
2011

 Performance Evaluation of Routing Metrics for

Wireless Mesh Networks

by

Siphamandla Lindelani Nxumalo

(20032463)

(B.Sc. Hons. Computer Science)

Supervisors: Prof M.O. Adigun and Dr. N. Ntlatlapa

This dissertation is submitted to the Department of Computer Science at

the University of Zululand’s Faculty of Science and Agriculture, in

fulfilment of the requirements for the degree of Master of Science in

Computer Science

 ii

DECLARATION

This dissertation represents the author’s original work, conducted at the University of

Zululand. It is submitted for the degree of Master of Science in Computer Science in

Faculty of Science and Agriculture, at the University of Zululand, KwaDlangezwa. No part

of this research has been submitted in the past, or is being submitted, for a degree or

examination at any other University. All sources used in this dissertation have been duly

acknowledged.

Signature________________________________

NXUMALO SL

 ii

DEDICATION

I dedicate this piece of work to my mother, Ms. E K Nxumalo and my daughter,

Aphelele Owethusonke Nxumalo.

 iii

ACKNOWLEDGEMENTS

I would like to start by acknowledging members of my family especially my mother, Ms

EK Nxumalo, who has always been there for me through thick and thin. Many thanks go

to my supervisors, Prof. M.O. Adigun of University of Zululand and Dr. N. Ntlatlapa of

CSIR, Meraka institute for guiding me throughout this research work. I would also like to

thank department of computer science at the University of Zululand for allowing me to

pursue my studies. My appreciation also goes to Thulani Nyandeni for mentoring me in

my first year of masters and making sure that I get a solid foundation and introduction to

research and wireless networks. Special thanks go to Pragasen Mudali and Bethel Mutanga

for supporting and advising me throughout the duration of this project.

I would like to extend my gratitude to my friend and colleague Sakhile Ncanana for his

assistance and brotherly advice during hard times. Many thanks to the Wireless Mesh

Networks research group and all research colleagues in the department of computer science

for making sure I was making progress on the right direction throughout my project. I am

humbled by financial support provided by Telkom, Thrip, and Huawei to the department

of computer science at the University of Zululand through the CoE program. My gratitude

to my sponsor CSIR, Meraka Institute for financial support they provided me with for the

duration of this project. Mostly I would like to say that I am grateful to God, my creator

for giving me strength and courage to keep going throughout the duration of my study.

 iv

TABLE OF CONTENTS

DECLARATION ... II

DEDICATION ... II

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS ... IV

ABSTRACT ... VIII

CHAPTER ONE ... 1

INTRODUCTION .. 1

1.1 PREAMBLE .. 1
1.2 BACKGROUND .. 4

1.2.1 Reactive Routing Protocols .. 5
1.2. 2 Proactive Routing Protocols ... 5

1.3 STATEMENT OF THE PROBLEM .. 7
1.4 RATIONALE OF THE STUDY ... 7
1.5 RESEARCH GOAL AND OBJECTIVES .. 8

1.5.1 Research Goal .. 8
1.5.2 Research Objectives .. 8

1.6 OVERVIEW OF RESEARCH METHODOLOGY ... 9
1.6.1 Primary Research Method: Simulation .. 9
1.6.2 Secondary Research Method: Case-Study ... 11

1.8 ORGANIZATION OF THE DISSERTATION ... 12

CHAPTER TWO .. 13

BACKGROUND STUDY .. 13

2.1 INTRODUCTION ... 13
2.2 EXISTING COMPARISONS OF ROUTING METRICS ... 15

2.2.1 Designing Routing Metrics for Mesh Networks (Yang et al., 2006) ... 15
2.2.2 A Comprehensive Comparison of Routing Metrics for Wireless Mesh Networks (Liu et al, 2008)
 16

2.3 SUMMARY .. 18

CHAPTER THREE.. 19

LITERATURE REVIEW .. 19

3.1 INTRODUCTION ... 19
3.2 EXISTING ROUTING METRICS ... 20

3.2.1 Custom Specification for Routing Metrics ... 20
3.3 OUR SPECIFICATION OF ROUTING METRICS .. 20
3.4 SUMMARY .. 60

CHAPTER FOUR .. 61

 v

SELECTED ROUTING METRICS FOR THE STUDY .. 61

4.1 INTRODUCTION ... 61
4.2 HOP COUNT .. 62
4.3 EXPECTED TRANSMISSION COUNT .. 64
4.4 PER-HOP ROUND TRIP TIME .. 67
4.5 EXCLUSIVE EXPECTED TRANSMISSION TIME .. 70
4.6. SUMMARY ... 72

CHAPTER FIVE .. 73

PERFORMANCE EVALUATION OF SELECTED ROUTING METRICS 73

5.1 INTRODUCTION ... 73
5.2 SIMULATION ENVIRONMENT ... 75
5.3 EVALUATION PARAMETERS .. 75

5.3.1 Average delay ... 75
5.3.2 Throughput ... 76
5.3.3 Packet loss ratio ... 76
5.3.4 Delay jitter ... 77
5.3.5 Packet drop ratio ... 77

5.4 EXPERIMENTAL SETUP.. 78
5.4.1 Routing Protocol .. 78
5.4.2 Packet Buffer Model... 79
5.4.3 Physical and Data Link Layer ... 79

5.5 SIMULATION EXPERIMENTS .. 80
5.5.1 Experiment 1: The effect of network size on delay ... 80
5.5.2 Experiment 2: The effect of network size on delay jitter .. 83
5.5.3 Experiment 3: The effect of network size on packet loss ratio ... 87
5.5.4 Experiment 4: Effect of network size on packet drop ratio .. 88
5.5.5 Experiment 5: Effect of time on throughput ... 90
5.5.6 Summary of Results .. 99

5.6 RECOMMENDATION OF DESIGN CRITERIA ...101
5.6.1Weight path-awareness ..101
5.6.2 Efficient weight path algorithm design ...103
5.6.3 Quality of Service-awareness ..103
5.6.4 Network scalability ...104

5.7 SUMMARY ...105

CHAPTER SIX ..106

CONCLUSION AND FUTURE WORK ...106

6.1 CONCLUSION ...106
6.2 LIMITATIONS AND FUTURE WORK ...108

 vi

LIST OF FIGURES

FIGURE 1.1: TYPES OF MULTI-HOP WIRELESS NETWORKS ... 2
FIGURE 1.2: A TYPICAL EXAMPLE OF WMNS (AKYILDIZ ET. AL., 2005) 3
FIGURE 2.1: RELATIONSHIP BETWEEN A ROUTING PROTOCOL AND A ROUTING METRIC 14
FIGURE 3.1: PERFORMANCE METRICS AND PERCENTAGES OF ROUTING METRICS 23
FIGURE 3.2: EVOLUTION OF ROUTING METRICS .. 59
FIGURE 4.1:PSEUDO CODE FOR HOP COUNT ROUTING METRIC .. 63
FIGURE 4.2: FLOWCHART FOR THE HOP COUNT ROUTING METRIC 64
FIGURE 4.3: PSEUDO CODE FOR EXPECTED TRANSMISSION COUNT ROUTING METRIC 65
FIGURE 4.4: FLOWCHART FOR THE EXPECTED TRANSMISSION COUNT ROUTING METRIC 66
FIGURE 4.5: PSEUDO CODE FOR PER-HOP ROUND TRIP TIME ROUTING METRIC 67
FIGURE 4.6: FLOWCHART FOR THE PER-HOP ROUND TRIP TIME ROUTING METRIC 68
FIGURE 4.7: PSEUDO CODE FOR EXCLUSIVE EXPECTED TRANSMISSION TIME 70
FIGURE 4.8: FLOWCHART FOR THE EXCLUSIVE EXPECTED TRANSMISSION TIME ROUTING

METRIC ... 71
FIGURE 5.1: EFFECT OF NETWORK SIZE ON DELAY ... 82
FIGURE 5.2: THE EFFECT OF NETWORK SIZE ON DELAY JITTER ... 84
FIGURE 5.3: EFFECT OF NETWORK SIZE ON PACKET LOSS RATIO ... 86
FIGURE 5.4: EFFECT OF NETWORK SIZE ON PACKET DROP RATIO .. 89
FIGURE 5.5: EFFECT OF TIME ON THROUGHPUT OF SENDING PACKETS 93
FIGURE 5.6: EFFECT OF TIME ON THROUGHPUT OF RECEIVING PACKETS 95
FIGURE 5.7: EFFECT OF TIME ON THE THROUGHPUT OF FORWARDING PACKETS 98

vii

LIST OF TABLES

TABLE 2.1: EXISTING ROUTING METRICS REVIEWS ... 17
TABLE 3.1: PARAMETERS OF ROUTING METRICS .. 21
TABLE 3.2: CLASSIFICATION OF ROUTING METRICS (NXUMALO, NTLATLAPA, MUDALI, &

ADIGUN , 2009) ... 22
TABLE 3.3: PARAMETERS OF HOP (DIJKSTRA, 1959) .. 24
TABLE 3.4: PARAMETERS OF PKTPAIR (KESHAV, 1991) .. 26
TABLE 3.5: PARAMETERS OF ETX (DE COUTO, 2003) ... 28
TABLE 3.6: PARAMETERS OF RTT (ADYA, ET AL., 2004) ... 30
TABLE 3.7: PARAMETERS OF ETT (DRAVES ET AL., 2004A) .. 32
TABLE 3.8: PARAMETERS OF WCETT (DRAVES ET AL., 2004B) .. 34
TABLE 3.9: PARAMETERS OF MIC (YANG ET AL., 2005) .. 35
TABLE 3.10: PARAMETERS OF MCR (KYASANUR AND VAIDYA, 2005) 37
TABLE 3.11: PARAMETERS OF METX (KOKSAL & BALAKRISHNAN, 2006) 39
TABLE 3.12: PARAMETERS OF ENT (KOKSAL & BALAKRISHNAN, 2006) 40
TABLE 3.13: PARAMETERS OF IAWARE (SUBRAMANIAN ET. AL, 2006) 42
TABLE 3.14: PARAMETERS OF PPTT (YIN ET AL., 2006) .. 43
TABLE 3.15: PARAMETERS OF AETD (ZHOU ET AL., 2006) ... 45
TABLE 3.16: CHARACTERISTICS OF AIRTIME COST CONSTANTS (IIIE 802.11, 2006) 47
TABLE 3.17: PARAMETERS OF AIRTIME LINK METRIC ... 48
TABLE 3.18: PARAMETERS OF MM (SHEN & FANG, 2006) .. 49
TABLE 3.19: PARAMETERS OF WCETT-LB (MA & DENKO, 2007) 51
TABLE 3.20: PARAMETERS OF EETT (JIANG ET AL., 2007) .. 53
TABLE 3.21: PARAMETERS OF ILA (SHILA AND ANJALI, 2007) ... 55
TABLE 3.22: PARAMETERS OF IETT ... 57
TABLE 3.23: PARAMETERS OF BATMAN (JOHNSON ET AL., 2008) 58
TABLE 5.1: SIMULATION PARAMETERS .. 80
TABLE 5.2: EFFECT OF NETWORK SIZE ON DELAY .. 81
TABLE 5.3: EFFECT OF NETWORK SIZE ON DELAY JITTER ... 84
TABLE 5.4: EFFECT OF NETWORK SIZE ON PACKET LOSS RATIO .. 86
TABLE 5.5: EFFECT OF NETWORK SIZE ON PACKET DROP RATIO ... 88
TABLE 5.6: EFFECT OF TIME ON THROUGHPUT OF SENDING PACKETS 91
TABLE 5.7: EFFECT OF TIME ON THROUGHPUT OF RECEIVING PACKETS 94
TABLE 5.8: EFFECT OF TIME ON THE THROUGHPUT OF FORWARDING PACKETS 97
TABLE 5.9: SUMMARY OF RESULTS .. 100

 viii

ABSTRACT

An optimal routing metric has a potential to improve performance of a wireless network.

A number of routing metrics were designed with mobile ad hoc networks (MANETs) in

mind. These routing metrics might be useful in wireless mesh networks (WMNs) but the

fact that WMNs and MANETs are two different types of wireless networks with different

features might not allow optimal performance of some or all existing routing metrics that

were designed for MANETs. These differences in WMNs and MANETs make it important

to firstly test if these existing routing metrics can work in WMNs. These existing routing

metrics have been compared by different scholars in the literature, but the manner in which

they were compared was not consistent, which makes it difficult to draw conclusions as to

which routing metric works best for WMNs. The goal of this study was to evaluate the

performance of existing routing metrics for Wireless Mesh Networks with a view to

designing an optimal one.

The goal of this work was achieved by evaluating the performance of existing routing

metrics through NS2 simulation tool installed in Ubuntu Linux version 9.10.

Recommendation of design criteria for designing an optimal routing metric for WMNs.

Four routing metrics (HOP, ETX, RTT, and EETT) were chosen for evaluation after

comparing twenty existing routing metrics. As the first part of the researcher’s contribution

to knowledge, the four (hop count, expected transmission count, per-hop round trip time,

 ix

and exclusive expected transmission) routing metrics were compared under a consinstant

manner (using the same routing protocol, performance metric, and WMNs environment).

The overall results of the experiments show that ETX outperformed all the other routing

metrics that were simulated. However, the study has shown that ETX is not the best routing

metric for WMNs. Thus as the second part of contribution to the body of knowledge,

promting the researcher to further recommend four features for designing an optimal

routing metric for WMNs. The four features proposed by the researcher were wight path-

awareness, efficient wight path algorithm design, quality of service-awareness, and

network scalability.

 1

CHAPTER ONE

INTRODUCTION

1.1 Preamble

A wireless multi-hop network is a network of nodes which are connected by wireless

communication links, the links are most often implemented with digital packet radios (De Couto,

2003). Nodes must make use of intermediate nodes to forward packets to the intended destination

node, because a node can not directly communicate with all the nodes in the network. A node is

a communication device that is capable of sending, receiving, and relay packets. Wireless Mesh

Networks (WMNs), Mobile Ad hoc Network (MANET), and Wireless Sensor Networks form

the family of Ad hoc Multi-hop Wireless Networks (see Figure 1.1).

Different from mobile ad hoc networks and sensor networks, WMNs architecture introduces a

gateway which allows for connection to the internet (see Figure 1.1), but not all WMNs are

connected to the internet. Wireless mesh networks are dynamically self-organized and self-

configured, with the nodes in the network automatically establishing an ad hoc network and

maintaining the mesh connectivity (Akyildiz, Wang & Wang, 2005) (see Figure 1.2). WMNs are

usually comprized of three types of nodes: mesh clients, mesh routers, and gateway.

 2

Wireless Multi-hop
Networks

Wireless Mesh Networks Wireless Sensor
Networks

Wireless Ad hoc
Networks

Figure 0.1: Types of Multi-hop Wireless Networks

Nodes do not operate only as hosts but can also operate as mesh routers, mesh clients, or a

gateway. In WMNs not all nodes can directly communicate with any other node; relay nodes are

used to pass packets across the network (Ramanathan & Redi, 2002). WMNs employ multi-hop

communications to forward traffic and route to and from wired Internet entry points.

WMNs are scalable in their deployment. Since the nodes can join or leave at anytime as long as

they operate software compatible with other nodes in the network, the area of coverage can be

extended by just putting nodes where they can communicate with existing network nodes.

WMNs are self-healing because nodes in WMNs dynamically learn their neighbors as well as

links to other nodes, there is automatic compensation for the failure or removal of a node (Held,

2005).

 3

Figure 0.2: A typical example of WMNs (Akyildiz et. al., 2005)

WMNs are also reliable networks, this is achieved through the fact that WMNs nodes function

as relay to forward packets to their intended destination node. Since the nodes can join or leave

the network at anytime, each node must be able to change its forwarding pattern depending on

its neighbors. The failure of a certain route will lead to packets being transmitted through a

different route to the destination, in that way reliability is assured in WMNs.

One of the advantages of WMNs is the ease of deployment. Only a few members of the

community can be trained and be able to configure and deploy nodes to setup a WMN in a

community (Held, 2005). Using WMNs also reduces installation costs. Since the nodes are

wirelessly connected to each other, there are no wires required to link the nodes and wires may

be quiet expensive. Because WMNs neither require a central administrator nor manual

 4

configuration, they are less costly than centrally controlled networks. WMNs are self-

configured; a node is responsible for finding out which nodes is it connected to.

Some of the potential application scenarios of WMNs include broadband home networking,

community and neighborhood networking, metropolitan area networks, enterprise networking,

health and medical systems, transportation systems, and security surveillance systems. A best

performing wireless mesh network should try by all means to provide quality of service (QoS).

An optimal path is the path that satisfies QoS demands such as delay and throughput. QoS is the

collective effect of service performance which determines the degree of satisfaction of a user of

the service (Bruin, 2006). Routing is the process of selecting optimal path through which a packet

is to be sent. Each node in a network needs a routing protocol to select the best path through

which a packet should be sent from the source node to the intended destination node. Each

intermediate node is capable of relaying packets for its neighbor node through the required route

to the destination node.

1.2 Background

This section presents the background about routing protocols types of routing protocols that

exist in literature. Subsection 1.2.1 discuses reactive routing protocol, 1.2.2 discuses reactive

protocols, while 1.2.3 discuses hybrid routing protocols.

 5

1.2.1 Reactive Routing Protocols

This type of routing protocols was firstly proposed for mobile ad hoc networks. Reactive routing

protocols (e.g., dynamic source routing protocol (Johnson & Maltz, 1996), ad hoc on demand

vector routing protocol (Perkins, 1997) only establish a path between a source and destination

pair when the source node has packets to send to a destination node. A method usually used to

discover routes when they are needed is a method known as network-wide flooding. The

network-wide flooding method reduces traffic overhead at the cost of increasing latency of

finding the route to the destination (Jacquet, Muhlethaler, Clausen, Laouiti, Qayyum & Viennot

2001).

In WMNs, links normally have longer expected lifetimes because of the fact that WMNs nodes

are static. Since the frequency of link breaks is much lower than that of flow arrivals in WMNs,

flooding-based route discovery method is not only expensive in terms of control message

overhead, but also redundant.

1.2. 2 Proactive Routing Protocols

Proactive routing protocols or table driven protocols are types of routing protocols in which

every node keeps at least one table that contains routing information to all other nodes in the

WMN. Each node keeps updating these tables to maintain consistency of the information in the

network. Every time there is a change in the topology of the network, each node sends update

messages to other nodes in the network to maintain consistent routing information in the

network. Proactive routing protocols differ in the method they use to forward packets along

routes. A proactive protocol can either use source routing or hop-by-hop routing.

 6

i. Source routing

Source routing enforces minimal load on the intermediate nodes, because the source node

determines the path for a flow. The entire route from the source node to the destination node is

stored in the packet headers. Relay nodes are only required to relay packets according to the

routes stored in the packet headers. One major disadvantage of source routing method is that

putting the entire route in the packet header enforces high message overheard, since packet in

wireless network is normally too small to cope with high bit error rate of wireless channels

ii. Hop-by-hop routing

Each node in the network maintains a routing table that has the information of the next hops to

each node in the network. A packet only needs to carry the destination address for it to reach its

destination. Hop-by-hop is used mostly in wired networks because of its simple forwarding

scheme and low message overhead. Owing to these two reasons, hop-by-hop routing is preferred

for mesh networks. Although hop-by-hop routing possesses several advantages, it requires

careful design of its routing metrics to make sure that there is loop-free forwarding of packets.

1.2.3 Hybrid routing protocol

Hybrid routing combines both proactive and on-demand routing mechanisms to transport a

packet from the source node to the destination node. Hybrid routing takes the advantages of both

the proactive and the on-demand routing methods. Hybrid Wireless Mesh Protocol (HWMP) is

an example of a hybrid routing method. Since HWMP is a hybrid routing protocol, it composed

of both reactive and proactive capabilities. HWMP is based on the AODV routing protocol, and

it has a configurable extension for proactive routing towards so called mesh portals. The AODV

 7

used by HWMP is called RadioMetric-AODV (RM-AODV) (Aoki et. al., 2005). HWMP uses

MAC addresses (layer 2 routing), instead of IP addresses used in layer 3 routing.

1.3 Statement of the Problem

There are a lot of routing metrics that were originally proposed for MANETs and then later

adopted for WMNs, but routing in wireless mesh network still needs more attention. There is a

need to find out which routing metric works best for WMNs among the existing routing metrics.

The existing routing metrics have not been compared using the same routing protocol,

performance metrics, and WMNs environment (Draves, Padhye & Zill, 2004a; Yang, Wang &

Kravets, 2006; Liu, Huang & 2006). Existing routing metrics need to be compared using the

same protocol, performance metrics, and WMNs environment. Such an arrangement will

determine if existing routing metrics can be used in WMNs and, if so, which one works best.

Therefore, this research formulated a strategy for this investigation in form of research questions:

i. What are the pitfalls in existing WMNs routing metrics?

ii. Which routing metric among existing routing metrics is the best for WMNs?

iii. What features should be considered when designing a routing metric for WMNs?

1.4 Rationale of the Study

There was a need to compare the existing routing metrics in a consistent manner and then

recommend the routing metric that works best for WMNs. The analysis shows if there is a need

for a new routing metric designed specifically for WMNs. Good performance of the existing

 8

routing metrics in WMNs or coming up with an optimal routing metric is critical for the good

performance in WMNs.

Successful completion of this research project will benefit the research community because any

scholar who wants to come up with a new routing metric for WMNs will be able to use design

criteria that were recommended at the end of Chapter Four of this work, after the evaluation that

was conducted in a consistent manner.

1.5 Research Goal and Objectives

Subsection 1.5.1 presents the goal of this research work. The goal is further divided into four

research objectives in subsection 1.5.2.

1.5.1 Research Goal

The goal of this research project is to evaluate the performance of existing routing metrics for

Wireless Mesh Networks with a view to designing an optimal one.

1.5.2 Research Objectives

The goal of this work can be decomposed into four research objectives that are listed as

follows:

i. To survey relevant literature on existing routing metrics

ii. To identify the performance parameters for selecting routing metrics

 9

iii. To simulate, analyze, and evaluate the performance of the existing routing metrics

iv. To recommend design criteria for an optimal routing metric for WMNs

1.6 Overview of Research Methodology

This section overviews the research methods that were used in this research project. The

researcher used two research methods to complement each other to fulfill the research objectives

listed. Simulation was used as a primary research method, complemented by case-study as the

secondary research method.

1.6.1 Primary Research Method: Simulation

Other researchers haved used a testbed to evaluate the performance of the reouting metrics.

However, the researcher did not have a bigger and real life testbed to run their experiments on.

The researcher had access to a 49-node testbed, howeve this testbed had too few nodes to run

the eperiments for this study. As a result, this study has only focused on the simulation. The

researcher proposed that there is a need for another study that can further validate the results of

this study through the use of a testbed. This is included in the future work section of this

document.

Literature survey of routing metrics using a categorization framework that was designed in

Chapter Two was firstly conducted before the routing metrics could be simulated. The

framework that was used for literature review has the following parameters that were considered:

metric name, year, problem addressed by the routing metric, solution approach, advantages,

 10

disadvantages, quality of service-awareness, performance metrics considered, validation

method, and routing protocol(s).

Literature survey was conducted so as to study and compare existing routing metrics, and then

select routing metrics to be simulated. Literature survey fulfilled objectives one and two. Twenty

different routing metrics were reviewed and grouped into four groups in Chapter Three. Routing

metrics in each group were compared among themselves, so as to choose one routing metric to

represent the group when conducting simulation. There were four routing metrics in total that

were chosen for simulation.

The four selected routing metrics were simulated using a network simulation tool called NS2

(Network Simulator version 2) 2.34. NS2 is a discrete event simulator for networking research

based on standard C++ and OTcl. The simulation environment that was used to model the test

bed is Ubuntu Linux version 9.10. The simulation measured five performance metrics (delay,

throughput, packet loss ratio, delay jitter, packet drop ratio). A square grid network topology was

used, and AODV routing protocol. The researcher used the simulation area of 1500 x 1500 square

units. Transmission range of the nodes was 150m.

While conducting the experiments, the network size was varied. Up to 196 nodes were simulated

so as to cater for network scalability. Each experiment was run ten times, and the average of the

ten runs was taken. NS2 was used to generate traffic files. The traffic flow was increased as the

number of nodes increased. A Tcl script was used to run the simulation and generate trace files.

 11

Trace files were analyzed using trace graph. The analyses from the trace graph were used to

generate graphs that were in turn used to interpret the behavior of the routing metrics.

Objective number four was fulfilled by recommending design criteria for an ideal routing metric

for Wireless Mesh Networks. The recommendation of design criteria also answered the first and

the third research question. The simulated routing metrics’ performance was evaluated in

Chapter Four. The performance evaluation led to concluding as to which routing metric is the

best of all the four routing metrics that were simulated. Design features were proposed to help

any scholar that wants to design a new routing metrics from scratch or improve one of the

existing routing metrics.

1.6.2 Secondary Research Method: Case-Study

Case-study was the second research method used to complement the primary method. Simulation

as a research methodology was unable to fulfill objective three as well as answering the second

research question. A case-study was chosen to evaluate the routing metrics and help answer the

second research question. The case-study was used to evaluate the performance of the four

routing metrics that were simulated. Performance evaluation of routing metrics answered the

second research question, while also fulfilling the third research objective. The performance of

each routing metric was compared to the performance of the other routing metrics that were also

simulated.

 12

1.8 Organization of the Dissertation

The rest of this thesis is organized as follows: Chapter Two of this work reviews literature of

existing comparisons of routing metrics. Up to twenty existing routing metrics were reviewed in

Chapter Three. A framework for literature review was designed and used to select representative

samples. Chapter Three presents both pseudo code and flowcharts specifications for routing

metrics that were simulated for our evaluation. Chapter Four starts by describing simulation

environment, and it then presents the experimental setup. Chapter Four presents the analysis of

the results of the experiments that were conducted before finalizing by recommending design

criteria based on our analysis of the results. Chapter Five presents limitations and future works

of the study.

 13

CHAPTER TWO

BACKGROUND STUDY

 2.1 Introduction

A routing protocol uses a criterion for selecting the best path, this measurement is known as a

routing metric. A routing protocol without a routing metric is like a car without an engine,

because the routing protocol makes its path selection using the routing metric. A routing metric

is the nucleus of a routing protocol. Figure 2.1 shows the relationship between these two

components of routing. A node needs a mechanism for selecting a best path through which to

transmit a packet. The process of selecting the optimal path through which to send the packet is

called routing. Routing is performed in each router so as to find the next hop for the packet.

It was explained in Chapter One that there is a need to compare existing routing metrics in a

consistent manner, so as to conclude if there is a routing metric among existing routing metrics

that works best for WMNs. Comparison is important because routing metrics need to be

compared using the same performance metrics, same environment, and same routing protocol

have to be used to make the comparison consistent. The network configurations are also kept the

same for all the experiments. This chapter provides the framework that was used for analyzing

the routing metrics. It also discusses existing routing metrics, before providing a thorough

discussion of the selected routing metrics.

 14

Routing protocol

Routing metric

Figure 0.1: Relationship between a routing protocol and a routing metric

Routing in wireless networks has been a problem for a very long time. In an attempt to solve the

problem, (Dijkstra, 1959) came up with an algorithm for calculating the shortest path. This

routing metric might be simple; the shortest path to the receiver is not always the best one

(Draves et al., 2004a) as there are a lot other factors to be considered such as link quality. The

approach may not result in the best route as the chosen route may have a high packet loss ratio,

or be highly congested (Akyildiz & Wang, 2009; Liu et al., 2008).

This chapter presents what has been done by other scholars in trying to solve the problem of

routing in wireless networks. Two works that compare the routing metrics were presented and

analyzed in this chapter. The analysis focuses more on the consistency of the comparisons of the

routing metrics.

Most of the comparisons done on routing metrics compared routing metrics in an inconsistent

manner. An ideal comparison of routing metrics needs to be based on the same routing protocol,

same performance metrics, same experimental setup, and same network configuration for all the

experiments conducted so as to compare the routing metrics. This work is trying to have routing

 15

metrics compared in a consistent manner. In section 2.2 we discuss the existing comparisons of

the existing routing metrics, while 2.3 concludes the chapter.

2.2 Existing Comparisons of Routing Metrics

In this work, we wanted to review specially works that compared routing metrics in a wireless

mesh networks setup. We could have reviewed a lot of studies that compared routing metrics,

but we obted for the only two that compares routing metrics for WMNs, because this work is

specific to WMNs. This work discusses two comparisons of routing metrics in WMNs found in

the literature. A lot of efforts have been put into finding solutions for routing in wireless mesh

networks (WMNs), and there is still a lot of research going on in this field, resulting in more and

more routing metrics being proposed. On the other hand, scholars have carried out research that

compares the performance of routing metrics.

2.2.1 Designing Routing Metrics for Mesh Networks (Yang et al., 2006)

The authors of this work discussed five existing routing metrics (hop count, expected

transmission count, expected transmission time, weighted cumulative expected transmission

time, and metric of interference and channel-switching). Performance evaluation of the routing

metrics was done from the results obtained from NS2 simulation. ETX was not considered when

the routing metrics were simulated in NS2, and we feel that it should have also been considered

for consistent analysis of the five routing metrics. The comparison was only based on four

routing metrics out of a possible five as they were discussed early in the same work by these

authors. It is not clear which routing protocol was used by authors in this work.

 16

The same performance metrics (maximum channel utilization, network throughput, end-to-end

packet delay) were used for all routing metrics. Authors in this work randomly generated 10

networks with 100 nodes and 10 networks with 160 for the experiments, and we feel that they

should have varied the network size rather than using only two network sizes (100 and 160). The

performance of the routing metrics was compared. MIC outperformed all the other routing

metrics that it was simulated with, while HOP was the worst performer. WCETT performed

better than ETT while it performed worse than both HOP and MIC. HOP performed better than

both ETT and WCETT, while it performed worse when compared to MIC.

2.2.2 A Comprehensive Comparison of Routing Metrics for Wireless Mesh

Networks (Liu et al, 2008)

The authors in this work compared 10 different routing metrics designed for diverse quality of

service (QoS) requirements in WMNs. Work by (Liu et al, 2008) started off by classifying

routing metrics into three groups. This is the approach that our own work followeed (see Table

3.2), work by (Liu etal, 2008) firstly groups routing metrics into three groups: ETX-based,

mETX, and other routing metrics less attractive to WMNs routing layer. The authors of this work

did not provide any results from the experiments to back their theoretical analysis of the routing

metrics.

 17

Table 0.1: Existing routing metrics reviews

Parameters (Yang et al., 2006) (Liu et al., 2008)

Routing protocol Not clear X

Performance metric ? X

Network configuration ? X

Experimental setup X X

Our work adopted the approach that is used by (Liu et al, 2008) of firstly grouping the routing

metrics. This work evaluates the performance of routing metrics for WMNs. Routing metrics in

(Liu et al, 2008) were classified into three groups: ETX-based, mETX-based, and metrics less

attractive to WMN’s routing layer, and in our study we also grouped the routing metrics into

fourgroups. The study that is conducted in our own work used) simulation (NS2) to run

experiments. The biggest network size that was simulated is 196 nodes, which can be easily done

in NS2 simulation than in a test bed.

The use of test bed requires 196 physical nodes, which is costly than using simulation. The test

bed in our wireless mesh network research laboratory (in University of Zululand) has only 14

nodes, which makes it difficult to use a test bed for this work. Our work used simulation for

evaluation because of financial constrains, although for future work, running experiments on a

test bed is considered.

Table 2.1 summarizes two works by other scholars that were reviewed in this research study.

The tick (√) shows that the particular parameter was considered by that particular work while

 18

the cross (x) means that the work did not provide that parameter. This table shows the

inconsistency in comparing the existing routing metrics done by other scholars. It was not clear

which routing protocol was used in the first work while the second work never provided

experimental results; hence none of the parameters was found, therefore both fields were marked

with a cross. The first work used same performance metrics for all the routing metrics that were

compared which is also the same as what was done in our research study to keep the consistency.

Same network configuration was used for all the experiments, but the experimental setup only

considered two network sizes.

2.3 Summary

This chapter introduced key concepts such as routing protocol, routing metric, and routing, which

are used more often in this work. The chapter reviewed two works that compared routing metrics,

so as to justify the inconsistency in previous comparisons of routing metrics. Both these works

were found not to have compared routing metrics in a consistent manner, leading to us having a

reason to carry out this research project so as to come up with a consistent comparison of routing

metrics. The next chapter provides a thorough review of each existing routing metric and later

select four routing metrics to simulate and evaluate their performances.

 19

CHAPTER THREE

LITERATURE REVIEW

3.1 Introduction

This chapter conducts a literature survey of available routing metrics for wireless multi-hop

networks. A framework was used to analyze the routing metrics in section 3.2 of this chapter.

Using literature review framework for the analysis of routing metrics helps us come up with the

grouping of the routing metrics. Only one routing metric from a group was evaluated in Chapter

Five so that each routing metrics’ performance can be compared to the performances of other

routing metrics.

From the four groups of routing metrics, four routing metrics were selected, one routing metric

from each group. Routing metrics that consider QoS were given first priority. An ideal routing

metric for WMNs need to consider the quality of the link before selecting a route through which

to send packets, this was made the main selection criterion to choose representative samples. The

first group only has one routing metric, leading to automatic selection of hop count routing

metric. RTT was selected over the other routing metrics in its group because it considers many

aspects of link quality when selecting the best path through which to send a packet. RTT

considers loss ratio of the path before selecting the path to use. This routing metric uses probe

packets to measure the load of the link, while it also takes interference experienced by the link

into consideration. Based on the fact that the ETX is one of the most compared routing metric,

the researcher felt that it would also be important for them to compare it to other routng metrics.

ETX reduces broadcast and probing overhead. ETX also does not experience interference. One

 20

of the major focuses of ETX is to account for packet loss ratio. EETT is selected to represent the

last group. EETT firstly checks the busy degree of the link channel before making any route

selection. Up to twenty routing metrics were discussed in this chapter, out of which four routing

metrics were selected for evaluation.

3.2 Existing Routing Metrics

3.2.1 Custom Specification for Routing Metrics

We crafted a custom specification for each routing metric using ten parameters (table 3.1). For

instance, one paremeter is name; while year as a parameter indicates time origin of the metric.

There are eight more parameters, as they can be seen listed and defined in table 3.1. The table

serves as the framework used to review and analyze existing routing metrics done in this chapter.

This framework is firstly proposed in this work. The same parameters are considered for all the

routing metrics being reviewed, but the value of the parameter differs depending on the routing

metric in consideration.

3.3 Our Specification of Routing Metrics

As a result of the literature survey of routing metrics for wireless multi-hop networks conducted

we have used the custom specification described in the previous section to present each routing

metric.

 21

Table 0.1: Parameters of routing metrics

Parameters Defination

Routing metric name This parmenter provides the name of the particular routing metric that

is being reviewed.

Year Year gives the year the routing metric under review was proposed by

a particular scholar. The year helps during the literature survey to

identify some trends in the routing metrics.

Problem addressed The problem that a particular metric is trying to solve, forinstance,

how the hop count is concerned with the path length from the sender

to the receiver. It can be used to selct routing metrics to compare and

simulate. It ould help us to group the routing metrics and pick a certain

number of routing metrics in each group.

Solution approach The way in which the particular routing metric is trying to address a

problem.

Advantages Refer to the strength of the existing routing metric and how it deals

with the problems of routing in WMNs.

Disadvantages Refers to the shortcoming of a particular routing metric and with a

view to improve on them.

QoS-awareness QoS is the collective effect of service performance which determises

the degree of satisfaction of the user of the sevice. A routing metric is

QoS-aware if it considers QoS parameters.

 22

Performance metrics Performance metrics such as delay, packet loss, etc considered by a

particular routing metric. This parameter helps to identify parameters

the routing metric is using.

Validation method The process of testing routing metrics; it may be done in many ways

such as simulation, mathematical proofs, implementation, etc. the

validation method that was used to evaluate the performance of the

routing metrics is identified.

Routing protocol(s) A routing protocol uses a routing metric to select an optimal path. This

parameter identifies a routing protocol that was used with a particular

routing metric.

Table 0.2: Classification of routing metrics (Nxumalo, Ntlatlapa, Mudali, & Adigun ,

2009)

Shortest Path Packet Loss Rate Delay Interfenrence

HOP ETX PktPair WCETT

 mETX RTT MIC

 ENT ETT iAWARE

 iETT MCR EETT

 MM PPTT ILA

 Routing metric for BATMAN AETD

 Airtime link metric

 WCETT-LB

 23

The first step was that all the twenty routing metrics considered were partitioned into four

different groups depending on what the particular metric is based upon. The groups are based on

delay, packet loss rate, shortest path and interference. Table 3.2 groups the routing metrics based

on the performance metrics that they use. The grouping concentrated on the performance metrics

that the routing metrics gives high priority, so as to make sure that a routing metric falls only

inside one group. Hop count is the oldest routing metric and only considers the shortest path

from the sender to the receiver. The table shows that many routing metrics consider delay when

selecting the optimal path to the receiver. Other routing metrics are more concerned with

interference while other metrics are concerned with packet loss rate. The detailed study of all the

routing metrics in Table 3.2 is documented in the next chapter.

Figure 0.1: Performance metrics and percentages of routing metrics

 24

Table 0.3: Parameters of HOP (Dijkstra, 1959)

Routing metric characteristics Value

Routing metric name Hop Count (HOP)

Year 1959

Problem addressed To choose the shortest path

Approach Selects the path with the least number of hops from the

available paths to the detination.

Performance metrics considered Number of hops

QoS-awareness No

Advantages x Easy to measure

x Minimal overhead

Disadvantages Does not consider:

x Transmission rate of the link

x Reliability/path loss

x Load on the link

x Interference

Routing protocol(s) DSR, AODV, DSDV, GSR,and LQSR

Validation tool Simulation in NS2

Routing has been an active area of research until now; even then different scholars are still trying

to find the best routing metric for WMNs. The content of Table 3.2 can also be displayed in a

graph as shown in Figure 3.1. Figure 3.1 depicts the percentage of routing metrics considering

the particular performance metrics. The graph shows that the high percentage of routing metrics

 25

reviewed were the routing metrics that gives delay higher quality than other performance metrics.

Only five percent of the routing metrics (one routing metric) concentrated on shortest path.

Thirty percent of the routing metrics put more priority on packet loss ratio, while the remaining

twenty five percent gives high priority to interference.

a) The Hop Count (HOP) (Dijkstra, 1959)

Table 3.3 presents information about the hop count routing metric. Hop count routing metric

chooses a route with least number of hops among the available routes to the intended destination.

If it happens that there is more than one route that has the shortest path, HOP chooses randomly

among those routes. It does not consider differences in throughput among those routes, in a

process overlooking the fact that a longer route might have higher throughput than a shorter

route. Link quality for hop count is a binary concept; it is either the link exists or it does not exist

at all. The main advantage of this metric is that it is simple to use. Once the topology of the

network is known, it is easy to compute and minimize the hop count between a pair of source

and a destination node.

Computing the hop count does not require any additional measurements. The main disadvantage

of hop count is that it neither takes packet loss nor bandwidth into consideration. A route that

minimizes the hop count does not necessarily help in maximizing the throughput of a flow (De

Couto, D. et al., 2003). For example, a path that has four hops and a reliable or fast links can

have better performance than a path with two hops and a slow link. But still, the hop count metric,

will prefer the two-hop path.

 26

b) Per-hop Packet Pair Delay (PktPair) (Keshav, 1991)

PktPair measures delay between a pair of back-to-back probes to a neighboring node. The

analysis of PktPair routing metric is tabulated in Table 3.4.

Table 0.4: Parameters of PktPair (Keshav, 1991)

Routing metric characteristics Value

Routing metric name Per-Hop Packet Pair Delay (PktPair)

Year 1991

Problem addressed Try not to choose paths with high delay

Solution approach Selects the path based on delay, it selects a path with

lowest delay.

Performance metrics considered Delay

QoS-awareness Yes

Advantages Measures:

x Path loss

x Interference in the vicinity

x Transmit rate

It is not affected by queuing delays at the sending node.

Disadvantages x Self interference still exists

x High overhead

Routing protocol(s) LQSR

Validation tool Simulation in NS2

 27

When calculating PktPair, a node sends two packets known as probe packets back-to-back to

each neighbor every 2 seconds. The second probe packet is bigger than the first probe packet.

The neighbor node calculates the delay between the two packets that were sent back-to-back. It

then reports this delay back to the sending node. The sender maintains an exponentially weighted

moving average of these delays for each of its neighbors. The main aim of this routing metric is

to minimize the sum of these delays. PktPair routing metric also measures many aspects of link

quality. The main advantage of the PktPair metric is that this routing metric is not affected by

queuing delays at the source node, because the first and the second packets in a pair will be

delayed equally. Using probe packets of different sizes makes the routing metric more sensitive

to link bandwidth.

PktPair routing metric has many disadvantages though. One of the disadvantages is that it

experiences high overheads, because two packets are sent to every neighbor node, and the second

packet is larger than the first one. The secondly disadvantage of PktPair is that this routing metric

it was discovered that it is that it is not entirely immune to the phenomenon of self interference

(Draves et al., 2004a). Table 3.4 depicts information about PktPair routing metric.

c) Expected Transmission Count (ETX) (De Couto, 2003)

Information about ETX is provided in Table 3.5. ETX estimates the number of transmissions

(including retransmissions) needed to send unicast packets by measuring the loss rate of

broadcast packets between pairs of neighboring nodes. The derivation of ETX starts by

measuring the underlying packet loss probability in both the forward and reverse paths.

 28

Table 0.5: Parameters of ETX (De Couto, 2003)

Routing metric characteristics Value

Routing metric name Expected Transmission Count (ETX)

Year 2003

Problem addressed EXT minimizes the expected total number of packet

transmissions (including retransmissions) required to

successfully deliver a packet to the ultimate destination.

Solution approach Selects path with the lowest number of retransmission.

Performance metrics considered Packet loss rate, throughput

QoS-awareness Yes

Advantages x Broadcast, probing overhead is reduced

x No self interference since delay is not measured

x Accounts for packet loss rate

Disadvantages Broadcast probe packet may not experience same loss rate

data packets.

Does not take into account: Trannsit rate, link load, and

interference

Routing protocol(s) DSDV, DSR, LQSR

Validation tool Testbed implementaion

To calculate ETX, every node sends a probe packet every second which contains the number of

probes received by every neighboring node in the last 10 seconds. A node can calculate loss rate

of probe packets on links to and from its neighboring nodes based on the probe packets. These

 29

counts will allow the sending node to estimate the number of times the 802.11 ARQ mechanisms

must retransmit a unicast packet, because the 802.11 MAC does not retransmit broadcast packets.

ETX is calculated as shown below:

rf dd
ETX

u

1 (3.1)

Forward delivery ratio (fd) is the probability that a data packet was successfully received by the

destination node, while reverse delivery ratio is the probability that the acknowledge packet

successfully arrives at its original sender. The path metric describes the total of all the ETX

values for each link in the path. The routing protocol chooses the path that has minimum ETX

among the paths available. ETX improves the throughput, while its drawback is that it fails under

variable link conditions. rf dd u is the probability that transmission was successfully received

and acknowledged.

d) Per- hop Round Trip Time (RTT) (Adya, Bahl, Padhye, Wolma & Zhou 2004)

RTT routing metric measures the round trip delay seen by unicast probes between neighbor

nodes. To calculate RTT, a node sends a probe packet with a time stamp to all its neighbors every

500 milliseconds. Every neighbor node will immediately reply with an acknowledgment probe

with a time stamp in it. The time stamp allows the sending node to measure round trip time to

every neighbor. The RTT routing metric considers many aspects of link quality (see Table 3.6).

Firstly, if either the node or the neighbor node is busy, the probe or the probe acknowledgment

packet will experience queuing delay. This delay results in high RTT. Secondly, if other nodes

in the neighborhood are busy, the probe or the probe acknowledgment packet will experience

delays because of channel contention. That will also result in high RTT.

 30

Table 0.6: Parameters of RTT (Adya, et al., 2004)

Routing metric characteristics Value

Routing metric name Per-hop Round Trip Time (RTT)

Year 2004

Problem addressed Tries to ignore paths with high delay.

Solution approach Selects the path with least delay.

Performance metrics considered Delay

QoS-awareness Yes

Advantages Measures:

x Load

x Interference

x Path loss

Disadvantages x Can lead to route instability due to queuing delay and

self interference

x Does not take into account the transmit rate

x High overhead

x Does not serve as the right measure for the

unidirectional transmission

Routing protocol(s) Multi-radio Unifacation Protocol (MUP) and LQSR

Validation tool Simulation in NS simulator

 31

Thirdly, if a packet between the nodes is lost, the 802.11 ARQ mechanisms may have to

retransmit the probe or the probe acknowledgment packet a number of times to make sure that it

is delivered successfully. This leads to increase in RTT along that link. Fourth, if regardless of

the ARQ mechanism, a probe or a probe acknowledgment packet is lost, the source node detects

the loss, and increases the moving average as described earlier on.

 Finally, RTT is affected by self-interference traffic. The RTT routing metric was designed to

avoid highly loaded or lossy links. RTT can lead to route instability because it is a load-

dependent metric. This metric has its own disadvantages. One disadvantage is that it suffers

from the overhead of measuring the round trip time. The other disadvantage is that this

measurement method requires that every pair of neighboring nodes send probe packets to each

other.

e) Expected Transmission Time (ETT) (Draves et al., 2004a)

Draves et al. (2004a) observed that ETX does not perform best under certain circumstances. One

example would be that ETX prefers highly congested links to uncongested links, if the link-layer

loss rate of congested links is less than the one for the unloaded links. The authors address this

by proposing a new outing metric, which is the expected transmission time (ETT) routing metric.

ETX incorporates the throughput into its calculation (Parissodis, Karaliopoulos, Baumann,

Spyropoulos & Platter, 2009).

 32

Table 0.7: Parameters of ETT (Draves et al., 2004a)

Routing metric characteristics Value

Routing metric name Expected Transmission Time (ETT)

Year 2004

Problem addressed To improve ETX by considering difference in

transmission rates.

Solution approach It estimates the transmission time.

Performance metrics considered Delay

QoS-awareness No

Advantages Reduces interference.

Disadvantages High overhead

Routing protocol(s) MR-LQSR

Validation tool Testbed implementation

To improve ETX, ETT was proposed which considers the differences in link transmission rates.

The ETT of a link l is defined as the expected MAC layer duration for a successful transmission

of a packet at link l (Yang et al., 2006). The weight of a path p is simply the summation of the

ETT1s of the links on the path.

ETT is calculated as:

l
ll b

sETXETT u (3.2)

 33

Where lb is the transmission rate of link l while s is the size of the packet. By bring in lb into the

weight of a path, the ETT routing metric captures the impact of link capacity on the performance

of the path. Like ETX, ETT is also known to be isotonic. However, one of the disadvantages of

ETT is that it still does not fully capture the intra-flow and inter-flow interference in the network.

f) Weighted Cumulative ETT (WCETT) (Draves, Padhye & Zill, 2004b)

To improve upon ETT and ETX, Weighted Cumulative Expected Transmission Time was

proposed (Draves et al, 2004b). To minimize intra-flow interference, WCETT was proposed to

minimize the number of nodes on the route of a flow that transmit on the same channel. For a

path p, WCETT is defined as:

� � jkji

n

i
i xETTWCETT �d

u�u� ¦ max1
1

EE (3.3)

where β is a tunable parameter subject to jxβ 1.0 dd is the number of times channel j is used

along route p and captures the intra-flow interference. The j element in the equation 3.3

represents the maximum number of times that the same channel appears along a route. The j

element captures the intra-flow interference of a route since it essentially gives smaller weights

to routes that have more diversified channel assignments on their links and hence lesser intra-

flow interference.

WCETT routing metric has two disadvantages. The first being, that it does not explicitly take

into consideration the effects of inter-flow interference, although it does capture intra-flow

interference. Therefore, WCETT may send packets through highly congested routes.

 34

Table 0.8: Parameters of WCETT (Draves et al., 2004b)

Routing metric characteristics Value

Routing metric name Weighted Cumulative Expected Transmission Time

(WCETT)

Year 2004

Problem addressed To reduce intra-flow interference.

Solution approach Reduce the number of nodes on the path of a flow that

transmit on the same channel.

Performance metrics considered Delay

QoS-awareness Yes

Advantages Reduces intra-flow interference.

Disadvantages High overhead

Routing protocol(s) MR-LQSR

Validation tool Testbed implementation

Different scholars have tried to improve on this routing metric. A variant routing metric was

proposed. This variant is called WCETT-LB (Weighted Cumulative Expected Transmission

Time).

g) Metric of Interference and Channel Switching (MIC) (Yang, Wang & Kravets, 2005)

MIC routing metric was proposed to improve on WCETT by addressing the problem of inter-

flow interference. MIC includes inter-flow interference by increasing the ETT of a link by the

number of neighbor nodes interfering with the transmission on that link.

 35

Table 0.9: Parameters of MIC (Yang et al., 2005)

Routing metric characteristics Value

Routing metric name Metric of Interference and Channel Switching (MIC)

Year 2005

Problem addressed To reduce inter-flow interference

Solution approach Selects the path based on inter-flow interference.

Performance metrics considered Interference

QoS-awareness Yes

Advantages Reduces inter-flow interference.

Disadvantages Does not capture the effects of variation in link loss-ratio.

Routing protocol(s) Load and Interference Balanced Routing Algorithm

(LIBRA)

Validation tool Simulation

MIC uses a routing protocol called Load and Interference Balanced Routing Algorithm (LIBRA)

(Yang et al., 2005). LIBRA can create a virtual network from a real network and decompose

MIC into isotonic link weight assignments on this virtual network (Yang et al., 2005). By using

Bellman–Ford or Dijktra’s algorithm on this virtual network. LIBRA can calculate minimum

MIC weight path of the real network so that flows can be routed through minimum weight paths

and no forwarding loops are created for either distance vector or link-state routing. MIC is

calculated as follows:

 36

� � � � ¦ ¦
� �

�
u

pllink pinode

ilq CSCIRUETTN
MIC

min
1 (3.4)

𝐼𝑅𝑈𝑙 = 𝐸𝑇𝑇𝑙 × 𝑁𝑙 (3.5)

{𝑤1 𝑖𝑓 𝐶𝐻(𝑝𝑟𝑒𝑣(𝑖)) ≠ 𝐶𝐻(𝑖)
𝑤2 𝑖𝑓 𝐶𝐻(𝑝𝑟𝑒𝑣(𝑖)) = 𝐶𝐻(𝑖)} (3.6)

0 ≤ 𝑤1 < 𝑤2 (3.7)

h) Multi-Channel Routing Metric (MCR) (Kyasanur & Vaidya, 2005)

The MRC routing metric is based on WCETT routing metric proposed by (Draves et al., 2004b).

MCR extends WCETT in a different way compares to the way MIC does; MCR takes into

account the cost of changing channels. MCR is calculated as:

� � X j
cj

n

i
iETTMCR max

11

1
dd

u�u� ¦ EE (3.8)

where β is a tunable parameter subject to 10 dd β , n is the number of hops on the route, x j

is the total ETT cost on any channel j, and the total number of existing channels is c. Another

component, Switching Cost j (SC (j)) is defined as follows:

� � � �¦
z�

ji

s iceUsageInterferenjp (3.9)

� � � � elaySwitchingDjpjostSwitchingC s u (3.10)

Where � �iceUsageInterferen is an exponentially weighted average for any channel j to calculate

what fraction of a second time interval a switchable interface was transmitting on channel j.

 37

Table 0.10: Parameters of MCR (Kyasanur and Vaidya, 2005)

Routing metric characteristics Value

Routing metric name Multi-Channel Roting (MCR)

Year 2005

Problem addressed Selects channel diverse routes while accounting for

interface switching cost.

Solution approach Manages multiple channels and interfaces.

Performance metrics considered Delay

QoS-awareness Yes

Advantages Introduces channel-switching cost into the routing metric,

thereby it can incorporate with the routing protocols like

DSR and AODV for multi-channel and channel-

switchable wireless network.

Disadvantages Fails to figure in the inter-flow interference although is

assumed all available channels are orthogonal.

Routing protocol(s) HMCP

Validation tool Simulation in Qualnet version 3.6.

This value does not figure in the time interval that this interface is tuned to channel j, but is idle.

The component � �jsp is the probability that the switchable interface will be on a different channel

� �ji, when a packet arrives on channel j. SwitchingDelay is the interface switching latency,

which can be computed offline. Hybrid Multi-Channel Protocol (HMCP) (Kyasanur & Vaidya,

2006) is the multi-channel link layer protocol matching with a corresponding multi-channel

 38

routing protocol, including this particular path metric MIC. When a source transmits a packet to

a destination, it firstly tunes its switchable interface to the same channel as the destination's fixed

channel. So, the probability of using channel j over a link only needs to compute that of the

source side.

i) Modified ETX (mETX) (Koksal & Balakrishnan, 2006)

Resent research has shown that quality of service-aware (QoS-aware) routing metrics (i.e. ETX),

has a potential to improve throughput of WMNs by significant amounts compared to traditional

hop count routing metric (Koksal & Balakrishnan, 2006). Modified ETX was developed so as to

improve on the weaknesses of ETX which does not cope well with short-term channel variations

because it uses the mean loss ratios in coming up with routing decisions. The mETX routing

metric captures the time-varying features of a wireless channel in a form that could be directly

translated into network and application layer quality constraints (Koksal & Balakrishnan, 2006).

Modified ETX is made of two components, which are ¦P and 2

¦V . ¦P represents the

average of the error probability, while 2

¦V represents variability of the error probability.

Modified ETX is calculated as:

¸
¹
·

¨
©
§

¦� ¦ 2

2
1exp VPmETX (3.11)

 39

Table 0.11: Parameters of mETX (Koksal & Balakrishnan, 2006)

Routing metric characteristics Value

Routing metric name Effective Number of Retransmission (mETX)

Year 2006

Problem addressed To improve up on the shortcoming of ETX of not cope

well with short-term channel variations

Solution approach It uses estimated transmission count.

Performance metrics considered Delay

QoS-awareness Yes

Advantages Works with variable links.

Disadvantages Complex error estimation method

Routing protocol(s) DSR, DSDV and AODV

Validation tool Simulation

j) Effective Number of Retransmission (ENT) (Koksal & Balakrishnan, 2006)

Effective number of retransmission (ENT) was proposed to find paths that satisfy certain higher

layer protocol requirement. The main challenge of ENT is to find a route with high throughput

while making sure that the end-to-end packet loss rate seen by higher layers does not go beyond

a specific threshold. ENT is related to mETX. ENT has the drawback of employing a complex

channel condition estimation method.

 40

Table 0.12: Parameters of ENT (Koksal & Balakrishnan, 2006)

Routing metric characteristics Value

Routing metric name Effecctivve Number of Retransmission (ENT)

Year 2006

Problem addressed Optimizing aggregate throughtput, while bounding the

packet loss rate visible to higher layer protocols such as

TCP.

Solution approach Captures the time-varying characteristics of a wireless

channel in a form that could be directly translated into

network and application layer quality constraints.

Performance metrics considered Packet loss rate

QoS-awareness Provides controlled QoS.

Advantages It provides controlled quality of service.

Disadvantages Employs a complex channel condition estimation

method.

Routing protocol(s) DSV, DSDV and AODV

Validation tool Simulation

k) Interference-Aware Routing Metric (iAWARE) (Subramanian, Buddhikot & Miller, 2006)

Interference-aware routing metric was proposed to capture the effects of variation in link loss-

ratio, differences in transmission rate as well as inter-flow and intra-flow interference. When

there is no interference in the network, ETT captures the quality of the link very well as links

with smaller expected transmission time produce better throughput.0

 41

But when there are more interfering flows in the network, this is not the applicable. There is a

need to factor in the varying interference experienced by a link into the routing metric to get

routes with good quality. iAWARE is calculated as:

j

j

IR
ETT

iAWARE (3.12)

When IRj for the link j is one (meaning that there is no interference), iAWAREj is just ETTj which

captures the link loss ratio and packet transmission rate of the link j. ETTj is weighted with IRj

to capture the interference experienced by the link from its neighbors. A link with less ETT and

high IR will have less iAWARE value. The lower the iAWARE of a link the better the link is.

l) Path Predicted Transmission Time (PPTT) (Yin, Xiong, Zhang & Linet, 2006)

Path Predicted Transmission Time is the summation of delay estimation on each link along the

routing path, which further consists of packet service time and queuing delay. To calculate PPTT,

the source node will calculate PPTT for each route and choose a path with minimal PPTT for

Real Time Communication (RTC). PPTT is computed by summing up Link Predicted

Transmission Time (LPTT). LPTT is affected by Carrier Sense (CS) traffic and Hidden Terminal

(HT) traffic. CS traffic and HT traffic have two parts which are neighboring traffic and self-

traffic. Neighboring traffic can be measured using existing probing techniques.

 42

Table 0.13: Parameters of iAWARE (Subramanian et. al, 2006)

Routing metric characteristics Value

Routing metric name Interference-Aware Routing Metric (i-AWARE)

Year 2006

Problem addressed To address the problem of interference aware routing in

multi-radio infrastructure mesh networks.

Solution approach Captures the effects of variation in link loss-ratio,

differences in transmission rate as well as inter-flow

and intra-flow interference

Performance metrics considered Packet loss rate, interference

QoS-awareness Yes

Advantages Reduces interference

Disadvantages It does not address the problem of the QoS awareness

Routing protocol(s) AODV-MR

Validation tool Wireless testbed

PPTT can be calculated based on the neighboring traffic and self-traffic path rather than the

traffic information of the entire network. Thus PPTT is scalable. Experiment results show that

PPTT outperforms other non prediction-based routing metrics such as ETX and WCETT in terms

of delay and goodput in wireless multi-hop networks (Yin et al., 2006).

 43

Table 0.14: Parameters of PPTT (Yin et al., 2006)

Routing metric characteristics Value

Routing metric name Path Predicted Transmission Time (PPTT)

Year 2006

Problem addressed To provide real time communication.

Solution approach Selects the path based on transmission time.

Performance metrics considered Delay

QoS-awareness No

Advantages Supports real time communication.

Reduces self interference

Disadvantages Complexity

Routing protocol(s) Distributed Coordination Function (DCF) for MAC layer

Validation tool Simulation in NS2 and testbed implementation.

m) Adjusted Expected Transmission Delay (AETD) (Zhou, Zhang & Qiao, 2006)

The main aim of AETD is to take into consideration both delay and delay jitter of candidate

routes when choosing the best path. AETD was designed to choose paths on which hops

operating on the same frequency channel are separated as far as possible. This way, interference

and channel contention may be minimized along the chosen paths and the system throughput

may be improved. When a series of packets is transmitted from the sender to the receiver, the

achieved throughput is determined by the following characteristics of the selected route:

� ETD: the expected end-to-end transfer delay of a single packet;

 44

EDJ: the lower bound of the expected delay jitters between consecutive packet transmissions.

An ideal route shall have both a small ETD as well as a small EDJ. ETD is affected by the

following: (1) the hop count of the route; and (2) the bandwidth and link quality of each hop

along the route that determine the per-hop transmission rate and transmission time. A shorter

path (measured in hops) does not necessarily provide a smaller end-to-end transfer delay. There

is a possibility that a smaller hop count implies a longer average hop distance and, there fore,

lesser transmission rates and higher overall transfer delay. On the other hand, a route with a

higher hop count but shorter average hop distance may instead provide a lesser end-to-end

transfer delay.

EDJ is affected by the following: (1) the channel diversity of the path; and (2) the bandwidth and

link quality of each hop along the route that determine the per-hop transmission rate and

transmission time. A more channel-diverse route experiences less interference as packet

transmissions on various channels do not interfere with one another. In the extreme case when

the route is perfectly channel-diverse (when packet transmissions on any two hops along the

route does not interfere with each other.

 45

Table 0.15: Parameters of AETD (Zhou et al., 2006)

Routing metric characteristics Value

Routing metric name Adjusted Expected Transmission Delay (AETD)

Year 2006

Problem addressed To minimize interference and channel contention along

the selected route and improve the system throughput.

Solution approach Multi-radio multi-channel routing

Performance metrics considered Delay

QoS-awareness No

Advantages Minimizes interference and channel contention.

Disadvantages Does not cater for inter-flow interference in the multi-

flow scenarios.

Routing protocol(s) Distributed Coordination Function (DCF) for MAC layer

Validation tool Simulation using QualNet simulator.

It is either because they are far apart from each other or because they operate on different

frequency channels), packet transmissions on each hop may continue successfully at the same

time without encountering any channel conflict and the consequent conflict resolution process.

Hence, a very short delay jitter between consecutive packet transmissions is expected under such

scenario, which is the same as the maximum single-hop transmission time along the route.

¦
�

rHih

ihr ETTETD (3.13)

 46

Where Hr= {h1 ,h2, ,hk} denotes the corresponding hop sequence along a router, and hi

represent the hop between nodes (i-1) and i. r denotes the expected packet transmission time

over hop hi.

� �
^ `

� �^ `°
°
°

¯

°
°
°

®

­

��d���

�

��

�

��

,,max

,1min1

,1

11

1

)1(1

elseEDJETT

CCthatsuch
kmijif

EDJETT

kiifETT

EDJ

irhi

hjhi

irhi

hk

ir (3.14)

Where m is the interference distance (and is measured in hops) in the hop-distance-based

interference model.

� � EDJETDAETD u�u� DD1 (3.15)

n) Airtime Link Metric (IIIE 802.11 WG TGs, 2008)

 Airtime link metric considers the transmitting rate, frame delivery ratio, channel access

overhead and protocol overhead. It is defined as the default link metric that can be used by a

routing protocol to choose an efficient radio-aware path. Airtime cost shows the amount of

channel resources used by transmitting the frame over a selected link. The cost metric for each

link is calculated as follows:

pt

t
pcaa er

BooC
�»¼

º
«¬
ª ��

1
1 (3.16)

 47

Table 0.16: Characteristics of Airtime cost constants (IIIE 802.11, 2006)

Parameters Value (802.11a) Value (802.11b) Description

Oca 75µs 335 µs Channel access

overhead

Op 110 µs 364 µs Protocol overhead

Bt 8224 8224 Number of bits in

test frame

Where Oca, Op, Bt are constants listed in Table 3.16, r and ept are the bit rate in Mbps and the

frame error rate for the test frame size Bt respectively. The rate r stands for the rate at which the

mesh point would transmit the test frame under normal conditions and its estimation dependents

on local implementation of rate adoption; (ept) is defined as the probability that a test frame is

transmitted at current transmission bit rate (r) links. The main advantage of the airtime link

metric is that it considers the quality of various links. By doing that, it is then easy for a routing

protocol to choose the route with the best quality. If each node broadcasts the test frames and not

unicast them, the overhead of the test frame will be decreased. Airtime link metric has its

disadvantages as well.

The main disadvantage is that there is a high overhead of the frame delivery rate measurement

especially in unicast test frame situation. If broadcast is used, firstly, even though this overhead

is reduced by using a small test frame, there still exists high overhead.

 48

Table 0.17: Parameters of Airtime Link Metric

Routing metric characteristics Value

Routing metric name Airtime Link Metric

Year 2006

Problem addressed The airtime link metric addresses the problem of quality

of different links.

Solution approach It considers the quality of different links.

Advantages It takes into account the quality of different links.

Disadvantages There is a big overhead of the frame delivery rate

measurement especially in unicast test frame solution.

QoS-Awareness No

Performance Metrics Packet loss rate

Routing protocol(s) Simulation in OPNET.

Validation tool AODV

Secondly, the test frame will be sent at the lowest possible data rate and there is a possibility that

they may not experience the same loss rate as the data packets sent at higher rate. An AODV

protocol that uses airtime link routing metric is called Radio-Metric Ad-hoc on-demand Distance

Vector (RM-AODV).

o) Multi-Metric (MM) (Shen & Fang, 2006)

Multi-metric routing metric was proposed as an improvement of airtime link metric. This routing

metric achieves improvement and also addresses load balancing (Shen & Fang, 2006).

 49

Table 0.18: Parameters of MM (Shen & Fang, 2006)

Routing metric characteristics Value

Routing metric name Multi-metric

Year 2006

Problem addressed It addresses three problems:

x The residual bandwidth should be prior to transmit rate

for transmiting capability consideration

x It considers frame delivery ratio as it is sensitive to

interference

x New transmitting paths should go around the hot sport

(bottle neck mesh point)

Solution approach It determines the cost using residual bandwidth, load and

frame delivery ratio

Advantages x The performance of MM-AODV is good for heavy

traffic load.

x MM-AODV builds new paths around the used paths,

so they improve the throughput significantly.

Disadvantages There is still a need for a better residual bandwidth

estimation to replace the “Listen” method used by Multi-

metric.

QoS-Awareness No

Performance metrics considered Packet loss rate

 50

Routing protocol(s) Simulation in NS2

Validation tool AODV

Multi-metric takes into consideration the residual bandwidth and frame delivery ratio (FDR) of

the link into consideration when selecting an optimal path. The quality of the path is sensitive to

the residual bandwidth, frame delivery ratio and the load of the mesh point (Shen & Fang, 2006).

The use of FDR is simply because it is sensitive to interference. The use of FDR helps multi-

metric on addressing issues of interference that neglected by airtime link metric. The path’s cost

is given by linear combination (see equation. 3.14) of minimum residual bandwidth, maximum

load and FDR of the link.

FDRMaxMinc LoadBwa JED �� (3.17)

Where, Min Bw is the minimal residual bandwidth, and D is its weighted factor. MacLoad is the

maximum load of a node in route, and β is its weighted factor. γ is the weighted factor FDR.

α , β and γ must satisfy the following constraint of _ _ _ _ _ _ 1=γ+β+α according to (Shen &

Fang, 2006). This path selection metric neglects the issues of load balancing. It is very important

for a path selection metric to be able to identify potential bottleneck nodes and avoid paths that

are made of such nodes. Multi-metric uses AODV as its routing protocol. The AODV routing

protocol that uses multi-metric is called MM-AODV.

 51

Table 0.19: Parameters of WCETT-LB (Ma & Denko, 2007)

Routing metric characteristics Value

Routing metric name Weighted Cumulative Expected Transmission Time

with Load Balancing (WCETT-LB)

Year 2007

Problem addressed To provide load balancing in mesh routers.

Solution approach It uses estimated transmission count.

Performance metrics considered Delay

QoS-awareness No

Advantages Avoids congestion.

Disadvantages High overhead

Routing protocol(s) AODV-Spanning Tree (AODV-ST)

Validation tool Simulation in NS2.

p) Weighted Cumulative Expected Transmission Time with Load Balancing (WCETT-LB)

(Ma & Denko, 2007)

WCETT-LB was proposed to improve on the WCETT routing metric, and it introduces load

balancing features at the mesh points and supports global load-aware routing. Integration of a

load-balancing scheme can provide improved performance in the entire network. The load-

balancing component c is made up of two parts: congestion level and traffic concentration level

at each node in a particular route. WCETT-LB is calculated as follows:

� � � � � �pLpWCETTpLBWCETT � � (3.18)

 52

Where � � � � i
pinode i

i NETT
b

QLpL min� ¦
�

 (3.19)

q) Exclusive Expected Transmission Time (EETT) (Jiang, Liu, Zhu & Zhang, 2007)

EETT is used to give a better evaluation of a multi-channel path. EETT of a link l is the busy

degree of the channel used by that link (link l). It is a worst-case estimation of transmission time

for passing link l. If there are more neighboring links on the same channel with link l, link l may

be forced to wait a bit longer time to do the transmission on that channel. A path with a higher

EETT indicates that, it has a more severe interference and requires more time to finish the

transmission over all links within the path.

In essence, a better channel distribution over a path results in less intra-flow interference. Hence

EETT can accurately reflect the optimality of the channel distribution on a path. The fundamental

difference between MIC and EETT is that, MIC takes the impact of link l on other links into

consideration, while EETT is concerned with the impact of other links on the current link (link

l). Although the global impact is the same, EETT is supposed to have better performance since

it more accurately reflects the impact of the inter-flow interference on a particular path.

 53

Table 0.20: Parameters of EETT (Jiang et al., 2007)

Routing metric characteristics Value

Routing metric name Exclusive Expected Transmission Time (EETT)

Year 2007

Problem addressed Selects multi-channel routes with the least interference

to maximize the end-to-end throughput.

Solution approach It uses EETT to check the busy degree of channel used

by link 1. If there are more neighboring links on the same

channel with link 1, link 1 may have to wait a longer

period to do the transmission on that channel.

Performance metrics considered Interference

QoS-awareness Yes

Advantages Gives a better evaluation of a multi-channel path.

Disadvantages Still needs to addresses the problem of QoS-awareness

and cross layer-awareness.

Routing protocol(s) OLSR

Validation tool Simulation

r) Interference-Load Aware Routing Metric (ILA) (Shila & Anjali, 2007)

Interference Load Aware (ILA) routing metric was proposed as an improvement from MIC

metric. ILA considers the problem of interference-load aware routing in multi-channel wireless

mesh networks.

 54

ILA is made of two components: Metric of Traffic Interference (MTI) and Channel Switching

Cost (CSC) (Shila & Anjali, 2007). The two components of ILA capture the effect of intra-flow

and inter-flow interference, variation in transmission rate, packet loss ratio and congested areas.

MTI considers the traffic load of interfering neighbors’ contrary to number of interfering

neighbors in MIC. The MTI metric is defined as follows:

� � � � � � � �
� � � �¯

®
­

zu

0,

0,
cNcETT

cNcAILcETT
cMTI

lij

lijij
i (3.120)

Where AILij is the average load of the neighbors that might interfere with the transmission

between nodes i and j over channel C . ijAIL Average Interference Load, is calculated as

� �
� �

� �C
N C

C
N

IL
AIL

l

ij

ij
l

¦
 (3.21)

where

� � � � � �cNcNcN jil � (3.22)

Where � �CILij , Interference Load is the load of the interfering neighbor node. � �CNl is the set

of interfering neighbors of nodes i and node j . ETTij captures the variation in transmission

rate and loss ratio of the links. AILij defines the neighboring activity of the nodes. CSC is

included to capture the intra-flow interference. The CSC is defined as:

� �� � � �

� �� � � �°̄

°
®
­

z

iCHiprevCHw

iCHiprevCHw
CSCi ,

,

2

1

 (3.23)

 55

Table 0.21: Parameters of ILA (Shila and Anjali, 2007)

Routing metric characteristics Value

Routing metric name Interference-Load Aware Routing Metric (ILA)

Year 2007

Problem addressed ILA considers the problem of interference-load aware

routing in multi channel wireless mesh networks.

Solution approach ILA combines the Metric of Traffic Interference.

Performance metrics considered Interference (MTI) and Channel Switching Cost (CSC)

to capture all the characteristic of the mesh network.

QoS-awareness No

Advantages x To capture all the characteristics of a mesh network,

this metric combines MTI and CSC.

x Reduces interference

x Delivers high throughput in multi channel networks

Disadvantages Still needs to consider the issue of QoS and cross

layer-awareness.

Routing protocol(s) AODV

Validation tool Simulation in NS2

ILA is calculated as follows:

� � ¦¦
��

u
pinode

i
pilink

i CSC+MTIα=pILA (3.24)

 56

s) Improved Expected Transmission Time (iETT) (Biaz & Qi, 2008)

The Improved Expected Transmission Time routing metric was proposed to address the

shortcomings of the ETT routing metric. The iETT routing metric is designed to consider (1) the

difference of link loss rates within one route and (2) the MAC layer overheads when computing

an expected packet transmission time (rather than of simply using packet or bandwidth). By

being able to capture the two parameters, iETT chooses a route with better performance. To

calculate iETT, an extra medium time delay is added to the expected transmission time that is

called Link Interference Delay (LID). LID depends on the difference between highest and lowest

loss rates.

LID is expressed as follows:

� � � �jjk b+xap u (3.25)

Where � �jpmax denotes the highest loss rate and min � �kp stands for the lowest rate on the path.

� � � �kkk b+xap u (3.26)

If j>k,α =1 ; otherwise α =0

When j<k , the position of link j with the highest loss rate is before that of link k with the lesser

loss rate on the route.

 57

Table 0.22: Parameters of iETT

Routing metric characteristics Value

Routing metric name Improved Expected Transmission Time (iETT)

Year 2008

Problem addressed To find a path with a higher throughput and lower latency

Solution approach It takes into account the discrepancy of links loss rates

within one path, as well as the MAC layer overheads when

computing an expected packet transmission time (instead

of simply using packet/bandwidth).

Performance metrics considered Packet loss rate

QoS-awareness No

Advantages x Does not fail when there is a high discrepancy in the

quality of the links on a given path.

x Capable of finding a path with a higher throughput and

lower latency than other routing metrics.

Disadvantages Still needs to be extended for multi radio scenario

Routing protocol(s) DSR

Validation tool Simulation in NS-2

Reversely, if j>k , it represents the position of link j is after that of link k on the route. The final

iETT metric can be expressed as follows:

 58

� � � � LID+ETXb+xa=iETT i

n

=i
ji u¦

1
 (3.27)

Table 0.23: Parameters of BATMAN (Johnson et al., 2008)

Routing metric characteristics Value

Routing metric name Routing metric for BATMAN

Year 2008

Problem addressed It is aimed at maximizing packet delivery.

Solution approach It considers the quality of different links.

Advantages It is designed to be able to work in a large network.

Disadvantages BATMAN has its own routing metric that it was proposed

with. It may not be easy to use a different routing protocol

with routing metric for BATMAN.

QoS-Awareness No

Performance metrics considered Packet loss rate

Validation Method Wireless testbed

Routing Protocol(s) BATMAN

t) Routing Metric for BATMAN (Johnson, Aichele & Ntlatlapa, 2008)

This routing metric is a link metric that is used by BATMAN routing protocol (Johnson et al.,

2008). The purpose of this routing metric is to maximize the probability of successfully

delivering a message. It does not check the quality of the link but rather its existence. The links

are compared in terms of originator messages received within the current sliding window.

 59

Figure 0.2: Evolution of routing metrics

The algorithm to measure this routing metric is as follows:

a. Consider routing message m from source s to destination d on network g. Eliminate all links

� � Kiis z�, to reduce the graph.

b. Associate each link with weight wsi, where wsi is the number of originator messages received

from the destination through neighbor node i within the current sliding window.

c. Find the link with largest weight wsi in the sub-graph and send m along the link (s, i).

d. If di z , repeat step 1 to 4 for routing message from i to d in the sub-graph S.

After reviewing existing routing metrics, taxonomy of these routing metric was then developed

(see Figure 3.2). The figure illustrates the relationship amongst the routing metrics. Hop count

is the traditional routing metric; it can be seen from the Figure 3.2 that a lot of routing metrics

were proposed so as to improve hop count. A lot of routing metrics were also proposed so as to

improve ETX and ETT.

 60

3.4 Summary

This chapter reviewed upto twenty existing routing metrics. The routing metrics were reviewed

using a framework that we developed at the beginning of this chapter (see table 3.1). The routing

metrics were grouped into four groups, depending on whether they prioritize delay, packet loss

ratio, interference, or shortest path. In the next chapter, four routing metrics choosen for

simulation after comparing different routing metrics in every group among themselves are

discussed. The pseudo code and the flowcharts for these four routing metrics is presented in

Chapter Four.

 61

CHAPTER FOUR

SELECTED ROUTING METRICS FOR THE

STUDY

4.1 Introduction

After reviewing the literature of the available routing metrics, four routing metrics were selected

for evaluation. The routing metrics to be simulated are: hop count (HOP), expected transmission

count (ETX), per-hop round trip time (RTT), and exclusive expected transmission time (EETT).

There might be more than one routing metric that satisfy this requirement from a group, but for

simulation purposes the researcher sticked to only one routing metric per group.

Hop count is the only routing metric from the first group. Although HOP does not take the quality

of the link into consideration but it was still simulated for the purpose of making sure that all the

groups are represented so that conclusion can be drawn based on all groups. It was important to

include the legendary hop count in our evaluation since it has been heavily criticized in the

literature, and the evaluation can help justify those claims as the routing metrics were evaluated

in a consistant manner.

The other three routing metrics that were selected from the other three groups are ETX, RTT,

and EETT. The main objective of ETX is to find paths with high end-to-end throughput (De

Couto, 2003).

ETX also accounts for three issues:

 62

i. The wide range of link loss ratios.

ii. The existence of links with asymmetric loss ratios.

iii. The interference between successive hops of multi-hop paths.

RTT also considers quality of the link because it was designed to avoid highly loaded and loosy

links. RTT also measures interference. EETT considers other issues that the other routing metrics

are not considering, such as channel distribution on long paths. Selected routing metrics for this

study are further described in subsection 4.1 through subsection 4.4.

4.2 Hop Count

Figure 4.2 presents the flowchart for the hop count routing metric. This flowchart is derived from

the algorithm that is used by the hop count to choose the best path for sending packets. The hop

count selects the shortest path to the destination, using random selection if there is more than

one route with the shortest path to the destination. In the pseudo code, the statement u: = node

in Q with smallest dist [], looks for the vertex u in the vertex set Q that has the lowest dist[u]

value.

That vertex is eliminated from the set Q and returned to the user. dist_between (u, v) calculates

the length between the two neighbor-nodes u and v. alt is the length of the route from the root

node to the neighbor node v if it were to go through u. If this route is shorter than the current

shortest path recorded for v, then that current route is substitute with this alt route.

 63

i. Pseudo Code

Figure 4.1:Pseudo code for hop count routing metric

ii. Flowchart

function Dijkstra (Graph, source):
 for each vertex v in Graph: // Initializations
 dist[v] := infinity // Unknown distance function from source to each
 // node set to infinity
 previous[v]: =undefined // Previous node in optimal path from source
 dist[source]: =0 // Distance from source to source
 Q: =the set of all nodes in Graph // All nodes in graph are unoptimized, this are in Q
 While Q is not empty: // The main loop
 u: =vertex in Q with smallest dist []
 if dist[u]=infinity:
 break // All remaining vertices are inaccessible
 remove u from Q
 for each neighbor u of v: // Where neighbour u has not yet been removed

 from Q
 alt: =dist[u]+dist_between (u, v)
 if alt<dist[u] // A shorter path of u has been found
 dist[u]: = alt // Update distance of u
 previous[v]: = u
 return previous []

end function

 64

Is v a vertex
in Graph?

Is Q empty?

 U:= vertex in Q with
smallest dist[]

alt=dist[u]+dist_between(u,v)

Remove u from Q

Return previous[]

 dist[v]:=infinity
 previous[v]:=undefined
 dist[source]:=0
 Q:=set of all nodes in Graph

Is dist[u]=
infinity?

Is v a
neighbour of

u?

Alt<dist[u]?

dist[v]:=alt
previous[v]:=u

no

no

no

yes

yes

yes

yes

yes

no

no

no

no

Figure 4.2: Flowchart for the hop count routing metric

4.3 Expected Transmission Count

i. Pseudo Code

 65

Figure 4.3: Pseudo code for expected transmission count routing metric

Figure 4.4 depicts the pseudo code for the expected transmission count (ETX) routing metric.

This pseudo code presents a how does the ETX goes about in calculating the best route through

which to send packets, as it was discussed in earlier in this chapter. To measure ETX, every node

broadcasts a probe message every second that contains the number of probes that were received

by every neighbouring node in the last 10 seconds. If the probe was successfully received, the

new ETX is calculated. If a data packet was lost, there is a 20% penalty for lost data packet.

ii. Flowchart

Broadcast // Send packet to all nodes in the network

 Node

Initialize time, count, lossRate // Initialize variables

 If time = 10 sec

 Send probePacket // A node broadcaststs a bprobe packet every 10 seconds

 Count = count +1 // Increament count

 If count = 10

 If probePacket is received // If a probe was successfully received, calculate the new

 // ETX

 Calculate lossRate

 Write lossRate

 Else // If a packet was lost, apply a 20% penalty

 losRate = lossRate – lossRate * 0.2 // updae the loss rate value

 Choose smallest ETX // Select he least ETX value

 66

Is
time=10sec?

Is count=10?

Was the
probePacket

received?

Initialize time, count, lossRate

Send probePacket

Increment count

Calculate lossRate

Write lossRate

Choose smallest ETX

yes

yes

yes

no

no

Give 20% penalty

no

Figure 4.4: Flowchart for the expected transmission count routing metric

Figure 4.5 depicts the flowchart that follows from pseudo code in Figure 4.5. The flowchart

shows the steps that are followed by the ETX routing metric when selecting a path to use for

sending packets.

 67

4.4 Per-hop Round Trip Time

i. Pseudo Code

Figure 4.5: Pseudo code for Per-hop round trip time routing metric

READ

 Node, neighborNode, avg, time, weight // Read variables

 If time = 500 milliseconds // Send probe packet every 500 milliseconds

 READ timestamp // Get the timestamp on the packet

 SendNeighborNodeState

 NeighborNode // Neighbor node responds with ack, echoing time stamp

 Write timestamp

 MeasureRoundTrip // Get round trip time

 Keep exponentially weighted average

 If responsePacket is found // Give 10% to the current sample while calculating
average

 avg = 0.1 * weight // Calculate average RTT

 Else

 avg = weight + weigh * 0.2 // Give 20% penalty

 LeastTotalSum

 Get smallest average // Select the smallest RTT

 68

Figure 4.6 shows the pseudo code that contains the steps that are followed by per-hop round trip

time routing metric when selecting the path to be used for sending a packet.

Read node,
neighborNode, avg,
time, weight

Is time=500ms?

Is response
packet found?

Read timeStamp
Send neighbor state

Write timeStamp

Keep exponentially
weighted average

Avg=0.1*weight

Avg=weight+weight*0.2

Get smallestAvg

yes

Figure 4.6: Flowchart for the Per-hop round trip time routing metric

 69

The pseudo code shows that to calculate RTT, a node sends a probe packet every 500

milliseconds. The pseudo code in Figure 4.6 can also be represented using a flowchart in Figure

4.7 which depicts the steps followed when measuring the per-hop round trip time.

ii. Flowchart

A node keeps an exponentially weighted moving average of the RTT samples to every neighbor.

The average is calculated, and 10% weight is given to the current sample. An average is increased

by 20% if either a probe or a probe response packet is lost. The average is also increased by 20%

if a packet is lost.

 70

4.5 Exclusive Expected Transmission Time

i. Pseudo Code

Figure 4.7: Pseudo code for exclusive expected transmission time

Figure 4.8 shows the pseudo code followed when implementing the exclusive expected

transmission time routing metric. This pseudo code shows that the EETT routing metric chooses

the route with the smallest EETT. It starts by firstly summing up the EETTs of the all the

available paths to the intended destination, before choosing the path with the smallest EETT.

Initialize numberOfLinks, // Initialize variables

numberOf Channels,

numberOfHops,

interferenceSet

 sumOfEETT

 while numberOfChannels > 0 // check if the number of channels is

 // greater than zero.

 sumOfEETT = sumOfEETT + interference Set // Add interference to the sum of

 // EETT

 numberOfChannels – 1 // Decreament the number of channels

 write sumOfEETT // Update the sum of EETT

 choose smallest EETT // Select the smallest EETT

 71

i. Flowchart

Is
numberOfCh
-annels > 0

yes

no

Initialize numberOfLinks,
numberOfChannels,
numberOfHops, interferenceSet,
sumOfEETT

sumOfEETT =
sumOfEETT +
interferanceSet

numberOfChannels +
interferenceSet

Write sumOfEETT

Choose smallest EETT

Figure 4.8: Flowchart for the exclusive expected transmission time routing metric

Figure 4.9 depicts the flowchart for the EETT routing metric which is the fourth routing metric

that was selected for simulation. The flowcharts show clearly how does exclusive expected

transmission time routing metrics goes about in selecting an optimal path for sending packets.

 72

4.6. Summary

This chapter discussed four routing metrics that were selected after conducting a review of

different existing routing metrics that was done in Chapter Three. We presented and discussed

the pseudo codes and the flowcharts for these four routing metrics. These pseudo codes and

flowcharts helps us when hard coding the routing metrics. Chapter Five presents and discusses

the simulation results for the four chosen routing metrics. After analysis results, we recommend

design criteria for best routing metric for wireless mesh networks.

 73

CHAPTER FIVE

PERFORMANCE EVALUATION OF SELECTED

ROUTING METRICS

5.1 Introduction

A number of routing metrics were developed with mobile ad hoc networks (MANETs) in mind.

The recent focus on wireless mesh networks (WMNs) now requires routing metrics that are

optimal for WMNs. There is a need to start by evaluating existing routing metrics that were

designed for MANETs, so as to conclude if there is any that works best for WMNs. These routing

metrics have been compared by other authors in literature before, but the manner in which the

comparisons have been conducted is not consistent, hence the needs for this research study. A

consistent comparison of different routing metrics for WMNs is achieved by keeping the

simulation environment and parameters the same for all of our simulations. Simulation

environment, evaluation parameters, and WMNs experimental setup are presented and described

in this chapter. The core of this chapter is the simulation experiments of the four routing metrics

selected for evaluation. WMNs differs form MANETs in a sense that while MANETs have high

mobility, WMNs are stationary, and hence we kept our nodes stationary throughout our

experiments.

The strategy followed in this investigation is as follows:

i. Twenty routing metrics are reviewed as described in Chapter Three.

 74

ii. The review was based on the framework which formed the basis of grouping the twenty

routing metrics into four categories (see Chapter Three).

iii. One and not more than one of the routing metrics in each of the four categories (see Chapter

Four) was selected for simulation experiments as described in Chapter Three.

iv. The selected routing metrics are now ready in pseudo code and flowcharts form for

simulation experiments in this chapter. AODV has been selected as the routing protocol.

AODV has widely been used with a lot of different routing metrics (i.e. HOP, ETX). Hence

we use AODV in this work since it is the most used routing protocol in the literature. It is

better to compare routing metrics using a routing protocol that is preferred in the literate.

Section 5.2 presents a detailed explanation of the simulation environment used to run the

experiments. In this section, the type of simulation tool and version of the simulation tool are

briefly described. Evaluation parameters measured are discussed in section 5.3. The

experimental setup that was used for simulation based on the square grid topology is discussed

in section 5.4. Square grid topology allows us to have same positions for the nodes for all the

experiments. Having nodes on the same positions and having the same distance between

neighbor nodes helps have consistent comparison of the routing metrics, which this work is

trying to achieve.

Experiments that measures simulation parameters discussed in 5.5 are provided in tabular form,

and then presented graphically. Detailed discussion of results is presented in section 5.5. Trace

files were generated using NS2 and then analyzed using Trace Graph. The traffic volume was

increased as the number of the nodes in the network was increased. These graphs are then

 75

interpreted to explain the behavior of each routing metric. Section 5.6 of this chapter

recommends design criteria for an optimal routing metric for wireless mesh networks. In section

5.7 we present the conclusion of this chapter.

5.2 Simulation Environment

Four routing metrics are simulated using version 2.34 of the Network Simulator 2 (NS2) tool

that was run on Linux 9.04 operating system. The four routing metrics were simulated and all

the results were compared to come up with a conclusion at the end of this research project. NS2

is an open-source event-driven simulator tool that was designed particularly for research in

computer communication networks. NS2 simulates both wired and wireless networks and is

primarily Linux based.

NS2 contains modules for numerous network components such as routing, transport layer

protocols, application, etc. NS2 uses two languages, namely: an object oriented simulator

(written in C++), and an OTcl (an object oriented extension of Tcl language) interpreter, used to

execute user's command scripts. Five performance metrics were used in our experiments. These

five metrics are described in the next section (section 5.3).

5.3 Evaluation Parameters

5.3.1 Average delay

Average delay is the time taken to successfully transmit a packet from the sending node to the

intended destination node. This time ends when the source node receives the acknowledgement

 76

from the destination node to confirm that the packet was received successfully. The best path

must try to minimize average delay. Equation 5.1 was used to calculate average delay:

n

delay
delayavg

n

i
i¦

 1_ (5.1)

The number of packets that were successfully received by the destination node is represented by

numrecvd _ . Delay was calculated as follows:

> @ > @itimesenditimerecvdelayi __ � (5.2)

5.3.2 Throughput

Throughput is the number of packets that were received over a period of time (e.g. seconds,

milliseconds). The path with the high packet receiving rate is preferred. Equation 5.3 was used

to calculate throughput:

timesim
numrecvdthroughput

_
_

 (5.3)

We represent the total simulation time by timesim _ .

5.3.3 Packet loss ratio

Packet loss ratio is the percentage of sent packets that never reached the intended destination.

An optimal route needs to have the lowest packet loss ratio. Packet loss ratio is calculated using

the formula below:

 77

100
_

____ u
�

numsent

numrecvdnumsentratiolosspkt (5.4)

We represent the total number of sent packets by numsim _ .

5.3.4 Delay jitter

Delay jitter is the variation in delay over time from point-to-point. Delay jitter is calculated as

shown in equation 5.5.

� �eDelayepreveDelayeabsjitterdelay jitter 2_2 �� (5.5)

5.3.5 Packet drop ratio

Packet drop ratio is the percentage of packet that were successfully received by the intended

destination of the nodes, but dropped due to other reasons. Packet drop ratio differs from packet

loss ratio in that packet drop ratio looks at packets that were intentionally dropped because of

certain reasons, while packet loss ratio looks at packets that never reached the intended

destination node at all. One of the reasons could be that the packet was received in error. A

formula for calculating packet drop ratio is shown in equation 5.6:

100
_
_

u
numrecvd
numdropPDR (5.6)

numdrop _ is the number of all dropped packets.

 78

5.4 Experimental Setup

Network sizes of 9, 16, 25…. 196 nodes were simulated using square grid topologies for each

experiment conducted. All nodes were placed in an area of 1500m x 1500m. The first two nodes

were configured as sources while the last two nodes were configured as destinations. The AODV

routing protocol was employed on each node. Each unique network size configuration was

simulated 10 times and the results presented are the average of these simulation runs. All the

nodes were kept stationary since we were simulating a WMN setup, and in WMNs nodes are

stationary opposed to MANETs where the nodes are mobile. This work used five different

performance metrics for simulations, keeping the performance metrics (throughput, delay,

packet loss ratio, delay jitter, packet drop ratio) the same for each simulation. A summary of the

simulation setup employed can be found in Table 5.1.

5.4.1 Routing Protocol

We used AODV routing protocol for all our simulations. AODV was chosen because it has been

used with a majority of routing metrics that were to be simulated; AODV was suitable since the

focus of this study was on the routing metrics rather than routing protocol. This routing protocol

also provides simplicity and the fact that two of the routing metrics (Hop count and Expected

Transmission Count) that were evaluated in this work have been used by this routing protocol

before. Since the routing protocol uses Expected Transmission Count which uses time, it was

not going to take much time and effort to modify it to suite the other two (Per-hop Round Trip

Time and Exclusive Expected Transmission Time) routing metrics which also use time and are

the descendents of the ETX routing metric.

 79

5.4.2 Packet Buffer Model

Each node in our simulation used a buffer for both data packets and control packets while they

are waiting for their turn to be transmitted. The used buffer can store a maximum of 50 packets

at a time. A drop-tail queue management algorithm is employed, where the packets are

transmitted in a first-come-first served basis. A packet is dropped when the buffer is full.

5.4.3 Physical and Data Link Layer

In our simulations, each node uses an omni-directional antenna. An omni-directional antenna

can send data to all the directions with equal transmission strength. One of the advantages of

using an omni-directional antenna is so that a node can broadcast packets to any direction at an

equal strength, therefore there is no one direction that is better than other directions in the

network.

This simulation used a link layer model that is based on the IEEE 802.11 protocol. The 802.11

standard uses a MAC layer known as Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA). In this method collision of packets never happen because each sender senses the

channel before sending a packet, to check if the is no other node that is also trying to send at the

same time. If the channel is available (no other node is sending), it sends a packet.

 80

Table 0.1: Simulation parameters

Parameter (s) Value (s)

Number of nodes 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196

Area 1500m X 1500m

Network topology Square grid

Simulation time 1000 seconds

Routing protocol AODV

Routing metrics HOP, RTT, ETX, and EETT

Recorded parameters Delay, delay jitter, packet loss rate, packet loss ratio, and throughput

5.5 Simulation Experiments

This section presents results of the experiments that were conducted. Simulation parameters are

given in Table 5.1. All results shown in the next subsections are the average results obtained

from running each experiment 10 times.

5.5.1 Experiment 1: The effect of network size on delay

The purpose of this experiment was to determine the time that is taken by network layer packets

from the sender to the receiver. In this work, the main focus was on network layer packets,

because routing is done at the network layer of the ISO layer stack. Some routing metrics may

have a high delivery ratio of packets that were sent in the network, but delay also needs to be

taken into consideration.

 81

Table 0.2: Effect of network size on delay

 High delay decreases the overall performance of the network; therefore, an optimal routing

metric for wireless mesh networks must have low delay. The delay that was measured in this

work is an end-to-end delay. Delay was measured in seconds (s).

Table 5.2 depicts the simulation results showing the effect of network size on delay and Figure

5.1 graphically depicts the results of this experiment. Figure 5.1 shows that delay for all routing

metrics that were simulated increased as the network size was increased. When the number of

nodes increases in the network, there are more nodes that want to communicate. In wireless mesh

networks, when a node is communicating, its neighbors have to wait for it to finish, this wait

results in high delay.

 82

Figure 0.1: Effect of network size on delay

An optimal routing metric for WMNs should try by all means to minimize delay in the network.

The sender might end up concluding that a packet has been lost, while it is actually still on its

way, it was just experiencing delay. Hop count has the highest delay compared to all other

routing metrics, meaning that it performed worst compared to the evaluated routing metrics.

In an ideal wireless mesh network, there is a high possibility that the shortest path will be through

the middle of the network, but the middle of the network is usually highly congested. High delay

experienced by hop count can be attributed to the fact that it chooses to send packets through a

shortest path, which most of the time goes through the middle, especially if it is in a big network.

 83

The longest paths are usually at the sides of a wireless mesh network, they should theoretically

experience less congestion and delay compared to the routes through the center of a wireless

mesh network. The hop count routing metric avoides using these routes, resulting in high delay

and packet loss ratio. Experiment 3 shows that hop count experiences high packet loss ratio (see

Figure 5.3).

RTT has the lowest delay of all the routing metrics followed by ETX. EETT performed better

than HOP, but poorly compared to both RTT and ETX. Good performance produced by RTT is

attributed to the fact that it was designed so that it minimizes delay and packet loss ratio by

measuring load of the link and the packet loss experienced by that particul link before sending

through it. RTT measures delay seen by unicast probes between neighboring nodes before

sending or forwarding packets. ETX uses probe packets to measure packet loss ratio in all

possible paths to the destination. Sending probe packets results in high delay, hence ETX had

higher delay than RTT.

5.5.2 Experiment 2: The effect of network size on delay jitter

The purpose of this experiment was to determine the average delay jitter that is experienced by

the network. Delay jitter is defined as the variation in delay, and it is measured in seconds (s).

The variation in delay indicates the time that was taken by a packet to be successfully received

by the intended destination, compared to the packet sent before or after it.

 84

Table 0.3: Effect of network size on delay jitter

Figure 0.2: The effect of network size on delay jitter

A best routing metric for WMNs must try to keep this variation in delay as slitly as possible. In

this work, delay jitter was also measured as one of the performance metric to compare the routing

metrics. It is important to measure delay jitter because, for instance if delay of transmission

varies too widely in real time applications the quality is greatly degraded. Table 5.3 depicts the

 85

effect of network size on delay jitter and Figure 5.2 depicts the results of the simulation

experiment. From the results, it was discovered that delay jitter increased when the network size

was increased.

All routing metrics started with very small variation in delay (delay jitter), but ended with high

variation in delay when the network size was increased up to 196 nodes (see Figure 5.2). The

figure shows that ETX outperformed all the other routing metrics; it shows that ETX took less

time to receive the next packet when there were few nodes in the network, but more time when

the network contained many nodes. It is to be expected that ETX experiences less delay jitter,

since it was seen in experiment 1 (see Figure 5.1) that it experienced less delay (although not the

lowest of them all) because of the fact that it uses probe packets to measure delay in different

paths before it sends packets. Results of RTT’s delay jitter can also relate to those of experiment

1 (figure 5.1).

RTT produced second best (to ETX) delay jitter, which can be attributed to the fact that RTT’s

main objective is to decrease delay, hence it experiences less delay jitter. EETT was the worst

performer of all the routing metrics. Hop count only performed better than EETT, but worse than

the other two routing metrics that were simulated. Hop count does not consider the quality of the

link resulting in a choice of congested links; hence it has high delay jitter and delay (as seen in

Figure 5.1 and Figure 5.2).

 86

Table 0.4: Effect of network size on packet loss ratio

Figure 0.3: Effect of network size on packet loss ratio

 87

5.5.3 Experiment 3: The effect of network size on packet loss ratio

The purpose of this experiment was to determine the effect of network size on the packet loss

ratio. Packet loss ratio is measured as the overall percentage of the packets that never arrived to

the intended destination node. Packet loss ratio is inversely proportional to packet delivery ratio.

An optimal routing metric must minimize packet drop ratio so as to increase the overall data

delivery ratio. Table 5.4 shows the effect of network size on packet loss ratio while Figure 5.3

depicts the results of this experiment in a graph. HOP has high packet loss ratio compared to all

the other routing metrics, meaning that it performed badly compared to all other routing metrics

that were simulated. A high level of packet loss ratio by HOP can be attributed to the fact that

HOP may send packets through links highly congested, since it does not consider the quality of

the link, but it just chooses the shortest path.

HOP tends to send packets through the paths that go through the middle, since the paths in the

middle of the network are usually shorter than those in the outer parts of the network. High level

of congestion in the middle of the network causes the increase in packet loss ratio, hence the

high packet loss ratio suffered by hop count.

 88

Table 0.5: Effect of network size on packet drop ratio

ETX is the best performer, followed by RTT when measuring packet loss ratio. ETX measures

the loss ratio of broadcast packets between pairs of neighboring nodes by estimating the number

of retransmissions needed to successfully deliver a packet to the intended destination node.

Packet loss ratio is the major concern of ETX, which is why it has the best performance; this can

be seen in Figure 5.3. The good performance by RTT can be attributed to that it measures several

facets of link quality, including packet loss ratio. EETT performed better when it is compared

to HOP, but is the worst when compared to RTT and ETX.

5.5.4 Experiment 4: Effect of network size on packet drop ratio

The purpose of this experiment was to determine the amount of packets that are dropped at the

destination node because they were received because of different resons. Packet drop ratio was

measured as the number of routing layer packets that were dropped by the receiver during

simulation (see Figure 5.4).

 89

Not all packets that were sent by the source node reach the intended destination, some packets

get lost while others are dropped because of different reasons. One of the reasons for dropping

packets could be that they were received in error, while the other reason could be that they were

received after its time to live (TTL) had expired. The best routing metric for WMNs should be

able to identify packet that were received in error so that they can be dropped. A packet should

have the same message at the receiving node as it had when it left its sender, otherwise the

routing protocol should be able to identify and drop those packets. Table 5.5 depicts the effect

of network size on packet drop ratio and Figure 5.4 graphically presents the results.

Figure 0.4: Effect of network size on packet drop ratio

 90

Figure 5.4 shows that ETX performed better than all the other routing metrics simulated,

meaning that it has a lower number of packets that were dropped. Figure 5.1 showed that ETX

suffers from less delay, leading to nodes not waiting too long before forwarding packets. One of

the factors that lead to packets being dropped is the high delay that the link is experiencing.

ETX’s low packet drop ratio can also be attributed to the fact that it suffers less packet loss ratio

(see Figure 5.3), since ETX firstly measures loss ratio of the link. HOP performed better than

EETT and RTT but poorly when compared to ETX.

EETT performed better than RTT, but worse than both ETX and HOP. RTT was the worst

performer; it experienced the highest packet drop ratio. The worse performance by RTT can be

attributed to the fact that it experiences high overhead from using probe packets to measure round

trip time, to estimate how long does it take to successfully receive and acknowledge a packet.

5.5.5 Experiment 5: Effect of time on throughput

The purpose of this experiment was to determine the throughput of the network over time.

Throughput is the number of packets that were received over a period of time (e.g. seconds,

milliseconds). Throughput was measured in kilobytes per second (Kbps). Throughput decreases

over time because when the simulation starts there will be exchange of packets between nodes,

the exchange of packets will increase as the time goes on, leading to congestion on other links,

which then negatively affect the throughput of the entire network.

 91

Table 0.6: Effect of time on throughput of sending packets

 Decrease in throughput over time is reflected by all the experiments that were conducted to

measure throughput (see Figure 5.5, 5.6, 5.7). Three different experiments were conducted to

measure throughput: throughput of sending packets, throughput of receiving packets, and

throughput of forwarding packets.

An ideal routing metric for WMNs has the potential to increase the throughput of the network;

hence we thoroughly look at throughput by conducting different experiments to measure

throughput. Throughputs for various network sizes were collected and the average throughputs

were recorded in each experiment. Throughput is one of the very important metrics to determine

the performance of a network. We looked at throughput from different angles by further dividing

 92

the experiments that measures throughput into: throughput of sending, forwarding, receiving,

and dropping packets.

i. The effect of time on throughput of sending packets

The purpose of this experiment was to measure throughput at the sender so as to compare the

success of different routing metrics when they were sending generated packets. This experiment

measured the throughput of the network on the sender’s side, while we also measure the

throughput at the receiver’s side and at the intermediate nodes (shown in Figure 5.6 and 5.7

respectively).

We wanted to have a thourough analysis of throughput, hence we looked at throughput at their

different states. Table 5.6 depicts the effect of time on throughput of sending packets in a wireless

mesh network and Figure 5.5 graphically depicts the results. Hop count had the best throughput

of sending packets compared to all the metrics that were simulated, while RTT performed worse

than all the other routing metrics. High throughput of sending packets by hop count can be

attributed to the fact that it does not consider the quality of the link when selecting the path

through which to send packet.

 93

Figure 0.5: Effect of time on throughput of sending packets

 94

Table 0.7: Effect of time on throughput of receiving packets

HOP only considers the path with the less number of hops, which makes the process of sending

packets in a network using the hop count simple, leading to higher throughput of sending packet

as it can be seen in Figure 5.5. ETX performed poorly when it was compared to HOP, but better

when compared to the other two routing metrics (EETT and RTT). EETT performed better than

RTT. RTT considers many aspects of link quality when selecting the path to use for sending

packets, which makes it not simple to send packets using RTT, leading to poor throughput of

sending packets.

 95

Figure 0.6: Effect of time on throughput of receiving packets

ii. The effect of time on throughput of receiving packets

The purpose of this experiment was to determine throughput of successfully receiving packets

by the intended destination node. Table 5.7 shows the simulation results of the effect of time on

throughput of receiving packets and Figure 5.6 depicts the results of the experiment in a graph.

ETX had the highest throughput of receiving packets over time compared to all the other nodes

that were simulated in this work. ETX was designed to improve throughput by measuring packet

loss ratio of the links using probe packets before selecting the path to use for sending packets,

this is echoed by high throughput of receiving packets in Figure 5.6 and low packet loss ratio in

experiment 3 (see Figure 5.3) HOP was the worst performer.

 96

EETT performed badly when compared to ETX, but better than HOP and RTT. RTT performed

better when it was compared to HOP. Poor performance by HOP can be attributed to the fact

that since it does not consider other aspects of the link except the path length, it may choose a

shortest route that has congested links leading to the high loss ratio. Routes in the center are

usually the shortest routes, but very congested as well. Hop count will send packets through the

middle of the network most of the time since it chooses the shortest path, resulting in many

packets getting lost before they reach their intended destination, which causes low throughput at

the receiving node. Experiment 3 also confirmed (Figure 5.3) that HOP has the highest packet

loss ratio, resulting in low throughput of receiving packets.

iii. The effect of time on throughput of forwarding packets

The purpose of this experiment was to measure the success of relaying packets by intermediate

nodes to the next chosen node (if the next node is not the destination), or to the intended

destination node.

 97

Table 0.8: Effect of time on the throughput of forwarding packets

Nodes in WMNs do not always have direct communication with every other node. Whether a

node can directly send packets to another node depends on the transmission range of the two

nodes that want to communicate. If the two nodes are within communication range, they can

directly communicate, otherwise they require assistance from others along the chosen route to

relay packets on behalf of the sending node. In this work not only throughput of receiving packets

by the destination node is measured, but throughput of successfully forwarding packets by relay

nodes as well as throughput of sending packets by a source node is also measured.

 98

Table 5.8 depicts simulation results of the effect of time on throughput of forwarding packets

and Figure 5.7 depicts results results in a graph. Figure 5.7 shows that ETX had higher

throughput of forwarding packets by intermediate nodes compared to all other routing metrics

that were simulated in this work. The best performance by ETX can be attributed to the fact that

it is more concerned with packet loss ratio. Experiment 3 (see Figure 5.3) shows that ETX has

got lower packet loss ratio. ETX measures loss ratio of the possible links that it may use to send

packets. Measuring packet loss ratio of the link makes it easy for the intermediate nodes to

choose links with low packet loss ratio, leading to successfully forwarding a large number of

packets, hence high throughput of forwarding packets opposed to the other routing metrics.

Figure 0.7: Effect of time on the throughput of forwarding packets

 99

Hop count routing metric was the second best performing routing metric (to ETX). Although

hop count routing metric had low throughput of receiving packets, it performed better when

throughput of forwarding packets by the intermediate nodes was measured. RTT was the worse

performer when measuring throughput of forwarding packets by relay nodes. EETT was the

second worst performer (to RTT).

5.5.6 Summary of Results

Table 5.9 summarizes the performance of the four routing metrics that were simulated in this

chapter. Routing metrics were assigned scores from 1 – 4, with 1 being the worst performance

while 4 represents best performance. The last row on Table 5.9 shows the average score of the

performance of the routing metrics. It can be seen from Table 5.9 that overall ETX outperformed

all the routing metrics, while HOP performed worse than all the routing metrics that were

simulated. ETX outperformed all the routing metrics that were simulated when delay jitter in the

entire network was measured, it was also the best when measuring packet drop ratio and

throughput of receiving packets by the destination nodes. ETX also performed better than all the

other routing metrics that were simulated when measuring throughput of forwarding packets by

intermediate nodes.

The best performance by ETX can be attributed to the fact that it was designed to improve

throughput of the network. ETX measures packet loss ratio of broadcast packets between pairs

of neighboring nodes by estimating the number of transmissions that are required to send unicast

packets. ETX measures packet loss probability in both the forward and reverse directions. ETX

 100

uses probe packets for measuring loss ratio, which results in high delay, although it is not higher

than that of HOP and EETT.

Table 5.9 shows that the hop count’s overall performance was the worst compared to all the other

routing metrics that were simulated.

Table 0.9: Summary of results

Poor performance by hop count can be attributed to the fact that it does not consider the quality

of the link. Hop count only considers the route that has the few links. HOP uses random selection

to select the route to use among the paths that have the same number of links. In a big network,

hop count normally sends packets through the middle of the network, as the shortest routes

usually pass through the middle. When the network size increases, the middle becomes more

congested, resulting to high delay and packet loss ratio for HOP (as it can be seen on Figure 5.1).

The results from the work by (Yang et. Al., 2006), discussed in Chapter Two showed that MIC

performed best compared to all the other routing metrics that were evaluated in that work. The

evaluation conducted in our research project has shown that ETX was the best performer

 101

amongst the four routing metrics that were compared. ETT was the worst performing routing

metric in the work by (Yang et. Al., 2006), while in our study the evaluation showed hop count

as the worst performing routing metric. Our work used the same simulation environment, same

routing protocol, and same routing protocol for all the experiments, which could be the reason

why the best and the worst routing metrics are different from those in the work by (Yang et al.,

2006). The other study by (Liu et al., 2008) just conducted a theoretical analysis of the routing

metrics; they did not conduct any experiments.

5.6 Recommendation of Design Criteria

The last objective of this research project is to recommend design criteria for an optimal routing

metric for wireless mesh networks (WMNs). This section fulfilled this objective by presenting

four design criteria. This section recommended four design criteria after the evaluation of routing

metrics was done earlier in this chapter. Recommended design criteria are: weight path-

awareness, efficient weight path algorithm design, Quality of Service-awareness, and network

scalability

5.6.1Weight path-awareness

The main goal of every routing protocol is to send packets through minimum weight paths in

terms of a particular routing metric that it is using. To make sure that there is an effective

utilization of wireless mesh network resources, the minimum weight paths selected by a

particular routing protocol must have good performance which involves high throughput, low

packet loss and low delay. Figure 5.1 depicts the effect of network size on delay, which shows

 102

high delays for the routing metrics considered in this study. Figure 5.5 through 5.7 shows

different throughputs which need to improve for an ideal routing metric for WMN. For this to

be achieved, the routing metrics must be able to capture the features of wireless mesh networks

that impact the performance of paths. (Yang et al., 2006) also recommended this design criterion

in their work. These features are briefly discussed below:

a) Path length

Each link of a path creates extra delay and potentially more packet loss, a longer route normally

increases the end-to-end delay while it reduces throughput and packet loss ratio. An optimal

routing metric for wireless mesh networks should be able to increase the weight of a route when

the route’s length increases. Hop count selects the route that has the smallest number of hops

without considering the weight of a link. An ideal routing metric for WMNs needs to try and

avoid this approach. Other routing metrics such as ETX do take the quality of the link into

consideration.

b) Link capacity

In wired networks a link’s capacity is independent of the physical distance between the link’s

points, but in wireless networks the transmission rate between a pair of neighboring nodes (link

capacity between two nodes) is directly related to the physical distance between two nodes. In

simple terms, channel quality decreases as distance between two nodes increases.

c) Packet loss ratio

A source node might have to transmit a packet several times on a hop with high packet loss ratio,

which affects throughput and delay of any flow that goes through that hop. An ideal routing

metric for WMNs must be able capture the packet loss ratio to ensure good performance for

minimum weight path. There is a need for an improvement on the packet loss ratio for the routing

 103

metrics depicted in Figure 5.3. The figure shows very high loss ratio for HOP and EETT while

the loss ratios for both ETX and RTT are a bit lower, but they still loose a lot of packets. A best

routing metric for WMNs must decrease the packet loss ratios seen in Figure 5.3.

5.6.2 Efficient weight path algorithm design

Each and every routing protocol uses a certain efficient algorithm to compute minimum weight

paths. It can not be guaranteed that routing protocol can have good performance if there is no

efficient algorithm to calculate the minimum weight paths based on a particular routing metric.

The results of the experiments have shown the hop count routing metric as the worse performer

amongst all the simulated routing metrics, this can be attributed to the fact that it uses an

algorithm that is not very efficient since it does not consider the quality of a link, but only chooses

a path that has less number of hops among the available paths. Table 5.9 shows the summary of

the performance of the evaluated routing metrics, and the performance of hop count is

significantly worse, leading to the conclusion that there is a need for the design of an effective

weight path algorithm to be used by the best routing metric for wireless mesh networks. This

design feature of a wireless mesh network routing metric was also recommended by (Yang et

al., 2006).

5.6.3 Quality of Service-awareness

Quality of Service has a potential to improve performance of a wireless mesh network. A routing

metric like hop count does not consider the quality of the link through which it is intending

sending packets. The fact that hop count does not consider link quality degrades network

 104

performance by having high packet loss ratio and low throughput (see Figure 5.2 and 5.6). An

optimal routing metric for WMNs need to make QoS one of its priorities. Hop count routing

metric does not take the quality of the link into consideration when choosing a route to use for

sending packets. Experimental results in section 5.5 showed that hop count performed badly, and

its poor performance can be attributed to the fact that it can send packets through congested links

as a result of the bad quality of that particular link.

5.6.4 Network scalability

Most of experiments conducted in section 5.5 of this research work have shown that the

performance of the network (i.e. throughput, packet delivery ratio) degrades when the network

size increases. Figure 5.5, 5.6 and 5.7 show that throughput of the network degrades as the

network size is increased for all routing metrics that were simulated. Experiment 3 and 4 also

showed that packet loss ratio and packet drop ratio respectively increase when the network size

increases, leading to poor performance of the entire network. Delay is also one of the causes of

performance degradation; hence it increases as the network size increases, leading to poor

throughput. An optimal routing metric for wireless mesh network needs to take network

scalability into consideration.

A routing metric should try to maximize network performance despite the number of nodes the

network has. Results presented in section 5.5 in this study revealed that the performance of all

the routing metrics was decreasing as the network size was increased. Figure 5.1 has shown that

network delay increased as more nodes were added in the network, while figure 5.2 has shown

that the delay jitter increased as well when more nodes were added. As more nodes were added,

 105

packet loss ratio and packet drop ratio increased as it can be seen in Figure 5.3 and Figure 5.4

respectively. It can be seen in Figure 5.5 through Figure 5.7 that throughput also decreased as

the network size was becoming bigger.

5.7 Summary

The simulation experiments were conducted in this chapter and based on the results analysis, the

design features for an optimal routing metric for WMNs were recommended in section 5.6. ETX

performed best compare to all the other routing metrics that were simulated, but it still has its

own disadvantages that do not make it to be an automatic choice as an optimal routing metric for

wireless mesh networks. ETX uses probe packets to measure the packet loss ratio of all possible

paths to the intended destination. The process of measuring packet loss ratios for all the possible

paths results to high network overhead, which results in high delay. An optimal routing metric

for wireless mesh network should try by all means to reduce overall delay while it maximizes

overall throughput of the network. Four design features for an ideal routing metric for wireless

mesh network were proposed in section 5.6 of this chapter. Chapter Six concludes this study and

provides future work for enhancing this work.

 106

CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This study is a successful attempt to investigate existing routing metrics to find out if there is

any routing metric among existing routing metrics that can work better in wireless mesh

networks, as all the existing routing metrics were designed with mobile ad hoc networks

(MANETs) in mind. After comparing different routing metrics, four routing metrics were

simulated in NS2 with WMNs simulation environment, and then their performance was

evaluated. The main goal of this study was to evaluate the performance of routing metrics for

wireless mesh networks. It was important to firstly evaluate routing metrics that already exist,

so as to be sure whether there is a routing metric that works for WMNs, although they were

designed for MANETs they might work for wireless mesh networks.

This study answered the following research questions: (1) what are the pitfalls in existing WMNs

routing metrics? (2) Which routing metric among the existing routing metrics is the best for

WMNs? (3) What features should be considered when designing a routing metric for WMNs?

The goal of this study was broken down to four objectives that needed to be fulfilled to complete

the study. Achieving the set objectives also provided answers to the research questions defined

in section 1.3 of Chapter One. This study had the following objectives: (1) to survey relevant

literature on existing routing metrics, (2) to use the knowledge gathered from the survey to select

representative sample of routing metrics, (3) to evaluate the performance of existing routing

 107

metrics, (4) to recommend design criteria for an optimal routing metric for wireless mesh

network.

The first objective was fullfiled by reviewing two existing studies that compared routing metrics

for wireless mesh networks and the review of twenty existing routing metrics. This review of the

literature answered the first research question. Routing metrics were later grouped into four

groups; the routing metrics in each group were then compared among each other to find one

routing metric that was going to represent the group during simulation and evaluation. The

second research objective was fullfiled by this comparison of routing metrics. The four selected

routing metrics were then implemented and evaluated in NS2, by so doing fulfilling objective

three. By successfully evaluating the performance of routing metrics, we answered the second

research question.

As a result of the evaluation, we discovered that hop count performed worse than all the routing

metrics that were compared in this study. EETT performed better than HOP, but worse than both

ETX and RTT. RTT performed better than both EETT and HOP, but poor when compared to

ETX. Through the analysis of results, we achieved objective number tree. From the foregoing

we drew the conclusion that ETX outperformed all other routing metrics that were simulated,

but based on the evaluation, it can not be concluded that it is the best routing metric for WMNs.

By arriving at this conclusion, we answered the last research question.

The design criteria that informed this study can help guide any scholar that wishes to design a

new optimal routing metric for WMNs from scratch or extend already existing routing metric.

 108

By coming up wit these designed criteria; we were able to fulfill the fourth research objective

and also anwered the third research question. Recommended design criteria were as follows: (1)

weight path-awareness, (2) efficient weight path algorithm design, (3) quality of service-

awareness, (4) network scalability. Research questions two and three are also answered by

recommending design criteria for an optimal routing metric for wireless mesh networks. The

next section (6.2) presents limitations of this work and future enhancements.

6.2 Limitations and Future Work

This section presents the limitations and future enhancements of this study. One of the limitations

of this work is that simulation results might not reflect real world results since they do not

consider factors like external interference. Conducting the same experiments on a wireless test

bed still needs to be considered to further validate results obtained. This study needed a fairly

large number of wireless nodes to test network scalability; this would not have been possible

with the test bed that is running in the wireless mesh lab at the University of Zululand, because

it contains only fourteen nodes. The work required up to 196 wireless nodes. Test bed

implementation was not possible because of time and financial constrains. As future work, this

study should consider using a test bed which will reflect real world results. The results from the

test bed should be compared with simulation results from this work.

One routing protocol (AODV) was used in all the simulation experiments that were conducted

in this study, another routing protocol could be used to also run the very same experiments. The

use of two routing protocols instead of one should be considered as future enhancement of this

work. The use of two routing protocols will help to further validate simulation results, since the

 109

performance of routing metrics will then be judged based on two different routing protocols

used. Hybrid wireless mesh protocol is a routing protocol for WMNs, it should be considered as

the second routing protocol to use in this study.

In this study, only one routing metric was chosen for simulation from each group. Only one

routing metric could be simulated from each group because of time constrains, since the code

for the other three routing metrics (RTT, ETX, and EETT) had to be hard coded before they

could be used, which took a lot of time to achieve. Selecting more than one routing metric from

each group was going to take even more time. As future enhancement to this study, simulating

two routing metrics from each group should be considered.

110

BIBLIOGRAPHY

Adya, A. Bahl, P. Padhye, J. Wolman, A. & Zhou, Z. 2004. A Multi-Radio Unification

Protocol for IEEE 802.11 Wireless Networks. Proceedings of the First

International Conference on Broadband Networks (BROADNETS’04),

Washington, DC, USA, October 2004, pp 344-354, Washington, DC, USA: IEEE

Computer Society.

Akyildiz, I.F. Wang, X. & Wang, W. 2005. Wireless Mesh Networks: a survey. Computer

Networks. 43 (9): 445-487, September 2005.

Akyildiz, I.F. Wang, X. 2009. Wireless Mesh Networks. Georgia Institute of technology,

USA.

Aoki, H. Abraham, S. Agre, J. Bahr, M. Chari, N. Cheng, R. & Chu, L. Conner, W.

Faccin, S. 2005. 802.11 TGs Simple Efficient Extensible Mesh (SEE-Mesh)

Proposal. IEEE P802.11 Wireless LANs, Document IEEE 802.11-05/0562r0, June

2005.

Bahr, M. 2006. Proposed routing for IEEE 802.11s WLAN mesh networks. Proceedings

of the 2nd Annual international Workshop on Wireless Internet conference, Boston,

MA, United States, 02-05 August 2006, New York, NY, USA: ACM

Biaz, S. & Qi, B. 2008. iETT: A Quality Routing Metric for Multi-Rate Multi-Hop

Networks. IEEE Wireless Communications and Networking Conference, WCNC

2008, Las Vegas, NV, 31 March 2008-03 April 2008, pp. 2729 – 2734, Las Vegas,

NV: IEEE.

111

Corson, M. & Ephremides, A. 1995. A Distributed Routing Algorithm for Mobile Wireless

Networks. Wireless Networks, 1 (1): 61-81, January 1995.

De Couto, D, S, J. Aguayo, D. Bicket, J & Morris, R. 2005. A High-throughput Path Metric

for Multi-Hop Wireless Routing. Wireless Networks, 11(4): 419-434, July 2005.

De Couto, D. S. J. 2003. High-Throughput Routing for Multi-Hop Wireless Networks.

Massachusetts: Massachusetts Institute of Technology. (M.Eng.).

Dijkstra, E. 1959. A note on two problems in connexion with graphs. Numerische

Mathematik, 1 (1): 269-271. 1 December 1959.

Draves, R. Padhye, J. & Zill, B. 2004. Routing in Multi-Radio Multi-Hop Wireless Mesh

Networks. In Proceedings of the 10th annual international conference on Mobile

computing and networking, Philadelphia, USA, September 2004, pp. 114 - 128,

New York, USA: ACM.

Draves, R. Padhye, J. & Zill, B. 2004. Comparison of Routing Metrics for Static Multi-

hop Wireless Networks. In Proceedings of the 2004 conference on Applications,

technologies, architectures, and protocols for computer communications

(SZGCOMM), Portland, Oregon, USA, August 2004, pp.133 – 144, New York, NY,

USA: ACM.

IEEE 802.11 WG TGs, Draft Amendment to Standard IEEE 802.11TM: ESS Mesh

Networking, P802.11sTM /D1.08, Jan. 2008.

Jacquet, P. Muhlethaler, P. Clausen, T. Laouiti, A. Qayyum, A. & Viennot, L. 2001.

Optimized Link State Routing Protocol for Ad hoc Networks. Multi Topic

112

Conference. IEEE INMIC 2001, Technology for the 21st Century, In Proceedings,

IEEE International Conference, pp. 62-68. 2001.

Jiang, W. Liu, S. Zhu, Y. & Zhang, Z. 2007. Optimizing Routing Metrics for Large-Scale

Multi-Radio Mesh Networks. In Proceedings of International Conference on

Wireless Communications. Networking and Mobile Computing, Shanghai, 21-25

September 2007, pp. 1550 – 1553, Shanghai: IEEE.

Johnson, D.B. Maltz, D.A. & Broch, J. 1996. DSR: The Dynamic Source Routing for

Multihop Ad Hoc networks. In Ad hoc Networking, Boston, MA, USA, 2001, pp.

139-172, Addison-Wesley Longman Publishing Co., Inc: Boston, MA, USA.

Johnson, D. & Hancke, G. Comparison of two routing metrics in OLSR on a grid based

mesh network. From http://wirelessafrica.meraka.org.za/ wiki/ images/

8/8d/Els evier2008_OLSR_compare.pdf.

Johnson, D.L., Aichele, C. & Ntlatlapa, N. 2008. A Simple pragmatic approach to mesh

routing using BATMAN. 2nd IFIP International Symposium on Wireless

Communications and Information Technology in Developing Countries (WCITD’

2008), CSIR, Pretoria, South Africa, 6-7 October 2008, pp. 10, Pretoria, S.A:

Scientific Common.

Keshav, S. 1991. A Control-Theoretic Approach to Flow Control. ACM SINGCOMM

Computer Communication Review, 21 (4): 3-15, September 1991.

Koksal, C.E. & Balakrishnan, H. 2006. Quality-Aware Routing Metrics for Time-Varying

Wireless Mesh Networks. IEEE Journal on selected areas in communications, 24

(11): 1984-1994, November 2006.

http://wirelessafrica.meraka.org.za/
http://wirelessafrica.meraka.org.za/wiki/images/8/8d/Els%20evier2008_OLSR_compare.pdf

113

Kyasanur, P. & Vaidya, N, H. 2005. Routing and Link-layer Protocols for Multi-Channel

Multi-Interface Ad Hoc Wireless Networks. ACM SIGMOBILE Mobile Computing

and Communications Review, 10(1): 31-43, January 2006.

Liu, H. Huang, W. Zhou, X. & Wang, X.H. 2008. A Comprehensive Comparison of

Routing Metrics for Wireless Mesh Networks. Proceedings of the IEEE

International Conference on Networking, Sensing and Control, ICNSC 2008,

Hainan, China, 6-8 April 2008, pp. 955 – 960, Sanya: IEEE.

Ma, L. & Denko, M. 2007. A Routing Metric for Load-Balancing in Wireless Mesh

Networks. In Proceedings of the 21st International Conference on Advanced

Information Networking and Applications Workshops (AINAW'07), 2007, Niagara

Falls, Ontario, Canada, 21-23 May 2007, pp. 409-414, Washington, DC, USA:

IEEE Computer Society.

 Ni, Xian. Lan, Kun-chan. Malaney, Robert. 2008. On the Performance of Expected

Transmission Count (ETX) for Wireless Mesh Networks. In Proceedings of the 3rd

International Conference on Performance Evaluation Methodologies and Tools,

Athens, Greece, Brusses, October 2008, Belgium: ICST.

Nxumalo S.L, Ntlatlapa, N, Mudali, P, & Adigun, M.O. 2009. Performance Evaluation of

Routing Metrics for Wireless Mesh Networks. In Procedings of South African

Telecommunication Networks and Applications Conference, Royal Swazi Spa,

Swaziland, 30 August – 2 September 2009.

http://www.pubzone.org/pages/publications/showVenue.do;jsessionid=E81205CB25477183920C81601EF48EEC?venueId=12059

114

Parissodis, G. Karaliopoulos, M. Baumann, R. Spyropoulos, T. & Platter, B. 2009. Routing

Metrics for Wireless Mesh Networks. (In Misra, S. Misra, S.C. Woungang, I. (eds.),

Guide to Wireless Mesh Networks. London: Springer, pp. 199-230. 2009).

Perkins, C. 1997. Ad-hoc on-demand distance vector routing. In Proceedings of the Second

IEEE Workshop on Mobile Computer Systems and Applications, Washington, DC,

USA, 1999, pp. 90, Washington, DC, USA: IEEE Computer Society.

Ramanathan, R. & Redi, J. A. 2002. A Brief Overview of Ad hoc Networks: Challenges

and Directions. IEEE Communications Magazine, BBN Technologies, 40 (5):20-

22, May 2002.

Shen, Q. & Fang, X. 2006. A Multi-metric AODV Routing in IEEE 802.11s. In

International Conference on Communication Technology, 2006, ICCT '06, ICCT’

06, Guilin, 27-30 November 2006. Pp1-4, Guilin: IEEE.

Shila, D. M. & Anjali, T. 2007. Load-aware Traffic Engineering for Mesh Networks. In

Proceedings of 16th International Conference, Computer Communications and

Networks. ICCCN 2007, Newton, MA, USA, May 2008, pp. 1040-1045, Newton,

MA, USA: Butterworth-Heinemann.

Subramanian, A, P. Buddhikot, M, M. & Miller, S. 2006. Interference Aware Routing in

Multi-Radio Wireless Mesh Networks. 2nd IEEE Workshop on Wireless Mesh

Networks, 2006, WiMesh 2006, Reston, VA , 25-28 September 2006, pp. 55 - 63,

Reston, VA: IEEE.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4146258
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4068237
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4068237

115

Yang, Y., Wang, J. & Kravets, R. 2005. Interference-aware Load Balancing for Multi-hop

Wireless Networks, Technical Representative. UIUCDCS-R- 2005-2526,

Department of Computer Science, University of Illinois at Urbana-Champaign,

2005.

Yang, Y., Wang, J. & Kravets, R. 2006. Designing Routing Metrics for Mesh Networks.

University of Illinois at Urbana-Champaign. 2006.

Yin, S. Xiong, Y. Zhang, Q. & Lin, X. 2006. Prediction-based Routing for Real Time

Communications in Wireless Multi-hop Networks. In Proceedings of the 3rd

International Conference on Quality of Service in Heterogeneous Wired/Wireless

Networks, Waterloo, Ontario, Canada , 07-09 August 2006, New York, NY, USA:

ACM.

Zhang, Q. 2005. Video delivery over wireless multi-hop networks. ISPACS 2005, In

Proceedings of 2005 International Symposium on Intelligent Signal Processing and

Communication Systems, 13-16 December 2005, pp. 793-796.

Zhou, W. Zhang, D. & Qiao, D. 2006. Comparative study of routing metrics for multi-

radio multi-channel wireless networks. Procedings of Wireless Communications

and Networking Conference 2006. WCNC 2006. IEEE, 3-6 April 2006, Las Vegas,

NV. pp.270-275,

http://www.acm.org/publications#_blank

116

APPENDIX A: AODV Header File

#ifndef __aodv_rtable_h__

#define __aodv_rtable_h__

#include <assert.h>

#include <sys/types.h>

#include <config.h>

#include <lib/bsd-list.h>

#include <scheduler.h>

#define CURRENT_TIME Scheduler::instance().clock()

#define INFINITY2 0xff

/*

AODV Neighbor Cache Entry

*/

class AODV_Neighbor {

friend class AODV;

friend class aodv_rt_entry;

public:

AODV_Neighbor(u_int32_t a) { nb_addr = a; }

protected:

LIST_ENTRY(AODV_Neighbor) nb_link;

nsaddr_t nb_addr;

double nb_expire; // ALLOWED_HELLO_LOSS * HELLO_INTERVAL

};

LIST_HEAD(aodv_ncache, AODV_Neighbor);

/*

AODV Precursor list data structure

*/

117

class AODV_Precursor {

friend class AODV;

friend class aodv_rt_entry;

public:

AODV_Precursor(u_int32_t a) { pc_addr = a; }

protected:

LIST_ENTRY(AODV_Precursor) pc_link;

nsaddr_t pc_addr; // precursor address

};

LIST_HEAD(aodv_precursors, AODV_Precursor);

/*

Route Table Entry

*/

class aodv_rt_entry {

friend class aodv_rtable;

friend class AODV;

friend class LocalRepairTimer;

public:

aodv_rt_entry();

~aodv_rt_entry();

void nb_insert(nsaddr_t id);

AODV_Neighbor* nb_lookup(nsaddr_t id);

void pc_insert(nsaddr_t id);

AODV_Precursor* pc_lookup(nsaddr_t id);

void pc_delete(nsaddr_t id);

void pc_delete(void);

bool pc_empty(void);

double rt_req_timeout; // when I can send another req

118

u_int8_t rt_req_cnt; // number of route requests

protected:

LIST_ENTRY(aodv_rt_entry) rt_link;

nsaddr_t rt_dst;

u_int32_t rt_seqno;

/* u_int8_t t_interface; */

u_int16_t rt_hops; // hop count

int rt_last_hop_count; // last valid hop count

nsaddr_t rt_nexthop; // next hop IP address

/* list of precursors */

aodv_precursors rt_pclist;

double rt_expire; // when entry expires

u_int8_t rt_flags;

#define RTF_DOWN 0

#define RTF_UP 1

#define RTF_IN_REPAIR 2

/*

* Must receive 4 errors within 3 seconds in order to mark

* the route down.

u_int8_t rt_errors; // error count

double rt_error_time;

#define MAX_RT_ERROR 4 // errors

#define MAX_RT_ERROR_TIME 3 // seconds

*/

#define MAX_HISTORY 3

double rt_disc_latency[MAX_HISTORY];

char hist_indx;

int rt_req_last_ttl; // last ttl value used

119

/*

* a list of neighbors that are using this route.

*/

aodv_ncache rt_nblist;

};

/*

The Routing Table

*/

class aodv_rtable {

public:

aodv_rtable() { LIST_INIT(&rthead); }

aodv_rt_entry* head() { return rthead.lh_first; }

aodv_rt_entry* rt_add(nsaddr_t id);

void rt_delete(nsaddr_t id);

aodv_rt_entry* rt_lookup(nsaddr_t id);

private:

LIST_HEAD(aodv_rthead, aodv_rt_entry) rthead;

};

#endif /* _aodv__rtable_h__ */

APPENDIX B: ETX Source Code

#ifndef __aodv_rtable_h__

#define __aodv_rtable_h__

#include <assert.h>

#include <sys/types.h>

#include <config.h>

120

#include <lib/bsd-list.h>

#include <scheduler.h>

#define CURRENT_TIME Scheduler::instance().clock()

#define INFINITY2 0xff

/*

AODV Neighbor Cache Entry

*/

class AODV_Neighbor {

friend class AODV;

friend class aodv_rt_entry;

public:

AODV_Neighbor(u_int32_t a) { nb_addr = a; }

protected:

LIST_ENTRY(AODV_Neighbor) nb_link;

nsaddr_t nb_addr;

double nb_expire; // ALLOWED_HELLO_LOSS * HELLO_INTERVAL

};

LIST_HEAD(aodv_ncache, AODV_Neighbor);

/*

AODV Precursor list data structure

*/

class AODV_Precursor {

friend class AODV;

friend class aodv_rt_entry;

public:

AODV_Precursor(u_int32_t a) { pc_addr = a; }

protected:

LIST_ENTRY(AODV_Precursor) pc_link;

121

nsaddr_t pc_addr; // precursor address

};

LIST_HEAD(aodv_precursors, AODV_Precursor);

/*

Route Table Entry

*/

class aodv_rt_entry {

friend class aodv_rtable;

friend class AODV;

friend class LocalRepairTimer;

public:

aodv_rt_entry();

~aodv_rt_entry();

void nb_insert(nsaddr_t id);

AODV_Neighbor* nb_lookup(nsaddr_t id);

void pc_insert(nsaddr_t id);

AODV_Precursor* pc_lookup(nsaddr_t id);

void pc_delete(nsaddr_t id);

void pc_delete(void);

bool pc_empty(void);

double rt_req_timeout; // when I can send another req

u_int8_t rt_req_cnt; // number of route requests

protected:

LIST_ENTRY(aodv_rt_entry) rt_link;

nsaddr_t rt_dst;

u_int32_t rt_seqno;

/* u_int8_t t_interface; */

u_int16_t rt_hops; // hop count

122

int rt_last_hop_count; // last valid hop count

nsaddr_t rt_nexthop; // next hop IP address

/* list of precursors */

aodv_precursors rt_pclist;

double rt_expire; // when entry expires

u_int8_t rt_flags;

#define RTF_DOWN 0

#define RTF_UP 1

#define RTF_IN_REPAIR 2

/*

* Must receive 4 errors within 3 seconds in order to mark

* the route down.

u_int8_t rt_errors; // error count

double rt_error_time;

#define MAX_RT_ERROR 4 // errors

#define MAX_RT_ERROR_TIME 3 // seconds

*/

#define MAX_HISTORY 3

double rt_disc_latency[MAX_HISTORY];

char hist_indx;

int rt_req_last_ttl; // last ttl value used

/*

* a list of neighbors that are using this route.

*/

aodv_ncache rt_nblist;

};

/*

The Routing Table

123

*/

class aodv_rtable {

public:

aodv_rtable() { LIST_INIT(&rthead); }

aodv_rt_entry* head() { return rthead.lh_first; }

aodv_rt_entry* rt_add(nsaddr_t id);

void rt_delete(nsaddr_t id);

aodv_rt_entry* rt_lookup(nsaddr_t id);

private:

LIST_HEAD(aodv_rthead, aodv_rt_entry) rthead;

};

#endif /* _aodv__rtable_h__ */

#include <random.h>

#include <cmu-trace.h>

#include "aodvetx.h"

#include "aodvetx_packet.h"

#define max(a,b) ((a) > (b) ? (a) : (b))

#define CURRENT_TIME Scheduler::instance().clock()

#ifdef DEBUG

static int extra_route_reply = 0;

static int limit_route_request = 0;

static int route_request = 0;

#endif

/*

TCL Hooks

*/

int hdr_aodvetx::offset_;

static class AODVETXHeaderClass: public PacketHeaderClass {

124

public:

AODVETXHeaderClass() :

PacketHeaderClass("PacketHeader/AODVETX", sizeof(hdr_all_aodvetx)) {

bind_offset(&hdr_aodvetx::offset_);

bind(); // required for dynamic loading

}

} class_rtProtoAODVETX_hdr;

static class AODVETXclass : public TclClass {

public:

AODVETXclass() : TclClass("Agent/AODVETX") {}

TclObject* create(int argc, const char*const* argv) {

assert(argc == 5);

return (new AODVETX((nsaddr_t) Address::instance().str2addr(argv[4])));

}

} class_rtProtoAODVETX;

int

AODVETX::command(int argc, const char*const* argv) {

if(argc == 2) {

Tcl& tcl = Tcl::instance();

if(strncasecmp(argv[1], "id", 2) == 0) {

tcl.resultf("%d", index);

return TCL_OK;

}

if(strncasecmp(argv[1], "start", 2) == 0) {

btimer.handle((Event*) 0);

#ifndef AODVETX_LINK_LAYER_DETECTION

htimer.handle((Event*) 0);

ntimer.handle((Event*) 0);

125

#endif // LINK LAYER DETECTION

rtimer.handle((Event*) 0);

return TCL_OK;

}

}

else if(argc == 3) {

if(strcmp(argv[1], "index") == 0) {

index = atoi(argv[2]);

return TCL_OK;

}

else if(strcmp(argv[1], "log-target") == 0 || strcmp(argv[1], "tracetarget") == 0) {

logtarget = (Trace*) TclObject::lookup(argv[2]);

if(logtarget == 0)

return TCL_ERROR;

return TCL_OK;

}

else if(strcmp(argv[1], "drop-target") == 0) {

int stat = rqueue.command(argc,argv);

if (stat != TCL_OK) return stat;

return Agent::command(argc, argv);

}

else if(strcmp(argv[1], "if-queue") == 0) {

ifqueue = (PriQueue*) TclObject::lookup(argv[2]);

if(ifqueue == 0)

return TCL_ERROR;

return TCL_OK;

}

else if (strcmp(argv[1], "port-dmux") == 0) {

126

dmux_ = (PortClassifier *)TclObject::lookup(argv[2]);

if (dmux_ == 0) {

fprintf (stderr, "%s: %s lookup of %s failed\n", __FILE__,

argv[1], argv[2]);

return TCL_ERROR;

}

return TCL_OK;

}

}

return Agent::command(argc, argv);

}

/*

Constructor

*/

AODVETX::AODVETX(nsaddr_t id) :

Agent(PT_AODVETX), btimer(this), htimer(this), ptimer(this), wtimer(this),

mtimer(this), ntimer(this), rtimer(this), lrtimer(this), rqueue() {

index = id;

seqno = 2;

bid = 1;

LIST_INIT(&nbhead);

LIST_INIT(&bihead);

logtarget = 0;

ifqueue = 0;

}

/*

Timers

*/

127

void

BroadcastTimer::handle(Event*) {

agent->id_purge();

Scheduler::instance().schedule(this, &intr, BCAST_ID_SAVE);

}

void

HelloTimer::handle(Event*) {

agent->sendHello();

double interval = MinHelloInterval +

((MaxHelloInterval - MinHelloInterval) * Random::uniform());

assert(interval >= 0);

Scheduler::instance().schedule(this, &intr, interval);

}

void ETXProbeTimer::handle(Event* event) {

agent->sendETXProbe();

double interval = MIN_PROBE_INTERVAL + ((MAX_PROBE_INTERVAL

- MIN_PROBE_INTERVAL) * Random::uniform());

assert(interval >= 0);

Scheduler::instance().schedule(this, &intr, interval);

}

void ETXWindowTimer::handle(Event*) {

agent->handleProbeWindowTimer();

Scheduler::instance().schedule(this, &intr, PROBE_WINDOW);

}

void ETXManagementTimer::handle(Event*) {

agent->manageETXProbes();

double interval = MIN_PROBE_INTERVAL + ((MAX_PROBE_INTERVAL

- MIN_PROBE_INTERVAL) * Random::uniform());

128

Scheduler::instance().schedule(this, &intr, interval);

}

void

NeighborTimer::handle(Event*) {

agent->nb_purge();

Scheduler::instance().schedule(this, &intr, HELLO_INTERVAL);

}

void

RouteCacheTimer::handle(Event*) {

agent->rt_purge();

#define FREQUENCY 0.5 // sec

Scheduler::instance().schedule(this, &intr, FREQUENCY);

}

void

LocalRepairTimer::handle(Event* p) { // SRD: 5/4/99

aodvetx_rt_entry *rt;

struct hdr_ip *ih = HDR_IP((Packet *)p);

/* you get here after the timeout in a local repair attempt */

/* fprintf(stderr, "%s\n", __FUNCTION__); */

rt = agent->rtable.rt_lookup(ih->daddr());

if (rt && rt->rt_flags != RTF_UP) {

// route is yet to be repaired

// I will be conservative and bring down the route

// and send route errors upstream.

/* The following assert fails, not sure why */

/* assert (rt->rt_flags == RTF_IN_REPAIR); */

//rt->rt_seqno++;

agent->rt_down(rt);

129

// send RERR

#ifdef DEBUG

fprintf(stderr,"Node %d: Dst - %d, failed local repair\n", agent->index, rt->rt_dst);

#endif

}

Packet::free((Packet *)p);

}

/*

Broadcast ID Management Functions

*/

void

AODVETX::id_insert(nsaddr_t id, u_int32_t bid) {

BroadcastID *b = new BroadcastID(id, bid);

assert(b);

b->expire = CURRENT_TIME + BCAST_ID_SAVE;

LIST_INSERT_HEAD(&bihead, b, link);

}

/* SRD */

bool

AODVETX::id_lookup(nsaddr_t id, u_int32_t bid) {

BroadcastID *b = bihead.lh_first;

// Search the list for a match of source and bid

for(; b; b = b->link.le_next) {

if ((b->src == id) && (b->id == bid))

return true;

}

return false;

}

130

void

AODVETX::id_purge() {

BroadcastID *b = bihead.lh_first;

BroadcastID *bn;

double now = CURRENT_TIME;

for(; b; b = bn) {

bn = b->link.le_next;

if(b->expire <= now) {

LIST_REMOVE(b,link);

delete b;

}

}

}

/*

Helper Functions

*/

double

AODVETX::PerHopTime(aodvetx_rt_entry *rt) {

int num_non_zero = 0, i;

double total_latency = 0.0;

if (!rt)

return ((double) NODE_TRAVERSAL_TIME);

for (i=0; i < MAX_HISTORY; i++) {

if (rt->rt_disc_latency[i] > 0.0) {

num_non_zero++;

total_latency += rt->rt_disc_latency[i];

}

}

131

if (num_non_zero > 0)

return(total_latency / (double) num_non_zero);

else

return((double) NODE_TRAVERSAL_TIME);

}

/*

Link Failure Management Functions

*/

static void

aodvetx_rt_failed_callback(Packet *p, void *arg) {

((AODVETX*) arg)->rt_ll_failed(p);

}

/*

* This routine is invoked when the link-layer reports a route failed.

*/

void

AODVETX::rt_ll_failed(Packet *p) {

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

aodvetx_rt_entry *rt;

nsaddr_t broken_nbr = ch->next_hop_;

#ifndef AODVETX_LINK_LAYER_DETECTION

drop(p, DROP_RTR_MAC_CALLBACK);

#else

/*

* Non-data packets and Broadcast Packets can be dropped.

*/

if(! DATA_PACKET(ch->ptype()) ||

132

(u_int32_t) ih->daddr() == IP_BROADCAST) {

drop(p, DROP_RTR_MAC_CALLBACK);

return;

}

log_link_broke(p);

if((rt = rtable.rt_lookup(ih->daddr())) == 0) {

drop(p, DROP_RTR_MAC_CALLBACK);

return;

}

log_link_del(ch->next_hop_);

#ifdef AODVETX_LOCAL_REPAIR

/* if the broken link is closer to the dest than source,

attempt a local repair. Otherwise, bring down the route. */

if (ch->num_forwards() > rt->rt_hops) {

local_rt_repair(rt, p); // local repair

// retrieve all the packets in the ifq using this link,

// queue the packets for which local repair is done,

return;

}

else

#endif // LOCAL REPAIR

{

drop(p, DROP_RTR_MAC_CALLBACK);

// Do the same thing for other packets in the interface queue using the

// broken link -Mahesh

while((p = ifqueue->filter(broken_nbr))) {

drop(p, DROP_RTR_MAC_CALLBACK);

}

133

nb_delete(broken_nbr);

}

#endif // LINK LAYER DETECTION

}

void

AODVETX::handle_link_failure(nsaddr_t id) {

aodvetx_rt_entry *rt, *rtn;

Packet *rerr = Packet::alloc();

struct hdr_aodvetx_error *re = HDR_AODVETX_ERROR(rerr);

re->DestCount = 0;

for(rt = rtable.head(); rt; rt = rtn) { // for each rt entry

rtn = rt->rt_link.le_next;

if ((rt->rt_hops != INFINITY2) && (rt->rt_nexthop == id)) {

assert (rt->rt_flags == RTF_UP);

assert((rt->rt_seqno%2) == 0);

rt->rt_seqno++;

re->unreachable_dst[re->DestCount] = rt->rt_dst;

re->unreachable_dst_seqno[re->DestCount] = rt->rt_seqno;

#ifdef DEBUG

fprintf(stderr, "%s(%f): %d\t(%d\t%u\t%d)\n", __FUNCTION__, CURRENT_TIME,

index, re->unreachable_dst[re->DestCount],

re->unreachable_dst_seqno[re->DestCount], rt->rt_nexthop);

#endif // DEBUG

re->DestCount += 1;

rt_down(rt);

}

// remove the lost neighbor from all the precursor lists

rt->pc_delete(id);

134

}

if (re->DestCount > 0) {

#ifdef DEBUG

fprintf(stderr, "%s(%f): %d\tsending RERR...\n", __FUNCTION__, CURRENT_TIME, index);

#endif // DEBUG

sendError(rerr, false);

}

else {

Packet::free(rerr);

}

}

void

AODVETX::local_rt_repair(aodvetx_rt_entry *rt, Packet *p) {

#ifdef DEBUG

fprintf(stderr,"%s: Dst - %d\n", __FUNCTION__, rt->rt_dst);

#endif

// Buffer the packet

rqueue.enque(p);

// mark the route as under repair

rt->rt_flags = RTF_IN_REPAIR;

sendRequest(rt->rt_dst);

// set up a timer interrupt

Scheduler::instance().schedule(&lrtimer, p->copy(), rt->rt_req_timeout);

}

void AODVETX::rt_update(aodvetx_rt_entry *rt, u_int32_t seqnum, u_int16_t metric,

nsaddr_t nexthop, double expire_time) {

rt->rt_seqno = seqnum;

rt->rt_hops = metric;

135

rt->rt_flags = RTF_UP;

rt->rt_nexthop = nexthop;

rt->rt_expire = expire_time;

}

void AODVETX::rt_update(aodvetx_rt_entry *rt, u_int32_t seqnum,

u_int16_t hop_count, double metric, nsaddr_t nexthop,

double expire_time) {

rt->rt_seqno = seqnum;

rt->rt_hops = hop_count;

rt->rt_etx = metric;

rt->rt_flags = RTF_UP;

rt->rt_nexthop = nexthop;

rt->rt_expire = expire_time;

}

void AODVETX::rt_down(aodvetx_rt_entry *rt) {

/*

* Make sure that you don’t "down" a route more than once.

*/

if (rt->rt_flags == RTF_DOWN) {

return;

}

// assert (rt->rt_seqno%2); // is the seqno odd?

rt->rt_last_hop_count = rt->rt_hops;

rt->rt_last_etx = rt->rt_etx;

rt->rt_hops = INFINITY2;

rt->rt_etx = INFINITY2;

rt->rt_flags = RTF_DOWN;

rt->rt_nexthop = 0;

136

rt->rt_expire = 0;

}

/*

Route Handling Functions

*/

void

AODVETX::rt_resolve(Packet *p) {

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

aodvetx_rt_entry *rt;

/*

* Set the transmit failure callback. That

* won’t change.

*/

ch->xmit_failure_ = aodvetx_rt_failed_callback;

ch->xmit_failure_data_ = (void*) this;

rt = rtable.rt_lookup(ih->daddr());

if(rt == 0) {

rt = rtable.rt_add(ih->daddr());

}

/*

* If the route is up, forward the packet

*/

if(rt->rt_flags == RTF_UP) {

assert(rt->rt_hops != INFINITY2);

forward(rt, p, NO_DELAY);

}

/*

137

* if I am the source of the packet, then do a Route Request.

*/

else if(ih->saddr() == index) {

rqueue.enque(p);

sendRequest(rt->rt_dst);

}

/*

* A local repair is in progress. Buffer the packet.

*/

else if (rt->rt_flags == RTF_IN_REPAIR) {

rqueue.enque(p);

}

/*

* I am trying to forward a packet for someone else to which

* I don’t have a route.

*/

else {

Packet *rerr = Packet::alloc();

struct hdr_aodvetx_error *re = HDR_AODVETX_ERROR(rerr);

/*

* For now, drop the packet and send error upstream.

* Now the route errors are broadcast to upstream

* neighbors - Mahesh 09/11/99

*/

assert (rt->rt_flags == RTF_DOWN);

re->DestCount = 0;

re->unreachable_dst[re->DestCount] = rt->rt_dst;

re->unreachable_dst_seqno[re->DestCount] = rt->rt_seqno;

138

re->DestCount += 1;

#ifdef DEBUG

fprintf(stderr, "%s: sending RERR...\n", __FUNCTION__);

#endif

sendError(rerr, false);

drop(p, DROP_RTR_NO_ROUTE);

}

}

void

AODVETX::rt_purge() {

aodvetx_rt_entry *rt, *rtn;

double now = CURRENT_TIME;

double delay = 0.0;

Packet *p;

for(rt = rtable.head(); rt; rt = rtn) { // for each rt entry

rtn = rt->rt_link.le_next;

if ((rt->rt_flags == RTF_UP) && (rt->rt_expire < now)) {

// if a valid route has expired, purge all packets from

// send buffer and invalidate the route.

assert(rt->rt_hops != INFINITY2);

while((p = rqueue.deque(rt->rt_dst))) {

#ifdef DEBUG

fprintf(stderr, "%s: calling drop()\n",

__FUNCTION__);

#endif // DEBUG

drop(p, DROP_RTR_NO_ROUTE);

}

rt->rt_seqno++;

139

assert (rt->rt_seqno%2);

rt_down(rt);

}

else if (rt->rt_flags == RTF_UP) {

// If the route is not expired,

// and there are packets in the sendbuffer waiting,

// forward them. This should not be needed, but this extra

// check does no harm.

assert(rt->rt_hops != INFINITY2);

while((p = rqueue.deque(rt->rt_dst))) {

forward (rt, p, delay);

delay += ARP_DELAY;

}

}

else if (rqueue.find(rt->rt_dst))

// If the route is down and if there is a packet for this destination waiting in the sendbuffer, then

// sendout route request. sendRequest will check whether it is time to really send out request

// or not. This may not be crucial to do it here, as each generated packet will do a sendRequest

anyway.

sendRequest(rt->rt_dst);

}

}

/*

Packet Reception Routines

*/

void

AODVETX::recv(Packet *p, Handler*) {

struct hdr_cmn *ch = HDR_CMN(p);

140

struct hdr_ip *ih = HDR_IP(p);

assert(initialized());

direction_ in hdr_cmn is used instead. see packet.h for details.

if(ch->ptype() == PT_AODVETX) {

ih->ttl_ -= 1;

recvAODVETX(p);

return;

}

/*

* Must be a packet I’m originating...

*/

if((ih->saddr() == index) && (ch->num_forwards() == 0)) {

/*

* Add the IP Header.

* TCP adds the IP header too, so to avoid setting it twice, we check if

* this packet is not a TCP or ACK segment.

*/

if (ch->ptype() != PT_TCP && ch->ptype() != PT_ACK) {

ch->size() += IP_HDR_LEN;

}

// Added by Parag Dadhania && John Novatnack to handle broadcasting

if ((u_int32_t)ih->daddr() != IP_BROADCAST) {

ih->ttl_ = NETWORK_DIAMETER;

}

}

/*

* I received a packet that I sent. Probably

* a routing loop.

141

*/

else if(ih->saddr() == index) {

drop(p, DROP_RTR_ROUTE_LOOP);

return;

}

/*

* Packet I’m forwarding...

*/

else {

/*

* Check the TTL. If it is zero, then discard.

*/

if(--ih->ttl_ == 0) {

drop(p, DROP_RTR_TTL);

return;

}

}

// Added by Parag Dadhania && John Novatnack to handle broadcasting

if ((u_int32_t)ih->daddr() != IP_BROADCAST)

rt_resolve(p);

else

forward((aodvetx_rt_entry*) 0, p, NO_DELAY);

}

void

AODVETX::recvAODVETX(Packet *p) {

struct hdr_aodvetx *ah = HDR_AODVETX(p);

assert(HDR_IP (p)->sport() == RT_PORT);

assert(HDR_IP (p)->dport() == RT_PORT);

142

/*

* Incoming Packets.

*/

switch(ah->ah_type) {

case AODVETXTYPE_RREQ:

recvRequest(p);

break;

case AODVETXTYPE_RREP:

recvReply(p);

break;

case AODVETXTYPE_RERR:

recvError(p);

break;

case AODVETXTYPE_HELLO:

recvHello(p);

break;

case AODVETXTYPE_PROBE:

receiveETXProbe(p);

break;

default:

fprintf(stderr, "Invalid AODVETX type (%x)\n", ah->ah_type);

exit(1);

}

}

void AODVETX::recvRequest(Packet *p) {

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_request *rq = HDR_AODVETX_REQUEST(p);

143

aodvetx_rt_entry *rt;

/*

* Drop if:

* - I’m the source

* - I recently heard this request.

*/

if (rq->rq_src == index) {

#ifdef DEBUG

fprintf(stderr, "%s: got my own REQUEST\n", __FUNCTION__);

#endif // DEBUG

Packet::free(p);

return;

}

if (id_lookup(rq->rq_src, rq->rq_bcast_id)) {

#ifdef DEBUG

fprintf(stderr, "%s: discarding request\n", __FUNCTION__);

#endif // DEBUG

Packet::free(p);

return;

}

/*

* Cache the broadcast ID

*/

id_insert(rq->rq_src, rq->rq_bcast_id);

/*

* We are either going to forward the REQUEST or generate a

* REPLY. Before we do anything, we make sure that the REVERSE

* route is in the route table.

144

*/

aodvetx_rt_entry *rt0; // rt0 is the reverse route

rt0 = rtable.rt_lookup(rq->rq_src);

if (rt0 == 0) { /* if not in the route table */

// create an entry for the reverse route.

rt0 = rtable.rt_add(rq->rq_src);

rt0->rt_etx += calculateETX(ch->prev_hop_);

}

rt0->rt_expire = max(rt0->rt_expire, (CURRENT_TIME + REV_ROUTE_LIFE));

if ((rq->rq_src_seqno > rt0->rt_seqno) || ((rq->rq_src_seqno

// == rt0->rt_seqno) && (rq->rq_hop_count < rt0->rt_hops))) {

== rt0->rt_seqno) && ((rq->rq_etx + calculateETX(ch->prev_hop_))

< rt0->rt_etx))) {

// If we have a fresher seq no. or lesser #hops for the

// same seq no., update the rt entry. Else don’t bother.

rt_update(rt0, rq->rq_src_seqno, rq->rq_hop_count, rq->rq_etx

+ calculateETX(ch->prev_hop_), ih->saddr(),

max(rt0->rt_expire, (CURRENT_TIME + REV_ROUTE_LIFE)));

if (rt0->rt_req_timeout > 0.0) {

// Reset the soft state and

// Set expiry time to CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT

// This is because route is used in the forward direction,

// but only sources get benefited by this change

rt0->rt_req_cnt = 0;

rt0->rt_req_timeout = 0.0;

rt0->rt_req_last_ttl = rq->rq_hop_count;

rt0->rt_expire = CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT;

}

145

/* Find out whether any buffered packet can benefit from the

* reverse route.

* May need some change in the following code - Mahesh 09/11/99

*/

assert (rt0->rt_flags == RTF_UP);

Packet *buffered_pkt;

while ((buffered_pkt = rqueue.deque(rt0->rt_dst))) {

if (rt0 && (rt0->rt_flags == RTF_UP)) {

assert(rt0->rt_hops != INFINITY2);

forward(rt0, buffered_pkt, NO_DELAY);

}

}

}

// End for putting reverse route in rt table

/*

* We have taken care of the reverse route stuff.

* Now see whether we can send a route reply.

*/

rt = rtable.rt_lookup(rq->rq_dst);

// First check if I am the destination ..

if (rq->rq_dst == index) {

#ifdef DEBUG

fprintf(stderr, "%d - %s: destination sending reply\n", index,

__FUNCTION__);

#endif // DEBUG

// Just to be safe, I use the max. Somebody may have incremented the dst seqno.

seqno = max(seqno, rq->rq_dst_seqno) + 1;

if (seqno % 2)

146

seqno++;

sendReply(rq->rq_src, // IP Destination

1, // Hop Count

0, // ETX FIXME

index, // Dest IP Address

seqno, // Dest Sequence Num

MY_ROUTE_TIMEOUT, // Lifetime

rq->rq_timestamp); // timestamp

Packet::free(p);

}

// I am not the destination, but I may have a fresh enough route.

else if (rt && (rt->rt_hops != INFINITY2) && (rt->rt_seqno

>= rq->rq_dst_seqno)) {

//assert (rt->rt_flags == RTF_UP);

assert(rq->rq_dst == rt->rt_dst);

//assert ((rt->rt_seqno%2) == 0); // is the seqno even?

sendReply(rq->rq_src, // IP Destination

rt->rt_hops + 1, // Hop Count

rt->rt_etx, // ETX FIXME

rq->rq_dst, // Destination IP

rt->rt_seqno, // Destination Sequence Number

(u_int32_t) (rt->rt_expire - CURRENT_TIME), // Lifetime

rq->rq_timestamp); // Time stamp

// Insert nexthops to RREQ source and RREQ destination in the

// precursor lists of destination and source respectively

rt->pc_insert(rt0->rt_nexthop); // nexthop to RREQ source

rt0->pc_insert(rt->rt_nexthop); // nexthop to RREQ destination

#ifdef RREQ_GRAT_RREP

147

sendReply(rq->rq_dst,

rq->rq_hop_count, // Hop Count

INFINITY2, // ETX

rq->rq_src,

rq->rq_src_seqno,

(u_int32_t) (rt->rt_expire - CURRENT_TIME),

// rt->rt_expire - CURRENT_TIME,

rq->rq_timestamp);

#endif

// TODO: send grat RREP to dst if G flag set in RREQ using rq->rq_src_seqno, rq-

>rq_hop_counT

// DONE: Included gratuitous replies to be sent as per IETF aodvetx draft specification. As of now,

G

flag has not been dynamically used and is always set or reset in aodvetx-packet.h --- Anant

Utgikar, 09/16/02.

Packet::free(p);

}

/*

* Can’t reply. So forward the Route Request

*/

else {

ih->saddr() = index;

ih->daddr() = IP_BROADCAST;

rq->rq_hop_count += 1;

rq->rq_etx += calculateETX(ch->prev_hop_);

// Maximum sequence number seen en route

if (rt) {

rq->rq_dst_seqno = max(rt->rt_seqno, rq->rq_dst_seqno);

148

}

forward((aodvetx_rt_entry*) 0, p, DELAY);

}

}

void AODVETX::recvReply(Packet *p) {

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_reply *rp = HDR_AODVETX_REPLY(p);

aodvetx_rt_entry *rt;

char suppress_reply = 0;

double delay = 0.0;

#ifdef DEBUG

fprintf(stderr, "%d - %s: received a REPLY\n", index, __FUNCTION__);

#endif // DEBUG

/*

* Got a reply. So reset the "soft state" maintained for

* route requests in the request table. We don’t really have

* have a separate request table. It is just a part of the

* routing table itself.

*/

// Note that rp_dst is the dest of the data packets, not the

// the dest of the reply, which is the src of the data packets.

rt = rtable.rt_lookup(rp->rp_dst);

/*

* If I don’t have a rt entry to this host... adding

*/

if (rt == 0) {

rt = rtable.rt_add(rp->rp_dst);

149

}

/*

* Add a forward route table entry... here I am following

* Perkins-Royer AODVETX paper almost literally - SRD 5/99

*/

if ((rt->rt_seqno < rp->rp_dst_seqno) || // newer route

// ((rt->rt_seqno == rp->rp_dst_seqno) && (rt->rt_hops

// > rp->rp_hop_count))) { // shorter or better route

((rt->rt_seqno == rp->rp_dst_seqno) && (rt->rt_etx > rp->rp_etx))) { // Better

route

// Update the rt entry

rt_update(rt, rp->rp_dst_seqno, rp->rp_hop_count, rp->rp_etx,

rp->rp_src, CURRENT_TIME + rp->rp_lifetime);

// reset the soft state

rt->rt_req_cnt = 0;

rt->rt_req_timeout = 0.0;

rt->rt_req_last_ttl = rp->rp_hop_count;

if (ih->daddr() == index) { // If I am the original source

// Update the route discovery latency statistics

// rp->rp_timestamp is the time of request origination

rt->rt_disc_latency[(unsigned char) rt->hist_indx] = (CURRENT_TIME

- rp->rp_timestamp) / (double) rp->rp_hop_count;

// increment indx for next time

rt->hist_indx = (rt->hist_indx + 1) % MAX_HISTORY;

}

/*

* Send all packets queued in the sendbuffer destined for

* this destination.

150

* XXX - observe the "second" use of p.

*/

Packet *buf_pkt;

while ((buf_pkt = rqueue.deque(rt->rt_dst))) {

if (rt->rt_hops != INFINITY2) {

assert (rt->rt_flags == RTF_UP);

// Delay them a little to help ARP. Otherwise AR may drop packets. -SRD 5/23/99

forward(rt, buf_pkt, delay);

delay += ARP_DELAY;

}

}

} else {

suppress_reply = 1;

}

/*

* If reply is for me, discard it.

*/

if (ih->daddr() == index || suppress_reply) {

Packet::free(p);

}

/*

* Otherwise, forward the Route Reply.

*/

else {

// Find the rt entry

aodvetx_rt_entry *rt0 = rtable.rt_lookup(ih->daddr());

// If the rt is up, forward

if (rt0 && (rt0->rt_hops != INFINITY2)) {

151

assert (rt0->rt_flags == RTF_UP);

rp->rp_hop_count += 1;

rp->rp_etx += calculateETX(ch->prev_hop_);

rp->rp_src = index;

forward(rt0, p, NO_DELAY);

// Insert the nexthop towards the RREQ source to the precursor list of the RREQ destination

rt->pc_insert(rt0->rt_nexthop); // nexthop to RREQ source

} else {

// I don’t know how to forward .. drop the reply.

#ifdef DEBUG

fprintf(stderr, "%s: dropping Route Reply\n", __FUNCTION__);

#endif // DEBUG

drop(p, DROP_RTR_NO_ROUTE);

}

}

}

void

AODVETX::recvError(Packet *p) {

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_error *re = HDR_AODVETX_ERROR(p);

aodvetx_rt_entry *rt;

u_int8_t i;

Packet *rerr = Packet::alloc();

struct hdr_aodvetx_error *nre = HDR_AODVETX_ERROR(rerr);

nre->DestCount = 0;

for (i=0; i<re->DestCount; i++) {

// For each unreachable destination

rt = rtable.rt_lookup(re->unreachable_dst[i]);

152

if (rt && (rt->rt_hops != INFINITY2) &&

(rt->rt_nexthop == ih->saddr()) &&

(rt->rt_seqno <= re->unreachable_dst_seqno[i])) {

assert(rt->rt_flags == RTF_UP);

assert((rt->rt_seqno%2) == 0); // is the seqno even?

#ifdef DEBUG

fprintf(stderr, "%s(%f): %d\t(%d\t%u\t%d)\t(%d\t%u\t%d)\n", __FUNCTION__,

CURRENT_TIME,

index, rt->rt_dst, rt->rt_seqno, rt->rt_nexthop,

re->unreachable_dst[i],re->unreachable_dst_seqno[i],

ih->saddr());

#endif // DEBUG

rt->rt_seqno = re->unreachable_dst_seqno[i];

rt_down(rt);

// Not sure whether this is the right thing to do

Packet *pkt;

while((pkt = ifqueue->filter(ih->saddr()))) {

drop(pkt, DROP_RTR_MAC_CALLBACK);

}

// if precursor list non-empty add to RERR and delete the precursor list

if (!rt->pc_empty()) {

nre->unreachable_dst[nre->DestCount] = rt->rt_dst;

nre->unreachable_dst_seqno[nre->DestCount] = rt->rt_seqno;

nre->DestCount += 1;

rt->pc_delete();

}

}

}

153

if (nre->DestCount > 0) {

#ifdef DEBUG

fprintf(stderr, "%s(%f): %d\t sending RERR...\n", __FUNCTION__, CURRENT_TIME, index);

#endif // DEBUG

sendError(rerr);

}

else {

Packet::free(rerr);

}

Packet::free(p);

}

/*

Packet Transmission Routines

*/

void

AODVETX::forward(aodvetx_rt_entry *rt, Packet *p, double delay) {

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

if(ih->ttl_ == 0) {

#ifdef DEBUG

fprintf(stderr, "%s: calling drop()\n", __PRETTY_FUNCTION__);

#endif // DEBUG

drop(p, DROP_RTR_TTL);

return;

}

if (ch->ptype() != PT_AODVETX && ch->direction() == hdr_cmn::UP &&

((u_int32_t)ih->daddr() == IP_BROADCAST)

|| (ih->daddr() == here_.addr_)) {

154

dmux_->recv(p,0);

return;

}

if (rt) {

assert(rt->rt_flags == RTF_UP);

rt->rt_expire = CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT;

ch->next_hop_ = rt->rt_nexthop;

ch->addr_type() = NS_AF_INET;

ch->direction() = hdr_cmn::DOWN; //important: change the packet’s direction

}

else { // if it is a broadcast packet

// assert(ch->ptype() == PT_AODVETX); // maybe a diff pkt type like gaf

assert(ih->daddr() == (nsaddr_t) IP_BROADCAST);

ch->addr_type() = NS_AF_NONE;

ch->direction() = hdr_cmn::DOWN; //important: change the packet’s direction

}

if (ih->daddr() == (nsaddr_t) IP_BROADCAST) {

// If it is a broadcast packet

assert(rt == 0);

if (ch->ptype() == PT_AODVETX) {

/*

* Jitter the sending of AODVETX broadcast packets by 10ms

*/

Scheduler::instance().schedule(target_, p,

0.01 * Random::uniform());

} else {

Scheduler::instance().schedule(target_, p, 0.); // No jitter

}

155

}

else { // Not a broadcast packet

if(delay > 0.0) {

Scheduler::instance().schedule(target_, p, delay);

}

else {

// Not a broadcast packet, no delay, send immediately

Scheduler::instance().schedule(target_, p, 0.);

}

}

}

void AODVETX::sendRequest(nsaddr_t dst) {

// Allocate a RREQ packet

Packet *p = Packet::alloc();

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_request *rq = HDR_AODVETX_REQUEST(p);

aodvetx_rt_entry *rt = rtable.rt_lookup(dst);

assert(rt);

/*

* Rate limit sending of Route Requests. We are very conservative

* about sending out route requests.

*/

if (rt->rt_flags == RTF_UP) {

assert(rt->rt_hops != INFINITY2);

Packet::free((Packet *) p);

return;

}

156

if (rt->rt_req_timeout > CURRENT_TIME) {

Packet::free((Packet *) p);

return;

}

// rt_req_cnt is the no. of times we did network-wide broadcast RREQ_RETRIES is the maximum

//number we will allow before going to a long timeout.

if (rt->rt_req_cnt > RREQ_RETRIES) {

rt->rt_req_timeout = CURRENT_TIME + MAX_RREQ_TIMEOUT;

rt->rt_req_cnt = 0;

Packet *buf_pkt;

while ((buf_pkt = rqueue.deque(rt->rt_dst))) {

drop(buf_pkt, DROP_RTR_NO_ROUTE);

}

Packet::free((Packet *) p);

return;

}

#ifdef DEBUG

fprintf(stderr, "(%2d) - %2d sending Route Request, dst: %d\n",

++route_request, index, rt->rt_dst);

#endif // DEBUG

// Determine the TTL to be used this time.

// Dynamic TTL evaluation - SRD

rt->rt_req_last_ttl = max(rt->rt_req_last_ttl, rt->rt_last_hop_count);

if (0 == rt->rt_req_last_ttl) {

// first time query broadcast

ih->ttl_ = TTL_START;

} else {

// Expanding ring search.

157

if (rt->rt_req_last_ttl < TTL_THRESHOLD)

ih->ttl_ = rt->rt_req_last_ttl + TTL_INCREMENT;

else {

// network-wide broadcast

ih->ttl_ = NETWORK_DIAMETER;

rt->rt_req_cnt += 1;

}

}

// remember the TTL used for the next time

rt->rt_req_last_ttl = ih->ttl_;

// PerHopTime is the roundtrip time per hop for route requests.

// The factor 2.0 is just to be safe .. SRD 5/22/99

// Also note that we are making timeouts to be larger if we have

// done network wide broadcast before.

rt->rt_req_timeout = 2.0 * (double) ih->ttl_ * PerHopTime(rt);

if (rt->rt_req_cnt > 0)

rt->rt_req_timeout *= rt->rt_req_cnt;

rt->rt_req_timeout += CURRENT_TIME;

// Don’t let the timeout to be too large, however .. SRD 6/8/99

if (rt->rt_req_timeout > CURRENT_TIME + MAX_RREQ_TIMEOUT)

rt->rt_req_timeout = CURRENT_TIME + MAX_RREQ_TIMEOUT;

rt->rt_expire = 0;

#ifdef DEBUG

fprintf(stderr, "(%2d) - %2d sending Route Request, dst: %d, tout %f ms\n",

++route_request, index, rt->rt_dst, rt->rt_req_timeout

- CURRENT_TIME);

#endif // DEBUG

// Fill out the RREQ packet

158

// ch->uid() = 0;

ch->ptype() = PT_AODVETX;

ch->size() = IP_HDR_LEN + rq->size();

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_NONE;

ch->prev_hop_ = index; // AODVETX hack

ih->saddr() = index;

ih->daddr() = IP_BROADCAST;

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

// Fill up some more fields.

rq->rq_type = AODVETXTYPE_RREQ;

rq->rq_hop_count = 1;

rq->rq_etx = 0;

rq->rq_bcast_id = bid++;

rq->rq_dst = dst;

rq->rq_dst_seqno = (rt ? rt->rt_seqno : 0);

rq->rq_src = index;

seqno += 2;

assert ((seqno%2) == 0);

rq->rq_src_seqno = seqno;

rq->rq_timestamp = CURRENT_TIME;

Scheduler::instance().schedule(target_, p, 0.);

}

void

AODVETX::sendReply(nsaddr_t ipdst, u_int32_t hop_count, nsaddr_t rpdst,

u_int32_t rpseq, u_int32_t lifetime, double timestamp) {

159

Packet *p = Packet::alloc();

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_reply *rp = HDR_AODVETX_REPLY(p);

aodvetx_rt_entry *rt = rtable.rt_lookup(ipdst);

#ifdef DEBUG

fprintf(stderr, "sending Reply from %d at %.2f\n", index, Scheduler::instance().clock());

#endif // DEBUG

assert(rt);

rp->rp_type = AODVETXTYPE_RREP;

//rp->rp_flags = 0x00;

rp->rp_hop_count = hop_count;

rp->rp_dst = rpdst;

rp->rp_dst_seqno = rpseq;

rp->rp_src = index;

rp->rp_lifetime = lifetime;

rp->rp_timestamp = timestamp;

// ch->uid() = 0;

ch->ptype() = PT_AODVETX;

ch->size() = IP_HDR_LEN + rp->size();

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_INET;

ch->next_hop_ = rt->rt_nexthop;

ch->prev_hop_ = index; // AODVETX hack

ch->direction() = hdr_cmn::DOWN;

ih->saddr() = index;

ih->daddr() = ipdst;

160

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

ih->ttl_ = NETWORK_DIAMETER;

Scheduler::instance().schedule(target_, p, 0.);

}

void AODVETX::sendReply(nsaddr_t ipdst, u_int32_t hop_count, double etx,

nsaddr_t rpdst, u_int32_t rpseq, u_int32_t lifetime, double timestamp) {

Packet *p = Packet::alloc();

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_reply *rp = HDR_AODVETX_REPLY(p);

aodvetx_rt_entry *rt = rtable.rt_lookup(ipdst);

#ifdef DEBUG

fprintf(stderr, "sending Reply from %d at %.2f\n", index,

Scheduler::instance().clock());

#endif // DEBUG

assert(rt);

rp->rp_type = AODVETXTYPE_RREP;

//rp->rp_flags = 0x00;

rp->rp_hop_count = hop_count;

rp->rp_etx = etx;

rp->rp_dst = rpdst;

rp->rp_dst_seqno = rpseq;

rp->rp_src = index;

rp->rp_lifetime = lifetime;

rp->rp_timestamp = timestamp;

// ch->uid() = 0;

ch->ptype() = PT_AODVETX;

161

ch->size() = IP_HDR_LEN + rp->size();

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_INET;

ch->next_hop_ = rt->rt_nexthop;

ch->prev_hop_ = index; // AODVETX hack

ch->direction() = hdr_cmn::DOWN;

ih->saddr() = index;

ih->daddr() = ipdst;

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

ih->ttl_ = NETWORK_DIAMETER;

Scheduler::instance().schedule(target_, p, 0.);

}

void

AODVETX::sendError(Packet *p, bool jitter) {

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_error *re = HDR_AODVETX_ERROR(p);

#ifdef ERROR

fprintf(stderr, "sending Error from %d at %.2f\n", index, Scheduler::instance().clock());

#endif // DEBUG

re->re_type = AODVETXTYPE_RERR;

//re->reserved[0] = 0x00; re->reserved[1] = 0x00;

// DestCount and list of unreachable destinations are already filled

// ch->uid() = 0;

ch->ptype() = PT_AODVETX;

ch->size() = IP_HDR_LEN + re->size();

162

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_NONE;

ch->next_hop_ = 0;

ch->prev_hop_ = index; // AODVETX hack

ch->direction() = hdr_cmn::DOWN; //important: change the packet’s direction

ih->saddr() = index;

ih->daddr() = IP_BROADCAST;

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

ih->ttl_ = 1;

// Do we need any jitter? Yes

if (jitter)

Scheduler::instance().schedule(target_, p, 0.01*Random::uniform());

else

Scheduler::instance().schedule(target_, p, 0.0);

}

/*

Neighbor Management Functions

*/

void

AODVETX::sendHello() {

Packet *p = Packet::alloc();

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_reply *rh = HDR_AODVETX_REPLY(p);

#ifdef DEBUG

fprintf(stderr, "sending Hello from %d at %.2f\n", index, Scheduler::instance().clock());

163

#endif // DEBUG

rh->rp_type = AODVETXTYPE_HELLO;

//rh->rp_flags = 0x00;

rh->rp_hop_count = 1;

rh->rp_dst = index;

rh->rp_dst_seqno = seqno;

rh->rp_lifetime = (1 + ALLOWED_HELLO_LOSS) * HELLO_INTERVAL;

// ch->uid() = 0;

ch->ptype() = PT_AODVETX;

ch->size() = IP_HDR_LEN + rh->size();

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_NONE;

ch->prev_hop_ = index; // AODVETX hack

ih->saddr() = index;

ih->daddr() = IP_BROADCAST;

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

ih->ttl_ = 1;

Scheduler::instance().schedule(target_, p, 0.0);

}

void

AODVETX::recvHello(Packet *p) {

//struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_reply *rp = HDR_AODVETX_REPLY(p);

AODVETX_Neighbor *nb;

nb = nb_lookup(rp->rp_dst);

if(nb == 0) {

164

nb_insert(rp->rp_dst);

}

else {

nb->nb_expire = CURRENT_TIME +

(1.5 * ALLOWED_HELLO_LOSS * HELLO_INTERVAL);

}

Packet::free(p);

}

void

AODVETX::nb_insert(nsaddr_t id) {

AODVETX_Neighbor *nb = new AODVETX_Neighbor(id);

assert(nb);

nb->nb_expire = CURRENT_TIME +

(1.5 * ALLOWED_HELLO_LOSS * HELLO_INTERVAL);

LIST_INSERT_HEAD(&nbhead, nb, nb_link);

seqno += 2; // set of neighbors changed

assert ((seqno%2) == 0);

}

AODVETX_Neighbor*

AODVETX::nb_lookup(nsaddr_t id) {

AODVETX_Neighbor *nb = nbhead.lh_first;

for(; nb; nb = nb->nb_link.le_next) {

if(nb->nb_addr == id) break;

}

return nb;

}

/*

* Called when we receive *explicit* notification that a Neighbor

165

* is no longer reachable.

*/

void

AODVETX::nb_delete(nsaddr_t id) {

AODVETX_Neighbor *nb = nbhead.lh_first;

log_link_del(id);

seqno += 2; // Set of neighbors changed

assert ((seqno%2) == 0);

for(; nb; nb = nb->nb_link.le_next) {

if(nb->nb_addr == id) {

LIST_REMOVE(nb,nb_link);

delete nb;

break;

}

}

handle_link_failure(id);

}

/*

* Purges all timed-out Neighbor Entries - runs every

* HELLO_INTERVAL * 1.5 seconds.

*/

void

AODVETX::nb_purge() {

AODVETX_Neighbor *nb = nbhead.lh_first;

AODVETX_Neighbor *nbn;

double now = CURRENT_TIME;

for(; nb; nb = nbn) {

nbn = nb->nb_link.le_next;

166

if(nb->nb_expire <= now) {

nb_delete(nb->nb_addr);

}

}

}

// ETX Functions

void AODVETX::sendETXProbe() {

Packet *p = Packet::alloc();

struct hdr_cmn *ch = HDR_CMN(p);

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_probe *rb = HDR_AODVETX_PROBE(p);

#ifdef DEBUG

fprintf(stderr, "[%d] sending ETXProbe at %.2f\n", index, CURRENT_TIME);

#endif // DEBUG

rb->rb_type = AODVETXTYPE_PROBE;

rb->rb_src = index;

rb->rb_neighbour_count = probeNeighbours_.size();

// copy neighbour list

int i = 0;

for (map<nsaddr_t, u_int32_t>::const_iterator

iter(probeNeighbours_.begin()); iter != probeNeighbours_.end(); ++iter, i++) {

rb->rb_neighbours[i] = iter->first;

rb->rb_probes[i] = iter->second;

#ifdef DEBUG

fprintf(stderr, " %d (%d)\n", iter->first, iter->second);

#endif // DEBUG

}

rb->rb_timestamp = CURRENT_TIME;

167

ch->ptype() = PT_AODVETX;

ch->size() = IP_HDR_LEN + rb->size();

ch->iface() = -2;

ch->error() = 0;

ch->addr_type() = NS_AF_NONE;

ch->prev_hop_ = index; // AODVETX hack

ih->saddr() = index;

ih->daddr() = IP_BROADCAST;

ih->sport() = RT_PORT;

ih->dport() = RT_PORT;

ih->ttl_ = 1;

Scheduler::instance().schedule(target_, p, 0.0);

#ifdef DEBUG

fprintf(stderr, "[%d] done sending ETXProbe\n", index);

#endif // DEBUG

}

void AODVETX::receiveETXProbe(Packet* p) {

struct hdr_ip *ih = HDR_IP(p);

struct hdr_aodvetx_probe *rb = HDR_AODVETX_PROBE(p);

double now = CURRENT_TIME;

#ifdef DEBUG

fprintf(stderr, "[%d]: receiving Probe from %d at %.2f\n", index,

ih->src_.addr_, CURRENT_TIME);

#endif // DEBUG

if (probeNeighbours_.count(rb->rb_src) > 0) {

probeNeighbours_[rb->rb_src] = probeNeighbours_[rb->rb_src] + 1;

} else {

probeNeighbours_[rb->rb_src] = 1;

168

}

probePackets_[rb->rb_src].push_back(now);

for (int i = 0; i < rb->rb_neighbour_count; i++) {

if (rb->rb_neighbours[i] == index) {

updateForwardDeliveryRatio(rb->rb_src, rb->rb_probes[i]);

break;

}

}

Packet::free(p);

#ifdef DEBUG

fprintf(stderr, "[%d]: done receiving Probe from %d\n", index, ih->src_.addr_);

#endif // DEBUG

}

void AODVETX::handleProbeWindowTimer() {

#ifdef DEBUG

fprintf(stderr, "[%d] handling EXTProbe window\n", index);

#endif // DEBUG

// Calculate delivery ratio

for (map<nsaddr_t, u_int32_t>::const_iterator

iter(probeNeighbours_.begin()); iter != probeNeighbours_.end(); ++iter) {

updateReverseDeliveryRatio(iter->first);

}

#ifdef DEBUG

fprintf(stderr, "[%d] done handling EXTProbe window\n", index);

#endif // DEBUG

}

void AODVETX::manageETXProbes() {

#ifdef DEBUG

169

fprintf(stderr, "[%d] managing EXTProbes\n", index);

#endif // DEBUG

// Remove old probes packets

removeOldProbes();

#ifdef DEBUG

fprintf(stderr, "[%d] done managing EXTProbes\n", index);

#endif // DEBUG

}

void AODVETX::removeOldProbes() {

// Clear old probe packet counts

double now = CURRENT_TIME;

for (map<nsaddr_t, list<double> >::iterator iter(probePackets_.begin()); iter

!= probePackets_.end(); ++iter) {

for (list<double>::iterator pIt(iter->second.begin()); pIt

!= iter->second.end(); pIt++) {

if ((now - *pIt) >= PROBE_WINDOW) {

#ifdef DEBUG

fprintf(stderr, "[%d] dropping old EXTProbe %.2f at %.2f\n",

index, *pIt, now);

#endif // DEBUG

iter->second.erase(pIt, iter->second.end());

probeNeighbours_[iter->first] = iter->second.size();

break;

}

}

}

}

170

void AODVETX::updateReverseDeliveryRatio(nsaddr_t neighbour) {

double reverseDeliveryRatio = probeNeighbours_[neighbour] / PROBE_WINDOW;

reverseDeliveryRatios_[neighbour] = reverseDeliveryRatio;

}

void AODVETX::updateForwardDeliveryRatio(nsaddr_t neighbour,

u_int32_t probes_count) {

double forwardDeliveryRatio = probes_count / PROBE_WINDOW;

forwardDeliveryRatios_[neighbour] = forwardDeliveryRatio;

}

double AODVETX::calculateETX(nsaddr_t destination) {

double forwardDeliveryRatio = 0;

double reverseDeliveryRatio = 0;

if (forwardDeliveryRatios_.count(destination) > 0) {

forwardDeliveryRatio = forwardDeliveryRatios_[destination];

}

if (reverseDeliveryRatios_.count(destination) > 0) {

reverseDeliveryRatio = reverseDeliveryRatios_[destination];

}

#ifdef DEBUG

fprintf(stderr, "Calculating delivery ratio\n");

#endif // DEBUG

if (forwardDeliveryRatio > 0 && reverseDeliveryRatio > 0) {

return 1 / (forwardDeliveryRatio * reverseDeliveryRatio);

}

return INFINITY2;

}

171

APPENDIX C: NS2 Simulation Script for Routing

Metrics

dynlibload aodveett ../src/.libs

set val(chan)Channel/WirelessChannel; # Channel Type

set val(prop)Propagation/TwoRayGround; # radio-propagation model

set val(netif)Phy/WirelessPhy; # network interface type

set val(mac)Mac/802_1; # MAC type

set val(ifq)Queue/DropTail/PriQueue; # interface queue type

set val(ll)LL; # link

layer type set val(ant)Antenna/OmniAntenna; # antenna model

set val(ifqlen)50; # max packet in ifq

set val(rp)AODVEETT # routing protocol

set val(rtAgentFunction)create-aodveettagent

set val(distance)200; # distance between nodes (m)

set val(stop)1000; set val(tracefile)"wireless-sim-aodv-grid.tr"

172

set val(namfile)"wireless-sim-aodv-grid.nam"

set opt(n)0; # number ofnodes

set opt(x)0; set opt(y)0; set op(d)0

set opt(seed)0.0 set opt(stop)0.0; # simulation time set opt(tr)""

set opt(tfc)"traf196d"

Agent/AODVEETT

set PacketSize_ 1024; # 1 kB Agent/AODVEETT

set Bandwidth_ 1375000; # 11 Mb/s

//==

proc stop {} { global ns_ tracefd namtrace

$ns_ flush-trace close $tracefd close

$namtrace }

proc usage { argv0 } { puts "Usage: $argv0" puts "\tmandatory arguments:" puts

"\t\t\[-n NODES PER ROW\] \[-x MAXX\] \[-y MAXY\]"

puts "\toptional arguments:" puts "\t\t\[-d distance\] \[-seed seed\] \[-stop sec\]

\[-tr tracefile\]\n" }

proc getopt {argc argv} { global opt lappend optlist seed sc stop tr x y for {set i

0} {$i < $argc} {incr i} { set arg [lindex $argv $i] if {[string range $arg 0 0]

!= "-"} continue set name [string range $arg 1 end] set opt($name) [

lindex $argv [expr $i+1]] } }

proc recordStats {} { global val ns_ sink1 sink2 # How many bytes have been received

by the traffic sinks? set sinkBytes [$sink2 set bytes_] # Get the current time set

now [$ns_ now] # Calculate the bandwidth (in MBit/s) and write it to the files set

bandwidth [format "%.5f" [expr $sinkBytes/4.0*8]] puts "$now BANDWIDTH

$bandwidth" # Reset the bytes_ values on the traffic sinks $sink2 set bytes_ 0

Reschedule

the procedure $ns_ at [expr $now + 4.0] "recordStats" }

173

==

Main Program #

==

getopt $argc $argv if { $opt(n) == 0 || $opt(x) == 0 || $opt(y) == 0 } { usage

$argv0 exit 1 }

set val(nn) [expr $opt(n) *

$opt(n)]

if {$opt(d) > 0} { puts "Setting distance between nodes to $opt(d)\n" set $val(distance) $opt(d) } if

{$opt(seed) > 0} { puts "Seeding

Random number generator with $opt(seed)\n" ns-random $opt(seed) }

if {$opt(stop) > 0} { puts "Setting simulation duration to $opt(seed) seconds\n" $val(

stop) = $opt(stop) }

 if {$opt(tr) != ""} { puts "Setting tracefile name to opt(tr)\n" $val(tr) = $opt(tr) }

Initialize Global Variables set ns_ [new Simulator] set tracefd [open $val(tracefile) w]

$ns_ use-newtrace $ns_ trace-all $tracefd set namtrace [open $val(namfile) w] $ns_

namtrace-all-wireless $namtrace $opt(x) $opt(y) # set up topography objecte set topo [new

Topography] $topo load_flatgrid $opt(x) $opt(y)

Create God create-god $val(nn)

Create channel set chan_ [new $val(chan)]

Create node(0) "attached" to channel #1 # configure node, please note the change below.

$ns_ node-config -rtAgentFunction $val(rtAgentFunction) \ -adhocRouting $val(rp)

\ -llType $val(ll) \ -macType $val(mac) \ -ifqType $val(ifq)

\ -ifqLen $val(ifqlen) \ -antType $val(ant) \ -propType $val(prop)

\ -phyType $val(netif) \ -topoInstance $topo \ -agentTrace ON

\ -routerTrace ON \ -macTrace ON \ -movementTrace OFF

\ -channel $chan_ for {set i 0} {$i < $opt(n)} {incr i} { for {set j 0} {$j <

$opt(n)} {incr j} { set id [expr $i * $opt(n) + $j] set node_($id) [$ns_ node]

$node_($id) random-motion 0

174

$node_($id) set X_ [expr $val(distance) * $j]

$node_($id) set Y_ [expr $val(distance) * $i]

$node_($id) set Z_ 0.00 } }

for {set i 0} {$i < $val(nn)} {incr i} { $ns_ initial_node_pos $node_($i) 20 }

Setup traffic flow between nodes # TCP connections between node_(0) and node_(1) puts

"Loading traffic file..." source $opt(tfc)

Tell nodes when the simulation ends #$ns_ at 6.0 "recordStats" for {set i 0} {$i <

$val(nn)} {incr i} { $ns_ at $val(stop) "$node_($i) reset"; }

$ns_ at $val(stop) "stop" $ns_ at $val(stop).01 "puts \"NS EXITING...\" ; $ns_ halt" puts

"Starting Simulation..." $ns_ run

