliveryMethod ;

return topicCategory;

private String topicC ategory;
private String deliveryMethod;
private String keyWord;
private String parkN ame;
public Preferences () { }

/ /Setter methods
public void setTopicC ategory (String topicCategory)
{

}
public void setDeIive ryMethod (String deliveryMethod)
(

)
public void secKeyWor d (Scring keyWor 0)
{

}
public void setParkNa me {String park..~ ame)
{

this.parkName = par!G.lIJame;

//Getter mechods
public String getTopi cCategory (
{

)
public String get-Del i veryMec:hod ()
{

Topic

}
public
{

}
public
(

return deliveryMec:hcd;

String getKeyW ord ( )

return keyWord;

String getPark Name':'

package com.mcebo.sanparKs.mediator. bus~nEsslayer;

import. java.io.Serializable;

public class Topic ~ r:rplene"ts SE:r-ia ~izab::'E

\
pr~va~e Strinq ~ic:le;

pr~vace St:r-ing cac:ego ry;
prlvac:e Sc:r-ing bcdy;
priva.:::e String keyWord;
p-LJ.blic Topic ': '

!/Se::::er metb.:::ds

:::.c::e:

117



return body;

return title;

return category;

)
public void setBody(S tring body)
{

this.body = body;

}
public void setKeyWord(String keyWord)
{

this . keyWord = keyWor cl;

/ /Getter methods
public String getTitl e ()
{

}
public String getCategory(
{

}
public String getBody ()
{

}
public String getKeyW ord:)
{

return keyWord;

Message

package com.mcebo.sanparks.mediator. businesslayer;

public class Message
j

pr:t.vate int :t".EssageID;
p:!Civate String senderAddress;
pr.lvace String destinatio!'_'\d dress;
private String messageSubjec t;

private St.ring messageCont.Er" t.;

privace String receivedDate;
privace String status;
public Messag e (;- {}
public String getSender.~ddress'
{

recurn se nderF..ddress;

publi.c void s etSenderAddress ;:String ser;cie!"Address:

this. send e!".~dress = sen de!";'.dc.ress;

public Sering ge!:Descir..a.c:io:'.Adc!"ess'
{

!"eturn de scinatioE..ll,.ddres 5;

return messa.geSubjecc;

p-..:.J::'lic vc,id. s eC"'1essageS"-=-'::j s:: t. S::rinS r;,ess=-s eS·~= e::::
(

118



return re ceivedDate;

return messageContent;

this. reee i vedDate = reee i vedDate i

this.mess age-Content. = me ssageContent;

}
public String getMessageCont Ent {}
(

)
public void s etMessageConten t (String me-ssag eContent)
(

)
public String getReceivedDat e ()
{

J
public void setReceivedDate{ String received Date)
{

}
public String getStatus()
{

Tet-urn st atus;

this _stat us '" status;

}
public void setStatus(String
{

}

sLatus)

return messageID;

oublic

1
}

int getMea sageID ()

this.messageID = messageID;

public
(

)

void seeMe ssageID (int ~es sageID)

Folder

package ccm_mcebo.sanparks.media~or.businesslayer;

import corn. mcebo. sa..'1.p arks .mediator. a ccesslayer .Mess age-OE;
import java.util.ArrayList;

public class Folder
(

private St!."ing folder-Name;

/ / Counting messag es
private in:: totaIMessageCc~~t;

private inc newMessageCo~t;

private in:: read MessageCou=,.t;

//Retrieving messages
private- Message f] tOca:::'MEssage-s;
prl.vate st.a':-ic Me-ssageDE mailDB;
public Fe-lde!.";)

119



this.folderName = folderName;

return folder Name;
)
public void set-Fa IderName (String
(

)

fo!derName)

this. newMessa geCount = newMe ssageCount;

return newM essageCotHlt;

llGetting number of new messages
public void setNe wMessageCOll.l1.t (i nt
(

)
public int get-New MessageCount (1
{

}

newMessageCo unt)

IIGetting the number of read mES sages
public void setRe adMessageCount:- (int. readMessage Count;
(

this .read MessageCount ", readMessageCoun t;

public
(

)

int getRea d.NIessageCount ::)

return re ad..NIessageCount ;

return totalM essageCourlt;

mark AsReadMessages '~int. message ID:

this. totalMes sageCount = tot alMessageCount;

I/Getc.ing the number of total me ssages
public void setTotalMessageCount. lint totalMessageCount)
{

}
public int. getTot aIMessageCou...-'1.t {
{

}
public void
{

mailDB .ma rkAsRead.."'!essage s ':messageID: ;
}

//Getting all new messages
public Message[] getMessages 'Ser ing emai2-Addres s;
{

int read = 0;
int unread = 0;
totalMess ages = mailD5. retrieve!"!essage s (emai:Address
irl.t len tm:aBolessages. leng::h;
for(in:: i = O;i < ler:;i++;

if (::.otaIMessages [iJ .gecScat'.ls (; . eqc:als' "unYead ":
U,.'1read++ ;

if (cocalMessages U.J .gec-Status·~;' .eq-..:als "reac.":
read+..-;

)
setNe'...'Mes sageCo12:t.>.lnrea d:
setReadi."le ssageCot:.....'1.t ~read
setTocalM essageCo"W1c (le;:

recur" c ocalMessages:

p'..lDllc scacic v·:::i cl save~essage .:,.! essage :r.essage

:!:ailDE. s;:o rec"'less2.9'es:rr.es5 age:
Syste~.m:t .println."Sa·..·ed" ;

public void delec. eMessages r.i;:c. message-I:

120



APPENDIXD

USABILITY TESTING INSTRUMENTS

Questionnaires for the Usability testing of the new SANPARKS Information
System.

Performance Evaluation of the uew SANPARKS Information Svstem!!

We base the evaluation of the new system on usability testing, since the aim of this

research is to improve the users' friendliness of the system. In order to achieve that goal,

there is the need to interact with users by means of instrument (Questionnaires) to capture

the view ofthe users about the new system.

SECTION A - People from IT-related Discipline

System development is the result of applying progranuning languages and software

related courses to achieve the solution of the defined problem in a particular study.

People who are much involved in systems development are Computer Science,

Information Technology and Library Information Systems students. We will then

interview some students from the above mentioned departments in order to check

whether restructured SAl'lPARKS system meets the following design criteria:

Restructuring, Transparent Information Delivery and Personalization. Below is the full

meaning of the design criteria's.

I. Restructuring - Make the SAl,\PARK system fit for the status of infurmation provider.

III



2. Transparent Information Delivery - Integrate a publish/subscribe engine that allows a

consumer to get information without knowing the source.

3. Personalization - Enhance the engine to serve mobile users in a personalized marmer.

The students suppose to take a tour on the system and use the system by subscribing to

the system and wait for the information to be delivered to them by the publishing

students. When the information is already delivered, students need to check whether the

information meets their interest. Students suppose to divide themselves according to two

categories as this system is the publish!subscribe system. The must be students that will

play a role of subscribers and some will be publishers. In completion students needs to

answer the following questions.

Please note: The questionnaire is in two phase (SubscriberlPublisher).

Instructions: Shade circles or simple mark X in response.

SUbscribers (Students) Questionnaires

1. Please also tick your department from the list below.

o Computer Science

o library Infonnation System

o Information Technology

1. \V1rich level of study are you doing?

o First year

o Second year

122



o Final year

o Honors

o Masters

o Doctorate

3. How is the restructured SANPARKS system respond in tenus of the following?

Parameters Good Fair Excellent
1. Quality of
Interaction
2. Quality of
Information
Provided

4. How do you find the SANPARKS system when taking a tour on it (using it)?

o Enjoyable

o Boring

o Satisfactory

5. In your opinion is this system user friendly (or easy to use)?

OYes

o No very complicated

o Average, normal as other system

6. Does this SAl,\jPARKS system satisfy your interest of the servicesry

OYes

ONo

123



7. Does this system support personalization of services when it delivers notifications to

you as a client?

OYes

o Not at all

8. Do you think infonnation provided by this system is limited and requires some more

improvements?

OYes

ONo, if yes specifies what need to be improved.

......................................................................................................

............................ - -.

124



Publishers (Students) Questionnaires

1. Please also tick your department from the list below.

o Computer Science

o Library Information System

o Information Technology

4. Which level of study are you doing?

o First year

o Second year

o Final year

o Honors

o Masters

o Doctorate

5. Is this SA.NPARKS system fit for the information provider entity~

OYes

ONo

6. Do you think the new SAl'lPARKS system able to reach correct prospective clients?

OYes

ONo

125


	Declaration
	Dedication
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abstract
	Chapter one - Introduction and background
	Chapter two - Literature review
	Chapter three - Model development
	Chapter four - Implementation and evaluation of the prototype
	Chapter five - Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D

