
PROVISIONING OF SECURE
MULTI-AGENT SYSTEMS
(MAS) BASED ON TRUST

CONTRACTS

Diligent Philile Biyela

A dissertation submitted to the faculty of science in
fulfilIment of the requirements for the degree

MASTERS OF SCIENCE

111

.
COMPUTER SCIENCE

Department of Computer Science

University of Zululand

2004

DECLARATION

This dissertation represents research work carried out by the author and has not been

submitted in any form to another university for a degree. All the sources I have used have

been duly acknowledged in the text.

11

DEDICATION

I dedicate this work to my family which is always behind me especially my mother. Her

support and encouragement gets me through the toughest of times. To my lovdy daughter

who her love inspires me to greater achievements. I also dedicate this work to my husband

whom I love dearly who supports me in all the endeavors I take.

,

ill

ACKNOWLEDGEMENTS

I would like to acknowledge my gratefulness to all the staff members of the Department of

Computer Science of the University of Zululand To my supervisor Pro£ M.O. Adigun, I

would like to express my sincere gratitude and state the I would not have done this without

you, his support and wisdom which I greatly appreciate. To my colleagues, and to all who

contributed to this research, their help and guidance is highly appreciated.
•

To God who gave me the strength and wisdom to see through this study, I am also very

appreciative and acknowledge His blessings.

IV

TABLE OF CONTENTS

Declaration " .ii

Dedication.. '" " .iii

Acknowledgements '" .iv

Table of contents v

•
list of figures x

list oftables , .. '" xii

Abstract xiii

1 CIIAPTER ONE 1

1.0 Introduction " '" 1

1.1. Overview 1

1.2. Statement of the problem : 6

1.3. Research goal and objectives 7

1.4. Research methodology 8

1.5. Org:mization of the dissertation 8

v

2. CHAPTER TWO 10

2.0 Background concept and literature review .10

2.1. Introduction 10

2.2. Security concepts 10

2.2.1. Schemes tailored for integrity 12

2.2.2. Schemes tailored for accountability 14

2.2.3. Schemes tailored for confidentiality 15

2.2.4. Schemes tailored for anonymity 15

2.2.5. Schemes tailored for availability 16

2.3. Agent-oriented software development methodologies 16

2.3.1. The Gaia methodology 17

2.3.2. FIPA modeling abstractions 17

2.4. Trust models 17

2.5. The proposed model .20

2.6. SIllIl!Ila1Y 21

1'1

3. CHAPTERTIIREE 22

3.0 Security framework analysis and design '" '" ..22

3.1. Introduction 22

3.2. The security characterization framework '" 22

3.2.1. The security mode! " 22

•
32.1.1. The framework for an active interface 23

32.2. The Interaction security contract '" 26

32.3. Access control enforc=ent. '" 31

3.3. The design ofa security-aware multi-agent syst= 31

3.3.1. The shopping mall syst=: a case study 32

3.32. The requir=ents model '" .33

3.3.3. Detailed Requirements Analysis 38

3.3.3.1. The organizations 39

3.3.4. Architectural design " " " '" ...41

3.3.4.1. The agent model. .41

3.3.4.2. The service model " ..45

vu

33.5. Detailed design '" ..49

3.4. The simulation model and design '" .50

3.4.1. The simulation model .51

3.4.2. The simulation design .52

3.4.3. The simulation environment '" .55

•
3.5. SU!Il1lliIIj' 55

4. CHAPTER FOUR. .57

4.0 Model simulation and implementation " " .. .57

4.1. Introduction .57

4.2. Experimental evallliltion " '" " .57

4.3. Implementation 62

4.4. SU!Il1lliIIj' 66

5. CHAPTER FIVE 67

5.0 Conclusions and further work '" 67

5.1. Conclusions 67

5.2. Further work 68

"ill

References 70

Appendix 78

IX

List of Figures

1.1 The working mechanism ofa mobile agent .4

3.1 The structure ofan active interface .25

3.2 A use case diagram for our shopping mall system 34

3.3 A sequence diagram fOr the Initiate Purchase use case .37

3.4 A sequence diagram for the Select Shop use case '" , 37

3.5 A sequence diagram for the Buy Item use case 38

3.6 A sequence diagram for the Advertise Product Catalogue use case 38

3.7 The schema for the role Shopper Agent 42

3.8 The schema for the role ShopAgent .43

.
3.9 The RequestShops protocol definition 44

3.10 The RespondShops protocol definition 44

3.11 An agent model 45

3.12 A class diagram for the shopping mall system .49

3.13 A flowchart diagram for the Request Shops behavior. .50

x

3.14A class diagram for the simulator .54

3.15 The simulator for the ISC mechanism .56

4.1 The e-Bay trust model 59

4.2 Agent interactions without security evaluations 60

4.3 Trust accuracy levels using the ISC approach 62

4.4 The ShopperAgent interface '" 64

4.5 The dispatching ofan agent '" 64

4.6 Incompatible properties result '" '" 65

4.7 Compatible properties result 65

4.8 The returned invoice 65

Xl

List ofTables

3.1 The service model 46

3.2 The acquaintance model 46

3.3 ACL message definition .47

4.1 The e-Bay trust model 58

4.2 Agent interactions without security evaluations 60

4.3 Agents configured with the ISC mechanism interactions 61

XIl

ABSTRACT

TIlls research work focuses on the development of an Interaction Security Contract (ISC)

mechanism that enhances the capability of agents to protect themselves against compromised

entities in Multi~Agentsystem. To realize the framework, two tasks were carried out namely (i)

a simulation of an agent based system was created and trust accuracy levels based on the

proposed mechanism were evaluated to establish the significance of the proposed security

scheme; and (ll) a secunty~aware agent~oriented shopping mall system was designed and

implemented to demonstrate the proposed contract based security model. The results obtained

are threefold: (i) This study was able to establish that trust models based on reputation do not

obtain accurate trust values for agents to make correct trust decisions in agent systems; (11) it

was established that it was even riskier to fonn collaborations without any trust model in place

as agents collaborated with agents whose security status was not known to them. TIlls clearly

shows that agents were at risk of being compromised; and (ill) it was established that if agents

publicize their security properties truthfully, trust in the overall agent systems will be greatly

improved as agents themselves will only be collaborating with agents who meet their specified

level of trust. In conclusion the study advoc~tes the employment of the proposed Interaction

Security Contract (ISC) mechanism, since it was demonstrated how knowledgeable trust

relationships can be fonned and improved in agent based systems.

X1l1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Overview

•

Over the years computer systems have evolved from centralized monolithic

computing devices supporting smtic applications into client server environments

that allow complex forms of distributed computing. There are three major

technologies that have emerged for distributed computing. In historical order,

they are the message passing systems, remote procedure call, and distributed

object systems [1]. Distributed systems allow clients to access remote functions or

objects. However, these functions are predefined on a server; therefore there is

no room for client customization. To address this issue, software agents were

introduced as software structures capable of making "rational decisions". The

idea of mobile agents was introduced to increase system flexibility, sca1ability and

reliability. However, the mobile agent paradigm is still in its infancy hence it has

not yet fulfilled all of what it promises. Among the reasons for the paradigm's

unmet potential are security concerns and incomplete knowledge of the possible

consequences ofmobile code use.

1

Researchers have expressed diverse views on what an agent is, Among many

definitions of agents are (i) a persistent software entity dedicated to a specific

purpose[2]; (ii) a computer program that simulates a human relationship by doing

something that another person could do for you [3]; (m) the integrated reasoning

processes [4]. Furth=ore agents have been conceptualized either with focus on

negotiation and coordination of infonnation transfers [5J, or even with emphasis

on the autonomy of the agent [6]. Franklin and Graesser [7] give a comprehensive

review of a variety of agent definitions. There seems to be some characteristics

that are broadly accepted by many as representative of the key qualities that can

be used to assess agency. These characteristics are incorporated in the agent

definition by Weiss [8], where agents are viewed as software entities that are

capable of flexible autonomous migration from one platform to another in order

to fulfill their design goals, and flexibility means three things, namely:

• reactivity: ability of agents to perceive their environment, and respond in

a timely fashion to chang~s that occur in it in order to satisfY their desigo

objectives;

• pro-activeness: ability of agents to exhibit goal-directed behavior by taking

the initiative in order to satisfY their design objectives;

• social ability: capability to interact with other agents (and possibly

humans) in order to satisfY their design objectives.

2

One of the issues holding the mobile code paradigm back from maturing is

serurity. There are at least four prominent serurity threats affecting multi-agent

systems which are: (i) the serurity threat of malicious hosts; (n) the serurity threat

of malicious agents against an executing platform; (iii) the serurity threat of

malicious agents against other agents; and (iv) the serurity threat of the network

infrastructure.

The reasons for the above serurity threats are obvious when the working

mechanism of a mobile agent is considered; this is depicted in Fig. 1.1. A mobile

agent firstly resides on a home machine; then it is dispatched to travel

autonomously within a specified itinerary. Next, it =eeutes itself in an executing

platform, during which it collects host-specific information, and then generates

runtime states and variables. The foregoing is an iterative process which

continues until the agent returns home with useful information from the last host

in its itinerary.

An agent may have incomplete capabilities for accomplishing its goals, in which

case it needs other agents to interact with to achieve its design objectives. Hence

a Multi-Agent System (MAS) is a grouping that relates mobile agents with mobile

agent platforms and the interactions that takes place between them [9]. A MAS

exhibits the following characteristics [10]:

• Each agent has incomplete information and capabilities

3

• There is no global system control

• Data is decentralized, and

• Computation is asynchronous

Agent
Platform

Agent
Platform

Home
Platform

Fig. 1.1 The working mechanism ofan agent (taken from 9)

Therefore, multi-agent systems hltve been described as a social organization of

autonomous agents that can flexibly achieve their design goals by interacting with

one another. The security of a MAS is threatened by the fact that agents are

constandy coming in and going out of the executing platforms. This fact then

raises the following security concerns in multi agent systems.

4

• There are concerns about agents being attacked by malicious platfonns

[9]. The challenge in agent-based systems is that as agents execute, the

executing platform bas complete control over the agents that are

execu~, since they expose their state and data. Ifa platform is malicious

and access control mechanisms for an agent are not strong enough, the

platform can easily spy on the state and the data exposed by the agent

when executing. The following are the security threats associated with this

kind of an attack: masquerade, denial of service, eavesdropping and

alteration.

• Some concerns exist about the security of the executing platforms as they

host a number of agents from different platforms. The agent platform

provides an execution environment for mobile agents. It provides access

to the file systems, local executable code, peripherals, system memory,

and CPU cycles to mobile agents. However with malicious agents

roaming in the network whose intentions may be to spy, corrupt other

agents, and!or compromise executing platforms, there is a need to

protect platforms from attacks launched by these malicious agents. A lot

ofwork bas been done to identify security threats posed by compromised

agents to platfonns [11, 12, 13, and 14]. Malicious code poses a major

threat in the computing world and that is even worse for the mobile code

paradigm since these systems are hard to controL Without an effective

5

safe mechanism to verifY, authenticate, authorize, and execute the mobile

agent, the host is probably at stake of being attacked A malicious agent

can launch the following attacks on a platfonn: masquerade, denial of

service, unauthorized access.

'"

• There are also concerns about malicious agents launching attacks against

other agents executing in the same platfonn [13]. Numerous agents are

executing on platforms, good agents and malicious agents. An agent's

security weakness can be exploited by a malicious agent and cause an

attack. 1breats associated with this kind of attacks are masquerade,

unauthorized access, denial of service, and repudiation.

• Finally, there are also concerns of the protection of agents as they are

transferred from one platfOJ;tll to the other [13].

This work reports on an approach to address the protection of agents against

other agents in agent systems.

1.2 Statement of the Problem

It is fascinating to note the work of Khan et al [15] on how to compose security-

aware software. The work raises the important questions of trustworthiness of

components and proposes a security property characterization framework fot use

in component assembly situation. Should components be able to publicize their

6

security properties at runtime, much more will an agent system benefit from its

entities (both agents and platforms) having this capability. In fact a security-aware

agent will be more successful in its itinerary than the one that is only protected

from outside.

It is therefore required in this research to follow the approach proposed by Khan

et al [15] to find a security property characterization for an agent system;

formulate a security contract scheme that can be used when agents are

collaborating with other agents; and demonstrate that the mechanism works in a

multi-agent system situation.

1.3 Research Goal and Objectives

The main goal of this work is to provide a mechanism that makes enforcing a

security contract negotiation possible between two interacting agent entities. The

main goal is synthesized as an equivalent of some low level objectives which are

to:

• Formulate a model to enforce security contract negotiation between two

interacting agent entities at run-time.

• Simulate and implement the model developed usiog the appropriate

programming language and software tools.

7

1.4 Research Methodology

The research methodology includes:

1. Definit:iQn of a specification mechanism for an agent interface based on

the Compositional security Contract (Csq concept;

ll. Development of a model of a security-aware agent based system using

the Gaia methodology;

lll. Provision of access to security properties through the agent's active

interface;

lV. Implementation and simulation of an agent based system to demonstrate

the contract-based security model.

1.5 Organization ofthe Dissertation

The rest of the dissertation is organized as follows. Chapter two presents the

literature review conducted, covering from general concepts to the existing state­

of-the-art security schemes for agents and platforms in agent based systems. The

subject of discussion in chapter three is threefold: first is the analysis of the

security characterization framework; secondly is the design of a shopping mall

system which serves as a case study for the proposed security framework; and

8

thitdly this entails the design of a simulator used to evaluate the proposed

mechanism. Chapter four reports on the simulation and implementation carried

out to prove the workability of the ISC mechanism. Finally, the conclusion and

envisaged further work are covered in chapter five.
"

9

CHAPTER TWO

2.0 BACKGROUND CONCEPT AND LITERATURE

REVIEW

2.1 Introduction

This chapter is divided into two sections in section 2.2, explores the security related concepts.

This section review existing security schemes that have been proposed for mobile agents.

These mechanisms are categorized according to the security properties they are designed to

achieve. Agent based systems methodologies are presented in section 2.3. In section 2.4, trust

models are explored Section 2.5 presents the proposed model. The chapter ends with a

summary in section 2.6.

2.2 Security Concepts

Distributed object systems such as CORBA [16], DCOM [17], and RMI [18], enable remote

access to objects. However, this remote access introduces new complexity to the security of

these systems. Therefore there is a need for the implementation and deployment of proper

security policies to protect these systems. These policies should ensure that security in these

systems is pervasive, or the security of the entire system cannot be easily compromised. Hence

the above mentioned technologies provide the underlying co=unication infrastructure along

with the security subsystem.

10

Distributed systems security can be roughly divided into two aspects. The first aspect concerns

the communication between users or processes possibly tesiding on different machines. The

second aspect concerns authorization which deals with ensuring that a process only gets those

access rights to the resources in the system it is entitled to [19]. Kerberos [20, 21] is one

distributed security system that is based on shared secret keys to assists clients in settiug up a

secure channel with a server."CORBA security service is based on the Kerberos, DCE security

model to provide comprehensive security services to clients. Another system that beats

resemblance to Kerberos is the SESAME (Secure European System for Application in a Mnlti­

vendor Environment) security system [22]. However this system uses public key cryptography

combined with shared secret keys. The security architectures of these systems have been

proved to work and therefore they form a solid foundation for further development and their

approach have been extended to devise security solutions for agent based systems, since agents

are an extension of distributed computiug.

Agent-based systems tend to be open, dyru;mic, and unpredictable environments. The

openness of these systems is advantageous because it allows a broad range of users to have

access to a broad range of services by different competiug service providers. However, this

openness means that these systems lack global system control and that the information in

general is highly decentralized. Needless to say that this poses major security threats as

malicious agents may be present in the system trying to spy, or modify, and or corrupt other

agents in the system. Existiug agent based systems still exhibit security challenges that need to

be addressed, ifmobile code is to be used to develop mission-critical, real world applications.

In Chapter one, an attempt was made to list four threat taxonomies in agent systems. These

were identified as: the threat of a malicious agent cornpromisiug a platform, the threat of a

11

malicious agent compromising another agent, the threat ofa malicious platform compromising

executing agents, and the threat ofan insecure communication infrastructure.

There are a number of mechanisms that have been introduced in order to mitigate security

threats in agent systems. Several effective solutions have been prescribed for the protection of

the platform and the communication infrastructure. However due to the fact that platforms.•
have complete control over agents, most mechanisms that are tailored specifically for agent

protecrion use detection mechanisms as a det=ent. This is influenced by the fact that when an

agent is executing it moves beyond the safe boundaries of its home platform, therefore it is

exposed to malicious agents and platforms which may compromise its integrity, confidentiality,

availability, and anonymity. Otherwise agent systems must be implemented in such a way that

they always return to the home platform after executing on a foreign platform, but this does

not realize the notion ofloose roaming and its advantages.

A lot of work [23,24,25,26,27,28,29,30,31,32,33,34,33] has been done on devising security

mechanisms for agent based systems. Different approaches have been prescribed for the

different security properties. These security properties can be classified as: integrity,

accountability, confidentiality, anonymity, and availability. The next section reviews existing

security mechanisms in agent hased systems as prescribed to accomplish specific security goals.

2.2.1 Schemes Tailored for Integrity

Partial Result Authentication Code (pRAC) is a scheme that uses cryptographic checksums

formed using secret key cryptography [35]. This scheme is meant to provide forward integrity

of the partial result obtained by the agent. Forward integrity means that the results obtained in

the previous hosts cannot be modified. The forward integrity property ensures that if one of

12

the platfonns is tnalicious, the results obtained from preVlous platfonns are still valid

However, this scheme has its limitations. The worst case is when a tnalicious platfonn retains

copies of original secret key of the agent or the key generating functions ofan agent. The other

weakness of this scheme is that colluding attacks may be possible. Since this scheme is

oriented towards integrity and not privacy, the accumulated results can be viewed by any

platform, so there is still a ne6:I to employ cryptographic primitives to supplement this scheme.

Another scheme Message Authentication Code (MAC) [26] has been proposed to extend the

above PRAC mechanism, this scheme goes further due to the fact that apart from

encapsulating results at each host, it suggests to associate results with the identities of the

previous platforms and the subsequent platfonns

Mutual Itineraty Recording [29] is meant to ensure the integrity of agents. The integrity is

guaranteed by identifying trusted hosts. This scheme allows for the itineraries of the agent to

be recorded and tracked by another cooperating agent and vise versa in a mutual supportive

agreement. However this scheme also has its drawbacks, .firstly the cost of setting up the

authenticated channel is high, and secondly the inability of the peer to determine which of the

two platfonns is responsible ifan agent is killed

Itinerary Recording with Replication and Voting [30] uses a similar concept with the mutual

itinerary recording scheme. 1bis scheme ensures that the agent reaches its destination safely.

The main difference with the mutual itineraty recording scheme is that with replication and

voting rather than a single copy of an agent petforming computations, a number of copies of

an agent are used However, the major drawback with this scheme is the additional resources

consumed by replicate agents.

13

2.2.2 Schemes Tailored for Accountability

To solve the problem of non-repudiation in agent systems a numbet of schemes have been

suggested; three ofwhich are covered in the following below.

Execution tracing [32] is a technique for detecting unauthorized modifications of agents

through the faithful recording of the agent's hehavior during its execution on each agent

platfonn. The scheme requires each host to consttuct an execution logging, or tracing, when it

executes the mobile agent. 'Ibis approach also has its limitations, the most obvious being the

size and the numbet of logs to be retained, and the fact that the detection process is ttiggeted

occasionally, based on suspicious results or othet £actors. Anothet drawback is the lack of

accommodating multi-threaded agents and dynamic optimization techniques. While the goal of

this scheme is to protect an agent, the scheme does not afford some protection for the agent

platform, providing that the platfonn can also obtain the relevant trace summaries and traces

from the variouS parties involved.

State Appraisal [23] is the mechanism that is aimed at ensuring that an agent has not been

compromised due to the alteration of its state. The success of the schetne depends on the

extent to which harmful alterations to an agent state can be predicted and mitigation

mechanisms in the fonn of appraisal functions can be prepared before using the agent. The

drawback of this technique is that some state alternations cannot be easily foreseen and

detected. It bas been indicated that it rnay not always be possible to distinguish normal results

from deceptive alternatives.

The Trusted Agent Proxy Server (fAPS) [24] appears to be the most comprehensive scheme.

Giiansicacosa proposed Trusted Agent Proxy Server (fAPS) architeetuee to lower the risk

14

concerns of agent code executing on hostile platforms. This architecture is based on the

notion of a trusted proxy server host, which acts as a strong deterrent against malicious

behavior from potentially hostile agent platforms.

2.2.3 Schemes Tailored for Confidentiality

Computing with Encrypted Functions [30] is a cryptographic method to protect mobile agents

from eavesdropping. This approach falls under the blackbox category. The approach is to

encrypt the functions in the mobile agent. The main difference from the traditional encryption

techoique is that with this scheme the functions after encryption are still usable. 'Ibis is a

promising technique since it applies the cryptographic primitives systematically on an agent. .

However, this approach currendy supports polynomials and rational functions only, if the

program implements security-sensitive functions other than polynomials and rational

functions, the functions cannot be encrypted

2.2.4 Schemes Tailored for Anonymity.

A few schemes have been derived to provide for anonymity as compared to other security

requirements. In [33] Westhoff et al proposed an onion-like data structure that is used to

protect the agent's itinerary from wholly known to the remote hosts. Without any protection

the itinerary is in its atomic version that is the concatenation of IP addresses of the remote

hosts. With the onion-like structure, the itinerary is encrypted layer by layer. The next host

information is revealed as long as the remote host has the correct secret key to decrypt.

Another anonymity scheme in [34] uses hardware to protect the whole agent, including the

itinerary.

15

2.2.5 Schemes Tailored for Availability

Several schemes are derived to ensure that the platfonn will allocate resources and allocate

with quality of service to the mobile agents. One of those schemes is the CPU Resource

Control approach presented in [27]. This scheme assumes that the hosts follow the resource

allocation scheme faithfully,.without mechanisms to prevent hosts from being malicious.

Mobile agents specify their constraints when requesting services from platforms. The platfonn

adjusts with its own constraints to allocate CPU resources to the mobile agent. With both

constraints set by the agent and the platform, this scheduling scheme addresses security and

the quality of service. However, this scheme does not detect platfonns that do not achieve a

certain quality ofservice when an agent is returned

2.3 Agent-Oriented Software Development Methodologies

Agents are used to understand, model, and develop an important class of distributed systems.

If agents are to realize their potential, there is a need to develop software engineering

techniques that are specifically tailored for them. Traditional object-oriented software

development techniques fail to capture an agent's flexible, autonomous problem solving

behavior. Hence methodologies such as the Gaia methodology [36], AUML [37], Tropos [38],

and MASE [39] have been introduced to provide abstractions that are specifically tailored for

agent based system analysis and design. However this work adopts two of these methodologies

and also employs an ACL (Agent Communication Language) message structure from FlPA

(Foundation for Intelligent Physical Agents) specifications [40] to model the demonstration

system. This is elaborated on overleaf

16

2.3.1 The Gaia Methodology

MAS according to Gaia are viewed as being composed ofa number ofautonomous interacting

agents that live in an organized society in which each agent plays one or more specific roles. In

the Gaia design process the first step is to map roles into agent types and to create the right

number of agent instances of each type. The second step is to determine the services model
.<

needed to fulfill a role in one or several agents. Finally, the last step is to create the

acquaintance model for the representation ofco=unication between the different agents.

2.3.2 PIPA Modeling Abstractions

AUML (Agent-based Unified Modeling Language) is an initiative by the FIPA Modeling TC

(Foulldation for Intelligent Physical Agents Modeling Technical Committee). AUML is an

extension of UML [41] that is aimed at providing and capturing features that are unique to

agent-based systems. AUML defines agent-based modeling abstractions such as capability and

service for agent class modeling. These abstractions are employed in this work to modcl the
. .

demonstration system. Furthermore, this work has employed some FIPA specifications

[42,43,44] to model the workings of the system.

2.4 Trust Models

Trust has been a subject of research in both sociology and computing. Trust in Multi-agent

systems has always been considered from the view point of reputation rather than an

experience by the concerned agent itself [45]. Trust has always been central to effective

interactions in open multi-agent systems. A number ofreputation models have been proposed

17

for online environments and agent system in general [46], [47], [48], and [49). The review of

these models is presented below.

Sporas [49] is a reputation model that only considers the most recent ratings between two

users. Sporas does not store :ill the ratings, but rather updates the global reputation value of an

agent according to its most recent rating. It also introduces a reliability measure based on the.,
standard deviations of the rating values

Histos [49] was designed as a response to the lack of personalization that Sporas reputation

values have. On the contnuy to Sporas, the reputation value is a subjective property assigned

particularly by each indMdual. The treatment of direct interaction in this model is limited to

the use of the most: recent experience with the agent that is being evaluated.

Abdul-Rahman and Hailes [48] defined a trust model that uses four degrees of belief to typify

agent trustwortlriness: ut (very trustworthy), t (trustworthy), u(untrustworthy), and rm(very

untrustworthy). For each partner and context, t:l;e. agent maintains a tuple with the number of

past experieoces in each category. From the point of view of direct interaction, the trust of a

partner in a given context is equal to the degree that corresponds to the maximum value in the

tuple.

Yu and Singh !46] defined a model where the information stored by an agent about direct

interactions is aset ofvalues that reflect the quality of those interactions. Only the most recent

experiences with each concrete partner are considered for the calculations. By using the

historic information together with the Dempsttr-Shafer theory of evidence, an agent can calculate

the probability that its partner gives a service ascribed to each one of these groups.

18

Agents have been providing recommenchtions to other agents to weed out bad agents within a

community of transacting agents. E-commerce sites such as e-Bay [50J, Amazon.com [51J,

and Bizrate.com [52] have been known to employ reputation based trust models to assess the

trustworthiness ofbuyers and sellers interacting in the system. The problem with building trust

blindly based on the recommendations of others is due to the subjective nature of trust [53].

Thus to assume that all agents cognitively process trust in the same way and then to go and

defirie a universal fixed trust algorithm is not a reasonable approach. What is required is the

flexibility to allow agents to participate in the trust decision making process. For example when

an agent A informs agent B that agent C is untrustworthy, agent B simply takes agent A word

for. it, without trying to establish whether agent A itself can be trusted about the statement.

Therefore, agent B cannot truly say it has the cottect trust information about agent C. Thus

there is a problem ofprocessing second order beliefs: beliefs about others and beliefs about us.

Therefore, a better approach to solving this trust complexity is to enable agents to find out the

trustworthiness of other agents themselves.

The Compositional Security Contract (Csq framework [15] enables trust decisions to be made

at runtime, based on the results obtained from the security information negotiated by

components. A component will therefore not trust another component unless there is an

explicit expression established from the security tests specifying that components can trust

each other during a composition. The CsC adopts the existence of a logic rule that requires a

positive trust expression to be satisfied before a component can be considered to be

trustworthy enough for composition. The scheme defines trust as a binary value, such that an

agent either has complete trust in other agent or no trust at all.

19

2.5 The Proposed Model

This research work proposes a security mechanism called the Interaction Security Contract

(ISC). 1bis mechanism is a derivative of the Compositional security Contract (CsC) proposed

by Khan and Ban in [15]. The ISC is a trust guaranteeing scheme that empowers agents to

make crucial trust decisions .based on the trust values obtained by the agent itself, rather thao

through third party intervention. This scheme advocates the publication of the agent's trust

attributes through its interface so that agents who are anticipating collaboration can be able to

reason about each others trustworthiness. These trust attributes of an agent are identified as

the agent identity, origin, and the functionality-specific security properties. The security

properties are specified as the required and the ensured properties, where the required

properties refer to preconditions that other agents interested in a collaboration should fulfil].

The ensured properties refer to the post conditions that guarantee the security service once the

precondition is met. Each agent exposes its required and its ensured security properties, this

allows agents to reason about each others security properties before the actual collaboration

can take place. 1bis study argues that trust based on reputation obtained from third party

entities does not reveal accurate trust values. As a result agents should be able to assess the

security status of other agents by themselves. This is beneficial since the result obtained from

these assessments bears more credibility thao the one obtained from third party entities.

Furthermore, the proposed approach is cost-effective as it eliminates costs incurred through

third party intervention.

The ISC represents trust as a binary value computed as either conformity or non-conformity

of an agent's required security properties ro another agent's ensured security properties.

Therefore agents are able to reason about other agent's trustworthioess, without the

20

intervention of third party entities. It should be noted that in this study it is assumed that

agents publicize their security properties truthfully.

2.6 Summary

In this chapter a number of schemes have been reviewed that are aimed at protecting agents
.,

and platfonns from malicious entities in the system. It should be noted that our approach

deviates from the approaches presented above, in a sense that it facilitates the enforcement of

a runtime contractual agreement between two entities anticipating a collaboration.

Furthennore, this work does not employ detection as a deterrent, since it is believed that by

employing the detection approach, damage will have already been done on an agent.

Therefore, as a way of preserving the system's resources, the negotiation approach is the ideal

approach to achieve this goal Moreover, agent based systems methodologies are explored.

Finally trust frameworks for agent based systems are reviewed.

Next, the security contract framework is expatiated. 'Ibis defines how to protect agents before

they are involved in collaboration with other agents.

21

CHAPTER THREE

3.0 SECURITY FRAMEWORK ANALYSIS AND

DESIGN
.,

3.1 Introduction

This chapter is divided into four sections. Section 3.2 reports the security characterization

ftameworkemployed in this work in detail. The next section (section 3.3) covers the design of

a security-aware agent-oriented system.· The simulation model used for evaluating the

proposed mechanism is presented in section 3.4. The chapter ends with a summary in section

3.5.

3.2 The Security Characterization Framework

3.2.1 The Security Model

The proposed security model emanates from the model proposed by Khan and Han in [15].

The model requires the publication of the security functions of agents and hosts as part of

their interface. The attributes that affect a security trust relationship are not properly published

in agent systems. If these attnbutes are not known to the software developer, the agent's

cannot be trusted completely. These trust attributes are identified as identity, origin, and sec1Irity

properties that agents offer and require from other agents and platfonns. Therefore the

proposed security model in agent-based systems should provide the security properties of

22

confidentiality, integrity, authentication, non-repudiations and accountability between any two

interacting entities. The proposed seauity model is discussed in the next subsections.

3.2.1.1 Framewo:tk for an Active Interface

The interface of an agent defines the agent, and serves as the basis for the agents

"understanding, use and implementation. The agent's interface should be the only definitive

source for understanding the agent, and therefore the description of the agent's interface

should be as definitive and as comprehensive as possible including its security properties. The

sean:ity characterization framework is based on the notion of an active interface proposed by

. Khan et al [54, 55]. Hence the sean:ity properties are incorporated as an integral part of the

agent's interface. An active interface consists of component identity, a static interface

signature, and a static security knowledge base. In this scheme an agent has an identity, interface

signature and securityproperties. The structure ofan active interface is depicted in Fig. 3.1.

It is assumed that if two agents are intera~ one makes .use of some service discovery
, - . , -

protocol such as SLP, JINI, and ODDI [56], to discover the other which publishes its services

as defined by its interface. If identity and security properties cannot be verified, no interaction

is allowed to occur since this implies trust cannot be established between the two. The security

model consists of the following modules: Agent identity, interface signature, and the security

knowledge base. The description of these modules is as follows:

(i) Agent Identity

The identity of the agent is a crucial element as it contains information about the origin of

the agent. The identity segment consists of the agent wrique ID, the home platfonn ID, and

23

a certificate that approves whether an agent is trusted or not. This certificate is issued by a

published certification authority which confinns that the home platform ofthe agent can be

trusted. In this scheme it was assumed that public key cryptography was used to identif'y

agents and hosts, hence every agent has a private key only known by it and a public key

available for any entity that wants to interact with the owner of the public key. The

i~

following is the structure ofthe agent identity template:

identity(aid, homc_platfonnjd, certificatc)

(u) Intcrjace signature

This segment of an interface hosts static operations and attributes. These properties cannot be

altered by entities in the system. These ate used to make a sttuctutal match before two agents

can start to collaborate.

(m) Security Knowledge Base

The security knowledge base hosts and makes avaihble the seeurity properties of agents. These

seeurity-related chatacteristics of agents and platforms ate categorized as the required and the

e11S1lTCd seeurity properties. A required property is a precondition that other agents or platforms

rnust satisfy in order to get ensured seeurity services. An ensured seeurity property is a post-

condition the agent or platform is responsible for in order to maintain the committed seeurity

assurances during the interaction.

These properties are characterized by three basic elements: operatioNS, seCllrity attribl/tes, and data.

Operations ate seeurity-related operations such as: encrypting, hashing through functions such

as Secure Hash Functions (SHF), and verifYing. These operations ate performed by agents and

24

hosts to enforce security properties. Security attributes are used to perform those operations,

and include items such as passwords, keys, and so on. The data are used or are manipulated by

the operations, for example, a file or a variable that holds a value such as an account balance.

Client .geofs security characterizafuo
vio;ible to any external eotities.
(read-onIy public properties)

The ISC base structure i; dyoami:, it grows
and shrinks. Each ISC base is visible om! to
the parti:ipating ageots and or platforms.
(read-write protected properties)

AgeotlD

Required: R
Ensured :E

Security KB:

ISC base, (next)

ISC basez (next)

ISC base, (next)

Operafun argumeots

)

Externally vio;ible and verifiable.
(read-only public properties)

1----------1

)

Funcfunality offered
(read-only public properties)

\-------~

Aserv
.gentor
platfiiml.---.-.J

Fig. 3.1 The structure ofan active interface adapted from [55]

Based on Khan et al in [15], the security properties of an agent or a platform were

characterized with a predicate-like structure such as:

f(O"K;, DJ

25

Where:

£15 a name of the security function fonned with three associated arguments.

o is a security related operation perfonned by an agent or platfonn in the interaction contract,

subscript i is the identity of the agent.

.,

K is a set of security attributes used by the agent and the subscript i contains additional

information about K such as key type, owner of the key and so on.

D is an arbitrary set of data that are affected by the operation O. The subscript k contains

..·additional infonnation attached with D such as digital signature use or not, and so on.

3.2.2 The Interaction Security Contract

The ISC is based on the degree of confonnity between the required security properties of an·
, -,. ~.' -

agent, andthe ensured security prope~es 0'£ an0:heragent. '!be results obtained from the

compatibility tests, is the new security property called the ISC. This contract defines rules- for

forming a trust relationship based on the confonnance of the security properties between two

agents intending to collaborate. The security contract is fonned when an agent meets the

security requirements of a particular agent or host. An agent and or platform will perform

runtime checks to verify whether the required security properties of one agent confonn to the

ensured security properties of another agent or platform. An ISC mechanism should enable an

agent to develop a trust relationship with another agent, and or platfonn based on its own

trust evaluation results. Consider an ISC between two agents X & Y, denoted by Ix,y , and this

relationship can be modeled as follows:

26

Where

• I is an interaction contract between two agents, subscripted with the identities of the

agents taking part in the contract negotiation..,
• E and R are the ensured and the required security properties of the participating

agents respectively.

• a=>b depicts the implication (a implies b). The evaluation of each pair will result in a

Boolean true or false value. In an lSe, interaction ouly occurs if the result is true.

• The operator A denotes a Boolean "and".

Therefore the above expresslon means that if client agent X has the required security

properties RE> server agent Y will ensure the s.ecurity propertieS Eyafter interaction, and if

server agent Yhas the required properties Ry, client X will ensure the security properties Er

The examples ofE and R might be:

Rx =fI (verify, password",ftIe10)

E y=J2(encrypt,keyjilel0x·digisign)

Client agent X must use and verifY the password of server Y to access filelO, and will ensure

that it encryptsftlel0 and digitally signs it using its key.

The algorithm for the agent interface incorporated with security properties is as follows:

27

<begin AGENT> {AID, Home_Platform_ID, Certificate}

<begin INTERFACE SIGNATURE>

<operation> {<argument..

jot , ._

argument,.> }

<end INTERFACE SIGNATURE>

<begin SECURITY>

<beginREQUIRED>

,

,

<securityJunction,.>{

,

28

<end REQUIRED>

<begin ENSURED>

, ...

,

, ...

<secnrity_argument,,>}

<end ENSURED>

<end SECURITY>

The above agent inte.tface is extended with an executable part which is as follows:

29

<peginISC>

RAID ==get«funetion>, <REQUIRED>, <Am»;

E AID ==get«funetion>, <ENSURED>, <Am»;

SQFROM == confotm (BAID' <REQUIRED»;

SQTO== conform (RAID, <ENSURED»;

ISC == conform (SQro, S~o~;

Display == out «ISC»;

<end ISC> <end AGENT>

The purpose of the binary executable, part is to compute and generate the ISC. The get

function reads the security properties from the interface of a server agent (or host platform)

and stores it in RAID; the AID subscript is the identity of the server agent. In a similar way, the

ensured properties are read and stored in E AJD using get. The variable SQFROM stores the

seentity conformity result between the required property of the client agent and the ensured

property of the server agent (EAJD)· SQro stores the security conformity result between the

required property of server agent (RAID) and the ensured property of the client agent. The

conform operation generates the confonnity results. A true value indicates a security

conformance, and a false value indicates non-conformance. Interaction OulY occurs if a true

value results.

30

3,23 Access Control Enforcement

Access to agent's resources was enforced by using the notion of roles. Roles are nor defined

for the human users in this context but for agents interacting in the system. Therefore, role­

oriented interaction protocols were defined for a given agent. A sc=atio provides the contexts

of use for agents. An agent~ybe used in differ=t sc=atios and therefore has different role

partitions in those sc=atios. The roles that agents assume in the system were identified, and

the security requirements of each role relative to the context were specified Hence the

adoption of the Gaia methodology [36] which uses the notion of a human organization where

a software system is conceived as the computational instantiation of a (possibly open) group of

interacting and autonomous individuals (agents). Each agent is seen as playing one or more

specific roles: it has a well-defined set of responsibilities or sub-goals in the context of the

overall system and is responslble for pursuing these autonomous~. Hence agents are assigned

to roles, and then roles are assigned to pennissions.

3.3 The Design ofa Security-Aware Multi-Agent System

Agent-oriented software engineering is a promising software paradigm. New methodologies

have been introduced to accommodate new abstractions and design/development issues that

were not prevalent in the traditional software development approaches. The Gaia

methodology [36] adopts the organizational metaphor and lays emphasis on the study and the

identification of the organizational structure. In the model, the security requirements from the

analysis stage have been incorporated This ensures that all the functional and the security

specifications integrate seamlessly in the system design. The approach favors the definition of

security properties that are custom-made for a specific functionality of the system, and not just

31

the overall security properties are defined. As agent systems are immersed in an open

environment, the ISC equips agents with a mechanism that detects trust levels among agents

anticipating an interaction

As mentioned earlier, the methodologies for MAS's introduce some new modeling

abstractions that are specifiQlly tailored for the MAS environments. The abstractions that are

exploited in the analysis and the design phase ofthe shopping tnalI system are:

i .The environment in which the MAS is immersed;

11. The roles to be played by different agents in the organization;

ll1. The interactions between these roles;

IV. The organizational rules which capture the responsibilities of the organization as a

whole and

v. The organizational structure.

33.1The Shopping Mall System: A Case Study

.' '.

To realize the proposed framework, a security-aware agent-oriented shopping tnalI system was

designed ~d implemented. Below is the analysis and design of this system, it should be noted

that in this study security properties are considered at the inception of the systems design to

ensure that all possible system vulnerabilities are taken into consideration. Therefore, the

system design includes the systems security requirements. The first step towards the system

design is the system analysis. The analysis in this work is divided into two elements i.e. the

requirements model and the detailed requirements analysis. UML [41] was employed to model

32

the system's requirements. The requirements model consists of the use case and the sequence

models. A transition is made from the requirements model to the detailed requirements

analysis. For the detailed requirements analysis, the Gaia methodology was employed

Furthermore, is the system design, which is made up of the architectural design and the

detailed design. From the analysis and specification of the abstractions listed in section 3.3 the

i~

system was ready to he implemented

3.3.2 The Requirements Model

The first step towards a requirements model is the creation of a use case diagram. Use cases

provide an abstract view of the system by identifYing the main actors using it, and the main

functions that the system provides to them. In agent based systems, use cases are extended hy.

the special kind of actor representing the agents within the system. In this system, there is a

ShopperAgent, an agent that looks for the clothing items to purchase on behalf of the

customer. Then there are a number of ShopAgents t.l,at stock items that are needed by the

ShopperAgent. ShopAgents query the shops databases for items arid prices and present that ..

infonnation to the ShopperAgent. Although a ShopperAgent is looking for the best offer,

however, the emphasis here is on the ShopAgent that can provide the security levels required

by the ShopperAgent. Therefore even if a ShopAgent offers the lowest price, hut a trust

contract must first be established with the ShopperAgent otherwise the ShopperAgent cannot

continue with the proposaL AIl ShopAgents are configured with the ISe mechanism for

security evaluations, and defined different required and ensured properties for each of them.

The ShopperAgent is also configured with the ISe mechanism and has its own security

properties. Therefore, a ShopperAgent must be ahle to query other ShopAgents about their

security properties and select the one whose properties match its own. Fig. 3.2 illustrates the

33

described interactions in the system. The use case diagram is elaborated upon using an

overview of the wo.tkings of the system and an agent-specific feature set.

Shopping MaD
,,

k~SeIee1shoPr-----.~.
Customer

eel shop with
mpab1lle security

ShopAgenl
«indude»

SIlopperAgenl

o
;\

'--------------------'
ShqJ

Legend:

*:Actor ~:usecase f :Agent

Fig. 3.2 A use case diagram of a shopping mall system

34

An overview ofthe shopping mollsystem

To clearly identifY the requirements of agents in this system, a typical shopping situation was

examined. The customer needs to purchase a certain item from a Shop. The ShoppcrAgent

then goes to the mall where there is a number of ShopAgents that sell the kind of items that

the ShopperAgent needs. The ShopperAgent however has a specific price that it is prepared

to pay for that item. More importantly though is that it also has specific security

requirements that have to be met before it can commit itself to an agreement. Therefore

when looking for the desired items, checking the security requirements is the first thing that

the ShopperAgent does. Otherwise if the ShopperAgent does not get the security properties

.it requires it tenninates and looks for the items elsewhere. Followirlg are requirements that

the system must satisfy.

Agent-specificfeatures

L Different modes for request/response:.the user does not rieed to be connected while

a request completes. A user specifies a service request with all the relevant service

descriptions and its security requirements within the ShopperAgent to query the

service provider's agents (ShopAgents) about the items, price, their security

properties etc. On the other hand Service Providers (shops) send response messages

to the ShopperAgent and wait for a proposal based on the choice of the

ShoppcrAgent.

u. Comparison of offerings: the agents are capable of comparing the security properties

of other agents as their first step, in order to determine whether they conform to the

same security policy or not. Furthermore, the system evaluates and provides the user

35

with different service dimensions such as cost or other user's experience, to enable

the ShopperAgent to make an infonned choice and

IlL Learning capabilities: firstly, agents in the system are able to keep record of security

tests that have been perfonned and contractual agreements fonned. This ensures

that agents develop.ttust relationships with agents whose security has been evaluated.

It should be noted that in this work it is assumed that agents publicize their trust

security properties truthfully and these properties do not change. Secondly, the

system becomes more efficient toward the user's needs and habits with continued

experience so that when new mercbaudise or discounts that meets the user profile

are advertised on the system, the system is able to generate an event to notify the

user about those items.

From the use cases ideutified in Fig. 3.2, the sequence ofmessages involved in each use case

is fonnulated. Fig. 3.3 shows the sequence diagram for the Initiate purchase use case

diagram, while Fig. 3.4, Fig. 3.5, and Fig. 3.6 shows sequence diagrams for the Select shop

use case, Buy item use case, and the Advertise product catalogue use cases respectively. The

Initiate purchase use case is invoked when a customer instantiates the ShopperAgent. The

Select Shop use case invokes the concurrent sending of request messages to all the service

provider agents. The Buy Item use case is fulfilled when a ShopperAgent receives its

confirmation for a purchase after it has bought item(s) from the shop. The Advertise

Product catalogue use case is invoked when a shop generates notification events to alert the

ShopperAgent of special bargains or new items in its database that might be of interest to

the customer.

36

Role: Customer Role: ShopperAgent

purchaseltem(price,
description,creditCardlnfo) ...

~

••

Fig. 3.3 The sequence diagram for the Initiate Purchase use case

Role: ~Agent: Role: ShopAgentA Role: ShopAgent8 """'ShopAgont<:

OffetReqMsg(3gen1iD,securityProper}

b""""'-_H

OfferReqMsg(agentlD,securityProp....,
b~-.........

0Ife<Req sg(agentID,seeurityPropef}

. J"""'"
OfferRepIyMsg(agentID~}

Se<urityC -,
OfferRepIyMsg(agentID, ,

-c·H
Offer Proposa!Msg(itlI:mDescription, p4 ~_Info,

"""""""'"og(.. "0.__1

Se<urity!::;

.-J

"""'"-

Fig. 3.4 The sequence diagram for the Select Shop use case

37

I
Role: ShopoerAgent Role:ShopAgent

buyltem(item.description.creditCardlnfo) ...
r

~ sendConfirmation(lnvoiceNo)

"" '.
Fig. 3.5 The sequence diagrnm for the Buy Item use case

Role:Shop Role:ShopperAgent

submitCatalogue(ilems,price) •,
.~ acknowledgeReceival()

"

Fig. 3.6 Asequence diagrnm for the Advertise?roduct Catalogue use case

333 Detailed Requirements AnaIysis

1bis second element of the system analysis is aimed at analyzing and refining the requirements

obtained in the first phase. In this phase, the Gaia modeling abstractions are adopted to

organize the collected requirements for the systems into an environmental model, role and

interaction models, and a set of organizational rules, for each of the sub organizations

composing the system. The Gaia modeling abstractions allows the incorporation of the agent

specific characteristics that cannot be mode1ed in UML.

38

· 3.3.3.1 The Organizations

The shopping mall system in this work is comprised of two sub-organizations that are

interacting i.e. shoppers (clients) and shops (service providers). Each sub-organization has a

specific goal to achieve in the system. The goals of the first sub-organization are to purchase

items required by the CIlStomer. This sub-organization is responsible for capturing the

description of items from the customer, look for shops who sell those items, select shopes)

that meet the client criteria, buy the selected items, and return the result to the customer.

The goal of the second sub-organization is to serve the Shoppel:Agents in the system. This

sub-organization is responsible for capturing the description of items specified by the

Shoppel:Agent, reply to the purchase requests, and process the purchase. In all of the above

cases there is a clear goal to be pursued by each sub-organization. The most important thing

though is how they interact with each other to accomplish their goals in the environment.

Therefore the roles that they assume in the system are identified, in doing that the agent's

domain of activity is detennined; furthennore the inter-domain security policies are

specified, to govern the behavior of agents within the same domain. Therefore the first step

is to identifY the roles in the environment. The roles are elaborated on below.

(i) The Shoppel:Agent- acts on behalf of the user and is authorized to do so up to the level

allowed by the user. The agent must be capable of remembering and adhering to the user's

instructions and learning the user's preferences. It must be noted that there is a role that is

involved in the system, which is the Directory Manager (OM). This role is inspired by the

Directory Facilitator (OF) role in [49]. The DF is a FIPA (Foundation for Intelligent Physical

Agents) defined role to provide agents with directory services. The DM role concerns the

operational level of the system, and not the application itself, that is why a Gaia representation

39

for it is not supplied; however it is used later in the design. Furthermore, interactions with this

role are presented as protocols, as they are defined in the Gaia methodology, but as activities.

Therefore the activities RegisterDM and QueryDM are DM services provided directly by

the executing platform, provided not as a result ofinteractions between agents, but as methods

inyocations. Therefore, our ShopperAgent is enabled to register to the DM, deregister from
••

the DM, query the DM, send request messages on the platform, receiYe messages from

service providers affiliated on that platform, and query security properties offered by the

ShopAgents whose replies haye been recmed

(n)The ShopAgent-tltis agent provides a service to the ShopperAgent in the sense that it

sells the items that are required by the ShopperAgent. Subsequendy tltis agent is responsible

for' maintaining data access, interpretation, and deliYety to the ShopperAgents. The

ShopAgent "is enabled to register to the DM, deregister from the DM, receiYe request

messages from Yarious ShopperAgents, query the ShopperAgents security properties, and

reply the ShopperAgents request messages. •

The organizational role models describe all the roles that constitute the computational

organization. This IS done in t= of their functionalities, activities, responsibilities,

interaction protocols and patterns. Based on these constructs, the following schema for the

role models was obtained In this schema all the specifications needed for the identified role in

the system to perform its functions are defined The schema for the role ShopperAgent is

depicted in Fig. 3.7, and the schema for the role ShopAgent is depicted in Fig. 3.8.

40

From the role models obtained, the interaction models were defined. The organizational

interactions model desctibes the protocols that govem the interactions between the roles.

Furthennore, these models describe the characteristics and dynamics of each protocol, e.g.

when, how, and by whom a protocol has to be executed Next is the presentation of the

protocol models in the system, where a protocol is viewed as an institutionalized pattern of

interaction. Hence, in Fig. 3.9 and Fig. 3.10 are interaction models for the RequestShops

protocol and the RespondShops protocols respectively.

3.3.4 Architectural Design

3.3.4.1The Agent Model

In this phase the agent model which was adopted in this study is identified The agent model

creates agent types by aggregating roles. Each emerging agent type can be represented as a role

that combines all the aggregated roles attributes (activities, protocols, pennissions and

responsibilities). The system under discussibn adopts a peer-ta-peer agent model, which

comprises of two agents types: the ShopperAgent and the ShopAgent. However there is also a

DM role included since agent's search each other over the DM as illustrated in Fig. 3.11. It is

apparent from the illustration that there is only one ShopperAgent in the system, however the

implementation is assumed to use a multi-user, server-based design.

41

Role: ShopperAgent

Description: This role acts on behalf of a profiled user. Whenever a user
needs to purchase an item, it searches for the ShopAgent that best fit the
needs of the user and recommends the appropriate one to the user. It also
receives information ciri new merchandise and special discounts, and
presents that information to the user. Furthermore it is able to check the
security properties of the ShopAgents to determine if the proposed
negotiation can continue or should be terminated, and updates its ISC
base.

Protocols and Activities: CheckProperties, RegisterDM, QuervDM InitUs
erProfile UserReguest InferUserNeeds RequestShops, RespondShops,
UpdatelSC.

Penmissions: create, read, update user profile data structure, read
acquintance data structure

.

Responsibilities:
Liveness:

ShopperAgent=lnitUserProfile. (ServeUser)W
ServeUser-UserReguest.RequestShops.RespondShops.lnferUs
erNeeds.presentShops.

Safety:
The security properties are compatible

Fig. 3.7 The schema for the role ShopperAgent

42

Role: ShopAgent

Description: It wraps databases for different shops, and provides a
shopping facility for ShopperAgents. It registers to the OM, and queries the
OM for other ShopAge'lts that have joined the system, so that it is able to
have the latest information on new merchandise, special offers etc. It also
gels acquainted with specific agents.

Protocols and Activities:
CheckProperties,RegisterDM,QuervOM,RequestShops,RespondShops,!.lQ

. datelSC"

Penmissions: read OM

Responsibilities:
Liveness:

ShopAgent = RegisterDM. {FindShops)W
FindShops = RequestShops.QuervOM.RespondShops

Safety:
A successful connection with the OM and shops databases
is established.
Security properties are compatible.

Fig3.8 The schema for the role ShopAgent

43

Protocol Name: RequestShops

Input
Service

Initiator: ShopperAgent Patner: ShopAgent description
and security

',(ol' requirements
description.

Description:
Output:

The ShopperAgent requests shops that meet the user requirements from
Response on

the platform. Aset of shops is presented for the ShopperAgent to chose
shops that

from. The choice is then made based on the security properties of the meet all the
user's

ShopAgents. requirements.

Fig 3.9 The RequestShops protocol definition

Protocol Name: RespondShops .

Input

Initiator: ShopAgent Patner: ShopperAgent
Service
descriptions
and security
properties

Description: Output: -
The ShopAgent presents the shops that meet the descriptions provided
by the ShopperAgent

Fig3.10 The RespondShops protocol definition

44

OM

Shopper1

Shopper

Shop'

Shop

Legend

AgentTypes

Roles

":zero Of more Agent Type inStances

Fig3.11 The agent model

From the foregoing analysis, a service model was formulated

33.4.2 The Service Model

The aim of the services model is to identify the services associated with each agent class, or

equivalendy with each of the roles to be played by the agent classes. The services that compose

an agent are derived from the list of protocoIs, activities, responsibilities, and liveness

properties of the roles it implements. Table 3.1 shows the service model of the system. This

model defines the input and output elements of the identified service. Furthermore, it also

states the pre and post conditions for that specified service.

4S

, Table 3.1 The service model

Serv~e Inputs Outputs P~onditions Post-Conditions

• ShopperAgent exist
Products from aservice The appropriate service

Product descriptions and securitt
Fmd shops provider with compatible provider agent is selected or

+securitt properties characterization tests
securi~ properties the service terminates

performed

Firuilly, the acquaintance model is defined. This model depi.cts the roles that interact when

agents are fiJlfilling their design purposes. It also takes into account the idea that an agent can

interact with another agent without having any knowledge about that agent. Therefore, this

model doesn't only define interactions, but it also specifies whether or not one role is

acquainted with another. Table 32 shows the acquaintance model of the system, where I

depicts the agents that interact with each oth.:r and A depicts agents that are acquainted with

each other.

Table 3.2 The acquaintance model

Shopper Shop DF

..

Shopper lA lA

Shop lA lA

DF lA lA

46

33.5 Detailed Design

When moving from the Gaia model towards the system implementation, messages that are

co=unicated in this system are defined To achieve this, the FIPA ACL Message Strucrure

Specifications in [40] was employed The ACL Messages RequestShops and

RespondShops are presented in Table 3.3.

Table 3.3 ACL Message Definition

ACL Message: RequestShops
Sender: ShopperAgent .
Receiver: ShopAgent
FIPA performative: REQUEST
Protocol: RequestShops
Language:SL
Ontology: sell-product
Content: Ontology action:
RequestShops

.. -

ACL Message: RespondShops
Sender: ShopAgent
Receiver: ShopperAgent
FIPA performative: INFORM
Protocol: RespondShops
Language:SL
Ontology: sell-product
Content: Ontology concept: Shops

At this stage, the internal strucrures and methods of the system are defined For this system,

the following structures and methods are obtained:

L The user pro@e strucrure contains all the information there is to know about the user,

and how it is organized The Shopper role maintains this strucrure (see Fig. 3.7), and

11. The shop strucrure contains all the information about the shops. It defines the shop

and the attnbutes associated with it. TIlls strucrure is needed by the Shop role and the

Shopper role, the fonner instantiates such objects by the information that it gets from

47

the DM (QueryDM activity), while the latter filters the shop structure objects

according to the user profile (InferUserNeeds activity).

From the above analysis, the agent class diagram is created (see Fig. 3.12); this diagram depicts

the classes and their attributes and operations. To model the class diagram for classes in this

system, the AUML is elnployed This allows for the specification of the agent specific

attributes.

The class diagram in Fig. 3.12 shows that there is a capability "Buy" in the system. That

capability is owned by the ShopperAgent. There is also a capability "Sell" which is owned by

the ShopAgent. Moreover, there is another capability "CheckSecutityProperties" which is

owned by both the ShopperAgent and the ShopAgent. The ShopAgent implements a "Shop"

interface. The ShopperAgent requireS a "FindShops" service that is provided by the

ShopAgent.

Finally, a flowchart diagram is used to depict" the RequestShops behavior of the system. The

flowchart diagram enables the observation of the infonnation exchanged between entities in

the system. This also enables the system to view what bebavior is next to be added in the

agent's scheduler. Fig. 3.13 is the flowchart diagram of the RequestShops bebavior.

48

In...

homeA<:tdres$: String-­item:: String
shopList[J: String

shopUstlndex:JntegBr
bestPrice:FJoaI:
bestShop:string

"""""orderNo: String

Input Constraint,
homeAddRts$: String

pric:e: F1CN1l:
it8mDloscription: String

itIomNo: string
ocaerNo:string

CNcfitC.-dType:String
cnIditCardNo: String

OolCPiryDate: Date

output Constraint

getReceipt=TRUE

,­
homeAddr=s: Sbing

priee: Floal
catalogue: S1rirIg

Description

Ttas capability enables the
shop agent to sell its.

products Ihal are ~ettised
in the c:atalogue

hasa •

I~

nquiiadftiesD: string
~D:string

OIpilual:ion

get!rM:Ii<:::e'=TRUE

De$cription

This capabillly enabJes the
agent tD buy items 1hal1lls
the .spedfication provided
by the user, and return the

=><

....

-
--

Description

This service~ the yellow
pages for shops that sell specified.....

­R..........",.--
FIPAAct.

APASL

requinldPropeitr-NULL
er\SljIOQj iopaticsl=NULL

.-..-
Thi5 capability enables agents

to perfcnn secuity tet
against each olher to

determine if they caIfoIm ID
the some seamy propei1ieS

~""'-

Fig3.12 A class diagram for the shopping mall system

49

RequestShops

RequestShops(item,price.securityPropertiesj

RespondShops

checkSecurilyProperties(AIDshoP...._AIDShopAgent.requiredProperties.ensuredProperties)

AcceptProposal(ilem.creditCardlnfo)

Buyltem

Fig. 3.13 A flowchart diagtam for the RequestShops behavior

3.4 The Simulation Model and Design

Ar this stage the design of the program thar simulates the proposed ISC mechanism is

presented. In this work it is assumed that the agents in the system are in a controlled

environment, i.e. access control, authentication and encryption mechanisms are in place. It is

also asSlUlled that all the agents in this system report their trust infonnation truthfully. The first

50

step towards the simulation of the system is the identification of the objects required to build

the model.

3.4.1 The Simulation Model

The simulated system consists of a number of agents interacting to achieve their design goals.
•

This number is varied to monitor the bebavior of agents in the system. All the agents in the

system are incorporated with a number of security properties, and they have no knowledge of

each others past bebaviors. It is assumed that there is only one service in this testbed so all

agents in the system are co=unicating for the same service. Validating the compatibility of

an agent and other agent's properties is the key faetpr in determining whether an agent can

trust another agent to provide a service without compromising the service requestor agent.

Agents in this system can either be in one of four states, ie. they can be in a sending state,

waiting for co=unication state, validating properties then respond according to the acquired

result state, or exiting the platform state. Ellch agent ruis a radius of conversation, which

represents the permitted vicinity of the agent's interactions with its neighbors. Simulations are

run in a testbed in rouads of agent interactions. A client agent broadcast a service request

message that is received by all service provider agents in its radius of operation. The service

providers respond to the broadcasted message. The selection of the service provider depends

on the outcomes obtained from the security evaluations performed by the client agent. This

prevents agents from randomly selecting the service providers without knowing their security

status.

51

· 3.4.2 The Simulation Design

To evaluate the scheme, a simulation model consisting of an agent platfonn class, agent class,

message class, knowledge base, and the secntity property class was created. All the classes that

were used in the simulation and implementation were written in the JAVA programming

language, in the]Builder -' environment. Java was chosen as a programming language in this

study because of its object-orientedness, portability, multi-tbreadedness, and its secntity

services. Below are classes that are prevalent in the system.

The AgCT/t Class

The agent class is an abstract class that defines the minjmnm requirements of agents in the

system as shown in Fig. 3.14. The agent class provides basic operations performed by agents,

such as registering on a platform after arrival, deregisteting from a platform executing. Agents

in the systein can.either be client agents or service provider agents; this is depicted in the

speci2lization relationship of the agent class: ,.

The Message Class

The message class defines the information used in the message passed back and forth between

agents. It must be noted that the content of the first request message is combined with the

security specification ofthe agent anticipating collaboration.

The Platform class

The platform class provides an execution environment for agents.

52

· The securityproperty ems

TIlls class hosts the functionality specific security properties ofan ag=t. There are two security

properties that must prevail for each agent, i.e. the required and the =sured security properties

that are communicated to check security confonnity. After the security compatibility of agents

has be= validated, the restIlts obtained are stored in the security knowledge base.

The knowledge base ems

TIlls class serves as a repository for security contracts fonned by any two or more ag=ts in the

system wh= interacting. TIlls class stores these agreem=ts for future refer=ces, so that

agents don't perform security tests on each other every time they anticipate to collaborate. If

an agreem=t has be= fonned between any two or more agents, th= the involved agents can

.simply communicate the nest time they meet. It should be noted that in this study it is assumed

that· the security properties do not change.

A sequence ofmessages that are communicated in the system can be viewed in Fig. 3.4, from

section 3.2 above, where agents broadcast service request messages and select a servtce

provider agent that meets a similar set of required and ensured security properties.

53

........

... Name: String 1
+ platformlD: String

.....
"• + Sender: string

-PO~ ... Ret:eIVer. String. + Host: SIring
+Cotdent Object

.
.....-- --+ requiredSKJ>n)ps: String + ..gentlD: string 1- --+ l!II5UIedSecProps: SIring + S&UrilyProperti: String"._- --..............eon_

-----""- -..--=-.... -""""""'"............,"-
I-...-

_I'~' QI

.............-......,
-rwmo
"'.........

~

. I... agemo; SbWJg
+ result: Boolean I

"""'"
5ervieePnwider

- ... Type; SIring-.. + Type :string + Repty:: String
_00 .-.....-....0- -........ -""sel dRe , rest() -

Fig 3.14 The class diagram for the simulator

54

· 3.43 The Simulation Environment

The simulator depicted io Fig. 3.15 was designed to show the agents io the system, and the

messages that are communicated in the system. The agent states are color-coded such that one

can tell the state an agent is in at a particular time. In order to expose the workings of the

system, a status window Was used to display messages as they are exchanged by agents in the

system. The color changes are a reflection of the state chaoges. In the simulator the start

button enables the simulation to commence. When the simulation commences, agents arrive io

the platform with their security properties. After arrival, service request messages are

broadcast~d. Service provider agents validate the security properties of the client agent, and

send replies ifthe client agent meets their security requirements. Fig 3.15 shows agents sending

messages to other agents withio their radius of communication. The status window is filled

with messages that allow viewing the actual working mechanism of the scheme.

BSummary

In this chapter trust issues io multi-agent systems have been presented, and the importance of

agents to have a capability to assess trustworthioess of other agents io the system based on

their own findings have been emphasized. The proposed security characterization framework

was expatiated upon. This framework enables agents to incorporate security properties and

publicize them as part of their interfaces. Therefore, an ioteraction conttact between two

agents will only be formed if the publicized security properties of one agent conform to the

publicized security properties of another agent. The security issues in this research framework

have been investigated with a view to yielding a trust support system in agent environments.

55

The system design for the agent oriented shopping mall system was demonstrated The

modeling abstractions from Gaia methodology, UML, AUML, and HPA specifications were

combined to yield a comprehensive model of the system. This enabled seamless transitions

from analysis up to the implementation models of the system. Furthermore a simulation model

and its design were presented,

Next, is the presentation of the simulation and implementation of the system, and present the

finding;.

22 Valid3ting SecUriti properties__
p1: Got compatible a~nt, COLl.ABORATINGI
ert5: Got compatible agent, COUABORATING!
eft11: Vaidating Security Properties~.

erl1:. Validating 8eeurityPrDp.el1ies._
enl11: Goteompatibte agent, Cou.-aORATlNGI
enl:11:

etert agent bmadcastihg semce request..

ed16:Validating SeturittPropernes...
enl:11: Responding wnn 5 corresponding properties

""ems:~ iSTNlf' RESULTS I
,Appiel started.

Fig. 3.15 The simulator for the ISC mechanism

56

Sirnul~ed agents: 25

CHAPTER FOUR

4.0 MODEL SIMULATION AND

. IMPLEMENTATION

4.1 Introduction

This chapter is divided into two sections, section 42 and section 4.3 respectively. In section

4.2, the presentation and the evaluation of the results is given. Section 4.3 presents the

implementation ofthe system that served as the case study ofthis work:.

4.2 Expenmental Evaluation

The first experiment that was perfurmed in this work was to establish the inaccuracy of the

trust values obtained in a reputation based trust model To accomplish this, the e-Bay trust

model [57] was evaluated. In this model buyers and sellers can assign each other either one of

the three trust values i.e. [-1, 0, 1], where -1 means absolutely negative, 0 means uncertain or

neutral, and 1 means absolutely positive. These values are assigned based on the outcome of

the transaction. The reputation value is computed as the sum ofthose ratings over the past six

months. However to show that this scheme does not give an accurate trust value, an

experiment was run where an agent which occasionally perfurms maliciously was involved in

twenty five transactions. The behavior of the agent during a particular transaction was

monitored and depicted as shown in Fig. 4.1. Furthermore a good agent was allowed to

participate in ten transactions, and it was also rated after each transaction. However, the

57

. malicious agent got a higher trust value compared to its good counterpart since it was involved

in more transactions than the good agent. This was because the total number of transactions

performed truthfuJly masked the instances where the malicious agent performed dismally. The

trust values obtained are depicted in table 4.1. These values portray an image that the malicious

agent is good, and the good agent is malicious. Hence in a reputation based scheme, malicious
•

agents can simply disguise their misconduct by being involved in a lot of transaction and

therefore score high trust values as illustrated in Fig. 4.1. This then led to the proposal of the

contract based trust mechanism.

Table 4.1 The e-Bay trust Model

Tcmsactions 1 2 3 04 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2J) 21 22 23 24 25

Malicious 1 1 1 -1 1 1 0 1 1 1 1 1 -1 0 1 1 0 1 1 1 1 1 1 1 1

Honest 1 1 1 1 1 1 1 1 1 1 - - - - - - - - - - - -

.

In the proposed scheme, when each agent arrives at the system to execute, it has a specific

value ofsecurity properties that it requires from and ensures to other agents in the system The

client agent has a set of functionality specific required and ensured security properties that it

requires from and ensures to service providers respectively. Therefore, the client agent checks

the compatibility of properties from service providers. If it finds a service provider with

compatible properties, the collaboration can commence.

58

\

1 2 3 • 5 • 7 • • 10 11 12 13 • 15 1• 17" 15" 19 2021 2223 2. 25

-0.5

15

11

(15

·1

-1.5

Transactions

Fig. 4.1 The e-Bay trust model

To test the proposed scheme, two sets of experiments were performed to esGlblish the ISC

feasibility and accuracy. The first experiment evaluated the effect of agents interacting

randomly without any security validation mechanism- To accomplish this, a set of twenty five

agents that do not compare their security properties was set. Agents did not perform any

validations on each other's security related characteristics, therefore, they collaborated freely.

TIlls then led to agents collaborating with agents without property compatibility. TIlls

therefore, implies that agents collaborated with agents who may be malicious, since their

security status was not verified Therefore, this experiment yielded low instances of

trustworthy interactions as illustrated in table 4.2. TIlls was derived from the results obtained

from agents since they were monitored after an interaction, and it was found that agents had

collaborated with agents who would have otherwise not collaborated with if they validated

59

their security properties status. The value pair [0, 1] was used to indicate the trust value of an

agent after the collaboration. The trust value 0 f 0 was assigned after the occurrence that an

agent was a potential threat to the other agent; otherwise the value 1 was assigned as illustrated

in F.g. 4.2.

Table 4.2 Agent interactiohs without security evaluations

AypJt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2S

Tmst 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0

V-..

Agent Inle<aetions _ut Security Evaluation

12

0.8

0.'

.

1__Tru!L ValueS I

Q2

o
1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 16 17 18 19 ~ ~ ~ ~ ~ ~

No. of Agents

Fig. 4.2 Agent interactions without security evaluations

60

, The number of 0 values obtained in Fig. 42 shows that an agent was not safe and could have

been compromised in the real world. Therefure, it is more appropriate for agents to only

collaborate with agents whose security properties are public; hence they are able to protect

themselves against malicious agents through the security assessments.

The second experiment' evaluated the accuracy achieved in a system whose agents are

instrumented with an ISC mechanism. The agents ID this system are able to evaluate each

other's trustworthiness based on the publicized properties completely. So agents in this system

could evaluate each other's trustworthiness at a 100% level ofaccuracy. It should be noted that

in this system it is assumed that agents publicize their security properties truthfully. Table 4.3

illustrates the trust values obtained in an ISC-enabled interaction and FIg. 43 shows trust

evaluation ofagents incorporated with an ISC mechanism.

Table 4.3 Agents configured with the ISC mechanism interactions

Agent 1 2 3 4 5 6 7 8 9 10 11 13 13 14 15 16 17 18 19 20 21 22 23 24 25

Trust 1

Value

The foregoing evaluation demonstrated that agents are able to accurately assign trust values to

other agents if the ISC mechanism is employed. Therefure we advocate the employment of the

ISC mechanism as a trust guaranteeingmechanism in agent based systems.

61

Agents incoporated with the ISC mechanism ilJter.iJctions

1.2

as

•
~

~ 0.6
I'
2
~

•
I-+-Trust Values I

0.2

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ~ ~ ~ ~ ~ ~

No. of Agents

Fig. 4.3 Tiust accuracy levels using the ISC approach

4.3 hnplementation

The implementation of the system comprised of setting up an agent environment, where the

shop and shopper agents were hosted. We employed JBuilder 5, to create agents and test the

mechanism on a Pentium4 CPU, and Wmdows XP as our operating system. To realize the

proposed concept a few assumptions were made for the agent platform The platform is

assumed to provide the following basic security services:

L Authentication service to provide a guarantee that a user starting a platform is

authenticated, and therefore agents within that platform are considered legitimate

within the secured scope of the computational system hosting the main container of

62

the platform. Hence, it is assumed that the agent platform has a capability that enables

the enforcement of differentiated access control on system users. A selection of login

modules can be used for authentication, these can range from Simple, Kerberos etc.;

11. Access control assumptions means that all agents in the system are owned by

authenticated userS, because of the above authentication mechanism, all actions that

agents can perfonn on a platform are permitted or denied according to a set of rules.

These rules are defined in a policy file, and

Il1. Signature and encryption services for message integrity and confidentiality to guarantee

a certain level of security when sending a message both to an agent running on the

same or a foreign platform. Digital signatures are a well-known safeguard to ensure the

integrity of a message and the identity of the message originator. Encryption on the

other hand ensures the confidentiality ofthe message by protecting message data from

eavesdropping.

All the agents in this system are configured with different security properties which are hosted

as databases of required and ensured security properties. These properties are invoked when

an agent is initialized, the actual execution is delayed until the proper security tests have been

done and results obtained The intemaI working ofthe simulator is illustrated next.

A shopper agent is dispatched to go shopping in the shops each wrapped by its ShopAgent.

Fig.4A and FigA.5 shows a ShopperAgent being instantiated and dispatched by the customer.

63

~ ShopperAgent r.-[Q][RI
r"cIIase
Item I.. ../

1:- Ij121 /[

I1129.95
-.

~.

UJ itonnatiwr cart

Credit C3'd Twe IAeBSl!Ied "I No:«lems 13 "11
CI'edI.C3'd NIInlleJ 1123456789~ ITotaPrice /389.84999999999997

Exi*Y Dale {MWfY) 11012006 1I CIelI I IleIIIM!Iems I
D-"" 1 Reset l &I

Fig. 4.4 The ShopperAgent interface

A8ent Dis"'tbed

Fig. 4.5 The dispatching 0 f an agent

In this system all agents are specified in such a way that they halt all their functionality related

goaJs until the security analysis completes. However, to show the results of the teS4 a text

message was enabled to depict the result of obtained in each test. These are depicted in the

Fig. 4.6 and Fig. 4.7.

64

PI..-tEs nut Coi,.-" Cuiaadioi. teI,.w""""

Fig. 4.6 Incompatible properties result
•

Fig. 4.7 Compatible properties result

The above results show that ShopAgent has compatible security properties. Therefore after the

security analysis completes, the ShopperAgent then purchases an item through ShopAgentB-

The transaction is performed and ShopAgentB, returns with the invoice to confinn the

transaction performed as depicted in Fig. 4.8. below.

~fnvoice rE]
-tJurcbase Inuoice

lrMJice Number 1
39 I

Item Number
1
5101 I

Date 104112106 I
Number Of Items 1

2 I
ToIalPrice !R.132 I

Fig. 4.8 The returned invojce

65

4.4Summary

The results obtained from the evaluation of the trust mechanism have been demonstrated. The

implementation of the proposed security scheme has been presented using the Shopping mall

case study. The proposed mechanism clearly depicts that an agent is empowered to make trust

decisions based on its oV!n discretion. Therefore, trust relationships formed as a result of the

proposed mechanism are based on accurate trust values compared to trust relationships

formed and based on trust values obtained from third party entities.

Chapter 5 presents conclusions of this work and some possible direction for future work.

66

CHAPTER FIVE

5.0 CONCLUSIONS AND FURTHER WORK

5.1 Conclusions

The openness ofmulti-agent systems makes them susceptible to attacks. As long as this is the

case, multi-agent systems may not be able to deliver on current promises. Therefore, research

has recognized the need for MAS to implement security properties such as integrity,

. confidentiality, accoUntability, anonymity, and availability of agents and platforms. However

the question of trustworthiness ofagents by making them security~awareat runtime is yet to be

addressed. In this regard there is a similarity between the security need of components in a

component based system and security of entities in a multi-agent system.. The former was

addressed by~ et al [15], while the latter has been addreSsed in this dissertation. Just as a
.. .
component's integrity needs to be declared upfront before reuse, so an agent needS to declare

its security properties and also have access to other agent's security properties before

collaboration.

Therefore, the first objective of this research was to formulate a model to enforce security

conttact negotiation between two interacting agent entities. Following the security-awareness

mechanism for components by Khan and Han [15], an Interaction Security Conttact (ISC) was

formulated for entities in an agent based system.

67

Secondly the work sets out to simulate and implement the model developed This has been

achieved by implementing a demonstration system known as a shopping mall system.

Moreover, the ISC mechanism has been experimentally compared with the reputation based

scheme in the same category.

The limitations of the siml.llated and implemented systems are as follows:

i The systems only allow complete trust or no trust at all This does not give an agent

the liberty to continue with the collaboration even if the level of trust is not complete

but acceptable;

11. Agents in the systems can Validate each other but they cannot validate platforms, this

leaves room for platforms to compromise agents. Therefore there is a need to extend

this scheme to also include security validations for'agents against platforms, and

lll. There is no mechanism to validate whether the security properties publicized by agents

are trustworthy, since this work assumed that agents publicize their security properties

ttnthfully.

The foregoing limitations provide some work designated for the future.

5.2 Further Work

The current binary status of the ISC mechanism can be improved upon by upgrading the

mechanism to a non-discrete system such that ISC is computed as a percentage. Should this be

the case, an entity will be at liberty to define a safe ISC percentage range under which it can

afford to collaborate.

68

· The pres=t implem=tation is limited to agents. It is =visaged that a future extension will

allow platfonns to be instrum=ted with the ISC mechanism.

69

REFERENCES

1. Minar N, ''Designing ecology of distributed agents.

http://www.medi)i.mit.edu/ne1son/.

2 Smith D, Cyphet A, Spohtet J, ''Programming Agents Without a Programming

Language". The Communications of the ACM, 1994, 37(1), pages 55-67.

3. SelketT, "A Teaching Agent that Learns". Communications of the ACM, 1994,37(1),

pages 92-99.

4. Riecken D, Atcbitectnte of Integrated Agents". Communications of the ACM, 1994,

37(1), pages 107-116.

5. Coen MH, "SodaBot A Software Agent Environment and Construction System, MIT

AI Lab Technical Report 1493,June 1994.

6. Maes P, "On Software Agents: Humanizing the Global Computer", IEEE Internet

Computing, Vol1,July/August 1997, pages 10-19.

7. FrankIin S, Graesser A, ''Is it an Agent ot Just a Ptogram? A Taxonomy for

Autonomous Agents". In J-P.M··uller, MJ Wooldtidge, N.R Jenniogs, editors,

Intelligent Agents Ill, In Proceedings of the Third International Workshop on Agent

Theories, Atchitectntes, and Languages, Lectnte Notes in Artificial Intelligence,1193,

Springet-Verlag, pages 21-35.

70

8. Weiss G, "MultiAgent Systems a modem Approach to Distributed Artificial

Intelligence". MITPress, March 1999.

9. Ng S, " Protecting Mobile Agents Against Malicious Hosts", MSc. thesis, Division of

Infonnation Engineering, The Chinese University of Hong Kong, June 2000.

10. Jenningg N.R and M. Wooldtidge, "Intelligent agents: Theory and practice," The

Knowledge Engineering Review, voil0, no. 2, pp. 115-152, 1995.

11. Chess D, Hartison C, Kershenbaum A, "Mobile agents: Are they a good idea?" In Jan

Vitek, Christian Tschudin (eds.), Mobile Object Systems: Towards the Programmable

Internet, pages 25-45. Springer-Verlag, April 1997. Lecture Notes ill Computer Science

No.l222 http://www.research.ibm.com/massive/mobag.ps (1994 version).

12. Chess D, Hartison C, Kershenbaum A, "Mobile agents: Are they a good idea?" IBM

Research Report 1995.

13. Farmer W.M, Guttman J-D, Swamp V, "Security for Mobile Agents: Issues and

Requirements".

http://csrc.nist.gov/nissc/1996/papers/NISSC96/paper033/SWARUP96.PDF.

14. Gray, R, Kotz D, Cybenko G, Rus D, " D'Agents: Security in a Multiple-Language,

Mobile-Agent System", in Giovanni Vigna (Ed), Mobile Agents and Security. pages

154-187. Springer-VerIag, 1998.

71

15. Khan K, RanJ, "A Security Characterization Framework for Trustworthy Component

Based Software Systems". 27"' Annual International Computer Software and

Applications Conference (COMPSAC), Dallas, 2003.

16. Object Management Group (OMG). The Common Request Broker. Architecture and

Specification (CORBA), revision 22. ht1p://www.orng.org/corba/corbaiiop.htm

17. Roger Sessions, "COM and DCOM: Microsoft's Vision for Distributed Objects",

John Wirey & Sons, 1997. ISBN: 0-417-19381-X.

18. RMI: Remote Method Invocation.

htt;p://java.sun.com:80/products/jdk/nni/index.htrnl.

19. Tanenbaum A.S, Van Steen 1\1, "Distributed Systems Principles and Paradigms,

Prentice-Hall Inc, 2002, NewJersey.

20. Mc Mahon P.V, "SESAME V2· Public Key and Authorization Extensions to

Kerberos", ISOC Symposium on Network and Distributed Systems Security, IEEE

Computer Society Press, February, 1995.

21. Kohl J, Neuman B, "The Kerberos Network Authentication Service ryS)", Internet

RFC-1510, September, 1993.

22. Vandenwauver 1\1, Govaerts R, Vandewalle J, "Public Key Extensions used III

SESAMEV4", Public Key Solutions '97, Toronto, April, 1997.

72

23. Fanner W, GutlIrulnn], Swamp V, "Security for Mobile Agents: Authentication and

State Appraisal. In Proceedings of the 4'" European Symposium on Research in

Computer Security (ESORICS), Springer-Verlag, ppl18-130, 1996.

24. Giansirascusa M, "Mobile Agent Protection Mechanisms, and the Trusted Agent

Proxy Server (TAPS) Architecture".

http://www.isrc.qut.edu.au/resource/techreport/qut-isrc-tr-2003-Q10.pdf.

25. Hohl F, 'Time limited Blackbox Security: Protecting Mobile Agents from Malicious

Hosts". In G. VJgDa, editor, Mobile Agents and Security. Spi:inger-VerIag Berlin

HeideIberg, 1998.

26. Karjoth G, Asokan N, Gulcu C, "Protecting the Computation Results of Free­

Roaming Agents. Second International Workshop on Mobile Agents, Stuttgart,

Germany, September 1998.

27. Lal M, Pandey R, "CPU Resource Control for Mobile Programs". Agent Systems and

Applications, 1999, Pages 74-88.

28. Riordan], Scheiner B, "Environmental Key Generation Towards Clueless Agents".

http://www.schneier.com/paper-c1ueless-agents.pdE

29. Roth V, "Secure Recording of Itineraries Through Cooperating Agents". In

Proceedings of the ECOOP Workshop on Distributed Object Security and 4'"

Workshop on Mobile Object Systems: Secure Internet Mobile Computations, pages

147-154, INRIA, France, 1998.

73

30. Sander T, Tschudin CF, "Protecting Mobile Agents Against Milicious Hosts". In G.

Vtgna, editor, Mobile Agents and Security. Springer-Verlag Berlin Heidelberg, 1998.

31. Schneider, F, "Towards Fault-tolerant and Secure Agentry". In Proceedings of the 11'"

IntematioruU Workshop on DistributedAIgorithms, Saarbriicken, Gennany, Sept.

1997. Also available as TR94-1568, Computer Science Department, Comell University,

Ithaca, New York.

http://cs-tt.cs.comeII.edu:80/Dienst/Repository/2.0/Body/ ncsttLcomell%2ffR97­

1636/postscript.

32. Vigna G, "Cryptographic Traces for Mobile Agents in G. Vigna (Ed): Mobile Agents

and Security, pp 137-153, Springer-Verlag, 1998.

33. Westhoff D, Schneider M, Unger C, Kaderali F, "Protecting Mobile Agent's Route

Against Collusions. In Proceedings of the SAC'99, Springer LNCS 1758, 1999.

. 34. \VllheIm U.G, Staamann S, "Protecting the ltinetary· of Mobile Agents". In

Proceedings of the ECOOP Workshop on Distributed Object Security and 4'"

Workshop on Mobile Object Systems: Secure Internet Mobile Computations, INRIA,

France 1998, Pages 135-145.

35. Yee B.S, "A Sanctuary for Mobile Agents". In Proceedings of the DARPA Workshop

on Foundations for Secure Mobile Code Workshop, 26 - 28 March 1997.

http://www.cs.nps.navy.mil/research/languages/statements/bsy.ps.

74

36. Zambonelli F, Jennings N.R, Wooldridge M, "Developing Multiagent Systems: The

Gaia Methodology", ACM Transactions on Software Engineering and Methodology,

Voll2,No. 3,July 2003, Pages 317-370.

37. FIPA, "FIPA Modeling: Agent Class Diagrams". http://www.auml.org.

38. Giunchiglia F, Mylopoulos J, Perini A, "The Tropos Software Development

Methodology: Processes, Models, and Diagrams, in AAMAS02.

39. Wood M.F, Deloach S.A, "An Overview of the Multiagent Systems

Engineering Methodology". AOSE-2000, The First International Workshop

on Agent-Oriented Software Engineering. Limerick, Ireland, 2000.

40. FIPA: "FIPA ACL Message Structure Specification", 2002.

http://www.fipa.org/specs/fipaOO061/SC00061G.pdf.

41. Eriksson H; Penker M, "BusineSs Modelingwith UML", OMG Press, John

Wiley &Sons, Inc.2000.

42 FIPA: "FIPA Personal Travel Assistance Specification", 2001.

http://www.fipa.org/specs IfipaOOO80IXCOOO80B.pdf.

43. FIPA: "FIPA Quality of Service Ontology Specification" , 2002.

http://www.fipa.org/specs Ifipa00094/SCOOO94A.pdf.

44. FIPA, "FIPA Agent Management Specification, 2000.

http://www.fipa.org/specs Ifipa00023.

75

45. Resnick P, KuwabaIa K, Zeckhauser R, Friedman E, ''Reputation Systems: Facilitating

Trust in Internet Interactions", Communications of the ACM, 43(12), PAGES 45-48.

46. Yu B, Singh M.P, "A Social Mechanism of Reputation Management in

Electronic Communities". In Co-operative Information Agents, 7'h

International C~nference,CoopIS 2000, 2000.

47. Zacharia G, Maes P, "Trust Management Through Reputation Mechanisms".

Applied Artificial Intelligence, 14(8),2000.

48. Abdul-Rahman A, Hailes S, "Supporting Trust in Virtual Communities. In

Proceedings of the Hawaii's International Conference on Systems Sciences,

Mani, Hawaii, 2000.

49. Zacharia G, "Collaborative Reputation Mechanisms for OnIine

Communities". M.Sc. Thesis, Massachusetts Institute of Technology, 1999.

50. www.ebay.com.

51. www.amazon.COffi.

52. www.bizrate.com.

53. Gambetta D, "Can We Trust Trust?, in Making and Breaking Cooperative Relations,

electronic edition, Department of Sociology, University of Oxford, chapter 13, pages

213-237, hnp:l/www.sociology.ox..ac.uk/papers/gambetta213 ?37.pdE

76

54. Khan KM, Han J, "Composing Security-Aware Software", IEEE Software,

January/February 2002.

55. Khan K, Ran J, Zheng Y, "A Framework for an Active Interface to Characterize

CompositionaI Security Contracts of Software Components", IEEE Proceedings of

the Bm Australian Software Engineering Conference (ASWEC'Ol), 2001.

56. Langley RK, Paolucci M, Sycara K, "Discovery ofInfrasttucture in Multi-Agent

Systems". hnp://www-2.cs.cmu.edu/-softagents/papers/infrasttuctureDiscovery.pdE

57. KoIlock P, ''The Production of Trust in Online Markets". In Lawler EJ, Maey M,

Thyne S, and Walker HA. editors. Advances in Group Processes, volume 16, pages

99-123,JAI Press 1999.

58. Basis D, Doser J, Lodderstedt T, "Model Driven Security for Process-Oriented

Systems", SACMAT2oo3,June 1-4,2003, Como, Italy.

77

APPENDIX

Below are code snippets taken from the simulation program written in Java.

Listing 1 presents the code fragment to set the messages broadcasted

incorporated with the required and the ensured security properties. Listing 2

presents the code tragment that begins the simulator, and listing 3 presents the

code fragment for actwlly checking the security properties and taking a decision

public Agent(String n, Message required, Message ensured, Object reO (
name=n;
interactions = new Message[2];
internctions[O] = ensured;
internctions[l] = required;
validated =0;
properties =rand(Validating.BASlC]ROPERTIES -2, Validating.BASIC]ROPERTIES +2);
observerRef= ref;
myTbread =new Thread(this, n);

. status=STATUS_WAITINGFORCOMMUNICATION;
)

int rnnd(intmin, int max){
return (min +(intXMafu.nmdomO· (max -min)));

}
void sleepFor(int ms) {

try {Tbread.sleep(ms· (validate?I:IO));}
catch (InterruptedException e) {abort= true; }

}
public void setValidate(boolean v) {validate =v;}

public syochronized void startO (
myTbread.start();

}
public synchronized void step() {

abort = true;
myTbread.intelTIJptQ;

Listing 1. Code fragment to set the messages broadcasted incorporated with the

required and the ensured security properties

78

public void beginSimulationO {
int i;

. if(runningthreads > 0) {
logareaappend("Aborting simulation before completion.\n");

forti = 0; i < broadcasters.length; i++) {
broadcasters[i].stopQ;

}
nmningthreads = 0;

} <
host.clearQ;
String cntString = counterField.getText();
ny{

count = Integer.parselnt(cntString);
}
catch (NumberFormatException nfe) {

count=DEFAULT AGENT;
counterField.setTeit(.... + count);

}
logareaappend('"\t\nBeginning simulation with " + count + " agents\n");

logareaappend("\t\nClient agent broadcasting service request...\n");

synchronized (host) {
broadcasters = new Agent[count];
conversations = new Message[count];

}

Dimension psize = host..getSizeQ;
Point center = new Point(psize.width /2, psize.height /2);
rad = «(psize.width < psize.heigbt)?

«(Psize.width * 4)15):«psize.height * 4) /5» /2.0;
mesrad= (radlcount) * 2.1;
convrad = rad - mesrad;
convSent = new Point[count];
int csx[] = new int[4];
int csy[] = new int[4];
conversationsSent = new Polygon{cOlmt];
double phi;
double div = (2 • Math.PI)I(count * 2);
double swdiv = Math.PI /150;
intc;
for(c = 0, phi = 0.0; c < count; c+-+, phi += div) {

convSent[c] = new Point«intXrad • Math.sin(phi» + center.x,
(int)(rad* M<fth.cos(phi» + center.y);

phi +=div;

csx[O] = (intX Math.sin(phi» + center.x;
csy[O] = (intXMath.cos(phi» + center.y; .
csx[l] = (int)(convrad * Math..sin(phi» + center.x;
csy[l] = (intXconvrad * Math.cos(phi» + center.y;
csx[2) = (intXconvrad * Math.sin(phi + swdiv» + center.x;
csy[2) = (int)(convrad * Math..cos(phi + swdiv» + center.y;
csx[3) = (int)(Math.sin(phi + swdiv» + center.x;
csy[3) = (int)(Math.cos(phi + swdiv» + center.y;
conversationsSent[(c + I) % count] = new Polygon(csx,.csy,4);

}

forti = 0; i < COWlt; i++) {
conversations[i] = new Message("Message " + ~ conversationsSent[i]);
conversations[i].addObserver(host);

}

forti = 0; i < count; i++) {
broadcasters[i] = new Agent("Agent" + ~

conversations[i],
conversations[(i + I) % count],
convSent[iJ);

broadcasters[i].setValidate(validate);
broadcasters[i].addObserver(this);
broadcasters[i).addObserver(host);

}
for(runningthreads = 0; nmningthreads < count; nmningthreads++) {

broadcasters[nmningthreads].start();
}

Listing 2. The code fragment that begins the simulator

79

public Agent(String u. Message required. Message ensmed,. Object re£) (
name=n;
intemetions = new .Message(2)~
interactions[O] = ensured;
ime:ractions[l] = required;
validated = o·
properties = ~alidating.BASIC_PROPERTIES _ 2. Validating.BASIC_PROPERTIES + 2)~
observerRe:f= re£;
myThread = new Thread(this, n);
status=STATUS_WAlTINGFORCOMMUNICATION;

int rand(int min. im wax) {
return (min + (intXMath-mndomO" (wax _ min»)~

I
void sleepFor(int ms) {

try {Threadsleep(ms" (validate?l:lO»; }
eateb (Jnt~CepriODe) { abort = true; }

1
public voidsetVaIi~leanv) { validate = V; }

public sym;hronized void start() (
myThread.start();

}
public synclrronized void stop() (

=-=~renupt();

public void nm() (
message("Responding with" + properties +" corresponding properties");
imml.m2;

while(vaIidated < properties && !abort) (

status=STATUS_WAITINGFORCOMMUNICATION;
setChanged(); notifyObservers(observerRet);
IIII1eSsage("validating."); .
sleepFor(nmd(O,4)" Validaring.BASIC DELAY);
message("Validating Security PropertieS':_.");

11 a service provider. has checked the security properties configured in the service
llrequest message,. and is responding with its own security properties

status = STATUS_RESPONDING;
boolean con:form = :false.
setCbanged(); notifyObsttvttS(observerRe:f);.
while(!con:form && !abort) (

11 send anothef- message, randomly
mt =nmd(O,,3);
m2=«ml =O)?(1):(O»;

11 send message
synchronized (ini:eracti.ons[ml]) (

while(!(intenlCtions[ml).isAvaiIable()) (
by{

in:teI"actions[m.l).wait();­
} catcb (Exception e) (

i:f(abon) return;
I
II required properties con:fonn. now "heck :for the ensured ones

in:teFactions[m I).receive();

11 Check the ensured security properties. but give up
11 immediately if they do not con:form.
synchronized (imeractions[m2]) {

if (imeractions[m2].isAvaiIable() (
interactions[m2).receive();
conform.= true;

}
11 l:f we didn't manage to get a ma1clring fust(requiTed) set ofproperties.
11 then don't go any further with checking the second(ensW"ed) set
i:f(!con:form) (

interacrions[ml)'broadcast();

I
if(abort) return;

I1 Ifour agent has got this far. it means both security properties have been validated and
11 it is established that they conform, therefore the inteJ'aCtiOD can take place.
starus= STATUS_RESPONDING;
message<"GOl compatible agent,. COLLABORATING!");

message("Got compatIble agent,. COLLABORATING!");

setChanged(); notifyOhservttS(observerRef);
sleepFor(Tand(2.S)" Validating.BASIC_DELAY);
validated += I;
if(abort)reDlf1l;

11 We have achived our design goal ben=,
11 we can send a new set of messages ifthere is more to do
message("Objective achieved for the moment,. send another message iftbere is more to do ..");
interactions{O]_broadca:st();
interactions[I].broadcast();
i:f(abort) return;

~ = STATUS_DONE;
setChanged(); notifyObservers(observerRef);
message("Stop exeaJtion., and leave the platfOflD.-");

80

	Declaration
	Dedication
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abstract
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	References
	Appendix

