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Abstract 

In an ad hoc network, nodes collaborate to allow communication without the presence of network 

infrastructure. Lack of manual management in ad hoc networks means that automatic configuration is 

highly desirable. The need for automatic configuration capabilities will become significantly more 

intense when one considers the networked home of the future, with IP-enabled appliances, such as 

microwave ovens, thermostats, alarm clocks, speakers and various kinds of sensors. High levels self-

organisation provides an out-of-the-box functionality such that very little technical expertise is required 

to set up a network.  However, efficiently providing unique IP addresses in ad hoc networks is still an 

open research question.  This study is a successful attempt to investigate automatic IP addressing in 

wireless ad hoc networks as both Multicriteria decision making (MCDM) problem and a challenge of 

building a system that converges towards the global desired goal. Consequently, the solution proposed 

in this thesis is inspired by observing swam systems’ ability to converge towards a global goal from 

local interactions. The investigation reported in this thesis first answered the question of how different 

network conditions affect the address auto-configuration process. Experiments to investigate the effect 

of mobility, network traffic and DAD timeout period on address auto-configuration were conducted. 

The results of these experiments informed the design of the new protocol, D-DAD, proposed in this 

work.  The proposed IP address auto-configuration mechanism was simulated in Ns2 and results were 

compared with existing Wise-DAD and StrongDAD protocols. We performed five experiments to 

investigate the effect of network size, node density, node arrival rate, mobility, and network traffic on 

communication overhead, address uniqueness and latency.  The results showed that D-DAD 

outperformed StrongDAD in all the metrics used for comparison. However, in some instances, D-DAD 

recorded more communication overhead in comparison to Wise-DAD but had better latency and fewer 

address conflicts.   
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Chapter 1 

Introduction 

1.0 Preamble  

Wireless ad hoc networks dynamically self-configure and organise themselves, (with the 

node establishing connectivity automatically), and maintain mesh connectivity among 

themselves. Distributed algorithms that control wireless ad hoc networks make them 

resilient to faults and make it easy to establish and maintain a network with no need for 

infrastructure. These and many other features bring many advantages such as low up-front 

cost, easy network maintenance, robustness, and reliable service coverage.  

Over the years, wireless technologies have evolved rapidly to provide better services with 

lower costs in deployment and administration (Bernardos et al., 2005; Hossain et al., 2014). 

In particular, wireless ad hoc networking has proved to be a promising technology in many 

application scenarios (Sharma, 2013). These include tactical military deployments, low 

cost internet connectivity, and disaster recovery operations. The definition of wireless ad 

hoc networks has expanded to include Mobile Ad Hoc Networks (MANETs), Wireless 

Sensor Networks (WSNs) Wireless Mesh Networks (WMNs), Smart Phone Ad Hoc 

Networks (SPANs), and Vehicular Ad Hoc Networks (VANETs) (Loo et al., 2016).  

Application scenarios of these networks require a high degree of self-organisation and 

configuration.  
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Due to the requirement that nodes in wireless ad hoc networks must dynamically self-

configure, algorithms to handle different aspect of self-configuration and self-organisation 

are of paramount importance. One important network parameter that requires dynamic 

configuration is an IP address. This is highly desirable because nodes require IP addresses 

to send and receive both unicast and multicast messages. Most importantly, automatic 

configuration of nodes reduces network administration and makes it possible to construct 

a network on the fly.  

In essence, automatic configuration provides an out-of-the-box functionality such that very 

little technical expertise is required to set up and run a computer network. This is of 

fundamental significance in rural areas where technical expertise is not readily available. 

Even if the technical expertise could be found, manually configuring potentially hundreds 

of devices would be too time-consuming and error- prone. Application scenarios such as 

disaster recovery also require that networks be set up with minimum human configuration 

with no physical infrastructure.  

The need for automatic configuration capabilities becomes significantly more intense when 

one considers the networked home of the future, with IP-enabled appliances such as 

microwave ovens, thermostats, alarm clocks, speakers and various kinds of sensors 

(Bernardos et al., 2005; Mennicken et al., 2014). Many algorithms for automatic 

configuration of IP addresses have been proposed in the literature.  

In wireless ad hoc networks, IP address auto-configuration protocols are classified as being 

either stateful or stateless. Stateful approaches try to mimic the Dynamic Host 
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Configuration Protocol (DHCP) server system that is used in wired networks. The 

addresses that are free are known in advance and are maintained by one or more nodes in 

the network. New nodes are configured from the known pool of IP addresses. On the other 

hand, stateless protocols follow the trial and error method. Only the range of allowed IP 

addresses is known. A new node generates an IP address that is within the permitted range 

and checks for uniqueness through a network -wide broadcast called Duplicate Address 

Detection (DAD) procedure. Many variations of the two approaches have been proposed 

and presented in the literature. Another school of thought that combines both stateless and 

stateful approaches has also been a subject of debate for some time.  This paradigm is 

known as hybrid auto-configuration.  

The main challenge of the stateful paradigm is reliable synchronisation of address 

allocation tables, given the unpredictable environments that characterise wireless ad hoc 

networks (Suganthi & Ravimaran, 2014). Inconsistent address allocation tables results in 

the configuration of duplicate addresses. Explicit synchronisation of state information is a 

major challenge and is associated with high communication and processing overhead. 

However, explicit state synchronisation is also associated with low address conflicts.  

In stateless approaches the most important aspect is the design of the Duplicate Address 

Detection (DAD) mechanism. A poorly designed DAD mechanism may result in address 

conflicts if nodes cannot defend their IP addresses.  However, according to Grajzer & 

Głąbowski (2016) performing a DAD procedure is the best way of making sure that an IP 

address is unique.  This thesis adopted Grajzer and Glabowski’s (2016) philosophy on the 
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importance of having a Duplicate Address Detection mechanism. However, the design of 

DAD is not a trivial task. The best values for DAD timeout and the number of DAD trials 

have not been established in the literature.   

This thesis argues that the current approaches fail to address the auto-configuration 

problems due to the challenges posed by the unpredictable nature of wireless ad hoc 

networks. Nodes in a wireless ad hoc network environment may be mobile, thereby 

affecting the delivery of critical IP address configuration messages. Connections in 

wireless ad hoc networks are usually not reliable and are at times unidirectional.  How this 

affects the auto-configuration, has not, to the best of our knowledge, been investigated.  

Basically, proposals in the literature have not investigated how different network 

conditions that characterise a wireless ad hoc network environment affect the functioning 

of the solution.  

Furthermore, this thesis is of the opinion that the design of an IP address auto-configuration 

should, among other things, be informed by how network conditions affect the process of 

address auto-configuration. This allows for the auto-configuration components and other 

auto-configuration parameters to adapt to changes in the network environment. Awareness 

of the effect of network conditions will aid in effective management of the IP address space. 

As  a result, the solution proposed in this thesis is inspired by swam systems where local 

interactions lead to the desire global behavior that emerges over time.  
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1.2 Statement of the Problem  

Debate around how to effectively allocate IP addresses in wireless ad hoc networks has 

been around for a very long time.  Three dimensions to the solutions have been proposed, 

namely, stateless, stateful and hybrid approaches. A number of solutions following these 

paradigms have been developed and tested.   

The primary reason why there has been so much work done with no clear solution is 

because of the unpredictable nature of wireless ad hoc networks. Unpredictable wireless 

links, mobility, and ever-changing membership are some of the conditions that make it 

difficult to arrive at a solution. In address auto-configuration, for example, the goal of the 

auto-configuration protocol is to configure nodes with low or no address conflicts in a 

reasonable amount of time and with low communication overhead. All this should be 

achieved in the context of a highly dynamic environment.  

Despite the number of protocols reported in the literature researchers have not investigated 

how network conditions such as mobility, unreliable links, and network traffic affect the 

IP address automatic configuration process. 

It is clear that developing solutions for wireless ad hoc networks lies in understanding how 

different network conditions affect the functioning of the protocols. This understanding 

can then be used to develop new protocols that are more robust and adaptive to network 

conditions.   
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1.3 Research Questions 

In order to tackle the identified research issues, the following research questions 

were formulated:   

(a) What is the appropriate IP address auto-configuration paradigm that can 

handle network dynamics?  

o This thesis investigated why existing paradigms do not handle 

network dynamics well. 

(b) Why are address auto-configuration algorithms not resilient to different 

network conditions?  

o The following investigations were conducted to answer this question: 

▪ Determining the effect of network merging on address auto 

configuration; 

▪ Determining the effect of network partitioning on address auto-

configuration; and  

▪ Determining the effect of network traffic and mobility on 

address auto- configuration. 

(c) What are the best configurations for DAD that will result in low address 

conflicts and low communication overhead? 

o The following investigations were carried out to answer this question: 

▪ Determining the best value of DAD timeout; and 

▪ Determining the optimal number of DAD trials.  
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(d) How can the wireless ad hoc networking environment inform the design of 

address auto-configuration protocols that can adapt to different network 

conditions?  

o This part of the research explored how the results from the first three 

questions can be used in the design of Address Auto-configuration 

protocols. The Dynamic Duplicate Address Detection (D-DAD) 

address auto-configuration was formulated and evaluated.  

1.4 Rationale of the Research  

Wireless communications have become a de facto means of connectivity in today’s world. 

The growing deployment rate of wireless networks is evidence that wireless networking is 

rapidly becoming a predominant means of electronic communication (Chin et al., 2014). 

Wireless technologies are used to interconnect a vast number of devices without the 

requirement for cables and with minimal network infrastructure.  

Wireless ad hoc networks, in particular, have the potential of connecting different devices 

ranging from computers to sensors (Xu et al., 2014).  Application scenarios such as disaster 

recovery, search and rescue, and military networks all benefit from the self organising 

characteristics of wireless ad hoc networks.  Due to the potentially large network sizes of 

wireless ad hoc networks, automatic configuration of IP and other network parameters is 

important. Manually configuring potentially hundreds of devices would be too time-

consuming and prone to human error. Automatic configuration minimises the requirement 

for manual configuration, thereby bringing an out-of-the-box functionality such that very 
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little technical expertise is required to set up a network. This is of paramount importance 

in application scenarios such as disaster recovery, and search and rescue. The need for 

automatic configuration capabilities becomes even more acute when one considers the 

networked home of the future, with IP-enabled appliances, such as microwave ovens, 

thermostats, alarm clocks, speakers and various kinds of sensors. Connecting the entire 

home to the internet with endless workability and entertainment possibilities, as well as the 

ability to manage security and passwords from one home system. Users can store files on 

one file storage app and access it from anywhere in the home environment with any device 

(Nag et. al, 2017). In addition, automatic configuration makes ad-hoc networks suitable for 

many other applications like military, disaster area, rescue operation, collaborative 

computing and conference meeting where it is not possible to setup wired network or 

infrastructure based wireless network.  
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1.5 Goal 

The goal of this thesis was to develop IP address auto-configuration algorithms for wireless 

ad hoc networks.   

1.6 Objectives  

To address the research questions formulated in this thesis the following objectives 

were set: 

i. Investigate the best values of DAD timeout and DAD trials during address auto-

configuration.  

ii. Investigate the effect of network traffic and mobility on address auto- 

configuration. 

iii. Design and evaluate appropriate network merging and partitioning mechanisms.  

iv. Propose an address auto-configuration protocol.  

v. Simulate and evaluate the proposed address auto- configuration protocol.  

1.7 Methodology  

The following research methodology was followed in this thesis:  

a) Literature Survey 

A literature survey was conducted to get an in-depth understanding of what other scholars 

have done to address the identified problems. This part of the research was based mainly 

on critical evaluative and comparative analysis of existing related works by other scholars. 
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The survey of literature resulted in the model proposed in chapter 2 of this thesis. The 

solution developed to address the identified problem is based on this model. 

b) Design Science 

The goal of this research was to develop an address auto-configuration that takes into 

account network conditions. The Design Science Research Methodology (DSRM) was 

adopted because it is important for conducting research in disciplines oriented to creating 

artifacts that serve as solutions to defined problems. Design science research focuses on 

the development and performance of artifacts with the explicit intention of making 

functional improvements of the artifact (Yin, 2017). The artifacts created in the design 

science research process include algorithms, computer interfaces , and system design 

methodologies or languages(Gregor and Hevner, 2013). Since the goal of this work 

included making improvements on existing IP address auto-configuration protocols, design 

science was found to be the most appropriate method. We adopted the steps outlined in 

(Peffers et al., 2008), namely: 
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i. Problem Definition and Motivation 

This step took input from the statement of the problem and used the information gathered 

from the literature survey to motivate the relevance of the study. The survey was also used 

as a tool to acquire useful knowledge for developing the solution approach.  

 

ii. Investigation by Literature Survey 

The investigation was in two phases, the first being a literature survey to establish the state 

of the art in the field of IP address auto-configuration. After identifying issues that needed 

investigation, investigative experiments were carried out to validate the findings. The 

feedback obtained from the investigative experiments reported in chapters 3, 4 and 5 was 

then used to formulate the solution presented in chapter 6 and tested in chapter 7.   

 

iii. Design and Development 

Applying self-organisation to communications networks requires a constructive 

engineering approach, hence the feedback from the literature survey was used to formulate 

the processes, and methods or algorithms that contributed towards the development of the 

model proposed in chapter 2. Design of the algorithms presented in this thesis was based 

on the investigations conducted in chapters 3, 4, and 5.   
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iv. Demonstration  

For the purpose of proof of concept, simulation experiments in an NS2 simulator were 

conducted. NS2 is an open source, event driven simulation tool that has become the de 

facto standard in the simulation of wireless ad hoc networks. Using NS2 allowed for the 

simulation of large network sizes and vary different network conditions with ease.  

  

v. Evaluation  

A performance analysis of the proposed model was done using both graphical and 

theoretical techniques. The IP address auto-configuration proposed in this work was 

evaluated using the following metrics: 

a. Latency 

b. Address conflicts 

c. Communication overhead  

In the experiments conducted the following network conditions were varied: 

i. Network traffic  

ii. Node arrival rate 

iii. Node density  

iv. Mobility  

v. Network size  
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1.8  Synopsis of the Thesis Contributions 

This thesis presents a successful investigation of the problem of automatic address 

allocation in wireless ad hoc networks. Below is the summary of the contributions of this 

thesis:  

(a) This thesis proposed algorithms that take network conditions into account when 

performing address allocation. The thesis took a paradigm shift by advocating for 

adaptation whereby parameters such as DAD timeout period are determined at runtime.  

(b) Furthermore, this thesis has advanced the design of the DAD mechanism by 

establishing the optimal values for the DAD timeout period. Current DAD-based 

protocols in the literature set DAD timeout at 1.8 seconds. This work, however 

concluded that DAD timeout should vary depending on network conditions.  

(c) This thesis has shaped the solution space of address allocation protocols by 

investigating the effect of network traffic and mobility of address allocation protocols. 

The results obtained in the investigations compel researchers to look at address 

allocation solutions differently. Current solutions proposed in the literature do not 

consider this important aspect.  

(d)  Network partitioning algorithms proposed in this thesis can distinguish between 

temporary and permanent partitions. Being able to distinguish between temporary and 

permanent partitions removes the burden of unnecessary address and network ID 

changes which can cause a lot of communication overhead.  
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(e)   As an improvement to network merging solutions proposed in the literature, this thesis 

proposed an algorithm that handles the merging of networks that were previously part 

of the same network without changes in IP addresses.  

(f) This thesis established a relationship between node density and the performance of an 

address auto-configuration protocol. These findings are important for planning node 

placement for network deployment.  

 

1.9 Thesis Structure and Composition  

The rest of the thesis is organised as follows:  

Chapter 2: The IP address Space Management Problem in Wireless Ad hoc Networks: 

Basic background concepts concerning the area of IP address auto-configuration are 

introduced. Different approaches to automatic configuration are reviewed in this chapter. 

The chapter concludes by giving a solid direction to the design of IP address auto-

configuration protocols.  A new paradigm of allocating IP addresses is proposed.  

Chapter 3:  Determining the optimal DAD configuration parameters: Experiments to test 

the traditional DAD procedure were conducted in this chapter. This was motivated by the 

conclusion drawn in chapter 2 establishing the need to make more investigations on how 

the process of DAD is done. Results reported in this chapter were used to design the address 

auto-configuration protocol described in chapter 5.  
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Chapter 4: Effect of Network Traffic and Mobility on Address Auto-configuration:  

Evidence in the literature shows that network conditions such as mobility, traffic type and 

volume affect the functioning of network layer protocols. However, to the best of our 

knowledge, no investigation has been conducted to determine how different network 

conditions affect address auto-configuration protocols. This chapter, therefore, investigates 

how network traffic affects the performance and functions of address auto-configuration 

protocols. Knowing how network conditions affect address auto-configuration helps in 

designing better protocols.  

Chapter 5: IP Address Auto-configuration Algorithms for Wireless Ad hoc networks: In 

this chapter an address auto-configuration protocol (D-DAD) based on the investigations 

done in chapters 2, 3, and 4, is designed.  

Chapter 6: Performance evaluation of the D-DAD address allocation algorithms:  In this 

chapter the address allocation mechanism proposed in chapter 5 is evaluated. Comparison 

with previous works is conducted.  

Chapter 7: Thesis Contributions, Conclusion and Future Work: This chapter presents the 

contributions made in this thesis. A summary of the results obtained in earlier chapters is 

used in clarifying the contributions. Future direction, open issues, limitations and 

conclusions are also given in the chapter.  
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Chapter 2 

The IP address Space Management Problem in Wireless Ad hoc 

Networks 

 

2.0 Introduction  

The wireless ad hoc network environment presents researchers with challenges when 

designing protocols at different layers. IP address auto-configuration solutions, in 

particular, have the challenge of coping with a highly dynamic environment and uncertain 

network conditions (Fan & Subramani, 2005; Levin et a.l, 2014). The previous chapter 

identified the need to make thorough investigation of how the ad hoc networking 

environment affects the functioning of address auto-configuration protocols. The purpose 

of having an address auto-configuration protocol is to manage the IP address space and 

configure nodes with unique addresses. However, IP addresses come from a finite domain, 

hence dealing with the management of a limited resource in an uncertain environment is 

not an easy task.  

This chapter envisages a paradigm shift in the problem of address auto-configuration. The 

paradigm presented in this chapter advocates for address auto-configuration mechanisms 

to adapt to network conditions such as mobility and high traffic volume. This contribution 

answered the second research question which aimed at investigating the best approach to 

the auto-configuring problem. An analysis of different approaches to the management of 
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the IP address space reported in this chapter concluded that due to the rigidity of current 

approaches, achieving flawless auto-configuration is a challenge, hence the new approach.  

The idea presented in this chapter has one distinct advantage over existing schools of 

thought in that it takes into account changes in network conditions. Network conditions 

such as mobility, high traffic volume, network merging and partitioning affect the 

functioning of address auto-configuration mechanisms and hence must be taken into 

account when designing auto-configuration solutions. With the adaptive model, nodes will 

have to align with the settings of an auto-configuration protocol to suit the current network 

conditions. 

 The rest of this chapter is organised as follows: In section 2.1 a discussion on some design 

issues in IP address auto-configuration is presented. The discussion presented in section 

2.1 lays a foundation for analysing the best building components of an address auto-

configuration mechanism. In Section 2.2 related approaches in the area of IP address auto-

configuration are described.  Section 2.3 describes the proposed IP address space 

management model. Section 2.4 concludes the chapter. 
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2.1 Design Issues in IP address Auto-configuration  

The wireless ad hoc network environment presents researchers with unique challenges 

when designing IP address auto-configuration protocols. In view of the wide array of 

constraints, a protocol for assigning IP addresses in wireless multi-hop networks should 

meet the following requirements:  

a) Interoperability  

IP address auto-configuration solutions should allow for interoperability with traditional 

IP based networks (Kim et al., 2015). Any solution aimed at working in this kind of 

environment must be compatible with   standard nodes, otherwise no major changes to the 

protocol stack that may affect interoperability can be made. 

b) Merging support 

This characteristic basically deals with the ability of an auto-configuration mechanism to 

detect network merging. When network merging is detected the protocol should invoke the 

functionalities that eliminate IP address conflicts and connectivity problems (Abid et al., 

2015). In wireless ad hoc networks merging can take place when at least two independently 

configured networks come into each other’s transmission range, thereby forming one 

network.  It is therefore imperative that an IP auto-configuration solution aimed at 

supporting wireless ad hoc networks should provide support for handling network merging. 

In essence, the solution must not disrupt the functioning of the merging networks. (A 

solution to the network merging problem is presented in chapter 5).   
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c) Partitioning support 

An IP auto-configuration mechanism must have the ability to detect network partitioning. 

In a typical wireless ad hoc network, nodes can randomly be switched off and the network 

may be partitioned. Such an occurrence may be temporary or permanent. Therefore, an IP 

auto-configuration solution aimed at working in wireless ad hoc networks is expected to 

take these two scenarios into consideration.  If the disconnection is temporary the solution 

should be able to handle the merging of the networks at a later time without much 

disruption to the network’s performance. On the other hand, if the disconnection is 

permanent, the remaining network must be able to re-use the IP addresses on the 

disconnected segment. Contrary to other solutions in the literature, the one proposed later 

in chapter 5 addresses this issue of being able to distinguish between temporary and 

permanent network partitioning.  

d) Robustness and Fault tolerance 

Due to the unpredictable nature of the wireless ad-hoc networking environment, protocols 

ought to be fault tolerant and robust. Given the multi-hop characteristic of ad hoc scenarios, 

it is important to analyse the design assumptions underlying an IP auto-configuration 

mechanism. IP auto-configuration mechanisms aimed at working in wireless ad hoc 

networks should be robust in terms of resiliency to sporadic transmission problems, 

mobility, and packet loss.  To increase robustness and fault tolerance, the paradigm shift 

proposed in this chapter advocates the monitoring of network conditions that affect the 

auto-configuration process.  
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e) Latency  

Another important characteristic, related to robustness, is the latency of an auto-

configuration solution. Depending on the scenario and/ or the application, latency can be 

defined as the time required by a single node to get a usable, unique and valid IP address. 

It is important that the auto-configuration protocol configure nodes with low latency.  

  

f) Security  

Wireless ad hoc networks have unique characteristics, thereby making it difficult to address 

security and authentication issues.  The work by Kumar et al., (2008) and Rehman & 

Manickam (2015), enumerated possible attacks to the IP auto-configuration process. These 

attacks include Address Spoofing, Address Conflict, Address Exhaustion, and Negative 

Reply. Most protocols do not address security during auto-configuration at all. For 

example, proposals in Güne & Reibel (2002), Fazio et al., (2006), Indrasinghe, Indrasinghe 

et al., (2006), Kim et al., (2007), Mutanga et al., (2008) and Ramakrishnaiah & Reddy 

(2016) only addressed the auto-configuration problem whilst the security issues 

surrounding this aspect were not addressed. Pan et al., (2005), Zakaria et al., (2015) and 

Praptodiyono et al., (2015) are some of the few proposals that consider security during 

automatic configuration. Their proposal binds each IP address with a public key, allows a 
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node to self-authenticate itself, and thus thwarts address spoofing and other attacks 

associated with auto-configuration.   

 

g) Scalability  

In most cases the process of IP address auto-configuration requires that nodes exchange a 

number of messages before a node can be allocated an IP address. These messages might 

either be flooded in the network or exchanged locally, and they usually grow with network 

size, leading to high overhead (Harish et al., 2008), (Pathan, 2016). Stateless approaches 

degrade dismally when the network grows because of the flooding mechanism that is used 

to detect duplicate IP addresses. Both communication overhead and latency are generally 

high in this approach. Some stateful approaches, e.g. Prophet (Zhou et al., 2013), tried to 

address this problem by configuring nodes using local messages only. This, however, 

compromises on the uniqueness of the address. The biggest challenge in building scalable 

protocols, therefore, is to try and reduce communication overhead without compromising 

on address uniqueness and latency. The range of IP addresses should also be scalable. IP 

addresses should not run out of availability when a large number of nodes are joining 

(Harish et al., 2008). This thesis is of the view that scalability can be enhanced by avoiding 

network-wide broadcasting of messages and elimination of explicit state synchronisation.   

h) Duplicate Address Detection  

Duplicate address detection is required when two independent networks merge or as a 

continuous process to resolve duplicate IP addresses that might arise as a result of 
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erroneous address allocation. To provide this capability to an auto-configuration protocol  

there need to determine how duplicate addresses are detected and how address conflicts 

will be resolved. In this subsection we give an analysis of the problem of address 

duplication. We modelled the problem using the birthday problem.  In probability theory, 

the birthday problem or birthday paradox concerns the probability that, in a set of n 

randomly chosen people, some pair of them will have the same birthday. By the pigeonhole 

principle, the probability reaches 100% when the number of people reaches 366. However, 

99.9% probability is reached with just 70 people, and 50% probability with 23 people. The 

birthday paradox has been used in estimating a lot of problems including transitivity in 

knowledge management (Jha et al 2015).  

In the case IP addressing, the goal is to compute P(A), the probability that at least two 

nodes are the same ie two nodes have duplicate IP addresses. However, it is simpler to 

calculate P(A′), the probability that no at least two elements that are the same. Then, 

because A and A′ are the only two possibilities and are also mutually exclusive, therefore 

we can calculate the probability as follows: P(A) = 1 − P(A′).   

It is easier to first calculate the probability p(n) that all n nodes have unique IP addresses. 

According to the pigeonhole principle: for natural numbers k and m, if n = km + 1 objects 

are distributed among m sets, then the pigeonhole principle asserts that at least one of the 

sets will contain at least k + 1 objects.   This means that p(n) is zero when the number of 

nodes is more than the number of IP addresses allowed in the network, say L. When n ≤ L 

(size of the address space). 
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The 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 expresses the fact that the first node has no duplicate, the second node 

cannot have the same IP address as the first (L-1/L), the third cannot have the same IP 

address as either of the first two (L-2/L), and in general the nth node cannot have the same 

IP as any of the n − 1 preceding nodes. The event of at least two of the n nodes having the 

same IP address is complementary to all n nodes having different IP addresses. Therefore, 

its probability p(n) is calculated as follows:  

 1 − 𝑝(𝑛) 

 

 

Like similar works such as (Pilar Rios et al 2017), the taylor series can be used for 

estimation. Using the Taylor series expansion of the exponential function , we can 

approximate the probability of address conflicts as follows:  

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+.. 

 

provides a first-order approximation for ex for x ≪ 1:  

𝑒𝑥  ≈ 1 + 𝑥. 

https://en.wikipedia.org/wiki/Event_(probability_theory)
https://en.wikipedia.org/wiki/Complementary_event
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Exponential_function
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To apply this approximation to the first expression derived for p(n), set x = − 𝑎 𝐿⁄ . Thus,  

𝑒
−1

𝐿 = 1 −
𝑎

𝐿
 

Then, replace a with non-negative integers for each term in the formula of p(n) until a = n − 1, for 

example, when a = 1,  

𝑒
−1

𝐿 = 1 −
1

𝐿
 

The first expression derived for p(n) can be approximated as  

𝑝(𝑛) ≈ 𝑒
−1

𝐿 × 𝑒
−2

𝐿 × 𝑒
−1

𝐿 × 𝑒
−(𝑛−1)

𝐿  

 

 

𝑒
−1+2+3…(𝑛−1)

𝐿  

Therefore,  

𝑒
−𝑛(𝑛−1)

2𝐿  

 

An even coarser approximation is given by  

 

𝑒
−𝑛2

2𝐿  

which, as the graph illustrates, is still fairly accurate. From the equation above: Assuming 

a network of 100 nodes in a network capable of supporting 256 valid IP addresses, figure 

shows the probability of having  a duplicate address. From figure 1, the probability reaches 

at least 50% at less than half the address space.  

 



 

 

26 

 

 

Figure 2.1: Depiction of address conflicts  
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2.2 IP Address Auto-Configuration Approaches   

A number of IP address assignment algorithms have been proposed in the literature. The 

mechanisms can be classified according to the way they manage the IP address space. 

There are basically two main categories: stateful and stateless. The stateless approach does 

not employ a mechanism for managing the IP address space. The number of free IP 

addresses is not known, hence when new nodes join the network they choose a random IP 

address and check for availability through a DAD procedure. On the other hand, stateful 

approaches employ one or more nodes to manage the IP address space. In this section, an 

analysis of the current address auto-configuration paradigms is given. This lays the 

foundation for the paradigm shift proposed in the next sub-section.    

a) The Stateless paradigm  

In stateless protocols, free IP addresses are not known in advance because address 

allocation tables are not kept.  All the network nodes collectively manage the IP address 

space by participating in duplicate address detection. New nodes generate their own IP 

addresses from an allowed range and check for possible conflicts. If an address conflict is 

detected, the new node will repeat the process until a free address is obtained.  The process 

of verifying the uniqueness of the address is called a Duplicate Address Detection (DAD) 

procedure.  Generally, the DAD process is categorised as being either StrongDAD (Perkins 

et al., 2001) or Weak DAD (Vaidya, 2002).  Weak DAD makes use of a key-address 

combination that must always match if there is no address conflict. Nodes analyse routing 

protocol packets for signs of address conflicts.  StrongDAD is a time-based DAD that 
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checks if there is an address conflict in a network within a finite-bounded time interval. 

StrongDAD configures nodes after the DAD procedure has been successfully completed 

or after a specific time interval called a DAD timeout period. 

AIPAC (Fazio et al., 2006), AROD (Kim et al., 2007) and the scheme proposed in Nesargi 

& Prakash, (2012), are based on StrongDAD (Perkins, et al., 2001). In Nesargi and Prakash 

(2012), a new node chooses two addresses, a temporary address and the actual address, to 

use. The temporary address is used only once during the address negotiation phase. The 

network is then flooded with an address request packet containing the actual address. A 

node that uses the requested IP address sends an address reply message to defend its 

address. If no Address Reply (AREPs) are received by the originator after a certain time 

interval and after multiple tries, the node concludes it can use the chosen address.  In 

AIPAC (Fazio et al., 2006), a new node periodically broadcasts a request message until a 

reply is received from at least one neighbouring node (initiator). The initiator then performs 

DAD on behalf of the new node.  

AROD (Kim et al., 2007) extends StrongDAD (Perkins, et al., 2001) by including address 

reservation as a mechanism to reduce the communication overhead.  The authors argue that 

it is difficult to guarantee uniqueness of allocated addresses without performing a DAD. 

Thus they proposed a distributed auto-configuration scheme that uses address reservation 

and optimistic DAD. Reserved addresses were introduced to help reduce allocation latency, 

while the DAD mechanism guarantees the uniqueness of address with much smaller 

communication overhead than traditional DAD approaches.  
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Stateless approaches are prone to duplicate IP addresses because of the unpredictable 

nature of ad hoc networks.  When network size increases, the probability of a failed DAD 

also increases, resulting in delay and communication overhead. Determining the 

parameters of DAD like the timeout period, is an issue that needs investigation. A static 

value might not be the best since network conditions are not static. It is therefore imperative 

to employ adaptive mechanisms that respond to network conditions.  

b) Stateful Auto-configuration 

There are many variations of stateful auto-configuration but the basic concept is that there 

is at least one node that is responsible for managing the IP address space. When new nodes 

join, the node or nodes managing the IP address space can easily issue free IP addresses 

since they are known in advance. To guard against address leakages, nodes that run stateful 

auto-configuration synchronise the address allocation tables. IP address auto-configuration 

approaches following the stateful paradigm can further be classified according to the way 

they manage the IP address allocation table. The IP address allocation table can either be 

centralised or distributed. In the case of a distributed allocation table, there are two 

alternatives: distributing a common table managed by all the nodes, or distributing multiple 

disjoint allocation tables where each node manages its own pool of IP addresses.  

Auto-configuration solutions that use a centralised allocation table must guarantee that the 

central node is always available and has up-to-date state information to avoid address 
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leakages and conflicts. Node departures and arrivals should be reflected promptly.  In CAC 

(Güne & Reibel, 2002; Ramakrishnaiah & Reddy, 2016) a central node called the address 

agent periodically broadcasts verify-packets which contain the address list and a time 

stamp. Every node checks whether or not it is included in the address list. Traffic to the 

central node must be well managed so that it does not get overloaded since it is the only 

one with the responsibility of managing the IP address allocation table. If the address agent 

(AA) is temporarily unavailable there must be a mechanism of selecting a new AA. In 

CAC, if a node does not receive any more verify packets from the address agent it assumes 

that the network is partitioned and elects itself as the new AA.   

MANETConf (Nesargi & Prakash, 2012) and the work by Wang et al., (2014) make use of 

a Distributed Address Allocation Table, i.e. all nodes in the network keep a list of IP 

addresses that are currently in use. The management of the IP address space is thus 

distributed to all the nodes. If a node (Requestor) wants to join the network, it has to rely 

on an already configured node. Then the Initiator selects a free IP address from the address 

allocation table, and checks for its availability through a DAD procedure.   

 

Prophet (Zhou et al., 2013), uses a novel approach that follows the stateful paradigm but 

does not make use of an IP allocation table. The basic idea behind Prophet is to predict the 

allocation table using a function f(n) that is distributed across all the nodes. The first node 

in the network chooses the function parameters. As other nodes join the network, the 

function f(n) and a state value to generate IP addresses are passed on to them so that they 
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can also allocate a new node with IP addresses. In this approach the IP address space is 

known by all nodes in the network.  

 

In (Bernardos et al., 2005), the authors assessed the PACMAN protocol (Weniger, 2005) 

in a Wireless Mesh Network scenario. PACMAN is hybrid in nature; it combines PDAD 

(Weniger & Zitterbart, 2004) with a distributed maintenance of a common allocation table 

such as the one proposed in MANETConf (Nesargi & Prakash, 2012). PACMAN assumes 

layer 3 routing and uses cross-layer information from ongoing routing protocol traffic. 

Based on a pre-defined conflict probability, an estimation of the number of nodes, and an 

allocation table, the algorithm calculates the size of the virtual address space, randomly 

selects an address from this space and ensures that the address has not already been 

assigned according to the local allocation table. The algorithm uses a passively updated 

state information table that is distributed across all the nodes. The table is passively updated 

using incoming routing protocol information. The same information is also used to 

passively detect duplicate IP addresses.  

Ancillotti et al., (2009) proposed a DHCP server- dependent auto-configuration scheme for 

hybrid wireless ad hoc networks. In their proposal, nodes are configured with globally 

routable addresses using a DHCP-based mechanism in the wired part of the network. New 

nodes use already configured nodes to act as initiators during the IP address configuration 

process. The initiator communicates with the DHCP server on the wired part of the network 

in a multi-hop fashion. Configuration parameters are sent by the server to the new nodes 
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via the initiator. The AH-DHCP protocol assumes that the gateways are the first to join the 

network because they can communicate with the DHCP server using their wired interfaces. 

Without the presence of the DHCP server on the wired part of the network, nodes cannot 

communicate with the outside world or amongst themselves.  

The main challenge of stateful approaches is the design of reliable state synchronisation 

mechanisms. Frequent state synchronisation messages result in high communication 

overhead but it helps to reduce duplicate addresses. On the other hand, reducing the 

frequency of state synchronisation might result in less communication overhead but 

increase address duplicates. Stable networks might not require frequent state 

synchronisation.  

 

c) Hybrid Approaches 

Hybrid auto-configuration solutions combine characteristics of both stateful and stateless 

approaches to manage the IP address space. These protocols combine DAD with an address 

allocation table that is either centrally maintained or distributed. Hybrid Centralised Query-

Based Auto-configuration (HCQA) protocol utilises StrongDAD together with a centrally 

maintained allocation table. PACMAN (Weniger, 2004) combines PDAD proposed in 

(Weniger, 2003) with a distributed maintenance of a common allocation table.   
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In Wise-DAD (Mutanga et al., 2008), all the nodes passively collect state information but 

still perform DAD when a new node wants to join the network.  A non-configured node 

selects one of its neighbouring nodes to act as its negotiating agent (initiator).  The Initiator 

then generates a random IP address from the allowed addresses and checks its allocation 

table to determine if there is any node in the network that has requested for or is currently 

using the same IP address. If the address is not known, the initiator then performs a DAD 

(using an address request message). All nodes receiving an address request packet update 

their tables and add their IP addresses to the packet before broadcasting it. If any node is 

using the requested address, it defends it with an IP conflict message and this process is 

repeated. If no IP conflict message is received after a certain time interval, the address is 

assumed to be free and the initiator will send an address reply message to the new node. 

The address reply message will have the IP address for the new node, the network identifier 

and the state information (allocation table). If a node leaves the networks gracefully, it 

broadcasts a goodbye message and all the nodes delete its IP address from their allocation 

tables. If a node leaves abruptly, immediate address reclamation is not performed. Since 

the node will not be sending or forwarding any data packets, other nodes will remove all 

passive nodes from their allocation tables.  Allocation tables are not actively synchronised; 

they are used only as an estimate of the state information. If a node does not take part in an 

IP address allocation process for a long time its IP address will be deleted when the size of 

the allocation table reaches a certain level because it will be assumed that the node left the 

network abruptly.   
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2.3 The IP address Allocation Problem  

The problem of IP address auto-configuration can be classified as a self-organisation 

problem. In essence, the idea is to get the nodes to collectively organise themselves without 

external intervention or central control such as a DHCP server. The phenomenon of self 

organization that has its roots in biological and eco-systems is being observed in many 

other areas. For example, an observation of the behaviour of swarming bees or schooling 

fish calls for some very interesting applications in self-orgnisation in computer science. 

In schooling fish, while the group as a whole exhibits some coherent global behavior, the 

individual members that form the group are governed by very simple controls. For instance, 

the control “follow in the direction of your neighbours, but do not bump into them” could 

be enough for coherent schooling in fish.  

This is similar to the configuration of addresses where nodes are expected to self configure 

while avoiding address conflicts with their neighbours and the network as a whole.  The 

mechanism, by which the global emergent behavior relates to the simple, limited, 

unplanned and unreliable individual agent activities, is quite compelling to computer 

scientists and the research society as a whole. For this to work, it is imperative to define 

rules that govern local interaction of nodes to achieve a global goal. What makes the design 

of this solution challenging is the fast that there are multiple criteria to adjust to meet 

multiple objectives. This thesis approaches this problem as a self-organisation problem that 

has constraints of a multi-criteria decision-making problem. Multicriteria decision making 

(MCDM) involves deciding the presence of numerous and contradictory criteria. 
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Traditional solutions took either the stateless or the stateful approach. Stateless approaches 

are prone to duplicate IP addresses because of the unpredictable nature of ad hoc networks. 

In essence, they fail to balance the conflicting objectives because when network size 

increases, the probability of a failed DAD also increases, resulting in delay and 

communication overhead.  

On the other hand, stateful approaches fail to balance the contradictory objectives because 

of the need to perform reliable state synchronisation mechanisms. Frequent state 

synchronisation messages result in high communication overhead but it helps to reduce 

duplicate addresses. On the other hand, reducing the frequency of state synchronisation 

might result in less communication overhead but increase address duplicates.  

Problems for MCDM may range from problems we encounter everyday, such as buying a 

house or a vehicle , to those affecting entire economy. Nevertheless, even with the 

diversity, all the MCDM problems share the following standard features (Ahmadvand and 

Tamalloki, 2017): 

i. Multiple criteria: each problem has multiple criteria, which can be objectives or 

attributes. 

ii. Conflicting among criteria: multiple criteria conflict with each other. 

iii. Incommensurable unit: criteria may have different units of measurement. 

iv. Design/selection: solutions to an MCDM problem are either to design the best 

alternative(s) or to select the best one among previously specified finite alternatives. 
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There are two types of criteria: objectives and attributes. Therefore, the MCDM problems 

can be broadly classified into two categories: 

(i) Multi objective decision making (MODM). 

(ii) (ii) Multi attribute decision making (MADM). 

The main difference between MODM and MADM is that the former concentrates on 

continuous decision spaces, primarily on mathematical programming with several 

objective functions, and the latter focuses on problems with discrete decision spaces. What 

makes the problem of address allocation more challenging is the fact the it presents us with 

multiple objectives and multiple attributes at the same time  making it difficult to address 

it as a simple MCDM problem.  Table 2.1 below shows the intertwined relationships 

between the objectives and the constraints.  

 

 

 DAD Time out DAD Trials State Synchronisation 

 Low High Low High not 

frequent 

Frequent  

Latency Low High Low High High Low 

Address 

Uniqueness 

High Low Low High Low High 

Communication 

overhead 

  Low High Low High 

Table 2.1 : relationship between the objectives and constraints  
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In general, a multi objective problem can be represented as follows:  

 

The function f(x) refers to n conflicting objectives whilst x is an n-vector of decision 

variables. In this case the objectives are reduction in latency, reduction in address conflicts 

and communication overhead. On the other hand our variables are DAD timeout period, 

number of DAD trials and state synchronisation frequency. All this have to be handled in 

a dynamic environment which includes among other things, mobility, high network traffic 

volumes, varying network membership. In optimisation, multiple criteria problems are still 

an open and challenging area to provide solutions to.  Multiple-criteria decision-making 

(MCDM) evaluates multiple conflicting criteria in decision making conflicting criteria are 

typical in evaluating options: cost or price is usually one of the main criteria, and some 

measure of quality is typically another criterion, easily in conflict with the cost. For 

example, higher value of DAD timeout may lead to high delay, at the same time may lead 

to low address conflict. On the other hand more DAD trials lead to  high communication 

overhead and high latency but reduces the probability of address conflicts.  Frequent state 

synchronisation leads to high communication overhead, high latency but reduces address 

conflicts. Such a complex problem should be structured well carefully considering both the 

multiple criteria and the multiple objectives.  In the following subsection, we present a 

generic solution to the problem. Our solution not only consider the multiple objective and 

criteria but also the context in which the problem exist. This makes traditional approaches 

https://en.wiktionary.org/wiki/criterion
https://en.wikipedia.org/wiki/Decision_making
https://en.wikipedia.org/wiki/Cost
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to multi decision and multi attribute problem inapplicable.  The solution proposed below 

calls for conducting experiments to determine the optimal settings for the multiple criteria 

identified in the definition of the problem under investigation.  

 

 

2.4 The Swam Intelligence Inspired IP address Space Management Model  

From the analysis of current solutions conducted in the previous sub-section, it is clear that 

there is no single approach or protocol that is significantly superior to another. This is so 

because in meeting all the design requirements explained in section 2.1 the following 

performance metrics goals usually contradict each other: low latency, high probability of 

address uniqueness, and low communication overhead.  For example, the best way of 

making sure that the allocated IP address is unique is to perform DAD, but on the other 

hand, the best way to avoid high communication overhead is to eliminate or avoid 

performing a DAD procedure. The ideal situation is to get maximum benefits (desirable 

characteristics) while keeping the costs (undesirable properties) associated with attaining 

those conditions as low as possible. Therefore, the design must consciously make trade-

offs between these contradictory factors.  This is easily achieved if the network conditions 

are predictable. However, the unpredictable nature of wireless ad hoc networks presents 

challenges to the auto-configuration algorithms.   
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Contrary to other schools of thought, this thesis argues that for the purposes of IP 

addressing, a wireless ad-hoc network should be viewed as a flock or a school of fish 

swimming together toward a certain direction.  In schooling fish, interactions among the 

fish are based on simple behavioural rules that exploit only local information. This 

information is exchanged directly amongst immediate neighbours or via the environment. 

In the configuration of IP addresses, nodes must collaboratively perform the duties of 

DHCP without external input. In addressing this problem, this thesis therefore takes swam 

intelligence approach.  

Swarm intelligence is the discipline that deals with natural and artificial systems composed 

of many individuals that coordinate their activities using decentralized control and self-

organization. It has potential to solve complex problems.  

In particular, the discipline focuses on the behavior of social insects such as fish schools 

and bird flocks and colonies of ants, termites, bees, and wasps. Self-organization, 

robustness, flexibility and handling unpredicted situations are some of the application areas 

of such collective and cooperating strategies. 

 

In address auto-configuration, interactions should be limited to localised communication 

so as to conserve bandwidth but the resultant emergent characteristic should resemble that 

of a system which is centrally controlled. This is analogous to flocking behaviour in 

schooling fish or birds.  The most well-known examples of systems studied by swarm 

intelligence are particle swarm optimization (PSO) and ant colony optimization (ACO). 
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Particle swarm optimization mimics the behavior of fish schooling and bird flocking. PSO 

is a population-based stochastic optimization strategy with fast convergent speed than 

general evolutionary algorithms (EAs).  

 They communicate good positions to each other and adjust their own positions according 

to their decision. In PSO, a number of simple entities—the particles—are placed in the 

search space of some problem or function, and each evaluates the objective function at its 

current location. Each particle then determines its movement through the search space by 

combining some aspect of the history of its own current and best (best-fitness) locations 

with those of one or more members 

 

Flocking behaviour in swam intelligent systems defines 3 very crucial characteristics that 

can be adopted in IP address auto-configuration: 

(a) Separation - avoid crowding neighbours : This characteristic talks about the need to 

separate the responsibility of steering the flock to all the members of the flock. The 

neighbours have to operate independently from yet achieve the global desire goal 

exhibiting high levels of cohesion as though there was central control.  This property 

can be achieved by distributing the address allocation protocol and delegating the 

responsibility of address configuration to the whole network or a selected set.  
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(b) Alignment – This property calls for flock members to steer towards average heading 

of neighbours. Although, separated, there is need for individual members of the 

flock to align themselves with others so as to achieve the desired goal of moving 

towards a certain direction at the same speed without a central leader yet not 

bumping into each other. To achieve this, an address autoconfiguration protocol 

should implement rules that adapt to changes within the network.  

 

(c) Cohesion - steer towards average position of neighbours : This rule tries to make 

the members of the flock mimic each other’s course and speed. If this rule is not 

used, the members would bounce around a lot and not form the beautiful flocking 

patterns that can be seen in real flocks. 
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The proposed model is given in Figure 2.1. A full description of the components of the 

proposed model are given in the following sub-sections.   
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Figure 2. 1: The adaptive Model 
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a) Separation: IP addresses should be distributed to all nodes 

To achieve the property of separation, the address allocation processes should be 

distributed rather than centralized. The distributed nature of swarm intelligent systems 

maximizes the overall system dependability by removing critical challenges such as single 

point of failure, bottlenecks and unbalanced traffics. To achieve separation, the first task 

therefore is to define mechanisms of managing the IP address space in this fashion. To 

achieve this, we need to explicitly define a mechanism that delegates the responsibilities 

of assigning IP addresses to all the nodes in the network. This scenario presents us with  

multiple objectives and multiple attributes at the same time  making it difficult to address 

it as a simple MCDM problem. There is, therefore,  a need to explicitly define how this 

decentralised system will be managed, that is, localised behaviour rules or functions that, 

if applied on all nodes at a microscopic level (within their local neighborhoods), 

automatically lead to the desired network behaviour at a macroscopic level. This 

mechanism should be capable of striking a balance between the multiple objectives and 

multiple attributes. Network nodes must have only a local view of the network and interact 

with their neighbours as much as possible whilst the whole network follows the desired 

global property synonymous to schooling fish or flocking birds.  This reduces both 

allocation time and minimises communication overhead since communication will be done 

locally.  To achieve this, there is a need to define the following building blocks of a 

framework that follows the adaptive paradigm (Figure 2.1).  
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i. Mechanisms, rules or functions for managing the local IP addresses: These rules 

can be implemented as functions that govern the behaviour of individual nodes 

in their own neighbourhoods. The behaviour of nodes should yield the desired 

global properties if applied consistently.  It must be clear how the IP addresses 

will be managed locally without adversely affecting the realization of the desired 

global goal of ensuring that there is cohesion. Locally managing IP addresses, 

among other things, reduces communication overhead generated by the protocol. 

The local management rules should also take in account the fact that there are 

multiple conflicting objectives to be achieved under very tight constraints. 

Managing this constraint improves the scalability of the auto-configuration 

protocol. Reduction of communication overhead and improving scalability are 

some of the key global properties of  address auto-configuration requirements 

outlined earlier in section 2.2. To realise this function, there is a need to 

investigate the best DAD parameter configurations such at DAD timeout.  

 

ii. Functions or rules governing the delegation of the responsibilities of assigning 

IP addresses to all the network nodes in such a way that the rules defined in (i) 

above can be applied with ease: The functions should delegate the 

responsibilities in a manner that achieves the desired global goals.  The 

responsibility of address allocation can be assumed by either all or a set of 

selected nodes. Initial investigation identified the importance of DAD to guard 

against address duplicates. However, DAD is a network-wide broadcast that can 
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result in high communication overhead. Furthermore, it is against one of the key 

principles of swam intelligence. It is thus important to establish the best 

configuration parameters for DAD. The investigative experiments carried out in 

chapter 3 established the best configuration parameters for DAD .  

 

b) Cohesion : State information should not be explicitly coordinated or 

synchronised 

Although the first property advocates for separation, the resulting emergent behavior 

should exhibit high levels of cohesion amongst the entities of the network. In address auto-

configuration, to achieve cohesion, there is need to synchronize state information.  

However, this contradicts objectives of having low communication overhead and delay. 

Therefore, this thesis is of the opinion that, state information should not be explicitly 

coordinated because of the high communication overhead that may occur. To achieve this, 

three rules for managing state information synchronization are proposed:  

i. All possible states and how they affect network behaviour must be defined. Mechanisms 

for how to respond to each state can then be defined to react to the identified state 

changes.   Although a lot of work has been done in developing new auto-

configuration protocols it is still not clear how network conditions affect the auto-

configuration process. An investigation of how network conditions affect the auto-

configuration process is presented in chapter 4.  
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ii. The level of state information inconsistencies that can be tolerated must be defined:   

When the network increases in size, coordination can be very difficult. Also, due to 

the unpredictable nature of ad hoc networks, explicit coordination can be 

bandwidth- consuming if network conditions change frequently. The network 

partitioning and merging mechanisms proposed in this work can tolerate temporary 

occurrence of network merging and partitioning, unlike other proposals in the 

literature. Details of these mechanisms are given in chapter 5.  

 

 

iii. State information must be passively synchronised: Mechanisms of passively obtaining 

state information must be defined. This can be achieved by using routing protocol 

control packets such as hello messages.  

 

c) Alignment: Address auto-configuration protocols should adapt to changes 

Due to the unstable nature of wireless ad hoc networks the environment in which the nodes 

operate may change unexpectedly. There is need to align what is happening at a 

microscopic level to the overall goal of the protocol. To achieve this, this thesis proposes 

that an IP address auto-configuration protocol should adapt to different triggers to change. 

This increases robustness of IP address allocation schemes. The desired performance of an 

IP address allocation scheme is measured at a macroscopic level, hence there is a need to 

monitor if the distributed address management is achieving the desired global goal.  To 
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avoid address leakages, acceptable levels of non-coordination defined in (b) above should 

be monitored and corrective action taken if the need arises.  

Other scenarios that require protocols to employ a monitoring mechanism include the 

merging of two or more independently configured networks, network partition, and the 

exhaustion of local IP addresses.  All unforeseen occurrences need to be monitored and 

corrective action taken. This thesis therefore argues that an IP address protocol for wireless 

ad hoc networks should have the following functions for the purpose of adapting to 

different triggers for change.  

i. A performance monitoring mechanism that monitors the changes that might 

require corrective action: This can be implemented using monitoring algorithms 

or functions that can either be proactive or reactive in nature. Increase in address 

allocation latency, communication overhead, network merging, security threats, 

and address duplicates are some of the performance metrics that should be 

monitored. Due to bandwidth limitations within the wireless ad hoc environment, 

this thesis proposes that the design of the monitoring mechanisms must be 

bandwidth conscious so as to minimise communication overhead. For the 

network to be able to respond to changes, the protocol must first detect the 

changes. In chapter 5, the algorithms to monitor network conditions are presented 

and analysed in chapter 6. The algorithms proposed in chapter 5 passively 

monitor the network environment without burdening the network with additional 
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data packets. This was done to enhance the scalability of the auto-configuration 

mechanism.  

 

ii. A response management strategy that takes action should a change that requires 

nodes to behave differently be detected by mechanisms employed in (i) above: 

The nodes should take action that is relevant to the changes observed. A DAD 

procedure should also be part of an IP address auto-configuration scheme. It can 

be defined under the adaptation rules to guard against erroneous address 

allocation. If the current settings or configurations of the protocols are no longer 

yielding the desired results, it is important to determine the optimal values that 

will give the desired results. For example, it was established that the optimal 

value of the DAD timeout period and the number of DAD trials depend on 

network conditions (see chapter 3).  Network conditions might change any time, 

hence these values must be calculated based on the network conditions. Setting 

static values will not result in an optimal protocol since network conditions can 

change at any time.  The IP address auto-configuration protocol presented in this 

thesis responds to changes in node mobility, high traffic volume and network 

size.  In addition, in chapter 5, this thesis outlines mechanisms of responding to 

both network merging and partitioning. Gradual merging was proposed as 

opposed to sudden merging which consumes a lot of bandwidth.  
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2.5 Chapter Summary   

Given the constraints in the wireless ad hoc networking environment, managing the IP 

address space is not an easy task.  Solutions proposed in the literature exhibit a number of 

limitations in the face of changes in network conditions. This thesis argues that the current 

paradigms are not suited for wireless ad hoc network. We therefore advocate for a paradigm 

shift.  This chapter presented an approach to managing the IP address space in Wireless Ad 

hoc networks.  This approach proposes the distribution of IP addresses and defines local 

management rules for the distributed addresses.  The proposed model monitors the 

environment for conditions that are known to affect address configuration and to adapt 

where possible. Studies on how different networks affect auto-configuration are given in 

chapters 3 and 4. Protocols following the paradigm proposed in this chapter are likely to 

be more robust than both stateless and stateful approaches. The biggest research challenge 

is to come up with the best building components for constructing the monitoring and 

adaptation modules. Chapters 3, 4 and 5 investigate further and propose an address auto-

configuration protocol based on the findings.  
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Chapter 3 

Determining the optimal DAD configuration parameters 

 

3.0 Introduction  

Guaranteeing address uniqueness is one of the most important requirements that an address 

auto-configuration protocol should achieve. The previous chapter concluded that it is 

difficult to guarantee address uniqueness without performing DAD.  DAD is therefore an 

important building block of address auto-configuration (Dart et al., 2015). 

Despite DAD being an important part of address auto-configuration no work has been done 

to establish the configuration parameters such as DAD timeout and optimal number of 

DAD trials required during the auto-configuration process.  To get optimal performance, 

the DAD parameters should be investigated (Rana et. Al, 2017).  As part of implementing 

the separation property of the system components such an investigation is important to 

achieve the cohesion property.  

When nodes perform DAD they generate their own IP address and broadcast a request 

packet and set a timer (DAD timeout). When the DAD timeout expires, before any node 

using the requested IP address responds the new node configures itself. If the DAD timeout 

period is not long enough, the new node configures itself before the node using the 

requested address can defend its IP address. On the other hand, if the DAD timeout period 
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is unnecessarily long, a long delay might be experienced because the new node will only 

be able to configure itself after the timeout has expired. In the literature, some solutions 

resort to repeating DAD two or three times to guard against message losses that might 

result in assigning duplicate addresses.  

This chapter describes an investigation into the optimal DAD timeout period for the address 

auto-configuration model presented in the previous chapter. DAD is an important building 

component of the model proposed in the previous chapter. Before DAD can be used as a 

building component of the model, it is thus imperative to carry out this investigation.  

The rest of the chapter is presented as follows: Section 3.1 gives a brief literature review 

on DAD based address configuration whilst section 3.2 outlines the setup of the 

investigative experiments. Section 3.3 presents the simulation results and section 3.4 

concludes the chapter.  
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3.1 DAD-Based Auto-configuration  

This section starts by giving a review of DAD-based auto-configuration protocols to lay 

the foundation of the investigation.  The review given in this section was done to establish 

the current knowledge on DAD configuration parameters.  

Generally, DAD-based auto-configuration protocols do not maintain any allocation table.  

The nodes generate their own IP addresses and check for possible conflicts through a 

Duplicate Address Detection procedure. Hence most of the research in this paradigm is 

aimed at optimising the DAD mechanism. If a conflict was detected, the new node would 

repeat the process. Because of this, the DAD procedure is indisputably the cornerstone of 

the stateless paradigm. Generally, the DAD process is categorised as being either 

StrongDAD or Weak DAD. StrongDAD is a time-based DAD that checks if there is an 

address conflict in a network within a finite bounded time interval. StrongDAD configures 

nodes after the DAD procedure has been successfully completed or after a specific time 

interval (DAD timeout period). Weak DAD is used for the purpose of detecting IP address 

conflicts by making use of a key-address combination that must always match if there is 

no conflict in the network. When a node receives a routing control packet it compares the 

address and key contained in the packet with those that appear in its routing table.  

A weak DAD is usually termed optimistic DAD since it configures the new node before 

the DAD procedure is complete. It assumes that the DAD procedure will be successful, 

hence the name optimistic DAD. Even if the DAD is not successful, unicast communication 

can still take place without any problems since the nodes use the key-address combination 
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to identify the origins or destination of a packet. However, Weak DAD does consume a lot 

of bandwidth and requires modifications to the routing protocol. These limitations make it 

difficult to for it to meet the requirements of auto-configuration protocols outlined in 

chapter 2.  

In StrongDAD auto-configuration, a node randomly selects an IP address and checks 

whether or not it is utilised in the network using a DAD procedure.  In fact a new node 

chooses two addresses: a temporary address and the actual address to use. During the IP 

address negotiation process, new nodes use temporary IP addresses. The temporary address 

is not verified for uniqueness. The network is flooded with an address request (AREQ) 

message containing the selected address. A node using the requested address defends it by 

replying with an address reply (AREP) message. If the address is currently in use, the 

process is started again until a free IP address is obtained. An address is assumed to be free 

if the timer for a DAD trial expires before receiving a conflict notification message. 

StrongDAD (Perkins, 2001) was tested using a DAD timeout period of 1.8 seconds and 

was seen to result in latency of more than 5 seconds. A total of 3 DAD trials were also used 

to guard against message losses.  

 

Other protocols that used StrongDAD include Fernandes & Moreira, (2013), Wang et al., 

(2014), AIPAC (Fazio et al., 2016), and AROD (Kim et al., 2007). In AIPAC a new node 

periodically broadcasts a Send Request message until a reply is received from at least one 

neighboring node (initiator). The initiator selects an address at random among the allowed 
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addresses and sends, in broadcast, a Search_IP packet. The address selected is specified in 

the packet. Any node receiving this packet checks whether this address belongs to it or to 

another node in its routing tables. If a match is detected the node sends a Used_IP message 

to the Initiator. When the Initiator receives the Used_IP message, the procedure is restarted, 

and a new address is selected. Conversely, if no reply is received for a given time interval 

(DAD timeout of 1.8 seconds), the Initiator sends the Search_IP packet again (2 DAD 

trials), in order to guard against possible errors in wireless channels. If neither reply arrives, 

it means that the address is not used yet. Then the Initiator notifies the Requestor with the 

NetID of the network and the IP address that it has to use.  

In Wise-DAD (Mutanga et al., 2008) nodes maintain state information but still performs 

DAD before a new node is admitted.  The new node selects only one of its neighbour’s 

node to act as its negotiating agent (initiator). The initiator then generates a random IP 

address from the allowed addresses and checks in its allocation table if there is no node in 

the network that has requested for or used the same IP. If the address is not known, the 

initiator then performs a DAD (using an address request message). All nodes receiving an 

address request packet update their tables and add their IP addresses to the packet before 

broadcasting it. Allocation tables are not actively synchronised; they are used only as an 

estimate of the state information. The DAD timeout used in Wise-DAD is 1.8 seconds and 

only one DAD trial is utilised, since there is an estimate of the state information to check 

for address duplicates before DAD is performed.  
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3.2 Experimental Setup for the Investigation of the Optimal DAD timeout configuration  

This section presents experiments conducted to determine the optimal DAD configurations 

to be used on the model presented in the previous chapter. The optimal DAD timeout period 

and the number of DAD trials have not, to the best of our knowledge, been investigated 

before now. The two parameters are of paramount importance in the model proposed in 

this thesis because they directly affect the address uniqueness and scalability of the 

protocol. In the this subsection, we present the description of the experimental Setup for 

the Investigation of the Optimal DAD timeout configuration.  

i. Routing Protocol 

Although no routing protocol traffic was exchanged amongst the nodes, all nodes  were 

configured to use the Dynamic Source Routing (DSR) protocol.  The simulated DAD 

protocol was implemented a network layer protocol.  We first had to verify the correctness 

of broadcast (both multi-hop and one-hop) implementation by first running  the simulation 

for 10, 15 and 30 nodes separately. The results show that both multi-hop and one-hop 

broadcast were correctly implemented. 

ii. Physical Data Link Layer Model 

To allow for symmetric communication, nodes were configured to use omni-directional 

antennas. This is important for broadcasting a signal to all directions or when listening for 

signals from all directions.  
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iii. Medium Access Control 

The link layer model used in the simulation is based on the IEEE 802.11 MAC protocol. 

The 802.11 family uses a MAC layer known as CSMA/CA (Carrier Sense Multiple 

Access/Collision Avoidance). CSMA/CA is, like all Ethernet protocols, peer-to-peer i.e. 

there is no requirement for a central node. 

iv. Packet Buffering Model 

Every wireless multi-hop network node in the simulation used a buffer for both data and 

control packets that are awaiting transmission. The buffer was able to hold not more that 

50 packets and implemented the drop-tail queue management algorithm. In this type of 

buffer, packets are transmitted on the first come first served basis.  If the buffer is full, new 

packets are dropped.  

 

v. Address configuration  

In the experimental setup, a DAD procedure similar to the one proposed in Perkins et al., 

(2001) was used. Up till now, the traditional DAD protocols have not used the concept of 

initiator and requestor. In this new approach, a new node relies on a configured node to 

solicit for an address on its behalf.  The two new concepts have been introduced to guard 

against two nodes using the same temporary IP address. Using this method, when a new 

node sends a ’request to join’ message to its immediate neighbours; the first neighbour to 
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respond becomes the new node’s initiator. The initiator replies with ‘initiator_available’ 

message and the new node will send an acknowledgement message.  

The initiator then chooses a random IP address from a predetermined range and broadcasts 

an Address Request message. Any node using the requested address will defend its address 

by an Address Reply message to the initiator; otherwise it will just forward the message.  

If no response is received after the set DAD timeout period, the initiator broadcasts the 

Address Request message again for a predetermined number of DAD trials to guard against 

time delays and message losses. If, after the set DAD trials, no response is received, the 

initiator will send an address_packet to the new node. In a bid to establish the optimal DAD 

trials, the number of the DAD trials were varied in the experiments.  

A. Performance Metrics  

Handling of network merging and partitioning is not within the scope of this investigation 

since it only seeks to assess the effects of DAD timeout period on the performance metrics 

listed below:  

(a) Address Allocation Latency  

This refers to the average time taken for a node to be assigned an IP address. The address 

assignment process must be done in the minimum time possible. DAD- based address auto-

configuration protocols only configure IP addresses after the expiry of the DAD timeout 

period. A shorter DAD timeout period will always result in low latency. However, a shorter 

DAD may also result in address conflicts. A high value of DAD timeout period may result 
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in unnecessary latency. It is therefore imperative to establish the optimal value for DAD 

timeout.  

(b) Communication Overhead 

This refers to the average number of address assignment packets generated and forwarded 

by each node during the address assignment procedure. A good IP address auto-

configuration protocol should use as few messages as possible and the communication 

should preferably be local. Network-wide and periodic flooding should always be avoided. 

If a protocol uses a lot of DAD trials, communication overhead increases, hence one of the 

goals of this investigation was to determine the optimum number of DAD trials.  

(c) Address duplicates  

This refers to the average number of address conflicts in the network. A good scheme 

should minimise the probability of having more than one node using the same IP address. 

A short DAD timeout period may affect the delivery of vital address auto-configuration 

packets, hence increasing the likelihood of configuring duplicate addresses.  

(d) Latency for IP Conflict Message  

This refers to the time required for a node to receive a conflict notification message if an 

address duplicate is detected. A new node configures itself with the chosen IP address when 

the DAD timeout period expires. If the DAD timeout period is very short a node may 

configure itself with a duplicate address before the other nodes can defend their IP 

addresses. The DAD timeout period should therefore be long enough to allow network 
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nodes to defend their IP addresses.  It is therefore imperative to investigate the average 

latency for the IP conflict message.  

3.3 Simulation Experiments on the Investigation of optimal DAD Configurations  

i. Experiment 1: Determining the optimal DAD timeout period  

The purpose of this experiment was to determine the optimal DAD timeout period by 

investigating the effect of different values of DAD timeout on latency, address uniqueness, 

and communication overhead. The nodes were spread over a rectangular 2000m x 2000m 

flat area for 6000 seconds of simulation time. The simulation parameters for this 

experiment are shown in Table 3.1.   

Table 3. 1 Simulation parameters for experiment I 

 Parameter  Environment 

Number of nodes 30, 60, 90, 120 

DAD timeout (seconds) 0.1,0.2, 0.4 , 0.6 … 2  

Node arrival rate 1 node / 30 seconds 

Address Range 8-bit (256) 

DAD trials 1 

Simulation time 6000 seconds 
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a. Effect of DAD timeout period on latency 

Figure 3.1 shows that the DAD timeout period is directly proportional to the length of the 

configuration process. This is due to the fact that configuration only takes place after the 

DAD timeout period has expired.  

 

Figure 3. 1: The effect of DAD timeout on latency   

b. Effect of DAD timeout on address uniqueness 

The results obtained (Figure 3.2) show that the numbers of address duplicates are affected 

by DAD timeout period. Low values of DAD timeout period result in more address 

duplicates than larger values of DAD timeout. This can be attributed to the fact that some 

nodes were not able to defend their IP addresses before the DAD timeout expired, leading 

to address duplicates. However, as the DAD timeout period was increased, nodes were able 

to defend their IP addresses; hence, address duplicates decreased. At DAD timeout of 1 
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second and above, the number of address duplicates did not change significantly except on 

the 120 node network. It can be concluded that at this value all nodes were able to defend 

their IP addresses although the same cannot be said for a 120 node network. Any value 

more than one second was therefore more than the required time for a node to defend its 

IP address.  

 

Figure 3. 2 The effect of DAD timeout on address duplicates 
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c. Effect of DAD timeout on communication overhead 

Figure 3.3 shows that communication overhead did not change significantly as the DAD 

timeout was varied. Interesting to note is the fact that at DAD timeout period of 1 second 

and above, communication overhead slightly increased. At the same value, Figure 3.2 also 

shows that address duplicates decreased. It can be concluded that the increase in 

communication overhead was due to the fact that nodes were able to defend their IP 

addresses, hence Figure 3.2 showed a decrease in address conflicts. From Figure 3.3, we 

can conclude that DAD timeout period does not have an effect on communication 

overhead.  

 

Figure 3. 3: The effect of DAD timeout on communication overhead 
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ii. Experiment 2: Determining time required for conflict message delivery  

The purpose of this experiment was to investigate the time that is required for an address 

conflict to reach the new node.  This thesis argues that the time required for an IP address 

conflict message to be delivered should be the minimum value that a DAD timeout should 

use. A node with a duplicate address was created and the time required to detect the 

duplicated address was measured. Network size was varied because different network sizes 

might result in different delivery times due to scalability issues. DAD timeout was set to a 

very high value to give enough time for the conflict message to reach the new node (5 

seconds).  

Table 3. 2 : Simulation parameters for experiment 2 

Parameter  Environment 

Number of nodes 30, 90, 120 

DAD timeout 5 seconds  

Address Range 8-bit (256) 

 

The results presented in Figure 3.4 show that the time taken for a conflict message to be 

delivered is at least 1 second. 120 nodes recorded slightly below 1.2 seconds in latency. 

These values help in determining the best value for DAD timeout period when designing 
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an address auto-configuration protocol. From the results we can conclude that using a value 

which is less than 1 second will result in some nodes not being able to defend their IP 

address. On the other hand, using a DAD timeout value that is more than 2 seconds will 

result in unnecessarily high latency.  

 

 

Figure 3. 4: Determining time required for conflict message delivery 

 

iii. Experiment 3: Determining the optimal number of DAD trials  

The purpose of this experiment was to determine the optimal number of DAD trails by 

investigating the effect of the number of DAD trials on the performance of DAD. Some 

DAD-based protocols use varying DAD trials per requested address before a new node can 

configure itself. After a new node generates an IP address it sends a DAD message with 
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the requested address and waits until the timeout period has expired. To guard against 

message losses the new node will send the DAD message again even if it did not receive a 

conflict message. The number of times that the message is broadcast varies with protocols. 

For example, in StrongDAD, three trials are used whilst in Wise-DAD only one trial is 

used.  

Table 3. 3 : Simulation parameters for experiment 3 

Parameter  Environment 

Number of nodes 30, 90, 120 

DAD timeout period 1 second  

DAD trials 1,2,3  

Address Range 8-bit (256) 

Simulation time 6000 seconds 

 

a. Effect of DAD trials on latency    

Figure 3.5 shows that the number of DAD trials and latency were seen to be proportional 

to each other. This is due to the fact that each additional trial brings more delay, hence the 

more the trials the more the latency.  
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Figure 3. 5: The effect of DAD trials on latency 

b. Effect of DAD trials on communication overhead   

The communication overhead generated by the configuration process increased with DAD 

trials. This is due to the fact that each DAD trial generates its own overhead. However, the 

rate of increase of communication overhead is proportional to the number of nodes. 
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Figure 3. 6: The effect of DAD trials on communication overhead 

 

c. Effect of DAD trials on address uniqueness    

The results shown in Figure 3.7 show that address duplicates were not significantly affected 

by the number of DAD trials. This can be attributed to the fact that the DAD timeout period 

of one second that was used was long enough for address conflicts to be reported as shown 

in Figure 3.2 ,hence the conclusion that this is the optimal DAD timeout period can be 

inferred.  The increase in communication overhead at a timeout of 1 sec that is shown in 

Figure 3.6 also suggests that more nodes were able to defend their IP addresses, hence 

generating more packets.  
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Figure 3. 7: The effect of DAD trials on address duplicates 

3.4 Chapter Summary  

Many address auto-configuration protocols utilizing DAD have been proposed in the 

literature. In fact, DAD has become a de facto building block for address auto-

configuration, but very little has been done to investigate the best way of setting DAD 

parameters. The experiments described in this chapter investigated the optimal 

configurations surrounding DAD. The investigation was an attempt to get the optimum 

DAD timeout period. The chapter also investigated the relationship between DAD timeout 

period and network size. The results obtained show that a DAD timeout period of 1 second 

is the optimal one. It is however imperative to test this timeout period on larger networks. 

DAD timeout period was found to affect both communication overhead and latency. The 

results described in this chapter were used to design the solution presented and evaluated 

in chapters 5 and 6 respectively.  
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Chapter 4 

Effect of Network Traffic and Mobility on Address Auto-configuration  

4.0 Introduction  

The unpredictable nature of wireless ad hoc networks makes it difficult to have protocols 

that work effectively all the time. The model proposed earlier in chapter 2 identified the 

need for the auto-configuration protocol to monitor network conditions. It is known that 

conditions such as node position, network topology, and mobility have been found to have 

an effect on routing protocol performance (Kumar et al., 2015; Sibeko et al., 2015; 

Varshney et al., 2016). It is, however, not clear how the same conditions affect the address 

auto-configuration process.  In order to build mechanisms that take into account network 

conditions, it is imperative to investigate how different network conditions affect the 

address auto-configuration process.  

Because one cannot predict network conditions, it is challenging to tailor-make protocols 

for them. However, there are basic conditions that can be assumed to exist in a network 

most of the time. It is imperative that address auto-configuration protocols are able to detect 

deviations from the normal and adapt accordingly.  While much effort has been put into 

the development of new IP address auto-configuration protocols for wireless ad hoc 

networks, very little has been done in testing how different network conditions affect the 

performance of these protocols. The dynamic change in node membership of ad hoc 
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networks means that more sophisticated protocols are desirable.  The model proposed in 

chapter 2 requires that nodes monitor their environment for any conditions that may affect 

the functioning of the IP address auto-configuration protocol. Of interest is the effect of 

network traffic and node mobility on address auto-configuration. Network traffic will 

always be present in any network, hence it is important to test how protocols perform under 

different network traffic conditions. There have been studies on the effect of different types 

of network traffic and node mobility on routing protocol performance (Al-Maashri & Ould-

Khaoua, 2006; Kumar et al., 2015; Rao & Singh, 2015; Tan & Kim, 2014; Thriveni et al., 

2013) but it seems no such work exists for address auto-configuration. The performance of 

an auto-configuration mechanism can be evaluated using a number of characteristics 

(Schoeneich & Sutkowski, 2016). 

This chapter, therefore, establishes the effects of network conditions on the address auto-

configuration protocol. The results of this investigation were used as a building block of 

the address auto-configuration solution based on the model proposed in chapter 2.   

The remainder of this chapter is organised as follows. In section 4.1, the design of DAD 

and evaluation criteria are given.   A description of the setup of the experiments conducted 

to test the effect of network traffic on DAD is presented in section 4.2. Section 4.3 presents 

the results of simulation experiments on the effect of mobility of DAD. Section 4.5 

concludes this chapter. 
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4.1 Experimental Setup: Effect of network traffic on Address Auto-configuration 

To test the effect of network traffic on address auto-configuration, an address auto-

configuration mechanism similar to the one used in chapter 3 was simulated. For the 

purposes of the experiments, a DAD procedure similar to the one proposed in Perkins, 

(2001) was used. Slight modifications were made. To guard against two nodes joining at 

the same time and requesting for the same IP address, the concept of initiator and requestor 

was used.  Details of the procedure are explained in section 3.2. In the simulation 

experiments conducted, the following performance metrics were utilised for the evaluation 

of DAD. 

a) Latency  

This refers to the average time taken for a node to be assigned an IP address. The address 

assignment process must be done in as short a time as possible. The literature has shown 

that mobility and different types of traffic affect routing (Nitnaware, 2016).  Latency is one 

of the metrics that are negatively affected by different network conditions (Wang et al., 

2015). It is therefore imperative to determine the effects of network traffic and mobility on 

latency during address auto-configuration.   

b) Communication Overhead 

In a wireless ad hoc network, the number of control packets must be limited. This is mainly 

due to the bandwidth limitations that characterise the wireless ad hoc environment.  In the 
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experiments, network traffic generated by the nodes was not classified as communication 

overhead.   

c) Address duplicates  

The literature has shown that node mobility in wireless ad hoc networks affects packet 

delivery ratio (Pondwal & Saini, 2016). Poor delivery of address auto-configuration 

packets has also been found to increase the number of duplicate addresses. It is expected 

of an address auto-configuration protocol to minimise the probability of having more than 

one node using the same IP address. In this chapter, the idea was to determine if the network 

traffic and node mobility have any effect on the number of duplicate addresses recorded in 

the network.  

4.2 Simulation Results: Effect of network traffic on Address Auto-configuration 

This sub-section presents the results of the investigation of the effects of network traffic on 

Duplicate Address Detection.  Network size and the type of network traffic were varied to 

gain a comprehensive insight into the effect of network traffic on address auto-

configuration. Address uniqueness, communication overhead, and latency were used for 

analysis. In the simulation, an evaluation of the performance of the DAD procedure under 

three different types of network traffic, namely, Pareto, Exponential, and Constant Bit Rate 

(CBR), was conducted.   
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a) The effect of network traffic on DAD  

The purpose of this experiment was to investigate the effect of network traffic on duplicate 

address detection on different network sizes.  In each case, 20 nodes were introduced into 

an already existing network that had nodes already communicating. No address duplicates 

existed before the new nodes were introduced. Network traffic following the CBR Model 

was introduced prior to any new nodes joining the network. Packets size was set at 64 bytes 

generated at a constant rate of 2 kb/s. The packet inter-arrival time was set at 600ms.  The 

holding time of the model follows a Pareto distribution with a mean of 300s and a shape 

parameter of 2.5. Configuration delay, communication overhead, and the number of 

address conflicts were recorded for analysis. 

i. Effect of Network size on address uniqueness 

Figure 4.1 shows the number of address duplicates against the number of nodes. When the 

network had no traffic the number of address duplicates was lower than in the presence of 

network traffic. As the number of nodes increases, the difference between the duplicates 

recorded in the two experiments increases. The number of duplicates recorded in the 

presence of network traffic increases at a faster rate than in the absence of network traffic. 

This can be attributed to the fact that network traffic may have negatively affected the 

delivery of address allocation packets before the expiry of DAD. If address allocation 

packets are not delivered address duplicates are bound to occur since nodes will not be able 

to successfully defend their IP addresses.  In StrongDAD, once the DAD timeout period 

expires, the requested IP address is configured.  When there is network traffic the DAD 
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timeout might expire before an address allocation packet reporting an address conflict is 

received.  

 

 

Figure 4. 1: Effect of Network size on address uniqueness 

ii. Effect of Network size on communication overhead  

Figure 4.2 shows the number of packet transmissions according to the number of nodes. 

The result shows that the number of packets is in proportion to the number of nodes in both 

experiments. When traffic was introduced, the number of packets increased slightly. The 

difference in the communication overhead observed for StrongDAD under the two 

conditions is not significant. This is due to the fact that DAD is time- based and hence 

configuration depends mainly on time not the number of packets.  
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Figure 4. 2: Effect of Network size on communication overhead 

iii. Effect of Network size on latency  

The results shown in Figure 4.3 illustrate the effect of network size on latency. In both 

experiments address allocation latency increased proportionally to network size. This was 

due to the fact that network traffic increased with network size, thereby affecting the 

delivery of address allocation packets. Increase in traffic caused an increase in latency of 

address allocation packets. When network traffic was introduced, the latency slightly 

increased for all network sizes. The DAD timeout period was set at 1.5 seconds and each 

new node performed two DAD trials. This resulted in not more than 3 seconds latency 

value for each address allocation operation. Any value above the threshold of 3 seconds 

contains a delay component incurred while delivering address allocation packets. 
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Figure 4. 3: Effect of Network size on latency 

b) The Effect of Type of Network Traffic on Address Auto-configuration  

This set of experiments investigates the performance of DAD under three traffic models, 

namely CBR, Pareto, and Exponential. These were generated using the tool cbrgen.tcl. In 

the experiments, a total of 100 randomly placed and preconfigured nodes were used before 

new 30 nodes were introduced into the network. The new nodes were introduced at the rate 

of 1 node every 10 seconds.  

CBR Traffic Model: Packets size was set to 64 bytes generated at a constant rate of 2 kb/s. 

The packet inter-arrival time was set at 600ms.  The holding time of the model follows a 

Pareto distribution with a mean of 300s and a shape parameter of 2.5. 
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Exponential Traffic Model: During the ON period, the traffic is generated at 2 kb/s. The 

holding time follows an exponential distribution with a mean of 300s. 

Pareto Traffic Model: The ON/OFF periods followed a Pareto distribution, where traffic 

was generated at 2 kb/s during ON periods. Average ON/OFF periods were 315ms and 

325ms respectively. The holding time followed a Pareto distribution with a mean of 300s 

and a shape parameter of 2.5.  

 

i. Effect of traffic type on address uniqueness 

Figure 4.4 shows address duplicates recorded in the four experiments. When the network 

was subjected to Pareto traffic, address duplicates were slightly higher than in the other 

three experiments. In Figure 4.5, Pareto recorded lower communication overhead than the 

other traffic types. Low communication overhead was a result of nodes being able to defend 

their IP addresses, hence the high address conflicts recorded in Figure 4.4.   
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Figure 4. 4: Effect of traffic type on address uniqueness 

ii. Effect of traffic type on communication overhead  

The amount of communication overhead recorded when the network was subjected to CBR 

traffic was higher than in the other three experiments. CBR generates traffic at a constant 

rate. This resulted in more address duplicate notification packets being delivered, hence 

the address allocation process was started all over again (causing more traffic). On the other 

hand, the delivery of address conflict messages resulted in far fewer address duplicates for 

CBR. Parreto, which recorded less communication overhead, yielded more address 

duplicates than the other three experiments. In other words, fewer address allocation 

packets might have caused addresses to be duplicated. 
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Figure 4. 5: Effect of traffic type on communication overhead 

iii. Effect of traffic type on latency   

Address allocation latency was not significantly affected by traffic type. The network with 

exponential traffic recorded slightly more latency that the other three experiments. As 

shown in Figure 4.6, when no network traffic was present, the latency was slightly lower 

than in the other three scenarios.  

 

 

 

 

 

 

Figure 4. 6: Effect of traffic type on latency 
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4.2 Experimental Setup: Effect of Node Mobility on Address Auto-configuration  

In this sub-section, the effects of node mobility on Address auto-configuration were 

investigated. The mobility of the nodes affects the number of average connected paths, 

which in turn affects the delivery of data packets in the network, (Alvarez et al., 2016; 

Divecha et al.,2007).  In the simulation experiments an evaluation of the performance of 

StrongDAD under the Random Way point Mobility model was done. In the Random 

Waypoint Model, a node randomly chooses destination coordinates and starts moving 

towards the destination at a certain speed chosen at random. The speed is chosen from a 

uniform distribution [0,V_max], where V_max is the maximum speed for every mobile 

node. After reaching the destination, the node stops for a duration defined by the 'pause 

time' parameter. After this duration, it again chooses another destination at random and 

repeats the whole process.  

The experiments were conducted in Network Simulator-2 version 3.1 running on the Linux 

operating system Ubuntu Linux 14.04. CMU extension of ns-2 was part of the 

implementation to support ad hoc networks. Table 1 below shows the other simulation 

parameters used in the experiment. The aim of this experiment was to show the effects of 

mobility on DAD performance using the Random Waypoint Model.  
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Table 4. 1: Experiment parameters used in Simulation 

Parameters Environment 

Number of nodes 30, 40, 50, … 150 

Area 1000m x 1000m 

Simulation time 6000 seconds 

Node arrival rate 1 node / 25 seconds 

Mobility Model Random Waypoint mobility model 

 

 

 

4.3 Simulation Results:  Effect of Mobility on Address Auto-configuration  

This section presents the experimental results obtained from the analysis of the effect of 

node mobility on Address Allocation using StrongDAD.  

(a) The Effect of Mobility on Communication overhead 

Figure 4.7 presents a graph of the impact mobility has on communication overhead during 

address auto- configuration. The results showed that as the network size increased 
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communication overhead also increased. Once mobility was introduced there was a rapid 

increase in communication overhead, hence the performance of IP auto- configuration 

protocol was greatly affected. The increase in the overhead resulted in a high rate of lost 

communication packets as well as an increase in duplicate addresses and conflicts.  

 

Figure 4. 7: The effect of mobility on communication overhead 

(b) Experiment 2: The Effect of Mobility on Address Uniqueness 

Figure 4.8 shows the number of address duplicates against the network size. From the 

results, it was clear that network size had a significant impact on number of address 

duplicates as they increased rapidly with network size. When mobility was introduced, a 

much higher number of address duplicates was recorded in all the experiments conducted. 

Mobility of nodes resulted in more packets being lost, hence some address allocation 

packets might have been lost. If address allocation packets were lost, then nodes may not 
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have received address conflict messages, resulting in duplicate addresses. It is 

recommended to consider mobility when address allocation takes place. Protocols should 

be able to handle problems emanating from mobility.  

 

 

 

Figure 4. 8: Effect of mobility on address duplicates 

(c) Experiment 3: The Effect of Mobility on Latency 

The graph in Figure 4.9 shows latency against network size. All experiments show that 

latency gradually increases with network size. The introduction of mobility gave rise to a 

rapid increase in latency during address auto- configuration. This pointed to an increase in 

delays and loss of communication packets in the network. Furthermore, as shown in Figure 
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4.7, the greater the communication overhead, the greater the loss and delays in the network, 

thereby increasing latency. This showed that mobility had a negative impact on the 

effectiveness of any auto- configuration protocol. 

 

 

Figure 4.9: Effect of mobility of address latency 

 

4.4 Chapter Summary 

Address auto-configuration in wireless ad hoc networks has received a lot of attention in 

recent years. Many solutions have been proposed and tested. However, little has been done 

on testing how different network conditions affect the performance of the proposed 

algorithm. DAD is the cornerstone of many address allocation solutions that follow the 
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stateless paradigm. This chapter presented experiments to assess the effect of network 

mobility and traffic on Duplicate Address Detection (DAD) in wireless ad hoc networks. 

In the experiments, it was observed that the presence of network traffic affects the 

performance of the address allocation protocol. The introduction of network traffic resulted 

in the auto-configuration protocol generating more communication overhead and more 

address conflicts. Latency also increased due to network traffic. This observation calls for 

further investigation into the improvement of address allocation protocols.   

Node Mobility was also found to have different effects on the address auto-configuration 

mechanism.  This is chapter, we considered scenarios where nodes were stationary and 

compared them with scenarios where mobility was present. Mobility is a key feature for 

MANETs, hence it is imperative to improve current auto-configuration mechanisms to 

include adaptive features which can cater for various changes in networks due to node 

mobility. The effects of mobility call for better design of address auto-configuration 

protocols. An outline of the design criteria to consider when designing auto-configuration 

that can work effectively if the nodes are mobile is given below.  

Initiator / requestor moving:  If a new node requests for an address using an initiator, and 

the initiator moves before the completion of the address auto-configuration process, this 

may result in the new node having to wait indefinitely.  Address auto-configuration 

protocols must be able to consider a case where either the requestor or the initiator moves 

during the address auto-configuration process.  
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Change in network topology: Nodes in an ad hoc network are highly mobile, meaning that 

they can leave and join the network at any time, and at any position. This results in rapid 

changes in network topology and affects the operations of the DAD protocol. Networks 

can merge or split, thereby affecting the topology and packet delivery, state information 

updates and the auto configuration process.  

Message losses: The address auto-configuration procedure requires that nodes exchange 

messages. For the address allocation procedure to work properly, all control packets must 

be delivered to the intended destination. Message delays and losses result in address 

duplicates. It is therefore imperative to guarantee the delivery of all address allocation 

packets.  
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Chapter 5 

IP address Auto-Configuration Algorithms for Wireless Ad hoc 

Networks  

5.0 Introduction 

This chapter presents an auto-configuration protocol that is based on the theory of swam 

intelligence that has made rapid progress in the last few years. In-order to provide relevant 

building blocks for such a solution, further investigations were conducted in chapter 3 and 

4. From  the results obtained in Chapter 3 we manage to ascertain best setting for DAD 

timeout period, whilst the results from the experiments conducted in chapter 4 were also 

used to aid the protocol under any network traffic and node mobility. In the approach 

proposed in this chapter, we introduce state information maintenance which is passively 

collected but not actively maintained.  In swam systems, this is done to improve cohesion 

and alignment of the system components. In address auto-configuration, on the other hand, 

this is done to reduce communication overhead generated by the protocol.  In literature, 

passively collecting state information has been found to reduce the number of DAD trials, 

thereby reducing latency and communication overhead. Reducing communication 

overhead inherently conserves bandwidth, thereby improving on QoS of the whole 

network.   
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Earlier in this work we identified the need to design protocols that can operate under 

various network conditions, considering that network conditions will, among other things, 

help in reducing communication overhead and address duplicates. Reducing 

communication overhead and improving on address uniqueness will aid higher level 

protocols to function better, thereby improving QoS provisioning. However, the previous 

chapters also concluded that it is challenging to build adaptation components without 

knowing how different network conditions affect the functioning of the address auto-

configuration protocols. Chapters 3 and 4 presented experiments to determine the optimal 

DAD configurations and the effect of network conditions on the address allocation process 

respectively. The results reported in the two chapters were then used in the design of the 

auto-configuration algorithms presented in this chapter.  

This chapter is structured as follows. Section 5.1 outlines the design system architecture of 

the proposed protocol. A detailed design of this protocol is covered in sections 5.2 to 

section 5.6. Section 5.7 concludes the chapter.  
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5.1 The Dynamic DAD Address Allocation Protocol – System Architecture  

 In this section we present D-DAD, an adaptive address allocation protocol. This protocol 

is based on the model earlier formulated in chapter 2 and also on the investigations carried 

out in chapters 3 and 4. In these chapters we investigated how network parameters such as 

traffic affect address allocation protocols. StrongDAD was used as a test case because the 

protocol proposed in this chapter is based on StrongDAD. The investigation carried out in 

chapter 3 concluded that the value of DAD timeout period should be between 1 second and 

1.4 seconds and must be decided at runtime, contrary to existing proposals in the literature.  

Furthermore, the investigation presented in chapter 4 reveals the importance of considering 

the amount and type of traffic flowing in the network when soliciting for an IP address. In 

this work, we harness all this knowledge and design an IP address auto-configuration 

protocol that is more robust.   

The D-DAD protocol is based on the following three key guidelines proposed in chapter 

2. (From these characteristics, we developed the building blocks of the proposed 

algorithms. The general architecture of the proposed algorithm is given in Figure 5.1 

below).  

(a) Addresses should be distributed to all the nodes: To distribute addresses, nodes 

passively collect information about their neighborhood. This information is propagated 

from protocol control messages. No central management of IP addresses is used. Any 

node in the network should be able to allocate IP addresses to new nodes.  



 

 

90 

 

(b) State information must not be explicitly synchronised: State information is propagated 

using routing protocol packets and hello messages. No network- wide broadcast is used. 

Nodes passively collect state information packets. This method is adopted  from work 

described in Wise-DAD (Mutanga et al., 2008) 

(c) The protocol should adapt to changes: To adapt to network changes, two components 

are proposed, namely, the monitoring and adaptation mechanisms. The solution has 

algorithms that monitor the following:  

i. network merging & partitioning 

ii. network size  

iii. network traffic volume 

iv. mobility  

Each of the above network conditions is passively monitored by the protocol. Each 

condition calls for different adjustments to the auto-configuration procedure.  In the 

sub-sections below, details of how the proposed protocol configures IP addresses, 

adapt to changes and monitors network accordingly are given.   
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Figure 5. 1 D-DAD address auto-configuration protocol 
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The problem of IP address auto-configuration and maintenance can be divided according 

to the following functions:  

(a) Network formation: This function is responsible for the formation of the network. It 

also handles how the nodes decide who chooses network parameters such as the network 

identifier, DAD timeout period, and the number of DAD trials.  

(b) Node admission: This function deals with how nodes join the network, i.e. how new 

nodes acquire IP addresses. The problem of how the current membership decide what 

parameters to use when a new node joins the network is also addressed.  

(c) Node departure: This function is responsible for determining how addresses for nodes 

which are no longer part of the network are reclaimed and reused.  

(d) Network Merging: This function is responsible for handling the problem of network 

merging.   

(e) Network partitioning: This function handles problems that arise as a result of network 

partitioning.   
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5.2 Network formation 

A node that is not configured and wishes to join the network periodically broadcasts a 

‘request to join’ message and sets a timer (Join Timer). The request to join message 

contains the node’s temporary Host Identity number (HID). The message is sent only to 

one- hop neighbours and cannot be rebroadcast. When the Join timer expires, the node will 

rebroadcast the message and reset the timer again until at least one of the immediate 

neighbouring nodes replies. A network comes into existence if an unconfigured node 

receives a request to join from another unconfigured node.   

Upon receiving a request to join message, an unconfigured node checks the HID 

encapsulated in the message and compares it with its own.  The node with the lowest HID 

becomes a temporary leader and proceeds by choosing the Network identifier (NID) and 

sends it to the other node. The leader also sends an IP address that it generates at random 

from a range of valid IP addresses for the network. The second node will also choose its 

own IP address and notify the other node of its chosen IP address. From that point onwards, 

a network of two nodes starts to exist. New nodes can then join the network by sending a 

request to join the network to any of the two configured nodes.  
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method receive-Packet()
Begin
           if (packet_type = REQUEST_TO_JOIN) then 

Begin 
    If (configured = FALSE) then 
    Begin 

If (this.HID <message_HID) then
Begin
      GenerateNID();
      Send-Message(AddressReply);
End

      End
     Else If (configured = TRUE) then

Send-Message(confirmation);
End

        Else call appropriate method;
End

 

Figure 5.2: Processing a request to join message 

 

 

 5.3 Node Admission  

A configured node receiving a request to join message replies with a confirmation message 

to the sender. The confirmation message signifies that the configured node can act as an 

initiator for the new node. If a new node receives more than one confirmation message, it 

takes the first one and ignores the rest. The new node then replies with an initiator-selection 

message as a way of indicating the chosen initiator.  This is a way of making sure that only 

one node can act as an initiator for a new node. A configured node cannot act as an initiator 

for more than one requestor.  
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The initiators send network parameters that allow the new node to generate its temporary 

address and request for a permanent address. The network parameters include: (1) average 

node density; (2) network size; (3) traffic type and volume; (4) merging and partitioning 

status of the network; (5) Address allocation table. This information is used by the new 

node when sending a request for an IP address. The new node or the initiator generates a 

random IP address and checks if it is in the allocation table received from an initiator before 

it starts the negotiation process.  

If the address is in the allocation table it generates another one, otherwise it will broadcast 

an address request (AREQ) message and set a broadcast timer (DAD timeout). The 

duration of the DAD timeout period depends on the network conditions.  According to the 

earlier investigation presented in chapter 3, this value of DAD timeout period is the 

maximum time. Any other duration longer than that will result in unnecessary latency 

whilst anything shorter may result in address conflicts.   

If the broadcast timer expires (after the calculated DAD value) without any node defending 

the requested IP address, the requested address is assumed to be free. The initiator 

completes the address allocation process sending an address reply (AREP) message to the 

new node.   

On receiving an address request message other network nodes first check if the message is 

new or not before checking if the requested IP address has been assigned to them. A 

message sequence number is used to determine if a message is new or not. We adopted the 

use of message sequence numbers from routing protocols such as DSDV. If the requested 
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address is found to be in use, an IP conflict message is sent to the initiator and the process 

is repeated. If the message is not new, it is discarded, otherwise it will be rebroadcast until 

it reaches all network nodes.   

Before the message is rebroadcast, the recipient appends its own IP address to the message. 

As the message is passed from one node to another, a reverse path to the initiator will be 

contained in the packet. This conserves bandwidth by enabling the IP conflict message to 

be unicast back to the initiator. When nodes receive an AREQ, they also update their 

allocation tables using IP addresses in the reverse path list before rebroadcasting the 

AREQ. This allows for passively collecting state information without adding 

communication overhead.  

method receive-Packet()
Begin

If (packet_type NOT AREQ) then
Call appropriate method
Else   

Begin 
    If (messageNEW= FALSE) then 

Drop-Packet
Else 

if (this.IP-Address  != RequestedIP)
Begin

AppendIP-Address()
UpdateAllocationTable()
UpdateMessage-Segquence-Number ()
If this.NodeStatus = Mobile
Begin

AppendMobility Status
End
Send-Message(AREQ)

End 
If (this.IP-Address == RequestedIP)
Begin

Send-Message(ConflictMessage); 
End

End
End

#  

Figure 5.3: Processing Address Request packet 
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(a) Handling mobile Nodes: Propagation of the IP conflict message  

One network condition that was considered in this work is mobility. During the auto-

configuration process, some vital nodes may move, hence affecting the delivery of address 

auto-configuration packets. Earlier, in chapter 4, an investigation of the effect of mobility 

on the address auto-configuration protocol was conducted. The investigation revealed that 

IP address conflict messages are lost due to mobility of the nodes involved in the address 

assignment process. The impact of mobility was reported in detail in Chapter 4.  In this 

sub-section, a solution to that problem is proposed.  There are two cases that were 

considered in this thesis:  

i. Mobile requestor or initiator: In this work, we propose that, when requesting for an 

IP address, a node should indicate its mobility status. This message is passed on to 

the initiator, which subsequently passes it to the rest on the network during the DAD 

process.  If a requestor’s status is recorded as a mobile node, the IP address conflict 

is not sent in unicast. The message is broadcast in the same fashion as the IP address 

request message is propagated in the network. This process guarantees the 

successful delivery of an IP address conflict message even when nodes are mobile.  

In this case, the address auto-configuration does not use an initiator. The initiator 

only sends network parameters that the new node uses to perform DAD.  

ii. Mobile intermediate node:   During the address solicitation process, an IP address 

request message may pass via a mobile node. Instead of just appending its IP address 
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to the message, the intermediate node flags the message with mobility status 

information. If a node wants to defend its IP address, it chooses the path that does 

not have a mobile node. This is possible because an IP request message may take 

different routes to reach its destination. If all routes have at least one mobile node, 

the IP conflict message is broadcast instead of unicast.   

 

(b) Handling network traffic volume or traffic type  

The volume and type of network traffic have an effect on the performance of the address 

auto-configuration protocol. In the previous chapter, we investigated the impact that 

network traffic has on the address allocation process and concluded that there is a need to 

take network traffic into account when designing address allocation solutions.  

Larger and more exponential volumes of traffic affect the address auto-configuration 

process adversely, hence the design of address auto-configuration protocols must take this 

into account. In the experiments reported in the previous chapter, we noted that IP address 

conflicts sent during the configuration procedure were lost. To minimise the effect of the 

message losses, we propose that the number of DAD trials be increased. By default, a new 

node performs DAD only once but may perform it twice if the volume of traffic reaches a 

certain threshold.  However, we did not model traffic volumes but simply recorded the 

traffic volumes from both forwarded and sent packets.  
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method receive-Packet
Begin
        If (packet_type = confirmation && MobileStatus == 0) then
         Begin
                

While Timer NOT Expired
Begin

if initiator mobile.status  = 1
                Begin

StoreInitiator;
Receive-Packet()
End

End
If All Initiators = Mobile
Begin

Choose First Initiator;
DAD_Status = Broadcast;
DAD_Trails  = 1;
GenerateIP()
Send-Packet(AREQ)

End
Else 

Begin
Choose Stationary Initiator
Send-Packet(initiator-selection)

End

If network  = High
DAD_Trials = 2 ; 
Else 
DAD_Trials  = 1; 

                  
         End
         Else

If (MobileStatus  == 1)
Begin

DAD_Status = Broadcast;
DAD_Trails  = 1;
GenerateIP()
Send-Packet(AREQ)

End

End

 

 

Figure 5.4: Unconfigured node processing a confirmation packet 
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 5.4 Node departure  

Node departures can either be graceful or abrupt. With graceful node departures, the node 

has time to shut down and inform its network peers, whereas abrupt departures may be 

caused by factors such as mobility and power problems. If a node departs gracefully, it 

notifies its peers by broadcasting a goodbye message.  

All nodes that receive the goodbye message erase the departing node’s IP address from 

their address allocation tables. This procedure enables the re-use of the addresses 

previously allocated to old nodes. Before a goodbye message is processed nodes first check 

whether the message is new or not. If it is old, it is discarded otherwise it will be broadcast. 

When nodes receive a goodbye message, they also update their state information using the 

IP address allocation table contained within the data packet.  

 

method receive-Packet 
Begin 
      If(packet_type = Departure)then
      Begin 
               If(Departure_message is old)then
                Discard message 
                Else
                      Begin 

If(Departing Node IP_addr in MyAllocationTable)then
UpdateAllocationTable

                      End
       End
      Else call appropriate handler
End

 

Figure 5.5: Processing of goodbye message 
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In the case of an abrupt node departure, the node does not have time to inform its peers of 

its departure. If a node does not take part in any IP address assignment process it is assumed 

to have left the network and its IP address is eventually deleted from all address allocation 

tables. If the address allocation table reaches a certain level all passive nodes are deleted. 

The deleted IP addresses will be tried in subsequent address assignment procedures. If the 

node is still in the network it responds to address requests by sending a conflict message. 

This is to guard against allocating an address that is still in use and thereby causing address 

conflicts.  

 

5.5 Detection of Network Partitions  

In the proposed approach, nodes monitor not only their neighborhood but the whole 

network for signs of network partitioning.  This thesis argues that monitoring the 

neighborhood alone is not sufficient to detect a network partition. Mobility and other 

related issues may cause a sudden change in neighborhood without necessarily causing 

network partitioning. Temporary disconnection must not be treated as network partitioning, 

hence the need to distinguish between the two. The challenge, therefore, is how can nodes 

monitor the whole network without compromising on the bandwidth? 

In this approach, network merging is detected by a set of nodes, K. All nodes in the network 

are connected directly or indirectly to at least one node in the set K. Any node should be, 

at most, two hops away from at least one node in K. In other words, a node should either 
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be connected to a node in set K or one of its neighbours should have a direct connection 

with any node in K. To make sure that each node is connected to K, when nodes join the 

network, they check if any member of K exists in their neighborhood. If not, they make 

themselves part of K and update the whole network by broadcasting a message. This 

method ensures that the members of K are evenly distributed in the network.  

Network partitioning is detected if a certain number of nodes in K are no longer reachable. 

Nodes constantly check for any changes in the membership of K. If only a small portion 

of K is not reachable the network does not change its network ID but rather puts all nodes 

on high alert. On high alert, nodes constantly scan for the missing part of the network and, 

if the time W has not expired, the nodes do not allocate addresses that belong to the other 

network. If the threshold T (part of K) is missing, the network partition is classified as 

temporary until a time period W has passed. If the time W has not expired, the nodes do 

not allocate addresses that belong to the other network.  This is to allow for the two 

networks to seamlessly merge at some time. If after a certain period W the network has not 

been restored the network is then classified as being partitioned and a new network ID is 

generated. For the purposes of simulation, the value of W was set to 500 seconds. Also, for 

the purposes of the simulations, the value of the threshold T was set as half of set K. It is, 

however, imperative that an optimum value for W and T be established. Network dynamics 

and usage scenarios of the network may affect the choice of these values.  
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5.6 Detecting and managing network merging 

Two cases of merging networks are considered in this work. First, we consider merging of 

networks that were previously one network. After network partition, the networks may 

have classified the partitioning as either temporary or permanent. If the partitioning was 

classified as permanent the protocol treats the network merger as if the two were 

independently configured.  On the other hand, if the network partitioning was classified as 

temporary, the protocol handles this occurrence differently.  

 

If the two networks have been part of the same network, their network ID will be the same. 

As described above, if a network partitions into two, the partitioning is regarded as 

temporary until a certain time W has expired. If the two networks merge again before the 

expiry of time W, network merging can take place without change of IP addresses. This is 

possible because, if the time W has not expired, the nodes do not allocate addresses that 

belong to the other network, hence there is no need for address changes after the two 

networks come into contact. Once the two networks merge, all nodes remove the status of 

temporary partition from their entries. The set K is updated and the information is 

propagated to all the network nodes using a broadcast message.  

 

Independently configured networks may come into each other’s transmission range and 

network merging can occur. We assume that the address allocation table is distributed to 

all the nodes. We also assume the existence of a mechanism to synchronise the tables 
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periodically. This, however, is not part of the network merging solution but part of the 

initial configuration mechanisms for new nodes. The algorithms that handle both the 

distribution and synchronisation of IP address allocation tables are explained in the 

previous sections.   

Once network merging has been detected, IP address conflicts are detected by exchanging 

the address allocation tables. The merging networks exchange their address allocation 

tables using a network- wide broadcast. The node that detects the network merging initiates 

this process.  

If there are two nodes with the same IP address, the nodes that come from a network with 

fewer nodes relinquish their address and acquire a new one. From the address allocation 

tables an estimate of the network size of each of the merging networks can be obtained. 

Nodes can only change their network IDs once the IP address conflicts are resolved. The 

nodes whose addresses are not affected by the network merging change only their network 

IDs.  
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5.7 Chapter Summary  

This chapter presented an address auto-configuration protocol based on the model 

presented in Chapter 2. The auto-configuration protocol proposed in this chapter adapts to 

node mobility, traffic and network size. We argue that the unpredictable nature of the 

wireless ad hoc networking environment presents a number of challenges. D-DAD follows 

the stateless address auto-configuration paradigm with a passively synchronised address 

allocation to reduce the number of DAD trials. The protocol proposed in this thesis consists 

of four main components, namely, network formation, node admission, network merging, 

and node departure.  The following chapter evaluates the proposed algorithms through 

simulation experiments conducted in the NS2 simulator. 
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Chapter 6 

Performance Evaluation of the D-DAD protocol 

6.0 Introduction 

In the previous chapter, we presented the D-DAD IP address auto-configuration protocol. 

which is based on the adaptive model proposed in Chapter 2. As a way of testing the 

building components of the proposed model, this chapter presents an evaluation of the 

proposed protocol. In this chapter, we demonstrate the effectiveness of the swam intelligent 

based paradigm in improving the effectiveness of address auto-configuration.  

Due to the building components of swam systems D-DAD was engineered around the 

stateless paradigm with global state upkeep which reduced the number of DAD trials.  The 

experiments considered a wireless ad hoc network with no association with the outside 

world like the Internet. It was also assumed that the range of valid IP addresses used in the 

network is known ahead of time. Only for the purpose of delineation, we considered the 

network to be a private IP Version 4 network structure capable of using either 8 bits or 16 

bits for node addresses whilst the rest of the bits are held for the network identifier. In any 

case, the proposed model is just as pertinent to networks utilising the IPv6 address space.  
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The simulation environment and parameters are described in section 6.2. Various 

simulation parameters such as the number of nodes, node arrival rate, simulation area, and 

node density were varied in order to gain a comprehensive analysis. In Section 6.3 we 

present the experiments performed and an analysis of the results that were obtained. Each 

experiment was performed ten times and the average values were used for analysis. We 

compared the proposed protocol against the Wise-DAD (Mutanga et al., 2008) with 

StrongDAD protocol (Perkins et al., 2001). In Section 6.4 we present the conclusion of this 

chapter.  The architectural details of both StrongDAD and Wise-DAD are given in chapter 

2. StrongDAD is a purely time-based stateless auto-configuration protocol whilst the Wise-

DAD protocol utilises DAD with a passively synchronised address allocation table. The 

proposed protocol, D-DAD, is based on the notion of StrongDAD whilst it adopts the use 

of passively synchronised state information such as the one proposed in Wise-DAD. It is 

for this reason that D-DAD is compared with the two protocols.  

 The three protocols were simulated in version 2.31 of the Network Simulator-2 tool 

running on the Ubuntu Linux 14.04 operating system with CMU extension of ns-2 to 

support ad hoc networks. Like the previous experiments in chapters 3 and 4, the following 

metrics were chosen to evaluate the relative performances of all three protocols: Latency, 

Communication Overhead, Address conflicts.   

In section 6.1 we present experiments conducted to determine the effect of network size on 

the proposed protocol in order to test the scalability of the proposed protocol. Section 6.2 

establishes the ability of the proposed protocol to handle high rates of node arrival, whilst 
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the effect of node density on D-DAD is investigated in experiments presented in section 

6.3. Results obtained show that the swam inspired protocol is able maintain the desired 

global goal by adapting and re-organising when network conditions change. Address 

conflicts and latency was not adversely affected by drastic changes in network conditions. 

Section 6.4 presents the results of the investigation of the effect of network traffic and 

volume on the D-DAD protocol, whilst section 6.5 presents experiments conducted to 

investigate the effect of node mobility on the proposed protocol.   From section 6.6 to 

section 6.9, results on the performance of the network merging and partitioning algorithms 

are presented.  

 

 

6.1 Experimental Setup 

D-DAD was simulated in version 2.31 of the Network Simulator-2  tool running on Ubuntu 

Linux  17.04 operating system with CMU extension of ns-2 to support ad-hoc networks. 

Figure 6.1 gives a diagrammatic representation of the simulation model. NS2 consists of 

two key languages: C++ and Object-oriented Tool Command Language (OTcl). While the 

C++ defines the internal mechanism (i.e., a backend) of the simulation objects, the OTcl 

sets up simulation by assembling and configuring the objects as well as scheduling discrete 

events. The C++ and the OTcl are linked together using TclCL. The D-DAD protocol was 

implemented in C++ and OTcl scripts to test the protocol were developed in the upper 

layer. OTcl scripts enabled us to create different network conditions to test the protocol.  
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Figure 6.1 : Simulation model 

 

In the this subsection, we describe the models of the various layers of the IEEE 802.11 

protocol stack that were used in this simulation.  

vi. Routing Protocol 

Nodes were configured to use the Dynamic Source Routing (DSR) protocol. However, the 

protocols is independent from the routing protocol used. We did not perform simulations 

in which nodes transfer data coming from the application layer because we focused our 

attention on assessing the traffic generated by the two protocols independently from upper 

layers. D-DAD has no assumptions on the underlying routing protocols, because both 

multi-hop broadcast and one-hop broadcast were implemented without the aid of routing 

protocols. To verify the correctness of broadcast (both multi-hop and one-hop) 

implementation, we first ran the simulation for 3, 5 and 10 nodes separately. The area size 



 

 

110 

 

was chosen to make all the nodes connected in the topology. The results show that both 

multi-hop and one-hop broadcast were correctly implemented. 

 

vii. Physical Data Link Layer Model 

Nodes were configured to use omni-directional antennas. An omni-directional antenna 

radiates or receives equally well in all directions. It is also called the "non-directional" 

antenna because it does not favour any particular direction. This type of pattern is 

commonly associated with verticals, ground planes and other antenna types in which the 

radiator element is vertical with respect to the Earth's surface. For transmitters, the radiated 

signal has the same strength in all directions. This pattern is useful for broadcasting a signal 

to all directions or when listening for signals from all directions.  

viii. Medium Access Control 

The link layer model used in the simulation is based on the IEEE 802.11 MAC protocol. 

The 802.11 family uses a MAC layer known as CSMA/CA (Carrier Sense Multiple 

Access/Collision Avoidance). CSMA/CA is, like all Ethernet protocols, peer-to-peer i.e. 

there is no requirement for a central node. In CSMA/CA a wireless node that wants to 

transmit data packets performs the following sequence of steps: 

i. Listen on the desired channel.  

ii. If channel is idle (no active transmitters) it sends a packet.  
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iii. If channel is busy the node waits until transmission stops then waits again for a 

further contention period. The Contention period is a random period after every 

transmission and statistically allows every node equal access to the media.   

iv. If the channel is still idle at the end of the contention period the node transmits its 

packet otherwise it repeats the previous step until it senses a free channel.  

ix. Packet Buffering Model 

Every wireless multi-hop network node in the simulation used a buffer for both data and 

control packets that are awaiting transmission. The buffer was able to hold not more that 

50 packets and implemented the drop-tail queue management algorithm. In this type of 

buffer, packets are transmitted on the first come first served basis.  If the buffer is full, new 

packets are dropped.  

6.2 Effect of network size on D-DAD Protocol  

The purpose of this experiment was to test the scalability of the proposed protocol by 

investigating its performance as the network size increases. At the beginning of the 

simulation, we configured a single node to allow for the other nodes to join. The 

coordinates of the nodes joining the network were randomly generated by the simulator. 

We simulated scenarios where all nodes were reachable. This meant that every node had a 

connection directly or otherwise with the others during the entire duration of the 

simulation. Node departures due to node failure or mobility were not simulated since the 

aim of the experiment was to investigate the performance of the proposed protocol as we 
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increased the network size. Table 6.1 shows the other simulation parameters for the 

experiment. 

Table 6. 1: Simulation parameters for experiment I 

Parameters  Environment  

Number of nodes 30, 40, 50, … 130 

Preconfigured nodes 1 

Area 1000m x 1000m 

Simulation time 6000 seconds 

Routing Protocol DSR 

Node arrival rate I node / 25 seconds 

Observed parameters Latency, number of received packets, number of address 

conflicts 

Address range 256  
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i. Effect of network size on communication overhead   

 

 

 Figure 6. 1: Communication overhead  

The amount of communication overhead increases proportionally with network size due to 

the broadcast nature of all the auto-configuration protocols under consideration. As 

depicted in Figure 6.1, Wise-DAD had the least amount of communication overhead whilst 

StrongDAD had the most communication overhead. This is due to the fact that StrongDAD 

performs a network- wide flooding procedure three times before an address can be 

assigned. On the other hand, both Wise-DAD and D-DAD perform network wide flooding 

only once on smaller network sizes.  
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D-DAD had more communication overhead because, as the network size increases, D-

DAD tends to increase the number of network-wide flooding procedures. In addition, if 

any message losses are detected, D-DAD adapts by performing more network- wide 

flooding of address configuration packets.  The increase in network size is likely to have 

led to the two conditions, hence the increase in communication overhead for D-DAD.  

Interference significantly affected communication overhead recorded in StrongDAD. 

Wise-DAD, on the other hand, was not affected by interference.  The number of address 

conflicts in both protocols showed an inverse relationship to interference (Figure 6.3) 

 

The increase of communication overhead during automatic configuration will always be 

proportional to the size of the network. Although this thesis managed to significantly 

achieve other goals such as reduction of address conflicts, the issues of communication 

overhead remain a challenge. As more services and protocols are deployed on the wireless 

channel, it is evident that the need for high capacity channels is of paramount importance. 

This thesis therefore aurgues that design of hardware for wireless channels  
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ii. Effect of network size on latency  

 

Figure 6. 2: Latency against network size 

 

In DAD-based protocols, address allocation latency is partially affected by the length of 

DAD timeout period and the number of DAD trials performed before an address can be 

allocated. For Wise-DAD, the default setting for DAD timeout is a static 1.8 seconds with 

only one DAD trial. On the other hand, the minimum of 1 second and a maximum of 1.4 

seconds was employed in D-DAD. The exact time for the timeout period is determined at 

run time depending on the conditions of the network.  D-DAD adjusts the DAD trials to 

two as the network size increases and also adjusts the length of the DAD timeout period as 

network traffic increases. In the experiments presented in Figure 6.2, no traffic was 

simulated hence D-DAD only adjusted the DAD trials. In StrongDAD, the timeout for 
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address request (DAD procedure) is 1.8 seconds, which is calculated from the fact that the 

maximum hop count is 12 and the maximum one hop round trip time is 0.15 seconds, thus 

the timeout must be at least 1.8 seconds (Kim et al., 2007). These setting contributed 

significantly to the results obtained. Because StrongDAD performed the procedure three 

times, the total latency was at least 5.4 seconds.  

 

iii. Effect of network size on address uniqueness   

 

Figure 6. 3: Address duplicates against network size  
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An important requirement for address allocation protocols is that the configured addresses 

should be unique. The address allocation protocols should guarantee the uniqueness of the 

allocated addresses. Address duplication may occur due to erroneous allocation or network 

merging. Address conflict resolution due to network merging is dealt with in section 6.6.  

In figure 6.3 we show the number of conflicting IP addresses against varying network sizes. 

The number of IP address conflicts in the three protocols increases as the number of nodes 

increases. This is a result of the fact that address space is a finite domain, hence the 

probability of getting a free IP address decreases as network size increases. Another reason 

is message losses caused by Medium Access Control (MAC) collisions as network traffic 

and interference increase. StrongDAD recorded a significantly high number of address 

conflicts due to the fact that it generated more communication overhead hence more 

message. Address allocation tables maintained by both Wise-DAD and D-DAD 

contributed to the significantly low number of address conflicts.   

Although low, the number of address conflicts achieved by D-DAD is still unacceptable. 

The problems emanating from address duplicates are so destructive hence there shouldn’t 

be any compromise when it comes to address conflicts.  DHCP based wired networks 

employ mechanisms to isolate nodes that have duplicate addresses until they are resolved. 

Going forward, such mechanisms should be considered for wireless ad-hoc networks. 

Probably the use of a central node or clusters can be considered as a solution. The 

distribution of the address allocation table seems not to be effective in addressing this 

problem. 
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6.3  Effect of node arrival rate on Address Auto-configuration  

To test the robustness of the proposed address allocation mechanism we varied arrival rate 

of the nodes. The network size was fixed at 80 (the median of experiment I). Like the 

previous experiment, address conflicts, communication overhead, and address allocation 

latency for D-DAD, StrongDAD and Wise-DAD were recorded for analysis. For the entire 

duration of the simulation 100% network connectivity was maintained. No nodes were 

allowed to leave the network. Table 6.2 shows the other simulation parameters used in the 

experiment.    

 

Table 6. 2 : Simulation parameters for experiment II 

Parameters  Environment  

Number of nodes 80 

Preconfigured nodes 1 

Area 1000m x 1000m 

Simulation time 6000 seconds 

Node arrival rate 1 node every 5, 10, 15, 20, 25, 30 seconds 

Recorded parameters Latency , number of packets, number of address conflicts 



 

 

119 

 

 

i. Effect of Node arrival rate on communication overhead 

 

Figure 6. 4: Communication overhead against node arrival rate 

Figure 6.4 above shows that the amount of communication overhead generated by the three 

protocols is not affected by the rate at which nodes join the network.  StrongDAD recorded 

more communication overhead than Wise-DAD and D-DAD. Wise-DAD had the least 

amount of communication overhead. The minor variations in the number of packets 

recorded for each of the three protocols are not sufficient to suggest that node arrival rate 

has an effect on the communication overhead.  This is due to the fact that the number of 

address assignment packets sent by an initiator during the auto-configuration process 

depends only on the success of a DAD process. Node arrival rate has no effect on DAD 

success or failure, hence there were no significant variations in the communication 

overhead as the rate at which nodes joined the network was varied.  
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ii. Node arrival rate on latency 

 

Figure 6. 5: Latency against node arrival rate 

In stateless protocols, the address allocation latency is directly proportional to the length 

of the DAD timeout period and the number of DAD trials performed. The fact that the three 

protocols performed DAD with different settings of DAD timeout period is reflected in the 

results shown in Figure 6.5 above. The rate at which the nodes joined the network does not 

have a bearing on the amount of time taken to configure addresses.  

D-DAD had the least latency because its DAD timeout period was set at 1 second. On the 

other hand, Wise-DAD had a default static setting of 1.4 seconds and performed DAD only 

once, hence the observed result.  

StrongDAD recorded the highest latency of at least 5.4 seconds because the DAD 

procedure was performed three time with a timeout period of 1.4 seconds for each DAD 

trial.  
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iii. Effect of  node arrival rate on address uniqueness  

 

 

Figure 6. 6 Address duplicates against node arrival rate 

Figure 6.6 shows that both D-DAD and Wise-DAD did not show a significant change in 

the number of IP address conflicts as node arrival rate was varied.  

This is due to the fact that state information is updated as new nodes are admitted. The 

more accurate the state information, the less likely that address conflicts would occur. In a 

more dynamic network where network membership is highly unpredictable, it is important 

that the protocol employ an active duplicate address detection mechanism.  

On the other hand, there was a significant decrease in address conflicts when StrongDAD 

was subjected to a lower rate of node admission.  A high rate of nodes joining resulted in 
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more address duplicates. This can be partially attributed to the fact the StrongDAD does 

not provide a mechanism to handle a situation where multiple nodes request for the same 

address simultaneously. High rate of node admission is likely to lead to more than one node 

joining and requesting for the same address at the same time.  

In all the three protocols evaluated, the node admission rate has an impact on the address 

conflicts. It is therefore imperative to adopt a first come first served mechanism in the 

allocation of IP addresses. Although this method results in high latency, the positive effect 

towards the configuration on unique addresses is very crucial.  The adaptation mechanism 

employed in D-DAD did not address this issue.  

 

6.4 Effect of node density 

This experiment was performed to investigate the impact of interference on the 

performance of the D-DAD protocol. To investigate the impact of transmission 

interference on the proposed algorithm, node density was varied. Some studies on routing 

protocols show that with a very sparsely populated network the number of possible 

connections between any two nodes is low and hence the performance is poor. It is also 

noted that as the node density is increased the throughput of the network increases. 

However, beyond a certain level of node density, the performance starts to degrade 

(Varshney et al., 2016). This experiment investigated if the node density has an effect on 

the performance of address allocation protocols. The number of nodes was fixed at 70. 
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Address uniqueness and communication overhead for the three protocols were recorded 

and analysed.  

Table 6.3 shows the other simulation parameters. As in experiments I and II we selected 

scenarios where every node could always communicate with the others during the entire 

simulation time. This was done to make sure that the node density was always constant for 

the duration of the simulation. Also, for the same reason, there were no node departures 

and mobility for the entire duration of the simulation.  

 

Table 6. 3 : Simulation parameters for experiment III 

Parameters  Environment  

Number of nodes 70 

Preconfigured nodes 1 

Area (500m, 600,700, … 1200m)2 

Simulation time 6000 seconds 

Routing Protocol DSR 

Node arrival rate 25 seconds 

Recorded parameters Latency , number of packets, number of address conflicts 

Address range 256  
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i. Effect of node density on Address uniqueness  

 

Figure 6. 7: Address conflicts against node density 

 

 

Figure 6.7 shows the number of address conflicts against the node density. For the three 

protocols, with the node density around 4 or 5, the number of address conflicts were at their 

lowest. This can be attributed to the fact that the value of 4 has been found to be the optimal 

number of neighbours that achieve the best performance in the network. Node density 

affects interference, which in-turn affects message delivery (Mudali et al., 2007). Messages 

from neighbours are received free of errors provided that only one neighbour is transmitting 

(Borbash et al., 2007).  D-DAD recorded the lowest number of address conflicts, due to its 

robustness. StrongDAD on the other hand had the largest number of address conflicts 

recorded.   
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The effect of node density has been investigated in literature – The results points to the 

inclusion of topology control algorithms within address allocation mechanisms. This has 

not been investigated but results calls for such inclusion. The fact that the CNN recorded 

in the investigation of the effect topology on routing protocol indicate that this is crucial 

and possible to implement. [this at the end of the sub section – check also the contributions]   

ii. Node density on communication overhead 

 

Figure 6. 8: Communication overhead against node density 
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StrongDAD and D-DAD was due to the fact that as node density increases, the number of 

links amongst the nodes increase as well. Increase in the number of links implies that fewer 

packets are re-broadcasted.   

6.5 Effect of Network traffic on Address Auto-configuration  

The purpose of this experiment was to investigate the effect of network size on the 

proposed address allocation protocol in the presence of network traffic.  In each case, 20 

nodes were introduced into an already existing network that had nodes already 

communicating. No address duplicates existed before the new nodes were introduced. IP 

address configuration delay, communication overhead and the number of address conflicts 

were recorded. 

a. Effect of network traffic on latency  

 

Figure 6. 9: latency against number of nodes  
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The results shown in Figure 6.9 illustrate the effect of network size on latency in the 

presence of network traffic. In both experiments, address allocation latency increased 

proportionally to network size. This is due to the fact that network traffic increased with 

network size, thereby affecting the delivery of address allocation packets. Increase in traffic 

caused an increase in latency of address allocation packets. When network traffic was 

introduced, the latency slightly increased for all network sizes. DAD timeout period was 

set at 1.4 seconds and each new node performed only one DAD trial.  In the presence of 

network traffic D-DAD performed DAD more than once, resulting in latency of at least 2 

seconds on each address allocation. Any value more than 3 seconds was caused by delay 

in delivering address allocation packets. Message delays were a result of the network size 

and the network traffic.  

b. Effect of network traffic on address uniqueness  

 

 

Figure 6. 10: Address duplicates against number of nodes 
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Figure 6.10 above shows the number of address duplicates against the number of nodes. 

When the network had no traffic, the number of address duplicates was low. As the number 

of nodes increase, the difference between the duplicates recorded in the two experiments 

increase. The number of duplicates recorded in the presence of network traffic increases at 

a faster rate than in the absence of network traffic. This can be attributed to the fact that 

network traffic may have negatively affected the delivery of address allocation packets 

before the expiry of DAD. If address allocation packets are not delivered, address 

duplicates are bound to occur since nodes will not be able to successfully defend their IP 

addresses.  In D-DAD, once the DAD timeout period expires, the requested IP address is 

configured.  D-DAD used a DAD timeout period of only 1 second. When there is network 

traffic, the DAD timeout might expire before an address allocation packet reporting an 

address conflict is received.    

c. Effect of network traffic on communication overhead  
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Figure 6. 11: communication overhead against number of nodes  
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6.6 Effect of Mobility on the D-DAD protocol  

This section presents the experimental results obtained from the analysis of the effect of 

mobility on the D-DAD protocol.  The simulation experiments analysed the performance 

of D-DAD under the Random Way Point Mobility model.  

a. Effect of mobility on communication overhead  

 

Figure 6. 12: number of packets against network size 
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was observed. The increase in the communication overhead usually results in a high rate 

of packet loss, hence more address conflicts.  The proposed protocol however, was more 

robust than StrongDAD, hence from Figure 6.12 below, the address conflicts recorded 

were not as high as those of StrongDAD in Figure 4.8, chapter 4.  

b. Effect of mobility on latency  

 

Figure 6. 13: Latency against network size 
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c. Effect of mobility on address uniqueness  

 

Figure 6. 14 address duplicate against network size 
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6.7 Effect of network partitioning on overhead 

In this section, we investigated the amount of communication overhead generated during 

the detection of network partitioning. We did not perform simulations in which nodes 

transfer data from the application layer, because the main goal was assessing the traffic 

generated by the proposed solution independently from upper layers. When a network is 

partitioned into two, the partitioning should be detected so that addresses from the other 

segment of the network can be re-used. In the experiment, the number of control packets 

require d to detect and manage network merging were monitored.  Figure 1 shows the 

amount of communication overhead generated during the partitioning of the network. 

Networks of nodes between 10 and 100 were used. The networks were divided into two 

equal partitions by slowly moving half of the nodes away from their original positions. The 

moving nodes were kept close to each other so as to avoid further partitioning. From the 

results obtained, the number of nodes in the network was directly proportional to the 

communication overhead. Periodic messages containing the list of K are broadcast, hence 

communication overhead is generated before the partitioning takes place. Soon after 

partitioning is detected the nodes constantly monitor their neighborhoods to check if the 

lost partition is back or not. This also generates more control packets. For a 100 node 

network, the communication overhead was as high as 4000 packets. 
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Figure 6. 15: Communication overhead during network partitioning 
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ones.   The amount of traffic generated, however, is necessary for eliminating duplicate 

addresses. When the preconfigured duplicate addresses are fewer, the amount of 

communication overhead does not significantly affect bandwidth of the network.   

 

Figure 6. 16: Communication overhead during network merging 
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recorded. When the preconfigured duplicate addresses were set to 5 and 10, the merging 

mechanism managed to resolve all of them. As the number of preconfigured duplicate 

addresses was increased, the number of address conflicts also increased.  

This is due to the fact that when duplicate addresses have been detected, all nodes with 

duplicate addresses start acquiring new addresses, thereby clogging the network with 

address configuration packets. As the amount of traffic increases so does the number of 

address duplicates.  

 

Figure 6. 17: Address duplicates after network merging 
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6.9 Latency of the Network merging process 

This experiment was aimed at evaluating the latency of the network merging process. In 

the experiment, the number of nodes was varied from 10 to 100, as shown in Figure 6.18. 

In this experiment, two networks of 100 nodes were merged. At the beginning of the 

experiment, the networks were separated and configured separately. After 10 seconds, 

mobility was introduced, merging the two networks.  On merging, the two networks had 

preset duplicate addresses. The number of duplicate addresses was set at 10% and 20% of 

the network size after merging. The network merging process was invoked and the address 

resolution procedure was allowed to take place. At the end of the experiment, average 

latency was recorded.  

The latency of the address configuration did not change much as the number of nodes was 

increased. At 10% address conflicts, the latency slightly decreased as the number of nodes 

was increased. This can be attributed to the lower amount of communication overhead in 

relation to the network size. 20% address conflicts recorded slightly more latency that 10% 

address conflicts. 
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Figure 6. 18: Latency on address resolution 
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6.10 Chapter Summary  

This chapter presented simulation results of the experiments conducted to test the proposed 

algorithms.  To gain a comprehensive understanding of the performance of the proposed 

algorithm, a total of 8 experiments were conducted. The proposed algorithms were 

subjected to different network conditions and results were graphically presented and 

analysed. The design goal of our solution was to build a protocol that can react to network 

conditions rather than set static values for the DAD timeout period and the number of DAD 

trials.   The proposed solution was inspired by swam intelligence hence has adaptation 

capabilities. As a result, static value of DAD timeout period does not give the best 

performance for address auto-configuration. This can further be supported by experiments 

reported in chapter 3.  The use of adaptive values of DAD timeout period gave the network 

stability even when the network conditions were varied.  

In the first experiment conducted in this chapter, we investigated the effect of network size 

on the proposed protocol in order to test its scalability. D-DAD recorded better latency and 

address conflicts than Wise-DAD and StrongDAD. However, the amount of 

communication overhead recorded was relatively high when compared to Wise-DAD.  In 

the second experiment, we investigated the effect of node arrival rate on the D-DAD. The 

D-DAD performed better than Wise-DAD and StrongDAD on all the three metrics used 

for comparison.  In the third experiment, node density was found to have an effect on 

address allocation. Node density of 4 was found to result in the best performance for the 

three protocols investigated.   
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The effect of node mobility and network traffic was also investigated. The results show 

that both mobility and network traffic have a negative effect on the performance of the D-

DAD. However, the D-DAD protocol adjusted to node mobility and network traffic, hence 

the address conflicts observed were not as high as values observed in StrongDAD.  From 

the result of this experiment we can conclude that there is a close relationship between 

node mobility and performance of address auto-configuration protocols.   We also 

performed experiments to test the network merging and partitioning algorithms that are 

part of the DDAD auto-configuration protocol.   The results obtained in the experiments 

clearly show that the adoption of swam intelligence as a solution approach brought 

stability. Changes such as network traffic, mobility and network sizes did not have a huge 

impact on the performance of the proposed protocol due to the adaptive nature of swam 

systems.  
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Chapter 7 

Thesis Conclusion, Contributions and Future Work 

7.1 Conclusion  

This study represents a successful attempt to investigate automatic IP addressing in 

wireless ad hoc networks. The investigation first answered the question of how different 

network conditions affect the auto-configuration process. Experiments to investigate the 

effect of mobility, network traffic and DAD timeout period on addressing auto-

configuration were conducted. The results of this investigation informed the design of a 

model inspired by swam intelligence. Consequently, a new protocol, D-DAD was proposed 

and evaluated in this thesis.  Addressing the issues identified in Chapter 1, among other 

things, helped in building a robust IP addressing protocol and provide QoS guarantees in 

the network.  

In order to tackle the identified research issues, the following research questions were 

formulated:   

i. Why are existing paradigms not handling network dynamics well? 

ii. Why are address auto-configuration algorithms not resilient enough to withstand 

different network conditions?  

iii. What are the best configurations for DAD that can result in low address conflicts 

and low communication overhead? 
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iv. How can the wireless ad hoc networking environment inform the design of 

address auto-configuration protocols that can adapt to different network 

conditions? 

An investigation that was reported in chapter 2 concluded that the existing paradigms are 

rigid and fail to adequately address the address allocation problem because of the 

unpredictable nature the wireless ad hoc networking environment. This conclusion led to 

the proposal of a new model inspired by swam intelligence presented in chapter 2.  The 

model views the problem of IP addressing as that of achieving desired emergent behavior 

in the midst of conflicting objectives and criterion. As a result, the model presented 

advocates for, among other things, continuous monitoring of network conditions such as 

mobility, network traffic and node density.  The solution prosed later considers the multiple 

objectives that an address allocation scheme should consider when configuring addresses. 

Therefore, chapter 2 answered the first research question.  

To answer the second research question, the following investigations were conducted: 

i. Determining the effect of network merging and partitioning on address auto- 

configuration. 

ii. Determining the effect of network traffic and mobility on address auto- 

configuration. 

The results obtained from the investigations of the second research question were used to 

develop the address auto-configuration protocol proposed in this thesis. We investigated 
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the factors that affect the DAD protocol before we applied the results of the investigation 

to construct the building blocks for the proposed solution.  Simulations to determine the 

optimal value of the DAD timeout period were also conducted.  This effectively answered 

the third research question.  

 

To address the fourth question, we investigated how the results from the first three 

questions could be used in the design of Address Auto-configuration protocols. This led to 

the design of the D-DAD protocol.  We compared the D-DAD with the Wise-DAD and 

StrongDAD protocols. We performed five experiments to investigate the effect of network 

size, node density, node arrival rate, mobility, and network traffic on communication 

overhead, address uniqueness and latency.  The results showed that D-DAD outperformed 

StrongDAD in all the metrics used for comparison. However, in some instances, D-DAD 

recorded more communication overhead in comparison to Wise-DAD but had better 

latency and fewer address conflicts.  

 

In the first experiment, D-DAD showed better scalability since it performed better than 

both Wise-DAD and StrongDAD when network size was increased. However, 

communication overhead recorded in D-DAD was slightly higher than Wise-DAD but the 

number of IP address duplicates recorded was low.  
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From the results of the second experiment, it was observed that D-DAD did not show any 

change in performance as node arrival rate was varied.   On the other hand, the number of 

address duplicates in StrongDAD decreased as the node arrival rate was increased. 

Interference significantly affected communication overhead recorded in StrongDAD. 

Wise-DAD, on the other hand, was not affected by interference.  The number of address 

conflicts in both protocols showed an inverse relationship to interference. In the last 

experiment we observed that node density has a negative effect on address allocation.    

There are various conclusions that can be drawn from this work:  

(a) First, a static value of the DAD timeout period does not give the best performance 

for address auto-configuration. (This investigation is reported in Chapter 3). The 

changing network conditions require that the protocol adjust the number of DAD 

trials and the DAD timeout period. This conclusion motivated the design of  a 

mechanism where the DAD timeout period is determined at runtime. This allowed 

the new protocol to adapt to different network conditions.  

(b) Investigations reported in Chapter 3 concluded that node mobility, no matter how 

low, has a negative effect on address allocation protocols. Mechanisms that handle 

mobility on routing protocols may be explored as possible solutions to node 

mobility in address allocation protocols. The investigation carried out in this thesis 

found a close relationship between node mobility and performance of address auto-

configuration protocols.   
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(c) From the investigation reported in Chapter 4 this thesis can conclude that the use of 

an initiator is not suitable in a network that has high mobility. If an initiator or the 

new node moves, the address allocation process is severely affected. Mechanisms 

of mobility detection need to be incorporated into address allocation protocols.  The 

idea of initiator has been adopted by many protocols in the literature despite this 

shortcoming.  

(d) Node density has an effect on the performance of address allocation protocols. A lot 

of work on the effect of node density on routing protocols exists in the literature. 

This work has concluded that node density also affects address allocation. 

Investigations reported in Chapter 6 concluded that node density of 5 neighbours 

resulted in the optimal performance of address allocation protocols.   
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7.2 Thesis Contributions  

This thesis has investigated the problem of address allocation in wireless ad hoc networks. 

Below, an explanation of the contributions made in this thesis is given.  

(a) Although a lot has been done in the area of address auto-configuration for wireless 

ad hoc networks, no work to date has, to the best of our knowledge, considered the 

issue of adapting to network conditions, which was accomplished in this work. Most 

importantly is the idea of adapting from the angle inspired by swam systems. 

Current proposals set constant parameter values for DAD timeout period and 

number of DAD trials. This thesis, on the other hand, has proposed a paradigm shift 

to the problem of IP address auto-configuration. The newly proposed paradigm in 

this work advocates for adaptation whereby parameters such as DAD timeout period 

are determined at runtime. The thesis has further argued that address allocation 

protocols should have monitoring mechanisms to monitor for conditions that affect 

the functioning of the protocol.  In addition, the new paradigm proposes the use of 

adaptation mechanisms to respond to any situation that may affect the functioning 

of the protocol.  Traditionally, address allocation protocols are categorised as 

stateless, stateful and hybrid. Stateless auto-configuration uses the trial and error 

method to obtain a free address. Stateful protocols use address allocation tables, 

meaning that free addresses are known in advance. Hybrid protocols combine the 

characteristics of both. The approach proposed in this work attempts to build a 

system that converges towards the global desired goal.  
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(b) This thesis has advanced the design of DAD by establishing the optimal values for 

the DAD timeout period. The study is also, to the best of our knowledge, the first to 

determine the minimal value for DAD timeout period to be 1 second whilst the 

maximal value was determined to be 1.4 seconds. Current DAD-based protocols use 

1.8 seconds, which is calculated from the estimate of 12 as the maximum hop count, 

thus the timeout must be at least 1.8 seconds (Kim et al., 2007). 

(c) It is already known that network conditions affect network performance in wireless 

ad hoc networks (Alvarez et al., 2016; Nayak & Vathasavai, 2016). What is not clear 

is the effect of network conditions on the address auto-configuration process. 

Conditions such as network topology and mobility, have been found to have an 

effect on the performance of wireless ad hoc networks (Rao & Singh, 2015). While 

much effort has been put into the development of new IP address auto-configuration 

protocols for wireless ad hoc networks very little has been done in testing how 

different network conditions affect the performance of these protocols. The dynamic 

change of network conditions in wireless ad hoc networks means that more 

sophisticated protocols are desirable.  This thesis has extended the solution space of 

address allocation protocols by investigating the effect of network traffic and 

mobility of address allocation protocols. The results obtained in the investigations 

compel researchers to look at address allocation solutions differently. It is evident 

from the results obtained that more robust protocols that take mobility and network 
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into account are needed. Current solutions do not consider this important aspect in 

their design.  

(d) If a network partitions into two, the nodes need to detect this occurrence and either 

generate a new network ID or remain with the same network ID. How this process 

is handled is still an open research area within auto-configuration of IP addresses 

(Lee et al., 2015). In other instances, network partitioning may be temporary, due 

to poor links and dynamic network membership. The auto-configuration protocol 

must be able to distinguish between temporary and permanent network partitioning. 

Contrary to proposals in the literature, the network partitioning proposed in this 

thesis can distinguish between temporary and permanent partitions. Being able to 

distinguish between temporary and permanent partitions removes the burden of 

unnecessary address and network ID changes which can cause a lot of 

communication overhead.  

(e) Network merging solutions have been investigated extensively and new solutions 

proposed but, to date, apparently no work has considered the merging of two 

networks that were previously combined.  As an improvement to most solutions 

proposed in the literature, the solution proposed in this thesis handles the merging 

of networks that were previously part of the same network without changes in IP 

addresses.  
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(f) Although the effect of node density on wireless ad hoc network performance has 

been investigated extensively with respect to routing protocols (Younis et al., 2014; 

Zhao, 2014), the same cannot be said about wireless ad hoc networking with respect 

to address auto-configuration protocols. Node density has been an important aspect 

to be considered when planning the deployment of ad hoc networks (Barrachina et 

al., 2015).The results in this thesis found a relationship between node density and 

the performance of the address auto-configuration protocol. A node density of 5 was 

found to produce the optimal performance. These findings are important as they can 

be used when planning node placement for network deployment where node 

placement is of paramount importance.  
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7.3 Limitations and Future Work   

This section presents an evaluation of the work presented in this thesis. Shortcomings and 

possible directions for future work are explained.  Some of the concerns and limitations 

highlighted in this section may not be directly related to the problem statement or research 

questions, but their importance to IP address auto-configuration cannot be ignored:  

(a) The proposed solution, D-DAD, enhances the procedure of IP address configuration 

but problems such as security still need to be completely worked out. In this work, 

we assumed that the nodes joining the network are not malicious, hence the issue of 

security was not discussed.  

(b) The computational complexity of the algorithms designed was not evaluated. 

However, the design was kept as simple as possible. In any resource-constrained 

environment, the issue of resource management is of paramount importance. Thus, 

the memory and processing requirements of the proposed solution are other 

important issues needing further investigation. It is envisaged that if such 

investigations are done auto-configuration protocols could be lightweight enough to 

be deployed in handheld and other capacity-constrained devices.   

(c) In Chapter 5, the network partitioning solution proposed requires the selection of a 

set of nodes, K. Network partitioning is detected once a certain portion of K is 

missing. This work did not determine the exact value of the subset K that should be 

missing for network partitioning to be detected.   
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(d) The auto-configuration protocol proposed in this work is designed to adapt to 

network traffic.  However, the detection of traffic volume and type was not 

considered. Nodes were assumed to run some algorithm that allows them to 

intelligently monitor the type and volume of network traffic present in the network. 

For illustration purposes, the proposed protocol analysed the rate of traffic flow on 

a given node. In real-life scenarios, this assumption may not be acceptable.  

(e) The experiments conducted in this work were done in the NS2 simulator. To obtain 

more realistic results, it is desirable that experiments be conducted in real-life 

testbed scenarios.  However, to obtain any meaningful results for scenarios such as 

network merging requires a large number of physical devices. Acquiring large 

numbers of such devices was not feasible in this work since it would have required 

extra financial resources and time not budgeted for.   

(f) Another important part of this work that would have been challenging to investigate 

on a testbed is node mobility. It is against this background that we chose, in this 

work, to limit the proof of concept to simulation. 
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Appendices  
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Header File  

 

#ifndef _DynamicDAD_H_ 
#define _DynamicDAD_H_ 
 
#include <ip.h> 
#include <packet.h> 
#include <random.h> 
#include <timer-handler.h> 
#include <agent.h> 
#include <config.h> 
#include <scheduler.h> 
 
#define MAX_RETRY 3 
#define RETRY_TIMEOUT 30 // 30 ms 
#define DynamicDAD_PORT 224 
 
#define CURRENT_TIME (Scheduler::instance()).clock() 
 
// DynamicDAD address allocation agent 
class DynamicDAD; 
 
// A timer used by initiator to send reply 
 
class DynamicDADTimer : public TimerHandler  
{ 
  public: 
    DynamicDADTimer(DynamicDAD* a) : TimerHandler(), agent(a) { } 
    inline virtual void expire(Event*); 
  private: 
    DynamicDAD* agent; 
}; 
 
 
class PartitionTimer : public TimerHandler  
{ 
  public: 
    DynamicDADTimer(DynamicDAD* a) : TimerHandler(), agent(a) { } 
    inline virtual void expire(Event*); 
  private: 
    DynamicDAD* agent; 
}; 
 
//  timer used by new node  
class DynamicDAD_MembershipReqTimer : public TimerHandler  
{ 
  public: 
    DynamicDADAckTimer(DynamicDAD* a) : TimerHandler(), agent(a) { } 
    inline virtual void expire(Event*); 
  private: 
    DynamicDAD* agent; 
}; 
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class DynamicDAD : public Agent  
{ 
   friend class BroadcastTimer; 
  public: 
    DynamicDAD(void); 
    void recv(Packet* p, Handler*); 
    void SendAddressRequest(void); 
    void SendAddressReply(nsaddr_t dest); 
    void sendAddressConflict(nsaddr_t dest); 
  void SendMembershipRequest(void); 
  void sendCONFIRMATION(nsaddr_t dest); 
  void SendInitiatorSelection(nsaddr_t dest); 
  void SendNetworkDeparture(void); 
  void SendHello(void); 
   
    int command(int, const char* const*); 
  
    u_int8_t configured; // Flag indicating whether the node has been configured 
    nsaddr_t index; // IP address of this node 
    int bid; // Broadcast ID 
     
  u_int32_t DynamicDAD_IPAddress; // Address obtained from Wise DAD Allocation 
   
  vector <int> AllocationTable; 
 
  int ReversePath[100][2]; // used for replying  
  int ActiveNodes; // number of nodes in the Allocation Table 
  int HopCount; // Path Length travelled by a message 
  int DAD_trials; // Number of DAD trials made by an initiator 
  int busy;  
  int myID;   
    u_int32_t DynamicDAD_nid; 
    u_int32_t RequestedIP; 
 
  DynamicDADTimer BroadcastTimer; // Timer for AREQ 
  DynamicDAD_MembershipReqTimer MembershipReqTimer; // Time for Request to Join 
message 
     
    double time, interval;  // Timestamp used in statistics 
    int retries, // Use in backoff algorithm 
        receives,        // The number of packets received 
        debug,   // Flag controlling print out debug information repeats;  
    
                               // Statistics about retry times 
    NsObject* ll; 
 
  int nodeStatus; 
  int MobilityStatus; 
 
  int trafficStatus 
 
  int SizeOfK;  
  int Neighnourhood_K [SizeOfK]; 
  int Min_K_Value;  
  int K_NodeStatus = 0 ; 
  int mergingStatus ;  
  int T; // K Threshold 
  int K_Misssing;  //time period W 
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  int networkPartitioning_Status; 
  int networkMerging_Status; 
 
}; 
 
#endif 
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Packet Header File  

 

#ifndef _DynamicDAD_PACKET_H_ 
#define _DynamicDAD_PACKET_H_ 
 
#include <packet.h> 
 
#define DynamicDAD_MembershipRequest 0x01 //new node sends this message 
#define DynamicDAD_CONFIRMATION 0x02  // a node responding to a Request to join 
#define DynamicDAD_InitiatorSelection 0x03 // node selecting an initiator 
#define DynamicDAD_AddressRequest 0x04 //initiator sends Areq to detect conflict 
#define DynamicDAD_AddressReply   0x05  // initiator replies with this message 
#define DynamicDAD_AddressConflict 0x06 // node reporting conflict 
#define DynamicDAD_NetworkDeparture 0x07 // node wishing to depart from the network 
#define DynamicDAD_ChangeID 0x08 // change ID after partition  
#define DynamicDAD_Reset 0x09 // reset config parameters  
#define DynamicDAD_sendQ 0x10 
  
// DynamicDAD packet header 
 
struct hdr_DynamicDAD  
{   
   u_int16_t index; // Initiator of allocation 
   u_int16_t DynamicDAD_type; // The type of the packet: State Request, State Reply or 
Ack etc 
   u_int16_t bcast_id; // Broadcast ID 
   u_int32_t DynamicDAD_nid; // Network ID 
 u_int32_t DynamicDAD_IPAddress; // this node's IP address 
 int counter; 
 vector <int> AllocationTable; // IP address Allocation table of thin node 
  
 int ReversePath[100][2]; // Temporary storage of message reverse path  
 vector <int> RP; 
 vector <RP> ReversePath; 
 int HopCount; // number of hops travelled by a message 
        u_int32_t DynamicDAD_Request; // requested IP address 
 
 static int offset_; // Required by PacketHeaderManager 
   inline static int& offset()  
      {  
       return offset_;  
      } 
   inline static hdr_DynamicDAD* access(const Packet* p)  
      { 
       return (hdr_DynamicDAD*) p->access(offset_); 
      } 
 
     inline int size()  
     { 
      int sz = 0; 
      sz = 5*sizeof(u_int32_t); 
      return sz; 
     } 
}; 
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#define HDR_DynamicDAD(p) ((struct hdr_DynamicDAD*)hdr_DynamicDAD::access(p)) 
 
#endif 
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C++ Source File  

 

#include "DynamicDAD_packet.h" 
#include "DynamicDAD.h" 
 
int hdr_DynamicDAD::offset_; 
int i , n ; 
int found; 
int foundAt; 
 
// Packet Header Class for DynamicDAD address allocation 
static class DynamicDADHeaderClass : public PacketHeaderClass  
{ 
  public: 
    DynamicDADHeaderClass() : PacketHeaderClass("PacketHeader/DynamicDADHeader", 
sizeof(hdr_DynamicDAD))  
          { 
      bind_offset(&hdr_DynamicDAD::offset_); 
          } 
} class_DynamicDADhdr; 
 
 
static class DynamicDADClass : public TclClass { 
 public: 
    DynamicDADClass() : TclClass(" 
t/DynamicDAD") { } 
    TclObject* create(int argc, const char* const* argv)  
  { 
       return (new DynamicDAD); 
    } 
} class_DynamicDAD; 
 
// Tcl interface for DynamicDAD Allocation 
int DynamicDAD::command(int argc, const char* const* argv) 
{ 
  if (argc == 2) { 
    Tcl& tcl = Tcl::instance(); 
    if (strcmp(argv[1], "id") == 0) { 
      tcl.resultf("%d", index); 
      return (TCL_OK); 
    } 
    else if (strcmp(argv[1], "start") == 0) { 
      time=CURRENT_TIME; 
      sendMembershipRequest(); 
      return (TCL_OK); 
      } 
  } 
  else if (argc == 3) { 
    if (strcmp(argv[1], "index") == 0) { 
      index = atoi(argv[2]);      return (TCL_OK); 
    } 
    if (strcmp(argv[1], "set-ll") == 0) { 
      NsObject* obj; 
      if ((obj=(NsObject*)TclObject::lookup(argv[2])) ih->saddr() = index;== 0) { 
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 if (debug == 1) printf( "%s lookup of %s failed\n", argv[1], argv[2]); 
 return (TCL_ERROR); 
      } 
      ll = obj;ih->saddr() = index; 
      return (TCL_OK); 
    } 
  } 
  return Agent::command(argc, argv); 
} 
 
 
 
DynamicDAD::DynamicDAD(void) : Agent(PT_DynamicDAD), btimer(this) , RTJ_Timer(this) 
PartitionTimer(this) 
{ 
  configured = 0;  
  //bid = 0; 
  retries = MAX_RETRY; 
  interval = RETRY_TIMEOUT; 
  receives = 0; 
  DynamicDAD_seq = 0; 
  //repeats = 0; 
 
  //bind("bid", &bid); 
  //bind("retries", &retries); 
  bind("time", &time); 
  bind("receives", &receives); 
  bind("interval", &interval); 
  //bind("seq", &pa_seq); 
  bind("debug", &debug); 
  //bind("repeats", &repeats); 
} 
 
void DynamicDADTimer::expire(Event*) 
{ 
  agent->SendAddressReply(); 
} 
 
 
void TempPartitiontimer :: expire(Event*) 
{ 
 agent->InitiatePartition(); 
} 
 
void DynamicDAD_RTJTimer::expire(Event*) 
{ 
  //agent->committed = 1; 
  //Research how "committed" works.... 
  agent->sendMembershipRequest(); 
} 
 
 
void PartitionTimer :: expire(Event*) 
{ 
agent->sendQMessage(); 
   
} 
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void DynamicDAD::  NetworkTraffic 
{ 
 struct hdr_cmn* ch = HDR_CMN(p); 
   struct hdr_ip* ih = HDR_IP(p); 
   struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
} 
 
void DynamicDAD:: NetworkPartition 
{ 
 struct hdr_cmn* ch = HDR_CMN(p); 
   struct hdr_ip* ih = HDR_IP(p); 
   struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  
 int K = neighbours  
 
 if (K < Min_K_Value) 
 { 
   
 
Status = 1; 
  PartitionTimer.cancel(); 
 } 
 
 if (K > Min_K_Value) 
 { 
  mergingStatus = 0;  
    
 } 
 
 if (K = Min_K_Value) 
 { 
  mergingStatus = -1;  
  PartitionTimer.resched(500); 
 
 } 
 
  
 
 
} 
 
 
void DynamicDAD:: MobilityStatus 
{ 
   struct hdr_cmn* ch = HDR_CMN(p); 
   struct hdr_ip* ih = HDR_IP(p); 
   struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
} 
 
 
void DynamicDAD :: TrafficVolume 
{ 
   struct hdr_cmn* ch = HDR_CMN(p); 
   struct hdr_ip* ih = HDR_IP(p); 
   struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
} 
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void DynamicDAD::recv(Packet* p, Handler*) 
{   
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
 
  // put all  variables received here.  
  // use the variables when replying. 
  nsaddr_t src = ih->saddr(); 
  HopCount =  ah->HopCount; 
  RequestedIP = ah-> DynamicDAD_Request; 
 
  for (i=0; i<=99; i++) 
  { 
   ReversePath[i][0] = ah->ReversePath[i][0];  
  } 
 
  for (i=0; i<=99; i++) 
  { 
   ReversePath[i][1] = ah->ReversePath[i][1];  
  } 
     
  switch(ah->DynamicDAD_type) { 
   
case DynamicDAD_MembershipRequest:  
 // a node can only be an inititor of one node at a time 
 // If a node is busy, it doesnt respond to Request To Join 
 // And also if a node is not configured,  it doestn respond to a RTJ   
 if (configured !=0 && busy == 0)  
  { 
   sendCONFIRMATION(src); 
   receives++; 
        } 
  
 Packet::free(p); 
     break; 
   
 
case DynamicDAD_CONFIRMATION: 
 //  
 if (configured == 0 && receives == 0)  
  { 
   sendSELECT_INITIATOR(scr); 
   receives++; 
    
        } 
 Packet::free(p); 
 break; 
 
case DynamicDAD_AddressReply:  
    if (configured == 0) 
 { 
  // a new node configures itself after a successful DynamicDAD 
  DynamicDAD_IPAddress = ah->DynamicDAD_Request; 
  DynamicDAD_nid = ah->DynamicDAD_nid; 
  AllocationTable  = ah->AllocationTable;  
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  RTJ_Timer.cancel(); 
 } 
    Packet::free(p); 
    break; 
 
   
case DynamicDAD_AddressConflict: 
        if (ah->HopCount != 0) 
 { 
    send_IP_CONFICT(ah->ReversePath[HopCount][0] - 1); 
  } 
 
 if (ah->HopCount == 0) 
 {  
     // Generate another IP address and perform a local DAD before AddressRequest 
            counter = 0; 
     found = 0; 
            while (counter < AllocationTable.size() || found == 0 ) 
     {   
       counter = counter + 1; 
       RequestedIP = (Random::integer(65536));  
         found  = 0; 
       for (i=0; i<= ActiveNodes; i++) 
  {  
     if (AllocationTable[i] == RequstedIP) 
       { 
     found = 1; 
       } 
  } 
             } 
 
             HopCount = 0; 
      DAD_trials = DAD_trials + 1; 
             SendAddressRequest();  
 } 
 Packet::free(p); 
 break; 
 
case DynamicDAD_AddressRequest: 
 //checking if this node has received this message before 
 // and discarding th message 
 found = 0; 
 for (i=0; i<=ah->HopCount; i++) 
 {  
  if (ah->ReversePath[i][1] == DynamicDAD_IPAddress) 
  { 
    found = 1;  
  }  
 } 
 if (found == 1) 
 {  
   Packet::free(p); 
 } 
 
// if message is new then process it.  
if (found == 0) 
  
{ //check for conflict then send an IPConflict message 
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 if (DynamicDAD_IPAddress == ah->DynamicDAD_Request) 
 { 
        
  sendIP_CONFLICT(ah->ReversePath[HopCount][1] - 1); 
        } 
 
 //update allocation table ie move the requested address up  
 if (DynamicDAD_IPAddress != ah->DynamicDAD_Request) 
 { found = 0; 
  for (i = 0; i<=ActiveNodes; i++) 
  { 
    if (ah->DynamicDAD_Request == AllocationTable[i]) 
   { 
     found = 1; 
     foundAt = i; 
   } 
  } 
  } 
 
 if (found == 1) 
  {    
      AllocationTable.erase(foundAt + 1) 
      AllocationTable.push_back(ah->DynamicDAD_Request); 
  } 
 
       if (found  == 0) 
  { 
     AllocationTable.push_back(ah->WiseDAah->ReversePath[i][1]); 
  } 
 
      //checking Reverse path and updating Allocation table 
      
 int j; 
 ActiveNodes = AllocationTable.size(); 
 for (i = 0; i>= ah->HopCount; i++) 
  {  
                  found = 0; 
    for (j=0; j<= ActiveNodes; j++) 
    if (ah->ReversePath[i][1] == AllocationTable[j]) 
   { 
     AllocationTable.erase(i + 1) 
          AllocationTable.push_back(ah->ah->ReversePath[i][1]); 
     found  = 1; 
   } 
    if (found == 0) 
    { 
    AllocationTable.push_back(ah->ReversePath[i][1]); 
    { 
 
  } 
 
 // forwarding AddressRequest  
  AllocAllocationTable.push_backationTable.push_back 
 if (DynamicDAD_IPAddress != ah->DynamicDAD_Request) 
 { 
        
  SendAddressRequest(); 
        } 
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 Packet::free(p); 
} 
 break; 
 
case DynamicDAD_InitiatorSelection: 
 //try and check if message is mine 
 // there is need to check allocation table first before AddressRequest (Local DAD) 
        counter = 0; 
   found = 0; 
          while (counter < AllocationTable.size() || found == 0 ) 
   {   
    counter = counter + 1; 
    RequestedIP = (Random::integer(65536)+1);  
      found  = 0; 
     for (i=0; i<= ActiveNodes; i++) 
  {  
     if (AllocationTable[i] == RequstedIP) 
       { 
     found = 1; 
       } 
  } 
          } 
 HopCount = 0; 
 DAD_trials = 1; 
 SendAddressRequest(); 
  
      Packet::free(p); 
 break; 
 
case DynamicDAD_NetworkDeparture: 
 //checking if this node has received this message before 
  
        found = 0; 
 for (i=0; i<=ah->HopCount; i++) 
 {  
  if (ah->ReversePath[i][1] == DynamicDAD_IPAddress) 
  { 
    found = 1; 
  }  
 } 
 Packet::free(p); 
 
//if message is new, process it 
if (found == 0) 
{ 
 //checking if the departing node is known then delete it 
 found = 0; 
  for (i = 0; i<=ActiveNodes; i++) 
  { 
    if ah->DynamicDAD_Request == Allocation[i] 
   { 
     found = 1; 
     foundAt = i; 
   } 
  } 
         // remove the IP from the allocation table 
  if (found == 1) 
  { 
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   AllocationTable.erase(foundAt + 1); 
  } 
 // updating Allocation table using Reverse path 
 int j;e launching a project to improve security for the great apes. 
 ActiveNodes = AllocationTable.size(); 
 for (i = 0; i>= ah->HopCount; i++) 
  {  
                  found = 0; 
    for (j=0; j<= ActiveNodes; j++) 
    if (ah->ReversePath[i][1] == AllocationTable[j]) 
   { 
     AllocationTable.erase(i + 1) 
          AllocationTable.push_back(ah->ah->ReversePath[i][1]); 
     found  = 1; 
   } 
    if (found == 0) 
    { 
    AllocationTable.push_back(ah->ReversePath[i][1]); 
    { 
 
  } 
 
 sendGOODBYE(); 
 Packet::free(p); 
} 
 break; 
 
  } 
} 
 
void DynamicDAD::sendMembershipRequest(void) 
{ 
 if (configured == 0 && index != 0)  
   {  
   Packet* p = Packet::alloc(); 
   struct hdr_cmn* ch = HDR_CMN(p); 
   struct hdr_ip* ih = HDR_IP(p); 
   struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
   ch->size() = IP_HDR_LEN + ah->size(); 
 
        ih->daddr() = IP_BROADCAST; 
        ih->saddr() = index; 
        ih->ttl_() = 1; 
 
        ah->DynamicDAD_type = DynamicDAD_MembershipRequest; 
         
        if (debug == 1) {printf("Node %d broadcasts a request packet\n", index);} 
        Scheduler::instance().schedule(target_, p, 0.0); 
 // request should be rescheduled if no reply is received after a certain interval.  
   } 
  RTJ_Timer.resched(interval); 
   
 // Here, the first node configures itself and chooses the network parameters (Network ID) 
  if (index == 0) 
   { 
      DynamicDAD_index = 0; 
       
      DynamicDAD_nid = (Random::integer(65536)); 
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      configured = 1; 
      DynamicDAD_IPAddress = (Random::integer(65536)); 
      printf("First Node chooses %d as its IP address and as the Network ID %d \n", 
DynamicDAD_IPAddress, DynamicDAD_nid); 
      AllocationTable.push_back(DynamicDAD_IPAddress); 
   } 
} 
 
void DynamicDAD::sendCONFIRMATION(nsaddr_t dest) 
{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
   
  ih->daddr() = dest; //  Chosen initiator's address 
  ih->saddr() = index;  // source of this message 
  
  ah->DynamicDAD_type = DynamicDAD_CONFIRMATION; 
  ah->DynamicDAD_nid = 0; 
  ah->DynamicDAD_IPAddress = 0; 
   
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
void void DynamicDAD::ResetPartition(void) 
{ 
Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
this->Min_K_Value = 0;  
this->K_NodeStatus = 0 ; 
this->mergingStatus = 0;  
 
} 
 
 
void DynamicDAD::OldMessage(void) 
{ 
        
   Packet* p = Packet::alloc(); 
 found = 0; 
 for (i=0; i<=ah->HopCount; i++) 
 {  
  if (ah->ReversePath[i][1] == DynamicDAD_IPAddress) 
  { 
    found = 1;  
  }  
 } 
 if (found == 1) 
 {  
   Packet::free(p); 
 } 
} 
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void DynamicDAD::DetPartition(void) 
{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
  ih->daddr() = IP_BROADCAST; 
  ih->saddr() = index; 
  ah->DynamicDAD_type = DynamicDAD_Reset; 
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
 
void DynamicDAD::InitiatePartition(void) 
 
{ 
Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
      
  ih->daddr() = IP_BROADCAST; 
  ih->saddr() = index; 
 
  generateID();  
 ah->HopCount = HopCount + 1; 
 
if (HopCount == 0) 
  { 
   btimer.resched(interval); 
   busy = 1; 
ih->ID = myID;  
  } 
 
  ah->DynamicDAD_type = DynamicDAD_ChangeID; 
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
void DynamicDAD::SendAddressRequest(void) 
{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
      
  ih->daddr() = IP_BROADCAST; 
  ih->saddr() = index; 
 
  ah->DynamicDAD_type = DynamicDAD_AddressRequest; 
  ah->DynamicDAD_Request = RequestedIP; 
  // Adding my own IP and my own DynamicDAD to reverse Path 
  // My IP will be stored at position [hopcount] on the reverse path vector 
  ah->ReversePath[HopCount][0] = DynamicDAD_IPAddress; 
  ah->ReversePath[HopCount][1] = ih->saddr(); 
  // increase hop count then send message 
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  ah->HopCount = HopCount + 1; 
  // if the sender of AddressRequest is the source of the message, then it has to reschedule 
the timer  
if (HopCount == 0) 
  { 
   btimer.resched(interval); 
   busy = 1; 
  } 
 
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
void DynamicDAD::sendIPConflict(nsaddr_t dest) 
{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
   ch->size() = IP_HDR_LEN + ah->size(); 
 
  //ah->ReversePath[ah->HopCount][0] = DynamicDAD_IPAddress; 
  //ah->ReversePath[ah->HopCount][1] = ih->saddr(); 
  ah->HopCount = HopCount - 1; 
 
  ih->daddr() = dest; 
  ih->saddr() = index; 
 
  ah->DynamicDAD_type = DynamicDAD_IP_CONFLICT; 
  ah->DynamicDAD_Request = RequestedIP; 
 
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
void DynamicDAD::SendAddressReply(nsaddr_t dest) 
{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
   
  ih->daddr() = IP_BROADCAST; 
  ih->saddr() = index; 
 
  ih->ttl_ = 1; 
  ah->DynamicDAD_type = DynamicDAD_AREP; 
  ah->DynamicDAD_Request = RequestedIP; 
  ah->DynamicDAD_nid = DynamicDAD_nid; 
  ah->AllocationTable = AllocationTable; 
   
  btimer.cancel(); 
 
//  busy = 0; 
 
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
void DynamicDAD::SendAddressReply(nsaddr_t dest) 
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{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
   
  ih->daddr() = IP_BROADCAST; 
  ih->saddr() = index; 
 
  ih->ttl_ = 1; 
  ah->DynamicDAD_type = DynamicDAD_sendQ; 
  ah->DynamicDAD_Request = RequestedIP; 
  ah->DynamicDAD_nid = DynamicDAD_nid; 
 
   
  btimer.cancel(); 
 
//  busy = 0; 
 
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
void DynamicDAD::sendSELECT_INITIATOR(nsaddr_t dest) 
{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
 
  ih->daddr() = dest; 
  ih->saddr() = index;DynamicDAD_nid; 
 
  ah->DynamicDAD_type = DynamicDAD_SELECT_INITIATOR; 
  ah->DynamicDAD_Request = 0; 
  ah->DynamicDAD_nid = 0; 
   
  printf("Node %d sent a SELECT INIT to node %d with IP address %d\n", index, ih->daddr(), 
DynamicDAD_IPAddress); 
 
  Scheduler::instance().schedule(target_, p, 0.0); 
} 
 
void DynamicDAD::sendGOODBYE(void) 
{ 
  Packet* p = Packet::alloc(); 
  struct hdr_cmn* ch = HDR_CMN(p); 
  struct hdr_ip* ih = HDR_IP(p); 
  struct hdr_DynamicDAD* ah = HDR_DynamicDAD(p); 
  ch->size() = IP_HDR_LEN + ah->size(); 
 
  ih->daddr() = IP_BROADCAST; 
  ih->saddr() = index; 
 
  ah->DynamicDAD_type = DynamicDAD_GOODBYE; 
  ah->DynamicDAD_Request = RequestedIP; 
  ah->DynamicDAD_nid  = DynamicDAD_nid; 
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  Scheduler::instance().schedule(target_, p, 0.0); 
} 
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TCL Sample Code for Testing the Protocol 

#============================================================ 

# Define options 

#============================================================ 

 

set val(chan)    Channel/WirelessChannel  ; # Channel type 

set val(prop)    Propagation/TwoRayGround ; # radio-propagation model 

set val(ant)     Antenna/OmniAntenna      ; # Antenna type 

set val(ll)      LL                       ; # Link layer type 

set val(ifq)     Queue/DropTail/PriQueue  ; # Interface queue type 

set val(ifqlen)  50                       ; # Max packet in ifq 

set val(netif)   Phy/WirelessPhy          ; # Network interface type 

set val(mac)     Mac/802_11               ; # Mac type 

set val(rp)      DSR                      ; # ad-hoc routing protocol 

set val(nn)      50                       ; # number of mobile nodes 

set val(x)       500 

set val(y)       500 

#set val(seed)    0.0 

set val(sc)      scen-50-500x500 

set val(stop)    1600.0                    ; # simulation time 

set val(god)     off 

set val(intv)    10 

set val(k)       3 

set val(t)       [expr $val(intv) * $val(k)] 

set ns_ [new Simulator] 
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$ns_ use-scheduler Heap 

 

set tracefd [open DynamicDAD.tr w] 

$ns_ trace-all $tracefd 

 

set namtrace [open DynamicDAD-out.nam w]     ; # for wireless traces 

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y) 

 

set DataFile0 [open DynamicDAD-out0.tr w] 

set DataFile1 [open DynamicDAD-out1.tr w] 

set DataFile2 [open DynamicDAD-out2.tr w] 

 

 

proc finish {} { 

    global DataFile0 DataFile1 DataFile2 

    close $DataFile0 

    close $DataFile1 

    close $DataFile2 

    exec xgraph DynamicDAD-out0.tr DynamicDAD-out1.tr & 

    exit 0 

}    

 

proc record { DynamicDAD } { 

    global DataFile0 DataFile1 DataFile2 

    set index [$DynamicDAD id] 
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    set recvs [$DynamicDAD set receives] 

    set retrs [$DynamicDAD set repeats] 

    #set random [$DynamicDAD set seq] 

    puts $DataFile0 "$index $recvs" 

    puts $DataFile1 "$index $retrs" 

    puts $DataFile2 "$index $random" 

} 

     

# 

# Define topology 

# 

set topo [new Topography] 

$topo load_flatgrid $val(x) $val(y) 

 

# 

# Create GoD 

# 

set god_ [create-god $val(nn)] 

#$god_ $val(god) 

#$god_ allow_to_stop 

#$god_ num_data_types 1 

 

set chan_1_ [new $val(chan)] 

 

# 

#Configure nodes 



 

 

182 

 

# 

$ns_ node-config -llType $val(ll) \ 

          -adhocRouting $val(rp) \ 

   -macType $val(mac) \ 

   -ifqType $val(ifq) \ 

   -ifqLen $val(ifqlen) \ 

   -antType $val(ant) \ 

   -propType $val(prop) \ 

   -phyType $val(netif) \ 

   -topoInstance $topo \ 

   -channel $chan_1_ \ 

   -agentTrace ON \ 

   -routerTrace ON \ 

   -macTrace OFF \ 

   -movementTrace OFF  

 

for { set i 0 } { $i < $val(nn) } { incr i } { 

    set node_($i) [$ns_ node $i] 

    $node_($i) random-motion 0 ;# disable random motion 

    $god_ new_node $node_($i) 

} 

 

# 

# Define node movement model 

# 

puts "Loading scenario file..." 
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source $val(sc) 

 

# 

# Define initial position in nam 

# 

for { set i 0 } { $i < $val(nn) } { incr i } { 

    $ns_ initial_node_pos $node_($i) 50 

} 

 

# Setup a the DynamicDAD agent 

for { set i 0 } { $i < $val(nn) } { incr i } { 

    set DynamicDAD_($i) [new Agent/PA $i] 

    $DynamicDAD_($i) index $i 

    $DynamicDAD_($i) set interval $val(intv) 

    $DynamicDAD_($i) set retries $val(k) 

    #$DynamicDAD_($i) set debug 1 

    $ns_ attach-agent $node_($i) $DynamicDAD_($i) 

    set ll($i) [$node_($i) set ll_(0)] 

    $DynamicDAD_($i) set-ll $ll($i) 

} 

 

$ns_ at [expr 10.0+[$DynamicDAD_(0) id]*$val(t)] "$DynamicDAD_(0) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(1) id]*$val(t)] "$DynamicDAD_(1) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(2) id]*$val(t)] "$DynamicDAD_(2) start" 
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$ns_ at [expr 10.0+[$DynamicDAD_(3) id]*$val(t)] "$DynamicDAD_(3) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(4) id]*$val(t)] "$DynamicDAD_(4) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(5) id]*$val(t)] "$DynamicDAD_(5) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(6) id]*$val(t)] "$DynamicDAD_(6) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(7) id]*$val(t)] "$DynamicDAD_(7) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(8) id]*$val(t)] "$DynamicDAD_(8) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(9) id]*$val(t)] "$DynamicDAD_(9) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(10) id]*$val(t)] "$DynamicDAD_(10) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(11) id]*$val(t)] "$DynamicDAD_(11) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(12) id]*$val(t)] "$DynamicDAD_(12) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(13) id]*$val(t)] "$DynamicDAD_(13) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(14) id]*$val(t)] "$DynamicDAD_(14) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(15) id]*$val(t)] "$DynamicDAD_(15) start" 
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$ns_ at [expr 10.0+[$DynamicDAD_(16) id]*$val(t)] "$DynamicDAD_(16) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(17) id]*$val(t)] "$DynamicDAD_(17) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(18) id]*$val(t)] "$DynamicDAD_(18) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(19) id]*$val(t)] "$DynamicDAD_(19) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(20) id]*$val(t)] "$DynamicDAD_(20) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(21) id]*$val(t)] "$DynamicDAD_(21) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(22) id]*$val(t)] "$DynamicDAD_(22) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(23) id]*$val(t)] "$DynamicDAD_(23) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(24) id]*$val(t)] "$DynamicDAD_(24) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(25) id]*$val(t)] "$DynamicDAD_(25) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(26) id]*$val(t)] "$DynamicDAD_(26) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(27) id]*$val(t)] "$DynamicDAD_(27) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(28) id]*$val(t)] "$DynamicDAD_(28) start" 
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$ns_ at [expr 10.0+[$DynamicDAD_(29) id]*$val(t)] "$DynamicDAD_(29) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(30) id]*$val(t)] "$DynamicDAD_(30) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(31) id]*$val(t)] "$DynamicDAD_(31) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(32) id]*$val(t)] "$DynamicDAD_(32) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(33) id]*$val(t)] "$DynamicDAD_(33) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(34) id]*$val(t)] "$DynamicDAD_(34) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(35) id]*$val(t)] "$DynamicDAD_(35) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(36) id]*$val(t)] "$DynamicDAD_(36) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(37) id]*$val(t)] "$DynamicDAD_(37) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(38) id]*$val(t)] "$DynamicDAD_(38) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(39) id]*$val(t)] "$DynamicDAD_(39) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(40) id]*$val(t)] "$DynamicDAD_(40) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(41) id]*$val(t)] "$DynamicDAD_(41) start" 



 

 

187 

 

 

$ns_ at [expr 10.0+[$DynamicDAD_(42) id]*$val(t)] "$DynamicDAD_(42) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(43) id]*$val(t)] "$DynamicDAD_(43) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(44) id]*$val(t)] "$DynamicDAD_(44) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(45) id]*$val(t)] "$DynamicDAD_(45) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(46) id]*$val(t)] "$DynamicDAD_(46) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(47) id]*$val(t)] "$DynamicDAD_(47) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(48) id]*$val(t)] "$DynamicDAD_(48) start" 

 

$ns_ at [expr 10.0+[$DynamicDAD_(49) id]*$val(t)] "$DynamicDAD_(49) start" 

 

 

# 

# Tell nodes when the simulation ends 

# 

 

for {set i 0} {$i < $val(nn)} {incr i} { 

    $ns_ at $val(stop) "record $DynamicDAD_($i); $node_($i) reset" 

} 
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$ns_ at $val(stop).0002 "puts \"NS EXITING...\"; $ns_ halt; finish" 

 

puts "Starting simulation..." 

$ns_ run 
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“Only the dead have seen the end of war” 


