PROVISIONING OF SECURE
MULTI-AGENT SYSTEMS
(MAS) BASED ON TRUST

CONTRACTS

Diligent Philile Biyela

A dissertation submitted to the faculty of scence in
fulfillment of the requirements for the degree

MASTERS OF SCIENCE
n

COMPUTER SCIENCE

Department of Computer Science

Universtty of Zululand

2004

DECLARATION

This dissertation represents research work carried out by the author and has not been
submitted 1n any form to another university for a degree. All the sources I have used have

been duly acknowledged in the text.

DEDICATION

I dedicate this work to my family which is always behind me especially my mother. Her
support and encouragement gets me through the toughest of times. To my lovely daughter
who her love inspires me to greater achievements. I also dedicate this work to my husband

whom I love dearly who supports me in all the endeavors I take.

ACKNOWLEDGEMENTS

- I would like to acknowledge my gratefulness to all the staff members of the Department of
Computer Science of the University of Zululand. To my supervisor Prof. M.O. Adigun, I
would like to express my sincere gratitude and state the I would not have done this without
you, his support and wisdom which I greatly apprecate. To my colleagues, and to all who

contributed to this research, their help and gmdance is highly appreciated.

To God who gave me the strength and wisdom to see through this study, I am also very

appreciative and acknowledge His blessings.

TABLE OF CONTENTS

812w 7t o TaTe s R U at
| DT Tarr 1110 o WA P i
ACknOWIedZEmEnts.t vt aaee iv
1) Pl wre atr - O RO v
LSt of fIgUIes.cmt e e X
I BC ey 1o (= T xil
F e L2 L Vo U X1
LCHAPTER ONEttt eoeeteseeee e oo eeeeee e es s eeeem et et st e eee s eene e 1
B IO it o Ta 14 Tur 7o) o O N 1
B T 4 T U 1
1.2. Staternent of the problem............ e e e e e e 6
1.3. Research goal and objectives.oooein i e 7

1.4. Researchmethodology. ...t e rnsennenns 3

1.5. Organization of the dissertation.............ccocvvviuieenviceeen.ns e 8

2.0 Background concept and hterature review........ e 10
b2 B £ L o 18T o« O PO P PRSPPSO 10
AN as sty g ot e ol o SO o 10
22.1. Schemes tzilbred fOrInte@rity .. vt 12
222 Schemes ;aﬂored for accountablity. ... 14
2.2.3. Schemes talored for confidentiality..........ooonvveiiiiiioiiiinn e 15
224. Schemes tailored for anonymity...............ooviiiiiinns, SO 15
225. Schemes tailored foravailabihity. ... 16
2.3. Agent-otiented software develoinment methodologies. e 16
23.1. The Gaiamethodology........oooiuiin i 17
2.3.2. FIPA modeling abstractons .‘ .. 17
24, Trastmodels.........o e 17
2.5. The proposedmodel.........c.ori i 20
2.6, SUMIMIATY. .. c.oeetiii i e aa 21

3. CHAPTERTHREE. g 22

3.0 Security framework analysis and deSign.eeerevnreeeererieeeseeerinnnnaiiieaanns 22
30 R el we o3 1 T 7o s U PO PRTI U 22
3.2. The secunty characterization framework.oooii i, B 22
321. ‘Thesecuratymodel..........ooooiiii 22
321.1. The E:amework for an active interface.ocoviiiiiiiiiii 23
3.2.2. 'The Interaction SECUIItY COMACT. . ouuunrruaneninniraeeninceanaaaes e 26
323, Access control enforcement.ooooiiiiiiiii i 3
33. 'fhe design of a security-aware mult-agent SYStem. . ..ovveeininiriiin i 31
3.3.1. The shopping mall systeﬁl 22 case Study. ... 32
33.2. Therequrements model.... ..ot 33
3.3.3. Detailed Requirements Aﬂaly'sis. ettt ai e 38
33.3.1. The Organizations.uve oot e e e 39
334, Architectural design.............ocoevrveveeerea.. e e a1
3341 Theagentmodel........ooooinii e 41

3342 Theservicemodel.ot e 45

3.3.5. Detatled design........ooiveeiiiiiii i 49

3.4. The simulation model and design. ... 50
341, Thesimulatonmodel. ... i 51
34.2. 'The simulation design........ S 52
34.3. The simulation ENVIFOMMIEIIT. . .o vvveent et e et iee e e ee e 55

3.5 Surnmzry? .. 55

CHAPTERFOUR. . e 57

4.0 Model simulation and implementation. ... 57

4.1. intmducﬁon .. 57

4.2, BExperimental eValtation.c.ooi it 57

4.3, Implementation.ot 62

44, Summary......coooiiiiie e e 66

CHAPTERFIVE. ... e e 67

5.0 Condlusions and further Work.oo.viii i e 67

5.1, ConTUSIONS . « oo neeei it et et e et a e 67

52 Furtherwotk. ..o e 68

Wil

LTSS Ul 0 s Lo < VU

APPENAIT |- vttt ettt et a e e e e e e ettt eeeee et e a e e n ettt e e e e s s snennene

78

List of Figures

" 1.1 The working mechanism of a mobile agent...........c.....cl, et 4
3.1 The structure of an ACtVe HUETFACE.verrreeeeeeeoseeeeeesaeeeeseeeeeenneeassmssseeen o 25
3.2 A use case diagram for our shopping mall system. ... 34
3.3 A sequence diagram for the Initiate Purchase USe €ase.cooiouoiiiieininiiineinneion 37
3.4 A sequence diagram for the Select Shop use case...........oooooviiiL, e 37
3.5 A sequence diagram for the Buy Item use case..............oooiiiiinii 38
3.6 A sequence diagram for.the Advertise Product Catalogue use case...........c..ocoeeeiienen 38
3.7 ’i'he schema for the role Shopper Agent. ... 42
3.8 The schema for the role ShopAgent. ... 43
,;‘5.9 The RequestShops protocol definition. . et 44
3.10 The RespondShops protocol defimition.veeieiiin it 44
31T Anmagentmodel. ... 45
3.12 A dlass diagram for the shoppingmall system.ooooiiiiiiie 49

3.13 A flowchart diagram for the Request Shops behavior....................co 0. 50

3.14 A dass chagmm fOr the SIMUIALOL. . .. oo ir e s e e et vt e v e cnraa s e n b 54

3.15 The simulator for the ISC mechanism. ...t 56

" 41The e-Baytrustmodel........o e 59
4.2 Agent interactions without security evaluations.......... ..o S 60
4.3 Trust accuracy levels using the ISC approach..................o i 62
4.4 The ShopperAgent in;erface ... 64
4.5 The dispatching of an agent.ooooieiiiiii e T 64
4.6 Incompatible properties tesult. ... 65
4.7 Compatible properties resuit ... 65
4.8 The returned InVOICE. ovtie it e eae e, e 65

List of Tables

31 Theservice MOAEl ..ot et e e 46
3.2 The acquaintance model.. 46
3.3 ACL message deﬁmtlon 47
41 Thee-Baytrustmodel. ... o 58

4.2 Agent interactions without security evaluations.cooiiiii e, 60
4.3 Agents configured with the ISC mechanism interactions.o.ovvvvvoieiiennriaennnin 61

ABSTRACT

’ This research work focuses on the development of an Interaction Security Contract (ISC)
mechanism that enhances the capability of agents to protect themselves against compromised
entities in Multi-Agent system. To realize the framework, two tasks were carried out namely (1)
a simulaton of an agent based system was created and trust accuracy levels based on the
proposed mechanism were evaluated to establish the significance of the proposed securty
scheme; and (i) a secufity-aware agent-otiented shopping mall system was designed and
implemented to demonstrate the proposed contract based security model. The results obtamned
are threefold: (i) This study was able to establish that trust models based on repumﬁon do not
obtain accurate trust values for agents to make correct trust decisions n agent systems; (it) 1t
was established that it was even.ﬁskier to form collaborations without any trust model in place
as agents collaborated with agents whose security status was not known to them. This cleady
shows that agents were at risk of being compromised; and (i) it was established that if agents
publicize their security properties truthfully, trust in the overall agent systems will be greatly
improved as agents themselves will only be collaborating with agents who meet their specified
ievel of trust. In conclusion the study advocates the employment of the proposed Interaction
Security Contract (ISC) mechanism, since it was demonstrated how knowledgeable trust

relationships can be formed and improved in agent based systems.

" CHAPTER ONE

1.0 INTRODUCTION

11 Overview

*

Over the years computer systems have evolved from centralized monolithic
cornputing devices supporting static applications into client server environments
that allow complex forms of distnbuted computing. There are three major
technologies that have emerged for distributed computing. In historical order,
they are the message passing systems, remote procedure call, and distabuted
object systems [1]. Distributed systems allow clients to access remote functions or
objects. However, these functions are predefined on a server; therefore there is
no room for client customization. To address this issue, software agents were
iné:odui:cd as software structures capable of making “rational decisions”. The
idea of mobile agents was introduced to increase system flexibility, scalability and
reliability. However, the mobile agent paradigm is still in its infancy hence it has
not yet fulfilled all of what it promises. Among the reasons for the paradigm’s
unmet potential are security concerns and incomplete knowledge of the possible

consequences of mobile code use.

Researchers have expressed diverse views on what an agent is, Among many
definitions of agents are (i) a persistent software entity dedicated to a speafic
purposef2]; (i) a computer program that simulates a human relan'onship by doing
something that a.nothe—r person could do for you [3}; () the integrated reasoning
processes [4]. Furthermore agents have been conceptualized either with focus on
negotiation and coordination of information transfers [5], or even with emphasis
on the autonociny of the agent [6]. Franklin and Graesser {7] give a2 comprehensive
review of a varety of agent definitions. There seems to be some charactenstics
that are broadly accepted by many as representative of the key qua]ities. that can
be used to assess agency. These charactenstics are incorporated in the agent
definition by Weiss [8], where agents are viewed as software enuties that are
capable of flexible autonomous migration from one platform to another in order

to fulfill their design goals, and flexibility means three things, namely:

e reactivity: ability of agents to percerve their environment, and respond in
a timely fashion to changes that occur in it in order to satisfy their design

objectives;

& pro-activeness: ability of agents to exhibit goal-directed behavior by faking

the initiative in order to satisfy their design objectives;

® sodal ability: capability to interact with other agents (and possibly

humans) in order to satisfy their design objectives.

2

One c->f the issues holding the mobile code paradigm back from maturm.g is
security. There are at least four prominent securty threats affecting multi-agent
systems which are: (i) the securty threat of malicious hosts; (i) the secuﬁty threat
of malicious agents against an executing platform; (iii) the security threat of
malicous agents against other agents; and @vj the security threat of the network

infrastructure.

k2

The reasons for the above security threats are obvious when the wotking
mechanism of a mobile agent is considered; this is depicted in Fig. 1.1. A mobile
agent firstly resides on a home machine; then it is dispatched to travel
autonomously mtbm a specified itinerary. Next, it executes itself in an executing
platform, duﬁng which it collects host-specific information, and then generates
runtime states and varables. The foregoing is an iterative process which
continues until the agent returns home with useful information from the last host

in its itinerary.

An agent may have incomplete capabilities for accomplishing its goals, in which
case it needs other agents to interact with to achieve its design objectives. Hence
a Mult-Agent System (MAS) is a grouping that relates mobile agents with mobile
agent platforms and the interactions that takes place between them [9]. A MAS

exhibits the following characteristics [10]:

e Each agent has incomplete information and capabilities

e ‘There is no global system control
e Data js decentralized, and

e Computation 1s asynchronous

X Agent Agent
Agent
Home Platform
Platform
Agen \/ Agent

t Agent

Fig. 1.1 The working mechanism of an agent (taken from 9)

Thetefore, multi-agent systems have been described as a social organization of
autonomous agents that can flexibly achieve their design goals by interacting with
one another. The security of a MAS is threatened by the fact that agents are
constantly coming in and going out of the executing platforms. This fact then

ratses the following security concerns in muld agent systems.

There are concerns about agents being attacked by malicous platforms
[9]. The challenge in agent-based systems is that as agents execute, the
executing platform has complete control over the agents that are
executing, since they expose their state and data. If a platform is malidous
and access control mechantsms for an agent are not strong enough, the
platform can easily spy on the state and the data exposed by the agent
when executing. The following are the security threats assodiated with this
kind of an attack: masquerade, denial of service, eavesdropping and

alteration.

Some concerns exist about the security of the executing platforms as they
host a number of agents from different platforms. The agent platform
provides an execution environment for mobile agents. It provides access
to the file systems, local é;tecutable code, peripherals, system memory,
and CPU cycles to mobile agents. However with malicious agents
roaming in the nétwork whose intentions may be to spy, corrupt other
agents, and/or compromise executing platforms, there 1s a need to
protect platforms from attacks Jaunched by these malicions agents. A lot
of work has been done to identify security threats posed by compromised
agents to platforms [11, 12, 13, and 14]. Malicious code poses a major

threat in the computing word and that 1s even worse for the mobile code

paradigm since these systerns are hard to control. Without an effective

safe mechanism to verfy, authenticate, authorize, and execute the mobile
agent, the host is probably at stake of being attacked. A malicious agent
can launch’ the following attacks on a platform: masquerade, denial of

service, unauthorized access.
2

® ‘There are also concerns about mahdous agents launching attacks against
other agents executing in the same platform [13]. Numerous ageﬁts are
executing on platforms, good agents and malicious agents. An agent’s
security weakness can be exploited by a malictous agent and cause an
attack. Threats associated with this kind of attacks are masquerade,

unauthorized access, denial of service, and repudiation.

¢ Finally, there are also concemns of the protection of agents as they are

transferred from one platform to the other {13].

This work reports on an approach to address the protection of agents against

other agents in agent systems.

1.2 Statement of the Problem

It is fascinating to note the work of Khan et al [15] on how to compose security-
aware software. The work raises the important questions of trustworthiness of
components and proposes 2 secunty property charactertzation framework for use

in component assembly simation. Should components be able to publicize their

security propertes at runtime, much more will an agent system benefit from its
entities (both agents and platforms) having this capability. In fact 2 secuﬁtjr—awdre
agent will be more successful m its itinerary than the one that is only protected
from outside.
-

It is therefore required in this research to follow the approach proposed by Khan
et al [15] to find a secunty property characterizaton for an agent system;
formulate a secunty contract scheme that can be used when agents are
collaborating with other agents; and demonstrate that the mechanism works in a
multi-agent system situation.

1.3 Research Goal and Objectives

"The main goal of this work is to provide a mechanism that makes enforcing a
security contract negotiation possible between two interacting agent entities. The

main goal is synthesized as an equivalent of some low level objectives which are

to:

e Formulate a model to enforce security contract negotiadon between two

interacting agent entities at run-time.

® Simulate and implement the model developed using the appropriate

programming language and software tools,

1.4 Research Methodology

The research methodology includes:

1v.

Definitign of a specification mechanism for an agent interface based on

the Compositional security Contract (CsC} concept;

Development of a model of a security-aware agent based system using

the Gaia methodology;

Provision of access to security properties through the agents active

interface;

Implementation and stmulation of an agent based system to demonstrate

the contract-based security model.

-~

1.5 Organization of the Dissertation

The rest of the dissertation 1s organized as follows. Chapter two presents the

literature review conducted, covering from general concepts to the existing state-

of-the-art security schemes for agents and platforms in agent based systems. The

subject of discussion in chapter three 1s threefold: first is the analysis of the

security characterization framework; secondly is the design of 2 shopping mall

system which serves as a case study for the proposed security framework; and

thirdly this entals the design of a simulator used to evaluate the proposed
mechanism. Chapter four reports on the simulation and 1mplementation carried
out to prove the workability of the ISC mechanism. Finally, the conclusion and

envisaged further work are covered in chapter five.
-

CHAPTER TWO

2.0 BACKGROUND CONCEPT AND LITERATURE

REVIEW

2.1 Introduction

This chapter is divided into two sections m section 2.2, explores the security related concepts.
This section review existing security schemes that have been proposed for rﬁobﬂe agents.
These mechanisms are categonized according to the security properties they are designed to
achieve. Agent based systems methodologies are presented in section 2.3. In section 2.4, trust

models are explored. Section 2.5 presents the proposed model. The chapter ends with a

summatry in secdon 2.0

2.2 Security Concepts

Distributed object systems such as CORBA [16], DCOM [17], and RMI [18], enable remote
access to objects. However, this remote access introduces new complexity to the security of
these systems; Therefore there is a need for the implementation and deplojrment of proper
secunity policies to protect these systems. These policies should ensure that security in these
systems ié pervasive, or the security of the entire system cannot be easily compromised. Hence
the above mentioned technologies provide the undetlying communication infrastructure along

with the security subsystem.

10

Distributed systems security can be roughly divided into two aspects. The first aspect concerns
the communication between users or processes possibly residing on different machines. The
second aspect concerns authorization which deals with ensuring that a process only géts those
access rights to the resources in the system it is entitled to [19]. Kerberos [20, 21] 1s one
distributed secutity system that is based on shared secret keys to assists clients in setting up a
secute channel with 2 server, CORBA security service 1s based on the Kerberos, DCE security
model to provide comptehensive security services to clients. Another system that bem
tresemblance to Kerberos is the SESAME (Secure European System for Application in a; Multi-
vendor Environment) security system [22]. However this system uses public key cryptography
‘ cqmb}'ned with shared secret keys. The security architecures of these systems have been
proved to wotk and therefore they form a solid foundation for further development and their
approach have been extended to devise security solutions for agent based systems, since agents

are an extension of distributed computing.

Agent-based systems tend to be open, dynamic, and unpredictable mﬁroﬁnenm. The
openness of these systems is advantageous because it allows a broad range of users to have
access to a broad range of services by different competing service providers. However, this
openness means that these systems lack global system control and that the information in
general is highly decentralized. Needless to say that this poses major security threats as
malicious agents may be present in the system trying to spy, or modify, and or corrupt other
agents in the system. Existing agent. based systems still exhibit secux:&y challenges that need to
be addressed, if mobile code is to be used to develop mission-crtical, real world applicatons.
In Chapter one, an attempt was made to list four threat taxonomies in agent systems. These

were identified as: the threat of a malidous agent compromising a platform, the threat of a

1

malidous agent compromising another agent, the threat of a malicious platform compromising

executing agents, and the threat of an insecure communication infrastructure.

There are a number of mechanisms that have been introduced in order to mitigate éecuﬁty
threats in agent systems. Several effective solutions have been prescribed for the protection of
the platform and. the communication infrastructure. However due to the fact that platforms
have complete control over agents, most mechanisms that are tailored specifically for agent
protection use detection mechanisms as a deterrent. This is influenced by the fact that when an
agent is executing it moves beyond the safe boundaries of its home platform, therefore it is
exposed to nmﬁdous_agents and platforms which may compromise its integrity, confidentiality,
availabilit-y, andvanony&ﬁty. Otherwise agent systems must be implen.lented in such a way that

&ey always return to the home platform after executing on a foreign platform, but this does

not realize the notion of loose roaming and its advantages.

A lot of work [23,24,25,_26,27,28,29,30,31,52,33,34,35] has been done on devising security
mecwsms fér agent based syste:xhns. Different approaches have been prescrbed for the
different security properties. These securty propetﬁeé can be classified as: integrity,
accountabﬂity,- confidentiality, anonymity, and availability. The next section reviews existing

security mechanisms in agent based systems as prescribed to accomplish specific security goals.
2.2.1 Schemes Tailored for Integrity

Partial Result Authentication Code (PRAC) is a scheme that uses cxryptographic checksums
formed using secret key cryptography {35]. This scheme is meant to provide forward integrity
of the partial result obtained by the agent. Forward integnity means that the results obtained in

the previous hosts cannot be modified. The forward integrty propetrty ensures that if one of

12

the platforms is malicious, the results obtained from previous platforms are stll valid.
However, this scheme has its limitations. The worst case is when a malicious platform retains
copies of original secret key of the agent or the key generating functions of an agent. The other
weakness of this scheme is‘ Ithat colluding attacks may be possible. Since this scheme is
oriented towards integrity and not privacy, the accumulated results can be viewed by any

platform, so there is still a need to employ cryptographic primitives to supplement this scheme.

Another scheme Message Anthentication Code (MAC) [26] has been proposed to extend the
above PRAC mechanism, this scheme goes further due to the fact that apart from
encaPsulaﬁng results at each host, it suggests to associate results with the identities of the

previous platforms and the subsequent platforms

Murual Trinerary Recording [29] is meant to cnsure the integrity of agents. The integrity is
guaranteed by idéntifying trusted hosts. This scl;eme allows for the itineraties of the agent to
be recorded and tracked by another cooperating agent and vise versa in a mutual supportive
' agrcémmt However this scheme also has its drawbacks, firstly the cost of setting up the
authenticated channel is high, and secondly the inability of the peer to determine which of the

two platforms is responsible if an agent is lalled.

Itinerary Recording with Replication and Voting [30] uses a similar concept with the mutual
itinerary recording scheme. This scheme ensures that the agent reaches its destination safely.
The main difference with the murual itinerary recording scheme is that with replication and
voting rather than a single copy of an agent performing computations, 2 number of copies of
an agent are used. However, the major drawback with this scheme is the additional resources

consumed by replicate agents.

13

2.2.2 Schemes Tailored for Accountability

To solve the problem of non-repudiation in agent systems a number of schemes have been

suggested; three of which are covered in the following below.

Execution tracing [32] is a technique for detecting unauthorized modifications of agents
through the faithful recordiZg of the agent’s behavior during its execution on each agent
platform. The scheme requires each host to construct an execution logging, or tracing, when it
exccutes the mobile agent. This approach also has its limitations, the most obvious being the
size and the number of logs to be retained, and the fact that the detection process is triggered
occasionally, based on sﬁspicious results ot other factors. Another drawback is the lack of
accommodating multi-threaded agents and dynamic optimization techniques. While the goal of
this scheme is to protect an agent, the scheme does not afford some protection for the agent
platform, providing that the platform can also obtain the relevant trace summaries and traces

' from the various parties involved.

State Appraisal [23] is the mechanism that is aimed at ensuring that an agent has not been
compromised due to the alteration of its state. The success of the scheme depends on the
extent to which harmful alterations to an agent state can be predicted and mitigation
mechanisms in the form of appraisal functions can be prepared before using the agent. The
drawback of this technique is that some state alternations cannot be easily foreseen and
detected. It has been indicated that it may not always be possible to chstmgulsh normal results

from deceptive altemnatives.

The Trusted Agent Proxy Server (TAPS) [24] appears to be the most comprehensive scheme.

Giiansiracusa proposed Trusted Agent Proxy Server (TAPS) architecture to lower the risk

14

concerns of agent code executing on hostile platforms. This architecture is based on the
notiont of a trusted proxy server host, which acts as a strong deterrent against malicious

behavior from potentially hostile agent platforms.
2.2.3 Schemes Tailored for Confidentiality

Computing with Encrypted I;?unctions [30] is a cryptographic method to protect mobile agents
from eavesdropping. This approach falls under the blackbox category. The approach is to
encrypt the functions in the mobile agent. The main difference from the traditional encryption
technique is that with this scheme the functions after encryption. are still usable. This is a
promising technique since 1t applies the cryptographic Px:imiiives systematically on an agent.
However, this approach currently supports polynomials and rational functions only, if the
program implements security-sensitive functions other than polynomials and rational

functions, the functions cannot be encrypted.
2.2.4 Schemes Tailored for Anonymity-

A few schemes have been derived to provide for anonymity as compared to other security
requitements. In [33] Westhoff et al proposed an omon-like data structure that is used to
protect the agent’s itinerary from wholly known to the remote hosts. Without any protection
the itinerary is in its atomic version that is the concatenation of IP addresses of the remote
hosts. With the onion-like structute, the itinerary is encrypted layer by layer. The next host
information is revealed as long as the remote host has the correct secret key to decrypt.
Another anonymity scheme in [34] uses hardware to protect the whole agent, including the

itnerary.

15

2.2.5 Schemes Tailored for Availability

Several schemes are derived to ensure that the platform will allocate resources and allocate
with quality of service to the mobile agents. One of those schemes is the CPU Resource
Control approach presented in [27]. This scheme assumes that the hosts follow the resource
allocation scheme faithﬁﬂly,gwiﬂlout mechanisms to prevent hosts from being malicious.
Mobile agents specify their constraints when requesting services from platforms. The platform
adjusts with its own constraints to allocate CPU resources to the mobile agent. With both
constraints set by the agent and the platform, this scheduling scheme addtesses security and
tﬁe -qua]ity of service. However, this scheme does not dete& platforms ﬁt do not achieve a

certain quality of service when an agent is retumed.
2.3 Agent-Otiented Software Development Methodologies

Agents are used to understand, model, and develop an important class of distributed systems.
If agcnts are to realize their potential, there is a need to develop software engineering
techniques that are specifically tailored for them. Traditional object-oriented software
development techniques fail to capture an agent’s flexible, autonomous problem solving
behavior. Hence methodologies such as the Gaia methodology [36], AUML [37], Tropos [38],
and MASE [39] have been introduced to provide abstractions that are specifically tailored for
agent based system analysis and design. However this work adopts two of thesé methodologies
and also employs an ACL (Agent Communication Language) message structure from FIPA
(Foundation for Intelligent Physical Agents) specifications [40] to model the demonstration

system. This is elaborated on overleaf.

16

2.3.1 The Gaia Methodology

MAS according to Gaia are viewed as being composed of a number of autonomous interacting
agents that live in an organized society in which each agent plays one or more spedfic roles. In
the Gaia design process the first step is to map roles into agent types and to create the right
number of agent instances o{t; each type. The second step is to determine the services model
needed to fulfill 2 role in one or several agents. Finally, the last step is to create the

acquaintance model for the representation of communication between the different agents.
2.3.2 FIPA Modeling Abstractions

AUML. (Agent-based Unified Modeling Language) is an initiative by the FTPA Modeling TC
(Foundation for Intelligent Physical Agents Mode]jng. Technical Committee)..AUl\/[L is an
extension of UML [41] that is aimed at préviding and -captu.ting featurcs that are unique to
agent-based systems. AUML, defines agent-based méddmg abstracﬁons such as capability and -
se‘rvice for ;gez?t class modeling. These abstractions are employed in this work to model the
dcmonstmﬁon systern. Furthermore, this work has employed- some FIPA spectfications

{42,43,44] to model the workings of the system.

2.4 Trust Models

Trust has been a subject of research in both sociology and computing. Trust in Mult-agent
systems has always been considered from the view point of reputation rather than an
experience by the concerned agent itself [45]. Trust has always been central to effective

interactions in open nulti-agent systems. A number of reputation models have been proposed

17

for online evironrments and agent system in general [46], [47], [48], and {49]. The review of

these modelsis presented below.

Sporas [49] is a reputation model that.only considers the most recent ratings between two
users. Sporas does 1ot store all the ratings, but rather updates the global reputation value of an
agent according to Its most recent rating. It also introduces 2 reliability measure based on the

standard deviatians of the rating values

Histos [49] was designed as 2 response to the lack of personalization that Sporas reputation
values have. Onthe contrary to Sporas, the reputation value is a subjective property assigned
pa.rttcdady by ech individual. The treatment of direct interaction in this model 1s limited to

the use of the most recent experience with the agent thatis bemg evaluated.

Abdul—Rm and Hailes [48] defined a trust model that uses four degrees of belief to typify
agent trustworthiness: »f (very trustworthy), # (trustworthy), s{untrustworthy), and z#(very
unn-usan;&lyj. For each parter and context, the agent maintains 2 tuple with the number of
past experiences it each category. From the point of view of direct interaction, the trust of a
partner in a given context is equal to the degree that corresponds to the maximum value in the

tuple.

Yu and Singh [#6] defined 2 model where the information stored by an agent about direct
interactions is aset of values that reflect the quality of those interactions. Only the most recent
experiences with €ach concrete partner are considered for the calculations. By using the
histotic information together with the Dempster-Shafer theory of evidence, an agent can calculate

the probability thatits partner gives a service ascribed to each one of these groups.

18

Agents have been providing recommendations to other agents to weed out bad agents within a
community of transacting agents. E-comerce sites such as e-Bay [50), Amazon.com [51],
and Bizrate.com [52] have been known to employ reputation based trust models to aséess the
trustworthiness of buyers and sellers interacting in the system. The problem with building trust
blindly based on the recommendations of othets is due to the subjective nature of trust [53].
Thus to assume that all a.gen?s cognitively process trust in the same way and then to go and
define a universal fixed trust algorithm is not a reasonable approach. What is required is the
flexibility to allow agents to participate in the trust decision making process. For example when
an agent A informs agent B that agent C is untrustworthy, agent B simply takes agent A word
for. it, without trying to establish whether agent A itself can be trusted about the statement.
Therefore agent B cannot truly say it has the correct trust information about agent C. Thus
there 153 problem of processing second or.der beliefs: beliefs about others and behefs about us.
Therefore a better approach to solvmg this trust complexity is to enable agents to find out the

.tmstwortbmess of other agents themselves

The Compositional Security Contract (CsC) framework [15] enables trust dedsions to be made
at runtime, based on the results obtained from the security information negotiated by
components. A component will therefore not trust another component unless there is an
explicit expression established from the sccurity tests specifying that components can trust
each other during a composition. The CsC adopts the existence of a logic nule that requires a
positive trust expression to be saosfied before 2 component can be considered to be
trustworthy encugh for.composition. The scheme defines trust as a binary value, such that an

agent either has complete trust in other agent or o trust at all.

19

2.5 The Proposed Model

This research work proposes a security mechanism called the Interaction Security Contract
(ISC). This mechanism is a derivative of the Compositional security Contract (CsC) propc)s-ed
by Khan and Han in [15]. The ISC is a trust guaranteeing scherne- that empowers agents to
make crucial trust decisions based on the trust values obtained by the agent itself, rather than
through third party intervention. This scheme advocates the publication of the agent’s trust
attributes through its interface so that agents who are anticipating collaboration can be able to
reason about each others trustworthiness. These trust attributes of an agent are identfied as
the agent identity, origin, and the functionality-speafic security properties. The security
propetties a.ré speciﬁéd .as the required and the cnsy.red properties, where the required
_ pJ':opem'es .refer_ to preconditions that other agents interested in a collaboration should fulfill
The ensured properties refer to the post conditipns that guarantee the security service once the
precondition is met. Each agent exposes its required and its ensured security properties, this
allows agents to reason about each others security properties before the actual collaboration
can take place. This study argues that trust based on reputation obtained from third party
entities does not reveal accurate trust values. As a result agents should be able to assess the
security status of other agents by themselves. This 1s beneficial since the result obtained from
these assessments bears more credibility than the one obtained from third party entities.
Furthermore, the proposed approach is cost-effective as it eliminates costs incurred through

third party intervention.

The ISC represents trust as a binary value computed as either conformity or non-conformity
of an agent’s required securty properties to another agent’s ensured security properties.

Therefore agents are able to reason about other agent’s trustworthiness, without the

20

intervention of third party entifies. It should be noted that in this study it is assumed that

agents publicize their security properties truthfully.
2.6 Summary

In this chapter a number of schemes have been reviewed that are aimed at protecting agents
and platforms from malicio:s entities in the system. Tt should be noted that our approach
deviates from the approaches presented above, in a sense that it facilitates the enforcement of
a | runtime contractual agreement between two entities anticipating a collaboration.
Furthermore, this work does not employ detection as a deterrent, since it is believed that by
;:mploying the detecion approach, damage will have alrcady been done on an agent
iheﬁ:fore, as a way of preserving the system’s resources, the negotiation approach is the ideal

approach to achieve this goal. Moreover, agent based systems methodologies are explored. -

Finally trust frameworks for agent based systems are reviewed.

Next, the security contract framework is expatiated. This defines how to protect agents before

they are involved in collaboration with other agents.

21

CHAPTER THREE

3.0 SECURITY FRAMEWORK ANALYSIS AND

DESIGN

3.1 Introduction

- 'This chapter is divided into four sections. Section 3.2 reports the security characterization
framework employed in this work in detail. The next section (section 3.3) covers the design of
a security-aware agent-oriented system.. The simulation model used for evaluating the
proposed mechanism is presented in section 3.4. The chapter ends with a summary in section

3.5,
- 3.2 The Security Charactetization Framework

3.2.1 The Security Model

‘The proposed secutity model emanates from the model proposed by Khan and Han in [15].
The model requires the publication of the security functions of agents and hosts as part of
their interface. The atrributes that affect a security trust relationship are not properly published
in agent systems. If these attrbutes are not known to the software developer, the agent’s
cannot be trusted completely. These trust attmbutes are identified as idenszty, origin, and seourity
properties that agents offer and require from other agents and platforms. Therefore the

proposed security model in agent-based systems should provide the security properties of

confidentiality, integrity, authentication, non-repudiations and accountability between any two

Interacting entitics. The proposed security model is discussed in the next subsections.
3.2.1.1 Framewotk for an Active Interface

The interface of an agent defines the agent, and serves as the basis for the agents
understanding, use and implementation. The agent’s interface should be the only definitive
source for understanding the agent, and therefore the description of the agent’s interface
should be as definitive and as comprehensive as possible including its security properties. The
security characterization framework is based on the notion of an active interface proposed by
- Khan et a] [54, 55]. Hence the security Qmperties are incqrporatf_:d as an integral part of the
agent’s interface. An active interface consists of component identity, a static interface
. signature, and a static sccutity knowledge base. In this scheme an agent has an identity, interface

signature and security properties. The structure of an active interface is depicted in Fig: 3.1.

It 1s assumed that if two agents are mtmcung, one makes use of some service discovery
protocol such as SLP, JINI, and UDDI {56}, to discover the other which publishes its services
as defined by its interface. If identity and security properties cannot be verified, no interaction
is allowed to occur since this implies trust cannot be established between the two. The security
model consists of the following modules: Agent identity, interface signature, and the security

knowledge base. The description of these modules is as follows:

() Agent Identity

The identity of the agent is a crucial element as it contains information about the origin of

the agent. The identity segment consists of the agent unique ID, the home platform ID, and

a certificate that approves whether an agent is trusted or not. This certificate is issued by a
published certification authority which confirms that the home platform of the agent can be
trusted. In this scheme it was assumed that public key cryptography was used to-identify
agents and hosts, hence every agent has a private key only known by it and a public key
available for any entity that wants to interact with the owner of the public key. The

ig
following is the structure of the agent identity template:
identity(aid, home_platform_id, certificate)

(ir) Interface signature

This segment of an interface hosts static operations and attributes. These properties cannot be
altered by entities in the system. These are used to make a structural match before two agents
can start to collaborate.

(iit) Security Knowledge Base

The security knowledge base hosts and makes available the securty properties of agents. These
security-related characteristics of agents and platforms are categorized as the reguired and the
ensured security properties. A required property is a precondition that other agents or platforms
must satisfy in order to get ensured security services. An ensured security property is a post-
condition the agent or platform is responsible for in order to maintain the committed security

assurances during the interaction.

Thése properties are characterized by three basic elements: gperations, security attributes, and data.
Operations are security-related operations such as: encrypting, hashing through functions such

as Secure Hash Functions (SHF), and verifying. These operations are performed by agents and

24

hosts to enforce security properties. Security attributes are used to perform those operations,
and include items such as passwords, keys, and so on. The data are used of are manipulated by

the operations, for example, a file or a varable that holds a value such 2s an account balance.

A server,
agent or
phtform l M Externally vishle and verifiable.
- AgentID (read-only public properties)
Functionality offered
A servi .
agent &F —— Operation argumments) (read-only public properties)
platfc
Client agent's security characterization
N visible to any external entities.
Securty KB: {read-only public properties)
* Required:R '
Ensured : E
ISC base, (next) The ISC base structure & dynamic, # grows
and shrinks, Each ISC base 15 visble only to
the participatmg agents and or platforms.
X -write protected properties
ISC base, (next) (readirite protctod properte)
ISC base, (next)

Fig. 3.1 The structure of an active interface adapted from [55]

Based on Khan et al in [15], the security properties of an agent or a platform were

characterized with a predicate-like structure such as:

f (017 E: Dk)

Where:

fis a name of the security function formed with three associated arguments.

Ois a secunty related operation performed by an agent or platform in the interaction contract,

subscript 71is the identity of the agent.

23

K'is a set of secunty attributes used by the agent and the subsctipt f contains additional

information about XK such as key type, owner of the key and so on.

Dis an arbitrary set of data that are affected by the operation Q. The subscript & contains

-+ . additional information attached with D such as d]gml signature use ot not, and so on.

3.2.2 The Interaction Security Contract

The ISC is based on the dcgree of confonmty between the reqmred secunty propemes of an’

agent, and the ensured security properties of another agent. The results obtained from the

ey .c'ompaubﬂlty tests, is the new security property called the ISC. This contract defines rules. for

forming a trust relationship based on the conformance of the sealﬁty properties between two
agents intending to coHéborate. The. secunty contract is formed when an agent meets the
security requirements of a particular agent or host. An agent and or platform will perform
nuntime checks to verify whether the reqﬁired security properties of one agent conform to the
ensured security properties of another agent or platform. An ISC mechanism should enable an
agent to develop a trust relationship with another agent, and or platform based on its own
trust evaluation results. Consider an ISC between two agents X & Y, denoted by Jy, and this

relationship can be modeled as follows:

26

Liv=(E>Ry)A (Ex=Ry)
Where

e [Iis an interaction contract between two agents, subscripted with the identities of the

agents taking patrt in the contract negotiation.
T

e FEand R are the ensured and the required security properties of the participating

agents respectively.

e a=b depicts the implication (2 implies b). The evaluation of each pair will result in a

" Boolean true o false value. ITn an 1SC, interaction only occurs if the result is true.
e The opefator A denotes a Boolean “and”.

" Therefore the above expression means that if chent agent X has the requiréd security
prof;érﬁes Rg ‘server agent ¥V will ensure the aecunty' propertiéé E,, after interaction, and if
server de:l—]t ¥ has the required pﬁcﬁpeﬁies R, client X will ensure the security properties Ey.

The examples of Eand R might bé:
Ry = f1(verify, password,file10)
Eyy = f2(encrypt ey fle1 0. digisign)

Client agent X must use and verify the password of server Y to access file10, and will ensure

that it encrypts fi70 and digitally signs it using its key.

The algorithm for the agent interface incorporated with security properties is as follows:

27

<begin AGENT> {AID, Home_Platform_ID, Certificate}

<begin INTERFACE SIGNATURE>

<operation> {<atgument,,

argument,> }
<end INTERFACE SIGNATURE>
<begin SECURITY>
<begin REQUIRED>
<security_funct_ionl>{

<security_at£;mnent1,

<security_argumentn>}

<security_function >{

<gecurity_argument,,

28

<security_argument >}
<end REQUIRED>
<begin ENSURED>
<security_function>§{

<security_argument,,

<secutity_argument >}

<security_function,>{- - -

<secuftity_atgument,,

<security_atgument_>}

<end ENSURED>
<end SECURITY>

The zbove agent interface is extended with an executable part which is as follows:

29

<begin ISC>
R, p =get(<function>, <KREQUIRED>, <A,,>);
E,p =get(<function>, <ENSURED>, <A, >);
5Qgrom = conform (E,,, <REQUIRED>);
S$Q o= conform (R, <ENSURED>);

ISC = conform (5Qro, SQron);
| Display = out (<ISC>);
<end ISC> <end AGENT>

’ihe purpose of the binary executable: part is 'to compute and generate the ISC. The get
function reads the secunty properties from the interface of a server agent (or host platform)
and stores it in Ry, the AID subscript is the 1dc:n£xty of the server agent. In a similat way, the
ensured properties are read and stored in F 4 using get_ The variable SQgrom stores the
security conformity result between the required property of the client agent and the ensured
property of the server agent (Eyp). SQro stotes the security conformity result between the
required _prdperty of server agent (R,;,) and the ensured property of the client agent. The
conform operation generates the conformity results. A true value indicates a security

conformance, and 2 false value indicates non-conformance. Interaction only occurs if a true

value results.

30

3.2.3 Access Conrtrol Enforcement

Access to agent's resources was enforced by using the notion of roles. Roles are not defined
for the hurr;an users in this context but for agents interacting in the system. Therefore, role-
oriented interaction protocols were defined for a given agent. A scenano provides the contexts
of use for agents. An agent.may be used in different scenarios and therefore has different role
partitions in those scenarios. The roles that agents assume in the system were identified, and
the security requitements of each role relative to the context were specified. Hence the
adoption of the Gaia methodology [36] which uses the notion of a human organization where
- a software system is conceived as the computanonal instantiation of a (possﬂ:ly open) group of
interacting and autonomous mdlvlduals (agents) Each agent is seen as playmg one or more
specific roles: it has a well-defined set of responsibilities or sub-goals in the context of the
overall system and is responsiblé for pursuing these autonomously. Hence agents are assigned

to roles, and then roles are assigned to pen:nissions:
-3.3 The Design of a Security-Aware Multi-Agent System |

Agent-otiented software engmecnng is 2 promising software paradigm. New methodologies
have been introduced to accommodate new abstractions and design/development issues that
were not prevalent in the traditional software development approaches. The Gaia
methodology [36] adopts the organizational metaphor and lays emphasis on tﬁe study and the
identification of the organizational structure. In the model, the security requirements from the
analysis stage have been incorporated. This ensures that all the functional and the security
specifications integrate seamlessly in the system design. The approach favors the definiton of

secunty prbperties that are custom-made for a spedfic functionality of the system, and not just

31

the overall security properties are defined. As agent systems are immersed m an open
environment, the ISC equips agents with a mechanism that detects trust levels among agents

anticipating an interaction

As mentioned earicr, the methodologies for MASs introduce some new modeling
abstractions that are specifically tailored for the MAS environments. The abstractions that are

exploited in the analysis and the design phase of the shopping mall system are:
i The environment in which the MAS is immersed;
ii. The roles to be played by different agents in Fhe org'anizatiron;
1]1. The interactions betweett th.ese toles;

iv. - The organizational rules which capture the responsibilifies of the organization as a

whole and
v. The organizational structure.
3.3.1 The Shopping Mall System: A Case Stady

To realize the proposed framework, a security-aware agent-otiented shopping mall system was
designed and implemented. Below is the analysis and design of this system, it should be noted
that in this study security properties are considered at the inception of the systems design to
ensure that all possible system vulnerabilines are taken into consideration. Therefore, the
system design includes the systems security requirtements. The first step towards the system
design is the system analysis. The analysis in this work is divided into two elements ie. the

requirements model and the detailed requirements analysis. UML [41] was employed to model

the system’s requirements. The requirements model consists of the use case and the sequence
models. A transition is made from the requirements model to the detailed requirements
analysis. For the detailled requirements analysis, the Gaia methodology was &nployed
Furthermore, is the system design, which is made up of the architectural design and the
detailed design. From the analysis and specification of the abstractions listed in section 3.3 the

v
system was ready to be implemented.

3.3.2 The Requirements Model

The first step towards a requirements model is the creation of a use case diagram. Use cases
provide an abstract view of the system by idenﬁfyiﬁg thé main actors using it, and the main
functions that the system provides to them. In agent based systcm‘;;, use cases are extended by.

| the special kind of actor representing the agents within the system. In this system, there is a
SlioplpezAge;t,- an agent that looks for the dothing ite-ms to purchase on behalf of the
customer. Then there are a number on VShopAgents that stock item$ that are needed by the -
ShopperAgent. ShopAgents query the shops d;tabascs for items and prices and present that -
information to the ShopperAgent. Although a ShopperAgent 1s locking for the best offer,
however, the emphasis here is on the ShopAgent that can provide the security levels required
by the ShopperAgent. Therefore even if a SilopAgent offers the lowest price, but a trust
contract must first be established with the ShopperAgent otherwise the Shoppe:Agént cannot
continue with the proposal. All ShopAgents are configured with the ISC mechanism for
security evaluations, and defined different required and ensured properties for each of them.
The ShopperAgent is also configured with the ISC mechanism and has its own security
propertics. Therefore, a ShopperAgent must be able to query other ShopAgents about their

security properties and select the one whose properties match its own. Fig. 3.2 illustrates the

33

described interactions in the system. The use case diagram is elaborated upon using an

overview of the workings of the system and an agent-specific feature set.

Shapping Mall

Legend:

2 : Actor ©:Use case %:Agent

Fig. 3.2 A use case diagram of a shopping mall system

34

An overview of the shopping mall system

To clearly identify the requirements of agents in this system, a typical shopping situation was
examined. The customer needs to purchase a certain item from a Shop. The ShopperAgent
then goes to the mall where tﬁere is a number of ShopAgents that sell the kind of items that
the ShopperAgent needs. The ShopperAgent however has a specific price that it is prepared
to pay for that item. More importantly though is that it also has specific security
requirements that have to be met before it can commit itself to an agreement. Therefore
when looking for the desired items, checking the security requi:eménts is the first thing that
the ShopperAgent does. Otherwise if the ShopperAgent does not get the security properties.
it iéqmres it tenninétes and looks for the items elsewhej.;e. Following are requirements that

‘the system must satisfy.
Agent-specific features -

i t)ifferent modes for request/respgnée:.the user does not need to be éonnected while
a request completes. A user specifies a service request with all the relevant service
descriptions and its security requirements within the ShopperAgent to query the
service provider’s agents (ShopAgents) about the items, pnce, their security
properties etc. On the other hand Service Providers (shoi)s) send response messages
to the ShopperAgent and wait for a proposal based on thc‘ choice of the

ShopperAgent.

ii. ~ Comparison of offerings: the agents are capable of comparing the security properties
of other agents as their first step, in order to determine whether they conform to the

same security policy or not. Furthermore, the system evaluates and provides the user

35

with different service dimensions such as cost or other user’s experience, to enable

the ShopperAgent to make an informed choice and

fii. Learning capabilifies: firstly, agents in the system are able to keep record of secunty
tests that have been performed and contractual agreements formed. This ensures
that agents develop#rust relationships with agents whose security has been evaluated.
It should be noted that mthls work 1t is assumed that agents publicize thetr trust
secutity properties truthfully and these properties do not change. Secondly, the
system becomes more efficient toward the user’s needs and habits with continued
experience so that when new merchandise or discounts that meets the user profile .
are advertised on the system, the system is able to generate an event to notify ﬁe

user ahout those items.

From the use cases identified in Fig. 3.2, the sequence of messages involved in each use case
is formulated Fig. 3.3 shows the sequence diagram for the Imimate purchase use case
dlagram_, Whiif; Fig. 3.4, Fig. 3.5, and Fig. 3.6 ‘shows sequence diagrams for the Seie_ct shop
use case, Buy item use case, and the Advertise product 'catalogue use cases respectively. The
Initiate purchase use case is invoked when a customer instantiates the ShopperAgent. The
Select Shop use case invokes the concurrent sending of request messages to all the service
providér agents. The Buy Item use case is fulfilled when a ShopperAgent receives its
confirmation for a purchase after it has bought item(s) from the shop. The Advertise
Product catalogue use case is invoked when a shop generates notification events to alert the
ShopperAgent of special bargains or new items in its database that might be of interest to

the customer.

36

Role: Customer J

Role: SthErAggnIJ

purchaseltem(price,)

description,creditCardinfo)

LR

Fig. 3.3 The sequence diagram for the Initiate Purchase use case

Role: ShopAgenta ’ Role: Shoplnem:i

" Role: ShopporAgent Role: ShopAgentC
OfferReqMsglagentiD, securityProperties)
Gheck Security
Properties
Offerﬂeqllfg{ D ¥ .I.m] y
:I Check Security
Properties
OfferReqMsgiagentiD, securityProperties)
- L‘_—[Check Security
Properties.
e Qﬁemwsgi D, se01
Reject()
OfferReplyMsg{agentiD, securityProperties)
= Offer ProposalMsa{itemDescription, price ,creditCardinfo)
OfferReptyMsglagantiD,securityProperties)
le—
Check Security .
Properties

Fig. 3.4 The sequence diagram for the Select Shop use case

37

Role: ShopperAgent Role:ShapAgent

buyltem(item,description,creditCardinfo} }

' sendConfirmation{invoiceNo)

v ¥

Fig. 3.5 The sequence diagram for the Buy Item use case

ARl"ho rAgen

Role:Shop

: submﬂCatalogue(itemé,pricé}
¢ acknowledgeReceival()

Fig. 3.6 A sequence diagram for the Advertise Product Catalogue use case

3.33 Detailed Requitements Analysis

This second element of the system analysis is aimed at analyzing and refining the requirements
obtained in the first phase. In this phase, the Gaia modeling abstractions are adopted to
organize the collected requirements for the systems into an environmental model, role and
interaction models, and a set of organizational rules, for each of the sub organizations
composing the system. The Gaia modeling abstractions allows the incorporation of the agent

specific characteristics that cannot be modeled in UML.

38

. 3.3.3.1 The Organizations

The shopping mall system in this work is comprised of two sub-organizations that are;
interacting i.e. shoppers (di'ents) and shops (service providers). Each sub-otganization has a
specific goal to achieve in th?: system. The goals of the first sub-organization are to purchase
items required by the eastomer. This sub-organization is responsible for capturing the
description of items from the customer, look for shops who sell those items, select shop(s)
that meet the client criteria, buy the selected items, and réturn the result to the éustomer.
The goal of the second sub-organization is to serve the ShopperAgents in the system. This
sub-organization is responsible for captunng the description of items specified by the
ShopperAgent, reply to thé purchasé requests, and process the purchase. In all of the above
cases there is a clear goal to be pursued by each sub-orga;:nization. The most important thing
though is how they interact with each other to accoméiish their goals in the environment.
Therefore the roles that they assume in the system are identified, in doing that the agent’s
- domain of acﬁvity 'is determined; furthenmore the intét—domajn security policies are
specified, to govern the behavior of agents within the same démzjn. Therefore the first step

is to identify the roles in the environment. The roles are elaborated on below.

(i) The ShopperAgent- acts on behalf of the user and is authorized to do so up to the level
allowed by the nser. The agent must be capable of remembering and adhering to the user’s
instructions and learning the user’s preferences. It must be noted that there is a role that is
involved in the system, which is the Directory Manager (DM). This role is inspired by the
Directory Fadilitator (DF) role in [49]. The DF is a FIPA (Foundadon for Intelligent Physical
Agents) defined role to provide agents with directory services. The DM role concerns the

operational level of the system, and not the application itself, that is why a Gaia representation

39

. for it is not supplied; however it is used later in the design. Furthermore, interactions with this

role are presented as protocols, as they are defined in the Gaia methodology, but as activites.

Therefore the activities RegisterDM and QueryDM are DM services provided directly by

the executing platform, provided not as a result of mteractions between agents, but as methods

invocations. Therefore, our ShopperAgent is enabled to register to the DM, deregister from
s '

the DM, query the DM, send request messages on the platform, receive messages from

service providers affiliated on that platform, and query securnty properties offered by the

ShopAgents whose replies have been received.

(i) The ShopAgent-this agent provides a service to the ShopperAgent in the sense that it
sells the itéms that are required by the ShopperAgent. Subsequently this agent is responsible
for maintaining data access, interpretation, and delivery to the ShopperAgents. The
ShopAgent is enabled to register to the DM, deregister from the DM, receive request
messages from various ShopperAgents, query the ShopperAgents security properties, and

N reply the ShopperAgents request messages. *

The organjzational role models describe all the roles thﬁt constitute the computational
organization. This is donme in terms of their functionalies, activities, responsibilities,
interaction protocols and patterns. Based on these constructs, the following schema for the
role models was obtained. In this schema all the specifications needed for the identified role in
the system to perform its functions are defined. The schema for the role ShopperAgent is

depicted in Fig. 3.7, and the schema for the role ShopAgent is depicted in Fig. 3.8.

. From the role models obtained, the interaction models were defined. The organizational

interactions model describes the protocols that govem the interactions between the roles.

Furthermore, these models describe the characteristics and dynamics of each piotocbl, eg

when, how, and by whom a protocol has to be executed. Next is the presentation of the

pro;cocol models in the system, where a protocol is viewed as an institutionalized pattern of
e

interaction. Hence, in Fig. 3.9 and Fig. 3.10 are interaction models for the RequestShops

pxotocol and the RespondShops protocols respectively.
3.3.4 Architectural Design
3.3.41°The Agent Model

. In this phase the agent model which was adopted in this study is identified. The agent model

creates agent types by aggregating roles. Each emerging agent type can be represented as a role

- . that -combines all the aggregated roles attributes (activities, protocols, permissions and

- responsibilities). The system under discussion adopts a peer-to-peer agent model, which
comprises of two agents types: the ShopperAgent and the ShopAgent. However there is also 2
DM role included since agent’s seatch each other over the DM as illustrated in Fig. 3.11. It is
apparent from the ﬂlustmtioﬁ that there 1s only one ShopperAgent in the system, however the

implementation is assumed to use a muln-user, server-based design.

41

Role: ShopperAgent

Description: This role acts on behalf of a profiled user. Whenever a user
needs to purchase an item, it searches for the ShopAgent that best fit the
needs of the user and recommends the appropriate one to the user. it also
receives information on new merchandise and special discounts, and
presents that information to the user. Furthermore it is able to check the
security properties of the ShopAgents to determine if the proposed
negotiation can continue or should be terminated, and updates its ISC
base. :

Protocols and Activities: CheckProperties, RegisterDM. QueryDM.initls
erProfile, UserRequest, InfertUserNeeds, RequestShops, RespondShops,
UpdatelSC.

Permissions: create, read, update user profile data structure, read
acquintance data structure : c

Responsibilities:
Liveness:
ShopperAgent=InitlserProfile. (ServeUser}*
ServeUser=UserReguest. RequestShops. RespondShops. Inferls
erNeeds PresentShops.
Safety:
The security properties are compatible

Fig. 3.7 The schema for the role ShopperAgent

42

Role: ShopAgent

Description: It wraps databases for different shops, and provides a
shopping facility for ShopperAgents. It registers to the DM, and queries the
DM for other ShopAgents that have joined the system, so that it is able to
have the latest information on new merchandise, special offers etc. It also
gets acquainted with specific agents.

Protocols and Activities:
CheckProperties, RegisterDM, QueryDM,RequestShops,RespondShops,Up
.|datelSC. ' IR _ :

Permissions: read DM

Responsibilities:
Liveness:
ShopAgent = RegisterDM. (FindShops)®
FindShops = RequestShops.QueryDM.RespondShops

Safety:
) A successful connection with the DM and shops databases

is established.

Security properties are compatible.

Fig.3.8 The schema for the role Shop:Agent

43

Protocol Name: RequestShops

_ |Input;
Service
Initiator: ShopperAgent Patner: ShopAgent description
and security
‘e requirements
descripion,
Description: gi%l;t;se on
The ShopperAgent requests shops that meet the user requirements from shops that
the platform. A set of shops is presented for the ShopperAgent to chose meept all the
from. The choice is then made based on the security properties of the user's
ShopAgenFs. - |requirements.
Fig 3.9 The RequestShops protocol definition
Protocol Name: RespondShops .
Input:
" Service
Initiator: ShopAgent Patner: ShopperAgent descrptions
and security
properties
- | Description: Output: -
The ShopAgent presents the shops that meet the descriptions provided .
by the ShopperAgent.

Fig.3.10 The RespondShops protocol definttion

Shoppert Shop*

A

Shopper
Legend
—1 * AgentTypes -
O : Roles

*Zero of more Agent Type instances

Fig.3.11 The agent model
From the foregoing analysis, a service model was formulated.
3.3.4.2 The Service Model

The aim of the services model is to identify the services associated with each agent class, or
eqlﬁvalently with each of the roles to be played by the agent dasses. The services that compose
an agent are derived -from the list of protocols, activities, responsibi]iﬁes, and liveness
properties of the roles it implements. Table 3.1 shows the service model of the system. This
model deﬁﬁes the input and output elements of the ident'iﬁed service. Furthermore, it also

states the pre and post conditions for that specified service.

45

. Table 3.1 The service model

Service Inputs Outputs PreConditions Post-Conditions
..+ Products from a service ShopperAgen_t ous The appropriate service
Product descripions] ~ . .) and securly . :
Find shaps . | provider with compatible . provider agentis selected or
+ securty properties . : charactenzation fests L
securtty properies omed the service terminates

Finally, the acquaintance model is defined. This model depicts the roles that interact when

agents are ﬁJlﬁl]mg their design purposes. It also takes into account the idea that an agent can

interact with another agent without having any knowledge about that agent. Therefore, this

model doesn’t only define interactions, but it also specifies whether or not one role is

acquainted with another. Table 3.2 shows the acquaintance model of the system, where T

depicts the agents that interact with each other and 4 depicts agents that are acquainted with

each other.
Table 3.2 The acquaintance model
Shopper Shop DF
Shopper LA A
Shop LA 1A
DF LA LA

. 3.3.5 Detailed Design

When moving from the Gaia model towards the system implementation, messages that are
communicated in this system are defined. To achieve this, the FIPA ACL Message Structure
Specifications in [40] was employed. The ACL Messages RequestShops and

RespondShops are prestnted in Table 3.3.

Table 3.3 ACL Message Definition

‘| ACL Message: RequestShops
Sender: ShopperAgent
Receiver: ShopAgent

FIPA performative: REQUEST
| Protocol: RequestShops
Language: SL
Ontolegy: sell-product
| Content: Ontology action:

| RequestShops

ACL Message: RespondShops
Sender: ShopAgent
Receiver: ShopperAgent
- FIPA performative: INFORM
Protoco!: RespondShops
Language: SL
Ontology: sell-product
Content: Ontology concept: Shops

-

At this stage, the internal structures.and methods of the system are defined. For this system,

the following structures and methods are obtained:

i 'The user profile structure contains all the information there is to know about the user,

and how it is organized. The Shopper role maintains this structure (see Fig. 3.7), and

ii. 'The shop structure contains all the information about the shops. It defines the shop
and the attributes associated with it. This structure is needed by the Shop role and the

Shopper role, the former instantiates such objects by the information that it gets from

47

the DM (QueryDM activity), while the latter filters the shop structure objects

according to the user profile (InferUserNeeds activity).

From the above analysis, the agent class diagram is created (see Fig. 3.12); this diagram depicts
the classes and their attributes and operations. To model the class diagram for classes tn this
system, the AUML is efoployed This allows for the specification of the agent specific

attributes.

The class diagram in Fig. 3.12 shows that there is a capability “Buy” in the system. That
capability is owned by the ShopperAgent. There is also a capability “Sell” which is owned by -
. the Si:mpAgeﬁt Moreover, there is 'aﬁothér capability V“Chec.:l%Se’-_c'uﬁtyProperti;:s” which is -
owned by both the ShOPPaAgent and the ShopAgent. The ShopAgent implements a “Shop”
.interfacé. .Th_e Si}qppenﬁgetllt reqm.tes a “FindShops” service t_hat- is prc;vided by the

ShopAgent. :A S

Finally, a flowchart dlagram is used to depict the RequestShops behavior of the system. The
flowchart diagram enables the observation of the information exchén.ged between entities in
the system. This also enables the éystem to view what behavior 1s next to be added in the

agent’s scheduler. Fig. 3.13 is the flowchart diagram of the RequestShops behavior.

.

Fig.3.12 A class diagram for the shopping mall system

49

<<capability>>
Buy
Inpat
homeAddress: Sting
maxPrice: Flos
shopListl;
shopUistindescirteger
bestPrice: Flaat <<interfaces>
bestShep:Sting Shop
Ourtpust
homeAddrass; String
onderio: String price: Float
. pemDascription: String
Input Constraint itemNo: String
2 orderNa: String
Price=>a CreditCaiTypa:String
Mt_canﬁto: String
Output Constraint b : Date
getinvoice==TRUE getitemDescription{itemNa)
getPrice{price)
D Tt setitemDesciption(itemNo)
i wePrice{price)
- This capability enables the selikem(itemMo, creditC ard Type, creditCandN o, expiryDate)
hasa agent 1o buy tems that fits rmation{orderio]
user, and retum the
implements bilitys>
ShopperAgent Sed
N ; Input
Rals | intoracts with » ShopAgent N
)] Roie =2 - homeAddress: String
Buy, ChackSecurityProperties . . i price: Float
ChackSecsityProperties N
ShoppingMall .

Protocct s oeeriia: String
RequestShops ShoppingMalt Input Constraint
RespandShops s g Protocat R price>0

requires RequestShaps
hd provides RespondShops Output Constraint
<cservicas> [hasa "
FindsS - . getReceip==TRUE
<<capability>>
. iption CheckSecurityl Description
pages for shops that sell specified . shop agent to seil =
- items. requirsdPropartias(l: String pmch.n_:tsﬂ'latmadverﬁsedn
. ses[]: String in the catalogue
Type S
obtainShops
Protacol Onstpust
R securityConforrm: Boolean
RespondShops Enpat Constraint
Agent Communication Language: requiredPropertiesi=NULL
enaredPropertiesi=NULL
FIPA ACL
D e
Critckogy This sty
Query to perfosm security tests
Content Languags inst each other &
N determine if they conform o
reasL e e seciy popeies

"

A 4

RequestShops

RequestShops{item,price,securityProperties)
h 4
[RespondShops ']"

checkSecurityProperties(AIDyq, . s-er AlDqyosgenPeqUIredPrOperties, ensuredProperties)

RejectProposal

(@ &)=y

Accepthposél{item,creditCardInfo)

Fig. 3.13 A flowchart diagram for the RequestShops behavior

3.4 The Simulation Model and Design

- At this stage the design of the program that simulates the pfoposed ISC mechanism is
presented. In this work it is assumed that the agents in the system are in a controlled
environment, i.e. access control, authentication and encryption mechanisms are in place. It is

also assumned that all the agents in this system report their trust information truthfully. The first

50

. step towards the simulation of the system is the identification of the objects required to build

the model.
3.4.1 The Simulation Model

The stmulated system consists of a number of agents interacﬁng to achieve their design goals.
s e
This number is varied to monitor the behavior of agents in the system. All the agents in the
system are incorporated with a number of secuﬁty properties, and they have no knowledge of
each others past behaviors. It is assumed that there is only one service in this testhed so all
agents in the system are communicating for the same service. Validating the compatibility of
an agent and other agent’s properties is the key factpr in deten:pi.nin.g whether an agent can

trust another agent to provide a service without compgomising the service requestor agent.

Agents in this systemn can either be in one of four states, Le. they can be in a sending state,
waiting for communicati_on state, validating properties then 'respond according to the acquired
result state, or exiting the platform state. ‘Fach agent has a radius of conversation, which
tepresents the permitted vicinity of the agent’s intemctioﬁs with its neighbors. Simulations are
run in a testbed in rounds of agent interactions. A client agent broadcast a service request
message that is received by all service provider agents in its radius of operation. The service
providers respond to the broadcasted message. The selection of the service provider depends
on the outcomes obtained from the secunty evaluations performed by the client agent. This
prevents agents from .mndomly selecting the service providers without knowing their security

status.

51

- 3.4.2 The Simulation Design

To evaluate the scheme, a simulation model consisting of an agent platform class, agent class,
message class, knowledge base, and the security property class was created. All the classes that
were used in the simulation and implementation were wrtten in the JAVA programming
language, in the JBuilder § mvironmenp Java was chosen as a programming language in this
study because of its object-orentedness, portability, mult-threadedness, and its security

services. Below are classes that are prevalent in the system.
The Agent Class

The agf:nt aass is an abstract class that déﬁnes ﬂ1e minirr;mnrj;eqﬁirements:of agents in the -
' system as shown in Fig. 3.14. The agent clas's provides basic c;la-c.:rations performcd by- agents,
such as registering on 2 platform after arrival, deregistering from a platform executing. Agente
in the system can either be client agents or service provider agents; this is depicted in the

'-speciali.zation relationship of the agent class.” >
The Message Class

The message class defines the information used in the message passed back and forth between
agents. It must be noted that the content of the first request message is combined with the

security specification of the agent anticipating collaboration.
The Platforrz class

The platform class provides an execution environment for agents.

52

. The security property class

This class hosts the functionality specific security properties of an agent. There are two security
properties that must prevail for each agent, Le. the required and the ensured security properties
that are communicated to check security conformity. After the security compatibility of agents

has been validated, the results obtained are stored in the security knowledge base.
 The knowledge base dass

This class serves as a repository for security contracts formed by any two or more agents in the
"-system when interacting. This class stores these agreements for future references, so that

- agents don’t perform security tests on each other every time they anﬁcipate to collaborate. If
~an agreement has been formed between any two ot mo¥e agents, then the involved agents can

- simply commmunicate the nest time they meet. It should be noted that in this study it is assumed

 that-the security properties do not change.

A sequence of messages that are communicated in the system can be viewed in Fig. 3.4, from
section 3.2 above, where agents broadcast service request messages and select a service

provider agent that meets a similar set of required and ensured security properties.

53

+Name: String 1 Message
+ phatformiD: String
hosts
v
'wfm + Sender : String
+ Receiver: String
mﬂ’. + Host: String
+Coatent: Object
5 - Agent
requiredSecProps: String petReceiver])
* nas
dSecProps: | + ao 2aenti: Sting lh | Tetsandert)
+ conform: setReceiver()
T sezSender(}
setContent()
. getRequiredSecProps{}
getEnsuredSecProps{}
setRpquiredSerPrapal}
. isConform{) setup(] .
nPiziform{)
Z handleRefusef}
[residesin i'.:ndieFai!wq)
v handieinform()
shutdown()
KnowledgeBase
-7
+ agenilr: Soing
+ result: Boolean [‘
Ctient SesviceProvider
getAgentiD() + Type: String
getResult]) + Type :String + Reply: String
setAgentiD{) + Requast: String
setResultf)
updatef)
setapi)
Setup() sendReply(}
sendRequesi) handieRecaiveRequest)

Fig 3.14 The class diagram for the simulator

54

. 3.43 The Simulation Environment

The simulator depicted in Fig. 3.15 was designed to show the agents in the systém._, and the
messages that are communicated in the system. The agent states are color-coded such that one
can tell the state an agent is in at a particular time. In order to expose the workings of the
system, a status window was used to display messages as they are exchanged by agents in the
system. The color changes are a reflection of the state changes. In the simulator the start
button enables the simulation to commence. When the simulation commences, agenfs arrive in
the platform with their securtty properties. After arrival, service request messages are
brcia&casted. Service provider agents validate the security propertieé of the client agent, and
lsend rephes if the client agent meets their security requirements. Fig 3.15 shows agents sending
messages to othet agents within their mdms of communication. The status wmdow is filled

with messages that allow viewing the actual working mechanism of the scheme.

3.5 Summary

In this chapter trust issues in multi-agent systems have been presented, and the importance of
agents to have 2 capability to assess trustworthiness of other agents in the system based on
their own findings have been emphasized. The proposed secutity characterization framework
was expatiated upon. This framework enables agents to incorporate security prdperties and -
publicize them as part of their interfaces. Therefore, an interaction contract between two
agents will only be formed if the publicized security properties of one agent conform to the
publicized security properties of another agent. The security issues in this research framework

have been investigated with a view to yielding trust support system in agent environments.

55

The system design for the agent orented shopping mall system was demonstrated. The
modeling abstractions from Gata methodology, UML, AUML, and FIPA specifications were
combined to yield a comprehensive model of the system. This enabled seamless transitions
from analysis up to the implementation models of the system. Furthermore 2 simulation model

and 1ts design were presented.

Next, is the presentation of the simulation and implementation of the system, and present the

findings.

4

ent 27 Validating Security Properties...
7: Got compatible agent, COLLABORATING!
gent 5: Got compatible agent, COLL ABORATING!
gent 11: Validaing Security Properfies..

gent 2: validating Securily Properties...

gent 11: Got compaiible agent, COLLABORATING!
gent11:

CHiend agent broadcasting service requast..

gent 16: Validating Security Properiies ..
gent 11: Responding with 5 comesponding

e : : ’
agents: [25 (STARTY RESULTS| Simulated agents: 25

Applet started.

Fig. 3.15 The simulator for the ISC mechanism.

CHAPTER FOUR

4.0 MODEL SIMULATION AND

. IMPLEMENTATION

4.1 Introduction

This chapter 13 divided into two sections, section 4.2 and section 4.3 respectively. In section
42, the presentation and the evaluation of the results is given. Section 4.3 presents the

implementation of the system that served as the case study of this work.
4.2 Experimental Evaluation

The first expetiment that was performed in this work was to establish the inaccuracy of the
trust values obtained in a reputation based trust model. To accomplish this, the e-Bay trust
model [57] was evaluated. In this model buyers and sellers can assign each other either one of
the three trust values i.e. [-1, 0, 1], where -1 means absolutely negative, 0 means uncertain or
neutral, and 1 means absolutely positive. These values are assigned based on the outcome of
the transaction. ‘The reputation value is computed as the sum of those ratings over the past six
months. However to show that this scheme does not give an accurate trust value, an
expenment was runt where an agent which occasionally performs maliciously was involved in
twenty five transactions. The behavior of the agent during a particular transaction was
mm&ored and depicted as shown in Fig. 4.1. Furthermore a good agent was allowed to

participate in ten transactions, and it was also rated after each transaction. However, the

57

" malicious agent got a higher trust value compared to its good counterpart since it was involved
in more transactions than the good agent. This was because the total number of transactions’
performed truthfully masked the instances where the malicious agent performed diénaﬂy. The
trust values obtained are depicted in table 4.1. These values portray an image that the malicious
agent is good, and the g(_)oed agent 15 malicious. Hence in a reputation based scheme, malicious
agents can simply disgu-jse their misconduct by being involved in a lot of transaction and
tl-lerefore score high trust values as illustrated in Fig. 4.1. This then led to the proposal of the

contract based trust mechanism.

Table 4.1 The e-Bay trust Model

Teansactions | 1 | 2|3 |04 {567 }|8{9 | 10| 12}{12] B3 |14 15|16 (17{18]1920 212|225

Honest 11ttt ftttfprjrepetps t-t- t- §F- - 4- 1t- - ¢~ t1t-1-1-1-

In the proposed scheme, when each agent arrives at the system to execute, it has a specific
value of security properties that it requires from and ensures to other agents in the system. The
client agent has a set of functionality specific required and ensured security properties that it
requires from and ensures to service providers respectively. Therefore, the client agent checks
the compatibility of properties from service providers. If it finds a service provider with

compatible properties, the collaboration can commence.

58

Trust Values
Q

-1

Fig. 4.1 The e-Bay trust model

To test the proposed scheme, two sets of experiments were performed to establish the ISC
feasibility and accuracy. The first experiment evaluated the effect of agents interacting
randomly without any security validation mechanism. To accomplish this, a set of twenty five
agents that do not compare their secunty properties was set. Agents did not perform any
validations on each other’s security related characteristics, therefore, they collaborated freely.
This then led to agents collaborating with agents without property compatibility. This
therefore, implies that agents collaborated with agents who may be malicious, since their
security status was not verified. Therefore, this experiment yielded low mstances of
trustworthy interactions as illustrated in table 4.2. This was derived from the results obtained
from agents since they were monitored after an interaction, and it was found that agents had

collaborated with agents who would have otherwise not collaborated with if they validated

59

their secunity properties status. The value pair [0, 1] was used to indicate the trust value of an
agent after the collaboration. The trust value of 0 was assigned after the occurrence that an
agent was a potential threat to the other agent; otherwise the value 1 was assigned as illustrated
in Fig. 42

Table 4.2 Agent interactions without security evaluations

Agemt [12[3[4|5|6]7[8[9|0O|N[2|B|4[15]16[17|18|19|20]21]22]2

Value

Agent Interactions Without Security Evaluation

12

1 2 3 4 5 6 7 8 % 1011 121311518 17 1819 202 22 U5
No. of Agents

- The number of 0 values obtained in Fig. 4.2 shows that an agent was not safe and could have
been compromised in the real world. Therefore, it is more appropriate for agents to only
collaborate with agents whose security propertics are public; hence they are able to protect

themselves against malicious agents through the security assessments.

The second experiment*evaluated the accuracy achieved in a system whose agents are
instrumented with an ISC mechanism. The agents in this system are able to evaluate each
other’s trustworthiness based on the publicized properties completely. So agents in this system
could evaluate each other’s trustworthiness at a 100% level of accuracy. It should be noted that
in this system it is assumed that agents publicize their secunty properties truthfully. Table 4.3
lustrates the trust values obtained in an ISC-enabled interaction and Fig. 43 shows trust

evaluation of agents incorporated with an ISC mechanism.

Table 4.3 Agents configured with the ISC mechanism mteractions

Agen£12345678910111213141516171819202.1222324

Trost [1}1)1t 1)1 (1111 ¢ {1 }31 ¢1 |1 1 |1 |1 11 }1 |1 411

Vahie

‘The foregoing evaluation demonstrated that agents are able to accurately assign trust values to
other agents if the ISC mechanism is employed. Therefore we advocate the employment of the

ISC mechanism as a trust guaranteeing mechanism in agent based systems.

61

o8
-
-
=
20
Z
=
04
02

x = ; e e ==

1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 22 23 24 25
No. of Agents

Fig. 4.3 Trust accuracy levels using the ISC approach
4.3 Implementation .

The implementation of the system comprised of setting up an agent environment, where the
shop and shopper agents were hosted. We employed JBuilder 5, to create agents and test the
mechanism on a Pentium4 CPU, and Windows XP as our operating system. To realize the
proposed concept a few assumptions were made for the agent platform. The platform is

assumed to provide the following basic security services:

L Authentication service to provide a guarantee that a user starting a platform is
authenticated, and therefore agents within that platform are considered legitimate

within the secured scope of the computational system hosting the main contamer of

the platform. Hence, it is assumed that the agent platform has a capability that enables
the enforcement of differentiated access control on system users. A selection of login

modules can be used for authentication, these can range from Simple, Kerberos etc.;

i Access control assumptions means that all agents in the system are owned by
aunthenticated users, because of the above authentication mechanism, all actions that
agents can perfonn on a platform are perrmitted or denied according to a set of mles.

These rules are defmed in a policy file, and

#i. Signature and encryption services for message integrity and confidentiality to guarantee
a certain level of security when sending a message both to an agent nmning on the
same or a foreign platform. Digital signatures are a well-known safeguard to ensure the

- integrity of a message and the identity of the message onginator. Encryption on the
other hand ensures the confidentiality of the message by protecting message data from

eavesdropping.

ATl the agents in this system are configured with different security properties which are hosted
as databases of required and ensured security properties. These properties are invoked when
an agent is initialized, the actual execution is delayed until the proper security tests have been

done and results obtained. The mtemal working of the simulator is llustrated next.

A shopper agent is dispatched to go shopping in the shops each wrapped by its ShopAgent.

Fig.4.4 and Fig.4.5 shows a ShopperAgent being instantiated and dispatched by the customer.

63

Ei ShapperAgent

Wﬁmm = '. mcm e =
cmﬂmfge |Please Seoct v| boottens |3 v

Credit Card m " 123455?994 ;;m‘m . [38084999999099997

Eossctry s || o | remetns

Fig, 4.5 The dispatching of an agent

In this system all agents are specified in such a way that they halt all their functionality related
goals until the secunty analysis completes. However, to show the results of the test, a text
message was enabled to depict the result of obtained in each test. These are depicted in the

Fig 4.6and Fig. 4.7.

el]
EEE Message

Fig. 4.7 Compatble properties result

The above results show that ShopAgent has compatible security properties. Therefore after the
security analysis completes, the ShopperAgent then purchases an item through ShopAgentB.
The transaction is performed and ShopAgéntB, retums with the invoice to confirm the

transaction performed as depicted m Fig. 4.8 below.

o] -
Ez-,j [nvoice

mm .
ltanﬂmm - 5101
Me - 04712108
émﬁhemfnems : 2
ompice R1m:
Fig. 4.8 The retumed mvoice

65

- 4.4 Summary

The results obtained from the evaluation of the trust mechanism have been demonstrated. The
. implementation of the proposed security sch_eme has been presénted using the Shopping mall
case study. The proposed mechanism clearly depicts that an agent is empowered to make trust
decisions based on its own discretion. Therefore, Uuét relationships formed as a result of the
proposed mechanism are based on accurate trust values compared to trust relationships

formed and based on trust values obtained from third party entities.

Chapter 5 presents conclusions of this work and some possible direction for future work.

66

CHAPTER FIVE

5.0 CONCLUSIONS AND FURTHER WORK

5.1 Conclusions
The openness of multi-agent systems makes them susceptible to attacks. As long as this is the
case, multi-agent systems may not be able to deliver on current promises. Therefore, research
has recognized the need for MAS to implement security properties such as integrity,
' conﬁdenﬁz]ify, 7acc0nntabﬂitry, enonymity,‘ﬁndr avaﬂabﬂlty of agents é.nd pla'tforms.' However

the question of trustworthiness of agents by ma.km.g them secunty—aware at runtime is yet to be
U addressed. In this regard there is a slmﬂanty between the security need of components ma
component based system and secu.nty of entltles In a mulu—agent sy'stem The former was
-addressed by Khan et al f15}, Wh]le the latter has been addressed in this dissertation. Just as a -
component’ s integrity needs to be decla_ted upfront before_ reuse, so an a.gent needs to declare
its security properties and also have access to oehe: agent’s securty properties before

collaboration.

Therefore, the first objective of this research was to formulate a model to enforce security
contract negotiation between two interacting agent entities. Following the security-awareness
mechanism for components by Khan and Han [15], an Interaction Security Contract (ISC) was

formulated for entities in an agent based system.

67

- Secondly the work sets out to simulate and implement the model developed. This has been
achieved by implementing a demonstration system known as a shopping mall system.
Morcover, the ISC mechanism has been experimentally compared with the reputﬁtion'based

scheme in the same category.
The limitations of the simulated and implemented systems are as follows:

1 The systems only allow complete trust or no trust at all. This does not give an agent
the liberty to continue with the collaboration even if the level of trust is not complete

but acceptable;

i _ Agents in the systems can validate each other but they cénﬁot validate platforms, this
leavcs room for platforms to comprormse agents. 'Iherefore there is a need to extend

this scheme to also include security vahdatlons for agents agamst platforms, and

L 'There is no mechanism to vahdate whether the secunty propemes pubhazed by agents
are trustworthy, since this W01:k assumed thar agents pubhctze their secunity properties

truthfully.
The foregoing limitations provide some work designated for the future.

5.2 Further Work

The cutrent binary status of the ISC mechamsm can be improved upon by upgrading the
mechanism to a non-discrete system such that ISC is computed as a percentage. Should this be
the case, an entity will be at iberty to define a safe ISC percentage range under which it can

afford to collaborate.

68

. The present implementation is limited to agents. It is envisaged that a future extension will

allow platforms to be instrumented with the ISC mechanism.

69

REFERENCES

1. Minar N, “Designing ecology of distributed agents.

http:/ /www.mediag.mit.edu/nelson/.

2. Smith D, Cypher A, Spohrer J, “Programming Agents Without a Programming

Language”. The Communications of the ACM, 1994, 37(7), pages 55-67.

3. Selker T, “A Teaching Agent that Learns”. Communications of the ACM, 1994, 37(7),

pageé 92-99.

4. Riccken.D, Architecture of Intcgrated Agents”. _Communications of the ACM, 1994,

37(7), pages 107-116.

5. CoenM.H, “SodaBot: A Software Agent Environment and Construction System, MIT

AT Lab Technical Report 1493, June 1994.

6. Maes P, “On Software Agents: Humanizing the Global Computer”, IEEE Intemnet

Computing, Vol. 1, July/August 1997, pages 10-19.

7. Frankhn S, Graesser A, “Is it an Agent or Just a Program? A Taxonomy for
Autonomous Agents”. In JP.Muller, M]. Wooldndge, N.R Jennings, editors,
Intelligent Agents III, In Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages, Lecture Notes in Artifictal Intelligence,1193,

Springer-Verlag, pages 21-35.

70

Weiss G, “MultiAgent Systems a modem Approach to Distributed Artificial

Intelligence™. MIT Press, March 1999.

Ng S, “ Protecting Mobile Agents Against Malicious Hosts”, M.S.c. thesis, Division of
Information Engineening, The Chinese Umvezmty of Hong Kong, June 2000.

.

10. Jennings N.R and M. Wooldridge, “Intelligent agents: Theory and practice,” The

11.

Knowledge Engineering Review, vol. 10, no. 2, pp. 115-152, 1995.

Chess D, Harrison C, Kershenbaum A, “Mobile agents: Are they a good idear” In Jan

Vitek, Chr.lsuan Tschudin (eds.), Mobile Object Systems.: Towards the Programmable

Internet, pages 25-45. Springer-Verlag, April 1997. Lecture Notes in Computer Science

12.

13.

14.

No.1222. http:/ /www.research.ibm.com/massive/mobag.ps (1994 version).

Chess D, Harrison C, Kershenbaum A, “Mobile agents: Are they a good idea?” IBM

Research Report 1995, S

Farmer W.M, Guttman J.D, Swarup V, “Security for Mobile Agents: Issues and
Requirements™.

http:/ /cste.nistgov/nissc/1996 /papers/NISSCI6/paper033 /SWARUPY6.PDF.

Gray, R, Kotz D, Cybenko G, Rus D), “ D'Agents: Security in a2 Multiple-Language,
Mobile-Agent System”, in Giovanni Vigna (Ed), Mobile Agents and Security. pages

154-187. Springer-Verlag, 1998.

71

15. Khan K, Han J, “A Security Characterization Framework for Trustworthy Component
Based Softwarc Systems”. 27" Annual International Computer Softwarec and

Applications Conference (COMPSAC), Dallas, 2003.

16. Object Management Group (OMG). The Common Request Broker: Architecture and

Spedification (CORBA), revision 2.2. http:/ /www.omg.org/corba/corbaiiop.htm

17. Roger Sessions, “COM and DCOM: Microsoft’s Vision for Distributed Objects”,

John Wiley & Sons, 1997. ISBN: 0-417-19381-X.

18. RMI: Remote Method Invocation.

19. Tanenbaum A.S, Van Steen M, “Distributed Systems Principles and Paradigms,

Prentice-Hall Inc, 2002, New Jersey.

20. Mc Mzhon P.V, “SESAME V2. Public Key and Authorization Extensions to
Ketberos”, ISOC Symposiuni on Network and Distributed Systems Security, IEEE

Computer Society Press, February, 1995.

21. Koh! J, Neuman B, “The Kerberos Network Authentication Service (V5)”, Internet

RFC-1510, September, 1993.

22. Vandenwauver M, Govaerts R, Vandewalle], “Public Key Extensions used in

SESAMEV4”, Public Key Solutions 97, Toronto, Aprl, 1997.

- 72

24.

26.

27.

28.

29.

. Farmer W, Guttmann J, Swarup V, “Security for Mobile Agents: Authentication and

State Appraisal. In Proceedings of the 4™ European Symposium on Research in

Computer Security (ESORICS), Springer-Verlag, pp118-130, 1996.

Giansirascusa M, “Mobile Agent Protection Mechanisms, and the Trusted Agent
Proxy Server (TAPS) Architecture™.

http:/ /www istc.qut.eduau/resource/ techrepdﬁ/ qut-isrc-tr-2003-010.pdf.

. Hohl F, “Time Limited Blackbox Security: Protecting Mobile Agents from Malicious

Hosts”. In G. Vigna, editor, Mobile Agents and Security. Springer-Verag Berdin

Heidelberg, 1998.

Karjoth G, Asokan N, Gulcu C, “Protecting the Computation Results of Free-
Roaming Agents. Second International Workshop on Mobile Agents, Stuttgart,

Gemmany, September 1998.

-

Lal M, Pandey R, “CPU Resource Control for Mobile Programs”. Agent Systems and

Applications , 1999, Pages 74-88.

Riordan], Scheiner B, “Environmental Key Generation Towards Clueless Agents”.

http:/ /www.schneier.com/ paper-clueless-agents.pdf.

Roth V, “Secure Recording of Itneraries Through Cooperating Agents.”. In
Proceedings of the ECOOP Workshop on Distributed Object Security and 4%
Wortkshop on Mobile Object Systems: Secure Internet Mobile Computations, pages

147-154, INRIA, France, 1998.

73

30.

31.

32.

33.

35.

Sander T, Tschudin C.F, “Protecting Mobile Agents Against Malicious Hosts”. In G.

Vigna, editor, Mobile Agents and Security. Springer-Verlag Betlin Heidelberg, 1998.

Schneider, F, “ Towards Fault-tolerant and Secure Agentry”. In Proceediﬁgs of the 11®
International Workshop oﬁ Distributed Algonthins, Saarbriicken, Germany, Sept.
1997. Also available as TR94-1568, Computer Science Department, Cornell University,
Ithaca, New York.

htep: //cs-tr.cs.comell.edu:80,/Dienst/ Repository/2.0/Body/ncstrl.cornell%o2fTR97-

1636/postscript.

Vigna G, “Cryptographic Traces for Mobile Agents in G. Vigna (Ed): Mobile Agents

and Secutity, pp 137-153, Springer-Verag, 1998.

Westhoff D, Schneider M, Unger C, Kaderali F, “Protecting Mobile Agent’s Route

Against Collusions. In Proceedings of the SAC’99, Springer LNCS 1758, 1999.

. Wilhelm U.G, Staamann S, “Protecting the Itnefary of Mobile Agents”. In

Proceedings of the ECOOP Workshop on Distributed Object Security and 4®
Workshop on Mobile Object Systems: Secure Internet Mobile Computations, INRIA,

France 1998, Pages 135-145.

Yee B.S, “A Sanctuary for Mobile Agents”. In Proceedings of the DARPA Workshop
on Foundations for Secure Mobile Code Workshop, 26 - 28 March 1997.

http:/ /www.cs.nps.navy.mil/research/languages/statements /bsy.ps.

74

36. Zambonelli F, Jennings N.R., Wooldridge M, “Developing Multiagent Systems: The
Gaia Methodology”, ACM Transactions on Software Engineering and Methodology,

Vol. 12, No. 3, July 2003, Pages 317-370.

37. FIPA, “FIPA Modeling: Agent Class Diagrams”. http://www.auml.org.

A 4

38. Giunchiglia F, Mylopoulos J, Perini A, “The Tropos Software Development

Methodology: Processes, Models, and Diagrams, in AAMASO2.

39. Wood M.F, Deloach S.A, “An Overview of the Multiagent Systems
Engineering Methodology”. AOSE-2000, The First International Workshop

on Agent-Oriented Software Engineering. Limerick, ireland, 2000.

40. FIPA: “FIPA ACL Message Structure Specification”, 2002.

hetp:/ /www.fipa.org/specs// fipa00061 /SCO0061G.pdf.

41, Eriksson H-, Penker M, “Business Modeling with UML”, OMG Press, John

Wiley &Sons, Inc.2000.

42, FTPA: “FIPA Personal Travel Assistance Specificaton”, 2001.

http:/ /www.fipa.org/specs / fipa00080 /X CO0080B.pdf.

43. FIPA: “FIPA Quality of Service Ontology Specification™ , 2002.

bttp:/ /www.fipa.org/specs / fipa00094 /SCO0094A pdf.

44. FIPA, “FIPA Agent Management Specification, 2000.

http:/ /www.fipa.org/specs/fipa00023.

75

45.

46.

47.

48.

49.

50.
51.
52.

53.

Resnick P, Kuwabara K, Zeckhauser R, Friedman E, “Reputation Systems: Facilitating

Trust in Internet Interactions”, Communications of the ACM, 43(12), PAGES 45-48.

Yu B, Singh M.P, “A Social Mechanism of Reputation Management in
Electronic Communities”. In Co-operative Information Agents, 7™

International Cenference, CooplS 2000, 2000.

Zacharia G, Maes P, “Trust Management Through Reputation Mechanisms”.

Applied Artificial Intelligence, 14(8), 2000.

Abdul-Rahman A, Hailes S, “Supporting Trust in Virtual Communities. In
Proceedings of the Hawair’s International Conference on Systems Sciences,

Maui, Hawaii, 2000.

Zacharia G, “Collaborative Reputation Mechanisms for Oanline

Communities”. M.Sc. Thesis, Massachusetts Institute of Téchnology, 1999,

www.cbhav.com.

WWw.amazon.comn.

www.blzrate.com.

Gambetta D, “Can We Trust Trust?, in Making and Breaking Cooperative Relations,

- electronic edition, Department of Sodology, University of Oxford, chapter 13, pages

213-237, htp:/ /www.sociology.ox..ac.uk/papers/gamberta213-237.pdf.

76

54. Khan KM, Han], “Composing Security-Aware Software”, IEEE Software,

January/February 2002.

55. Khan K, Han], Zheng Y, “A Framework for an Active Interface to Characterize
Compositional Security Contracts of Software Components”, IEEE Proceedings of

the 13™ Australian Software Engineering Conference (ASWEC01), 2001.

56. Langley B.K, Paclucci M, Sycara K, “Discovery of Infrastructure in Multi-Agent

Systemns”. http:/ /www-2.cs.cmu.edu/~softagents /papers /infrastructureDiscovery.pdf.

57. Kollock P, “The Producton of Trust in Online Markets”. In Lawler E.J, Macy M,
. 'Thyne S, and Walker H.A. editors. Advances in Group Processes, volume 16, pages

99-123, JAI Press 1999.

58. Basis I, Doser], Lodderstedt T, “Model Driven Securty for Process-Orented

Systems”, SACMAT 2003, June 1-4, 2003, Como, Italy.

APPENDIX

Below are code snippets taken from the simulation program written in Java.
Listing 1 presents the code fragment to set the messages broadcasted
incorporated with the required and the ensured security properties. Listing 2
presents the code fragment that begins the simulator, and listing 3 presents the

code fragment for actually checking the security properties and taking a decision

public Agent{String n, Message required, Message ensured, Object ref) {
. name=r
interactions = new Message[2];
interactions[0] = ensured;
interactions] 1] = required;
validated = 0;
properties = rand(Validating BASIC PROPERTIES - 2, Validating BASIC_PROPERTIES +2);
observerRef =ref;
myThread = new Thread(this, n);
stafus=STATUS WAITINGFORCOMMUNICATION;
}

int rand(int min, nt max) {
return {min + (iut)_(MgTh_nmdom() ¥ (max - min)));
void sleepFor{int ms}) {

try { Thread sleep{ms * (validate?1:10)); }
catch (InterruptedException €} { abort =true; }

}
public void setValidate(boolean v) { validate =v; }

public synchronized void stari() {
myThread start();

}

public synchronized void stop() {
abort = true;
myThread.interrupt();

Listing 1. Code fragment to set the messages broadcasted incorporated with the

required and the ensured security properties

78

public void beginSimulation() {
im -

>

. if (mnningthreads > 0) {
logarea append(” Aborting simulation before completion\n");

for(i=0;i< broadcasters length: i++) {
bro [il.stop();

1}'unningth.reads=ﬂ;

} i e
hostclear();
String cntString — cournterField. getTexi();

coamnt = Inteper parselnt(catString);

}

catch {(NumberFormatException nfe) {
count = DEFAULT_AGENT;
counterField.setText("" + count);

3
{ogarea append("\t\nBeginning simulation with " + count + " agents\n");
logarea append("\\nClient agent broadcasting service request..\n™);

synchronized (host) {
broadcasters = new A gentfcount];
conversations — new Message[count];

Dimension psize = host getSize();

Point center = new Point(psize.width / 2, psize.height / 2);

rad = ({psize.width < psize.height)?

((psize.width * 4)/5)((psize. helght * 4/ 5) /2.0

mesrad = (rad/count) * 2.1;

convrad = rad - mesrad;-

convSent = new Pomt[count]

int csx[] — new int{4];

int csy[] — new intf4];

conversationsSent = new Polygon]count];

double phi;

double div = (2 * Math.PI)/{count * 2);

double swdiv = Ma.th.P] /150;

it ¢;

for(c =0, phi = 0.0; c<cou.nt ci+, phi += div) {
convSent[c} = new Point{(int)rad * Math sin(phi)) + center.x,

(int)}(rad * Mdth.cos(phi)) + center.y);

phi +=div; "

csx[0] = (int)} Math.sin(phi}) + center.x;
¢sy[0] = (intMath.cos{phi})) + center.y; -
esx[1] = (int}(convrad * Math_sin{phi)) + center.x;
csyf1] = (int)}{convrad * Math_cos(phi)) + center.y;
csx[2] = (int)}{convrad * Math sin(phi + swdiv)) + center.x;
csy[2] = (int}{convrad * Math cos(phi + swdiv)) + center.y;
¢sxf3] = (int{Math.sin{phi + swdiv)) + center.x;
csy[3] = (int(Math.cos(phi + swdiv)) + center.y;
conversationsSent[{c + 1} % count] = new Polygon(csx,csy,4);
3 ”

for(i = 0; 1 < count; i++) {
conversations[i] = new Message("Message " + i, conversationsSent[i]);
conversations[i}.addObserver(host);

for(i = 0; i < count; i++) {

bmadcasters[:] new Agent("Agent ” + i,
conversations[i],
conversations[{i + 1) % count],
convSent{i]); .

broadcasters[i].setValidate(validate);

broadcasters|i}.addObserver(this);

broadcasters[i}.addObserver(host);

E‘or(runningthreads = 0; mnningthreads < count; runningthreads++) {
broadcasters[runningthreads]. stari();

Listing 2. The code fragment that begins the simulator

79

public Agent(Smng n, Message required, Message ensured, Object ref) {
name =
mmcuons new Message[2];
interactions[0] = ensured;
mterac:‘c;ns[ll required;
alidat
;ropernes rend(Validating BASIC_PROPERTIES - 2, Validating BASIC_PROPERTIES + 2);
aobserverRef =ref;
myThread = new ‘this, n);
) stsms STATUS_WAITINGFORCOMMUNICATION;
int rand(fnt min, int max) {
rerurn {min + (int}Math.random() * {max - min)));
void sleepFor{int ms) {
{ Thread.sleep(ms * (validate?1:10)); }
errupledEfcepﬂon e) { abort=gue; }

pablic vaid setVaIidate(bgolm v) { vahdme =v; }
public synchronized void start() {
myThread stari();

?:vublic synchronized void stop(} {
abort = true;
myThread. interrupt();

public void un{) { . . 3 . .
Pmalgi(;zkespondmg with ™ + properties + * comesponding properties™),
mtml, >4

while{validated < properties && tabort) {

status = STATUS WATTINGFORCOMMUNICATION;
setChanged(); mnfyObservers(observerRet);
//message("validating....."); '
sleepFor{rand{D,4) * Vahdanng_BASIC DELAY);
message({™Validating Security Propextics. .");

/ & service provider, has ched:edthesecmtyptopﬂﬂswnﬁgm’ed in the service
fireqy I and ts respomding with its own security properties
status = STATUS_RESPONDING;
boolean conform = false;
setChanged(); nmﬁrObservas(obsa’verRei)‘ -
while(!conform &4& labort) { -
#/ send another message, randﬂm.ly

mi =rand(0,3); N
m2 = {(m1 = Oy?(13:(0):
send message |
mized (interactions[m13) {
while(!{interactions[m1].isAvaitable())) {
tlyilitmax:tio:ms[1:|11],wait(');'
} catch (Exception e) { «
if (abort) remxrmn;

3 :) .
required properties conform, now gheck for the ensured ones .
i:naacﬁdns{m 1}.receive();

#/ Check the ensured security properties, but give up
I/ lmmﬁd.lately if they do not conform.
nized (ieractions{m2]} {
if (interactions[m2]. isAvailable()) {
imteractionsfm2 . recerve();
conform = true;

}

H . . N

/1 If we didn’t o gera h first{required) set of properties,
/f then don't go any further with checking the second(ensured) set

if { lconform) {

interactions[m1]) broadcast();
}

y
- if (abort) retm;
#/ If ous agent has got this far, it means both security properties have been validated and
it is established that they conform, therefore the interaction can take place.
starus = STATUS_RESPONDING;
message{ "Got compatible agent, COLLABORATING!");

message{”Got compatible agent, COLLABORATING!")’,

setChanged(); notifyObservers{observerRef),
sleepFosr(rand{Z 5) * Validaring BASIC DETAYY);
vatidat

if (abon) remm,

#/ We have achived our design goal here,
we can send a new set of messages if there is more to do
message{"Objective achicved for the moment, seénd another message if there is more 10 do...");
interactions{0]. broadcast();
broadcast(};

status = STATUS DONE;
setChanged(); notifyCbservers(observerRef);
ge(" Stop m, and leave the platform ™);

80

	Declaration
	Dedication
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abstract
	Chapter one
	Chapter two
	Chapter three
	Chapter four
	Chapter five
	References
	Appendix

