
User Preference Mining for Context-Aware

m-Services Applications

Edgar Jembere

(20047171)

A dissertation submitted in fulfillment ofthe requirements for the

degree of

Masters of Science in Computer Science

Department ofComputer Science, Faculty ofScience and Agriculture

University ofZululand

Supervisor: Professor M. O. Adigun

Co-Supervisor: Dr S. S. Xulu

2007 Cl,;:: I :0 · ························..····_· .

'>' ·'C~: i\ ':\ : lO ~;~:~;;·;:.;.: .•~::.;;.~;::•..:.••...•. > •••••

Declaration

This dissertation represents the author's own research work and has not been

submitted in any form to other tertiary education for another degree or diploma.

All the material used as source of information has been acknowledged in the text.

Signature

..

i

To my brother Lawrence

Dedication

11

Acknowledgements

I would like to express my gratitude to my supervisors Prof M.O Adigun and Or

5.5 Xulu for their guidance and support to make this work a reality. I would also

like to acknowledge the contribution of Or J. 0 Emuoyibofarhe and Or 5. 0 Ojo,

who visited my Centre during the course of this work. To my fellow researchers in

the centre for mobile e-Services for develollment, A Ipadiola, K Kabini, J Iyilade,

P Mudali, 0 Olugbara, and 5 5ibiya I say, thank you very much for the help and

support you gave me through out the prototype implementation stage of this

work. P Tamba-Tamba, 5 Kabanda and T. C Nyandeni, thank you for the social

support you gave me during the course of this study when things were looking

gloomy. Last but not least I would like to express my gratitude to 5. T.

Chikandiwa for the support she gave me throughout the course of this study.

ill

Table of Contents

Dedaration i

=::~~~~~::i::
Table of Contents iv

Ust of Rgures vii

Ust of Tables ; viii

Abstract ix

CHAPTER ONE 1

INTRODUCTION 1

1.1 Background 1

1.2 Statement of the Problem 4

1.3 Rationale 5

1.4 Goal and Objectives 6

1.4.1 Research Goal 6

1.4.2 Research Objectives 6

1.5 Methodology 7

1.7 Organisation of the Dissertation 8

CHAPTER lWO 10

UTERATURE REVIEW 10

2.0 Introduction 10

2.1 Context-awareness and Personalisation in m-8ervices 12

2.1.1 Context- awareness 13

2.1.2 Personalisation 14

2.1.3 Distinction Between Context-awareness and Personalisation 17

2.2 User Preferences for m-services 20

2.2.1 User preference models 21

2.2.2 User Preferences Mining 29

2.3 User modelling 32

2.4 Middleware for Context-Aware Mobile Services 36

IV

2.5 Personalised Context-aware Service Discovery, Selection and

Composition , 40

2.6 Data Mining 42

2.6.1 Association Rule Mining 43

2.6.2 JClassification 43

2.6.3 Clustering 44

CHAPTER THREE 48

MODEL DEVELOPMENT 48

3.0 Introduction 48

3.1 User Preference Modelling , .49

3.1.1 Preferences Representation: Addressing the lack of user

expressiveness 49

3.1.2 Addressing the Lack of Intuitiveness in the Preference Measures

50

3.1.3 Our User Preference ModeL 53

3.2 User Preference Mining 54

3.2.1 Mining Attribute Value Preferences 55

3.2.2 Computing Item Preference Values 57

3.2.3 Strict Partial Order Representation of Preferences 60

3.3 Mining Context-based User preferences 62

3.3.1 Context Model for Mobile Services 63

3.3.2 Our Context Model and User Preference Mining 65

3.4 User Preference Mining Algorithms 65

3.5 User Modelling for m-5ervices 72

3.6 Infrastructure for User Preference Mining and Usage in m-8ervices 73

3.6.1 UPCAMS Design Considerations 74

3.6.2 UPCAMS and its Components 77

3.6.3 The User Preference Mining Component 83

CHAPTER FOUR 84

PROTOTYPE DESIGN AND IMPLEMENATION 84

4.0 Introduction 84

4.1 Design of a Prototype 84

v

4.1.1 The Preference Miner in UML , 85

4.1.2 User Session Warehouse Data Model 88

4.1.3 Context-Based User Preference Profiles 91

4.1.4 Context-Based User Preference Repository '" 94

4.2 Implementation Environment.. 94

4.3 Evaiuation of the Preference Mining Framework 96

4.3.1 Effectiveness of the User Preference Model 97

4.3.2 Quality of the User Preference Mining Algorithms 103

CHAPTER FIVE 110

CONCUSIONS AND FUTURE WORK 110

5.0 Introduction 110

5.1 Conclusions 111

5.2 Future Work 115

BIBLIOGRAPHy 116

APPENDIX A 125

User Preference Profile DTD 125

APPENDIX B 126

Preference Repository DTD 126

APPENDIX C 129

Class Diagram 129

APPENDIX D 130

Fonnalisation of the Categorical Preferences as Strict Partial orders 130

A.D.1 Preferences Hierarchies 130

A.D.2 Duality of Preferences 131

vi

List of Figures
Figure 2. 1: Different levels of Context-aware computing (Barkhuus, 2005) 18

Figure 2. 2: Architecture for distributed personalisation proposed by (Kay et ai, 2003) 35

Figure 2.3: Context Infrastructure proposed by (Riva, 2004) 39

Figure 3. 1: Item agj:essibility, probability of selection, and preferences 51

Rgure 3. 2: Context Meta-Model for m-Services, an Adaptation of the Context Meta-Model from

(Holland et ai, 2004) 63

Figure 3. 3: Context modelling in an m-Services environment 64

Figure 3. 8: User Model Architecture for Personalisation in m-services 73

Figure 3. 9: User Preference Centred Architecture for Mobile Services (UPCAMS) 79

Figure 4. 1: Prototype Use Case Diagram 86

Figure 4. 2: User Preference Miner Activity Diagram 89

Figure 4. 3: The ERD for the data warehouse model : 91

Figure 4. 4: User Preference Profile 92

Figure 4.5: User Preference Repository 93

Figure 4.6: The User Preference Miner Test environment 95

Figure 4. 7: User Preference Miner Performance evaluation environment.. 96

Figure 4. 8: Experimental set up for evaluating the preference mining framework 99

Figure 4. 9: Preference Recall and Precision (CWA) 100

Figure 4. 10: Preference Recall and Precision (-.CWA) 101

Fl!Jure 4. 11: Preference Recall and Precision (-.CWA , Combined Data) 102

Rgure 4. 12: 5calability of our preference mining with increases in the number of tuples 104

Fl!Jure 4. 13: 5calability of data access from the data warehouse with increases in the number of

Tuples 104

Fl!Jure 4. 14: 5calability of the matching algorithm with increases in the number of tuples 105

Figure 4. 15: Scalability of the k-Means algorithm with increases in the number of tuples 105

Figure 4.16: 5calability of the DAG with increase in the numberoftuples 106

Figure 4. 17: 5calability of the k-means algorithm with increase the number of clusters 107

Figure 4. 18: Scalability of the k-means algorithm with increase in the number of items to be

clustered 107

Rgure 4.19: 5calability of the DAG algorithm with increases in the number of items to be

represented 108

Figure 4. 20: Effect of the number of clusters on the total execution time as the number of tuples

increases. •.•....••••••••••••••••••••••••••••••••••••••..•.....•.•.. .••..... .••.••••••••.•••••...••••.•••••••••••••••• 109

Vll

List of Tables
Table 2. 1: Middleware aimed at supporting the development of mobile context-aware

applications '" 38

Table 2. 2: Com~ative analysis of some clustering algorithms .46

Table 3. 1: Notation and Definitions 55

viii

Abstract

Challenges to the field of Human Computer Interaction (HCI) arising from the

emergence of mobile computing can be solved by tailoring the access and use of

the mobile services to user preferences. User preferences are traditionally

assumed to be static, but due to the dynamic nature of the mobile computing

environment, this assumption no longer holds. In an m-5ervices environment

user preferences are not only transient, but they also vary with the changes in

context. Furthermore, the assumed preference models do not give an intuitive

interpretation of a preference and lack user expressiveness.

To address these issues, this research work defines a user preference model for

a context-aware m-services environment, based on an intuitive quantitative

preference measure and a strict partial order preference representation. We

present some user preference mining algorithms and a framework for context­

based user preferences mining in an m-Services environment. The developed

user preference modelling and mining framework was prototyped and evaluated

it terms of its quality and effectiveness. The user session data for the evaluation

of the framework was generated using MATLAB 7.1's Generalised Pareto

Probability Density Function (gppdf) with shape, scale and threshold parameters

of 1.25, 1, and 0 respectively.

The framework was found to be relatively promising in terms of its effectiveness.

The user preference mining framework was also found to relatively scale well

with increases in the volumes of data.

ix

CHAPTER ONE

INTRODUCTION

1.1 Background

The advent of pervasive computing, the proliferation and wide spread adoption

of mobile telephony technology, and the information overload on the web (on the

contrary), have given birth to a new breed of research in methods, techniques

and ideas aimed at providing efficient Mobile Services (m-Services). Because of

the mobility of m-Services clients and characteristics of wireless communication,

the m-8ervices operating environment is much more dynamic and has a lot of

resource and spatial limitations. In order to retain system quality and usability

under these circumstances, research challenges within a number of areas must

be solved. Human Computer Interaction (HCI) issues present one of the major

challenges in this context. Progress is being made, albeit slowly towards

resolving outstanding issues associated with exploiting the mobility of the mobile

devices, their personal, "always on", "always with" nature and their ability to make

wireless connection for transfer of information. Using the always on, always with

nature of the mobile devices and their ability to make wireless connection for

transfer of information, the context of the user can be obtained from diverse

1

information sources. Through the exploitation of their mobile and personal

nature, the mobile computing environment can be able to personalise its

interaction with the user.

It follows from the foregoing that techniques that have emanated from both the

fields of context-aware computing and personalisation can be exploited in

addressing challenges to the field of HCI arising from the increasing popularity of

mobile computing in today's world.

Over the past decade, researchers have paid significant attention to Context­

aware computing. Concerns have been raised that research in context-aware

computing risks losing sight of the traditional object in mobile computing, the

user, and switch to the context around him (Jameson, 2001). This does not call

for a change of focus in context-aware computing but it calls for an expansion of

focus in context-aware computing to include user modelling and advanced

personalisation techniques. An analytical study of existing scholarship on

context-aware computing revealed that there is no clear distinction between

context and personalisation in mobile computing. Even though a clear separation

of these two concepts seems to be difficult to realise, it has significant benefits to

mobile computing application development. These include independent

modification of the context network, independent usage of techniques

established from context-aware computing and user modelling, development of

non personalised context-aware applications.

2

Advanced personalisation of web applications requires a careful dealing with the

user preferences. There are three main areas where user preferences can be

used in a mobile computing environment, and these are:

I. User preferences for device and user interface settings,

11. User preferences for personalised automatic service discovery, selection,

and composition, and

Ill. User preferences for personalisation within m-service applications.

Traditionally user preferences are captured in to the system explicitly from the

users. However, a closer look at the nature of user preferences in an m-services

environment reveals that user preferences do not hold in general (Holland et ai,

2004; Gorgogline et ai, 2006). They are heavily dependent on the dynamic user,

environmental and application context. Thus user preferences change as the

user context changes. In this case, it will be a very cumbersome exercise for

users to explicitly give their preferences for each and every context. Recent work

(Holland et ai, 2004; Tseng and Un, 2005) in the development of personalised

web applications is moving towards the use of data mining techniques for

extracting user preferences from user session data. Data mining based

preference models are collectively known as Automatically Analysing Preference

models (Jung et ai, 2005). None of the existing research work on Automatically

Analysing Preference models has attempted to extract context-based user

preferences from the user data.

3

The mined user preferences are only as accurate as the preference model on

ground. Automatically Analysing Preference models lack preference measures

that give an intuitive measure and interpretation of a preference (Jung et aI,

2005). Current user preference measures use scores or they just distinguish

liked and disliked items (Holland et ai, 2003). Furthermore, most of the existing

preferences models are found wanting when it comes to representing real user

preferences because they lack user expressiveness, "I like A more than B"

semantics.

1.2 Statement of the Problem

The background information given this far amount to the following issues which

this research work addressed:

i. Finding ways of representing/modelling user preferences that gives an

intuitive interpretation of a preference and user expressiveness to enhance

user models for advanced personalisation in the provision of m-Services;

ii. Mining of context-based user preferences from user session data; and

iii. Representing user models as an integral part of advanced personalisation in

the provision and access of m-services.

In order to address the issues raised above this research:

4

• established a distinction between context and personalisation in mobile

computing;

• developed an automatically analysing . user preference model for an m­

services environment that has an intuitive measure of user preferences and

an intuitive representation of preferences (user expressiveness);

• developed some algorithms for mining context-based user preferences; and

• developed an infrastructure for user preference mining and usage in a mobile

computing environment

1.3 Rationale

The drive towards mobile devices is leading to the integration and convergence

of various technologies into a wide range of innovative mobile applications. This,

coupled with the affordability and popularity of mobile devices amongst all

communities including even the previously technologically disadvantaged

communities, makes mobile applications undoubtedly the next wave in the

evolution of e-business. Given this background, the envisaged user preference

mining framework will foster the development of context-aware and personalised

applications, which will make some impact on the evolution of mobile e-business.

Improving the quality of interaction of user with mobile computing systems will

see users spending less time to access services thereby subsequently reducing

the cost of accessing services.

5

1.4 Goal and Objectives

1.4.1 Research Goal

The goal of this work was to develop a user preference model and mining

algorithms for a mobile computing environment, and to subsequently develop a

framework to support the mining and integration of user preferences into the

access and provision of mobile services.

1.4.2 Research Objectives

The specific objectives of this research work were to:

1. develop a user preference model that gives user expressiveness and an

intuitive interpretation of a preference;

2. develop user preference mining algorithms suitable for mining context-based

user preferences in a mobile computing environment based on the model

developed in (1);

3. develop a framework for user preference mining that integrates in an m­

Services environment; and

4. implement a prototype of the context-based user preference miner for

experimental evaluation of framework developed in (3) .

6

1.5 Methodology

The research approach for this study was both theoretical and formulative. To

this end, a number of research methodologies were considered in an attempt to

realise the objectives of this study.

The theoretical aspect of this research work involved literature review on the

work that has been done under context-awareness and personalisation in mobile

computing, and user preference modelling and mining. The formulative aspect

involved the use of knowledge gained from the literature survey for model

formulation, and proof of concept through mathematically based conceptual

analysis and implementation of a prototype.

Different user preference modelling/mining and user modelling approaches were

surveyed. Critical evaluative and comparative analysis of existing

processes/algorithms/methods in user preference modelling and user modelling,

related to the research challenges of this work were carried out. The above

analysis was used to formulate the processes/methods/algorithms that

contributed towards achievement of the objectives of this study. An abstraction of

the solution to the research challenges raised in this study was given in the form

of an architecture, which showed the components involved and how they are

glued together.

7

Time and space complexity of the developed algorithms were analysed to check

whether they are computationally feasible.

A prototype of the proposed framework for mining of context-based preferences

was implemented and evaluated as a proof of concept. The prototype was then

used to evaluate the accuracy of the preference model developed in this work

and for performance analysis of the mining algorithms.

1.7 Organisation of the Dissertation

This dissertation is organised as follows:

Chapter Two presents background concepts which form the foundation of this

work. It covers an analysis of existing scholarship on the issues raised in this

research work. It starts by introducing the concepts of context-awareness and

personalisation in mobile computing and then digresses into an analysis of the

work done on user preference modelling and mining. It also reviews the state of

the research into development of context-aware middleware and some classical

data mining techniques. Using the bottom-up approach Chapter Three describes

the solution to the research challenges raised in this work. It starts by presenting

solution to the lack of an intuitive measure of a preference and the lack of user

expressiveness in the existing user preference models, and then addresses how

the provided solutions can be used to mine context-based user preferences in a

mobile computing environment. Chapter Four presents the design,

8

implementation and evaluation of the user preference mining framework

modelled in Chapter Three. Chapter Five summarises the results and briefly

discusses how the objectives were met. This chapter concludes the dissertations

and overviews the researcher's future research direction.

9

CHAPTER TWO

LITERATURE REVIEW

2.0 Introduction

Challenges in computing in relation to the provision of personalised mobile

services can be tackled by considering techniques that have emanated from

approaches developed through user modelling and context-aware computing.

Most of the areas under context-aware computing, such as context capturing,

extraction and interpretation, have been covered in many research studies

(Siegel an Cahill, 2004; Riva, 2004; Schmidt et ai, 1999; Dey and Abowd, 2000).

Separate studies have also looked at personalisation (e.g (Kay and Kummerfeld,

2003». The combination of context-aware computing and personalisation has not

been fully explored and the potential benefits have not been fully exploited

(Mantyjarvi et ai, 2001).

The excitement in the research in Context-aware computing has led to fears that

the focus on the design of context-aware applications might switch from the

traditional sUbject, the user, to the context around him (Jameson, 2001).

Developments in context-aware computing indicate that too much attention on

context-awareness has overshadowed the importance of personalisation, so

10

much that there is no longer a clear distinction between context-awareness and

personalisation. Our work will attempt to normalise these two extremes by first,

establishing a distinction between context-awareness and personalisation in

mobile computing. Second, by developing a framework for personalisation in the

access and provision of m-services, that exploits techniques that have emanated

from both the field of context-aware computing and personalisation. The

distinction between these two very important concepts of mobile computing will

prepare the ground for the development of the framework for user preference

mining and usage in an m-services environment.

In this chapter we review the existing scholarship around the issues prevailing in

this dissertation. Section 2.1 establishes our working definitions for context and

personalisation in mobile computing through the analysis of the work done in

classical context-aware computing and personalisation. An analysis of

preference models and a review of some preference mining techniques are

presented in Section 2.2. In Section 2.3 we discuss the body of literature around

user modelling in an m-services environment. Section 2.4 reviews some research

efforts towards context-aware middleware to provide tool support for developing

context-aware applications. In Section 2.5 we discuss current research efforts

towards service registries that support context-awareness and personalisation at

middleware level. In Section 2.6 we discuss some classical data mining

techniques.

11

2.1 Context-awareness and Personalisation in m­

Services

As highlighted earlier context-aware computing has been a very active area of

research for the past decade. There is no doubt that context-awareness is very

important to mobile computing. While most of the work in this area has

concentrated mainly on the development of techniques for abstracting high level

context from low level context atoms, another thread of research in this area has

concentrated on how context can be used to effectively improve the quality of

interaction between the user and the computing environment. This has led to

quite a lot of research activity focusing on the development of middleware

infrastructures (which will be discussed in Section 2.6) to support adaptation to

context both at middleware and application level. However, all these efforts will

be void if context is not well defined and all the ambiguities that come with how

context is defined are not ironed out.

As highlighted in Chapter 1, the work that has been done to date does not give a

clear distinction between context-awareness and personalisation. In this section

we will survey the work that has been done so far in context-aware computing

and personalisation in relation to mobile computing, with a view to arriving at

some working definitions that distinguish these two concepts in mobile

computing. An investigation of the state of the art has revealed that little if any

12

has been done to achieve this goal. However, Coppola et al (2005) highlighted

the importance of a clear separation between context and personalisation and

the potential benefit thereof. In search of a distinction between context-

awareness and personalisation, the following three sub-sections are going to

review the eXisting scholarship on context-awareness and personalisation and

then draw out a distinction between these concepts in mobile computing

2.1.1 Context- awareness

While most people tacitly understand what context is, they find it difficult to

elucidate. This is because context is in itself contextual. Most of the early work on

context-aware computing define context by giving an enumeration of examples or

by choosing synonyms for context (Dey and Abowd, 2000). This, coupled with

the fact that it was not clear whether context in relation to computing should refer

to the user or application context, made it extremely difficult to apply context in

practice. The lack of standardisation of the techniques which were emanating

from the research in context-aware computing further complicates this challenge.

Advances in the work on context-aware computing had led to more general

definitions of context that include either, both the user and the application

context, or the context of the interaction between the user and the computing

environment. Out of this development came the most widely accepted definition

of context given by Dey and Abowd (2000). They defined context as:

any information that can be used to characterise the situation of an
entity. An entity can be a person, an object or a place that is considered

13

relevant in the interaction between an application and the user including
the user and the application themselves.

The above definition is more general and considers both the application and the

user context. In this case the user, his profile, interests, behaviour and

preferences become context to the application (or the interaction between the

user and the computing environment). According to this definition an application

is said to be context-aware if:

it uses context, as defined above, to provide relevant information and/or
services to the user,where relevance depend on the users task.

This definition of context includes personalisation information as context

information. This is evidenced by the fact that research efforts based on this

definition e.g. (Riva, 2004), take user preferences, interests, user profile as

context information. From the point of view of the above definition personalisation

is taken as a subset of context-awareness.

2.1.2 Personalisation

Taking heed of the call by Jameson (2001) to expand the focus of context-aware

computing to take a more user-oriented approach to building user adaptive

systems, and the call by Coppola et al (2005) to separate personalisation

concerns from context concerns in mobile computing; in this section we define

personalisation and investigate how it can be differentiated from context in

mobile computing.

14

The history of personalisation can be tracked as far back as the early user

adaptive interfaces, personal assistants/agents, and adaptive information

retrieval (Goker and Myrhaug, 2002). Most approaches originated from desktop

computing with user's needs, preferences and expertise. Challenges to the field

of HCI in mobile computing bring personalisation to a sharper focus, with much

more emphasis on the user's preferences and their dependence on the dynamic

user context. Not much is available in literature on personalisation of m-services.

One research effort towards this direction is the work by Jostard (2006). Jostard

defines personalisation in mobile services as:

the ability to allow the user U to adapt, or produce, a service A to fit user
U's particular needs, and that after such personalisation all subsequent
service rendering by service A towards user U is changed accordingly.

Jostard's definition leaves a lot to be desired for personalisation in the access

and provision of m-services. First, the phrase "all subsequent service rendering

by service A towards user U is changed accordingly" assumes that the user's

personalisation information is static across different context descriptions.

Second, it states that personalisation is done by the user. This will not be ideal

for provisioning of services in a mobile environment due to the dynamic nature of

the computing environment and user activities. Ideally, for m-services,

personalisation is supposed to be context-based and in principle it is regarded as

system driven (Yang et ai, 2006). The user should only initiate the process by

specifying whether he needs his interaction with the system or services

personalised or not

15

The major challenge to achieving advanced personalisation of mobile services of

the nature discussed above is how to make use of contextual information and

exploit the change of context in the personalisation process, which most of the

work on personalisation miss out Attempts to address this problem from context-

aware computing rather than from personalisation angle, have led to the current

mix-up between context and personalisation in mobile computing.

Personalisation in mobile computing should contextually adapt content or

services in order to enhance the quality of the user's interaction with the

applications.

Some of the recent work in personalisation has been directed towards

personalisation of web-based applications. Since most of the applications that

run on mobile devices are web based, approaches that have emanated from

personalisation of web based applications/services can be taken advantage of to

form a basis of personalisation in m-services.

Based on the arguments presented above, the definition of personalisation in

web services given by Bonett (2001) is closer to a practical definition

personalisation in a mobile computing environment. Bonett (2001) defines

personalisation of web services as:

the process ofgathering user information during interaction with the user,
which is then used to deliver appropriate content and services tailor made
to the user's needs and preferences.

16

One more important idea which this definition provides which most definitions of

personalisation leave out is the process of gathering user information. The

importance of this is based on the fact that most applications are not designed to

support personalisation and hence personalisation data is not readily available.

Extra effort is needed to be able to gather such data.

2.1.3 Distinction Between Context-awareness and

Personalisation

Having discussed different ways researchers look at personalisation and context­

awareness, we now present our working· definitions for context and

personalisation in mobile computing. As highlighted by Coppola et al (2005) and

from the foregoing discussion, it is not easy to establish a distinction between

context and personalisation in mobile computing. No studies have specifically

attempted to establish a distinction between these two concepts in mobile

computing. One interesting work that went close to this goal is that of Barkhuus

(Barkhuus, 2005). Barkhuus defined three levels of interaction in context-aware

computing which are personalisation, passive context-awareness and active

context awareness based on the work on context-aware computing he/she

reviewed (see Figure 2.1). According to the definition of passive context­

awareness (passive context-awareness involves merely presenting the updated

context to the user and letting the user specify how the application should

change, if at all) given in (Barkhuus, 2005), it can be deduced that passive

17

context-awareness is irrelevant to the scope of this dissertation. This coupled

with the classification done in Figure 2.1 leaves us with two broad mutually

exclusive categories of what most researchers refer to as context-awareness in

computing; personalisation and active context-awareness.

Passive Active
Personalization Context-Awareness Context-Awareness

• tntiIlf'acti'I.
(BrdIfm anca 2ID01)

Figure 2. 1: Different levels of Context-aware computing (Barkhuus, 2005)

Although research efforts (e.g. Toivonen, 2004, Coppola et ai, 2005» in the

development of context-aware middleware for mobile applications are already

going towards the separation of user profiles from context, they are silent as to

how this separation is to be achieved. Our approach to this problem is to

consider these concepts from the angle of developing non-personalised context-

aware services/applications. From this point of view and the definition of context

given by (Dey and Abowd, 2000), we define context as follows:

Context is any information that can be used to characterise the situation
ofan entity that is not specific to the user or a user group. An entity is a
person, place, or object that is considered important to the interaction
between a user and an application, including the user and the
application themselves.

18

This definition implies that when the interaction of the user and the computing

environment is subjected to a certain context the system must adapt itself in the

same way for different users. If it adapts differently it therefore means that the

environment has been subjected to some personalisation some how.

This research work defines personalisation information as:

any information that can be used to tailor/adapt the interaction of a user
with a system or service to the needs and preferences of the user or user
group.

From the definition of personalisation given by Bonett (2001) we now define

personalisation in m-services as:

the process of gathering personalisation information and the
subsequent use of the gathered information to tailor/adapt the interaction
of a user with a system or service to the needs and preferences of a
specific useror user group.

According to this definition, personalisation refers to all processes that involve

the gathering of data specific to a given user or user group and the subsequent

tailoring of the interaction (based on this data or on the inferences drawn from

this data) between the user and the computing environment to the user. The user

specific (or user group specific) data and the inferences drawn from the data are

what we refer to as personalisation information. On the other hand, context is

what ever information that is not specific to a user or group of users that can be

used to characterise the situation of an entity involved in the interaction between

the user and a computing system. Our previous work in (Jembere et ai, 2006)

showed how the distinction between context-awareness and personalisation can

19

be used to develop a platform for user preference mining and usage in an m­

services environment.

2.2 User Preferences for m-services

In classical context-aware computing (where personalisation is taken as part of

context-awareness), user preferences are taken as part of the user's static

context, whilst in reality, some user preferences are not only transient but vary

with changes in context. This is drawn to a sharper focus in a mobile computing

environment due to the dynamic nature of user, application and environmental

context. In this case, user preferences and context need to be modelled as

separate entities at different levels, to enable exploitation of context data in the

personalisation process. This is another point, where the above discussed

separation of context-awareness and personalisation in mobile computing is very

important.

Traditionally, user preferences are captured as user input into the system

through the query interface and user feedback mechanism. However, given the

dynamic nature of context in mobile computing and the dependence of user

preferences on context, it will be a very cumbersome task for the user to explicitly

give hislher preferences for each and every context description. This research

work envisages mining of context-based user preferences from the user session

data as one of the solutions that can be used to address this challenge. The user

session data will be extracted from the interaction between the user and the

20

computing environment, both at service selection level and within services. The

remainder of this section is organised as follows: In Section 2.3.1 and- Section

2.3.2, we discuss issues around user preference modelling and mining

respectively.

2.2.1 User preference models

Current personalisation techniques are inhibited by use of preference models

with limited expressiveness (Holland et ai, 2003). Most of the traditional user

preference modelling approaches either use scores to describe preferences or

just enumerate liked and disliked values. Thus, in these models, real preferences

in the form "I like A more than B" can not be expressed in a natural way. Such

user preference models are said to be lacking user expressiveness. Further to

the lack of user expressiveness, these models also lack preference measures

that give an intuitive interpretation of a preference. Automatically analysing user

preference models, depending on how they represent preferences, can be

classified into the following three classes: Vector similarity, Probability, and

Association rule based preference models (Jung et ai, 2005).

A. Vector Similarity based Preference Models

Vector similarity-based preference models use similarity between users and/or

items to predict the active user's (the user for whom preference predictions are to

be made) preferences. Vector similarity based preference models can be broadly

21

categorised into two groups and these are: Collaborative Filtering and Content­

Based Filtering. Collaborative filtering refers to a set of methods that uses user

prior preferences to predict new ones based on the preference similarities among

users. A typical collaborative filtering algorithm has the following two stages:

1. Finds the similarity between the active user and the users in the

database.

2. Use the similarities found in one to predict the preferences of the active

user.

In content-based filtering each active user is assumed to operate independently.

The user preference on an item is determined by the similarity between the

contents/attributes of the items the user has selected before and the target items.

As can be deduced from the definitions above, when preferences are

represented as vector similarities, it is hard to get the intuitive interpretation about

how much a user dislikes or likes an item and which items are preferred more

than others.

B. Probability-based Preference Models

Probability-based preference models determine the probability that a user selects

an item from the historical user data and use it predict which items the users are

likely to select. The problem with probability based approaches is that when

preferences are represented as probability that a user selects an item, a

preferred item with low frequency of selection or not so preferred items with high

frequency of selection, is not measured correctly.

22

c. Association Rule-Based Preference models

These preference models generate user preferences through scanning the

database for some association rules that can be used to generate user

preferences. These association rules can be between users and or between

items. The concept of an association is different from that of a preference in that

association deals with relations (relation in terms of occurring together) between

item sets or relations between users rather than the intuitive interpretation of a

given user's preference on an item. Apart from the lack of intuitiveness in the

preference measure in association rule based preference models, the rules

discovered can be spurious and irrelevant (Adomavicius and Tuzhlin, 2002) and

one of the major problem which arises is how can these rules be validated

without human intervention.

Against this background, researchers from both mathematics and computer

science (e.g. Jung et ai, 2005; Kiessling, 2002; Kiewera, 2005) have been

working towards developing intuitive preference models. Our research work

takes inspiration for user preference modelling from two frameworks: the Strict

Partial Order preferences framework (Kiessling, 2002) and the feature

preferences framework (Jung et aI, 2005), which will be discussed in the

following two subsections.

23

2.2.1.1 The Strict Partial Order (SPO) Preferences Model

Kiessling (2002) introduced a very expressive and mathematically well-founded

framework for preferences. This framework is based on strict partial order

relationships. A strict partial order is a binary relation R that is irreflexive

transitive, and asymmetric. In other words, for all a, b, and c in a given set P, we

have that:

• --<aRa) (irreflexivity): a can not be preferred to itself

• if a "* band aRb then -(bRa) (asymmetry): if a is not the same item as

b, and a is preferred to b, then b can not be preferred to a

• if aRb and bRc then aRc (transitivity): If a is preferred to band b is

preferred to c, then a is preferred to c

From this definition of a strict partial order relationship, it is clear that strict partial

order relation offer a natural way of representing preferences.

The work in (Kiessling, 2002) defines a preference P as a strict partial order P =

(A, -<p), where A = (At, A2, ..., AiJ denotes a set of attributes with corresponding

domains (Ai). The domain of A is defined as the Cartesian product of the dom(AJ,

-<p c dom(A) x dom(A) and x -< p Y is interpreted "y is better than x".

A set of intuitive preference constructors for base and complex preferences is

defined. The constructors for base preferences on categorical domains are

POS(A, POS-set), NEG(A, NEG-set), POSINEG(A, POS-set; NEG-set) ,

24

POSIPOS(A, POS1-set; POS2-set) and EXP(A, E-graph). The POS-set

c dom(A) of a POS preference defines a set of items that are preferred to all the

other items of dom(A). Analogously, the NEG-set of a NEG preference defines a

set of items that are less prefered than all the other items in dom(A), i.e. any

other items which are not in the NEG-set are preferred to any of the items in the

NEG-set. The POSINEG preference is a combination of the previous

preferences, where items in the POS-set are preferred to all the other items,

items in the NEG-set are the least preferred and any other items neither in the

POS-set nor the NEG-set are preferred to the items in the NEG-set and less

preferred to the items in the POS-set. In POS/POS preference an optimal set of

items (POS1-set) and an alternative set (POS2-set) can be specified. The items

in POS1-set are the most preferred, followed by the items in the POS2-set. All

the items not in the POS1-set and POS2-set are less preferred. In Explicit-graph

(E-graph) of an EXPLICIT preference a user can specify any better-than

relationships. An E-graph is a directed "better than" acyclic graph. All items in an

acyclic graph are better than all other items in dom(A).

The preference constructors for numerical domains include AROUND(A, z),

BETWEEN(A, pow, up]), LOWEST(A) and HIGHEST(A). In an AROUND

preference the desired value is z, but if it is not available, then values with

nearest distance apart from z are best alternatives. For a BElWEEN preference

the values within [Iow, up] are optimal. For LOWEST (HIGHEST) preferences

lower (higher) values are better.

25

Preferences can inductively be combined with complex preference constructors.

A Pareto preference P = P1 ® P2 treats the underlying preferences as equally

important and a Prioritized preference P =P1& P2 treats P1 as more important

than P2.

The strict Partial Order user preferences model was designed for an environment

where the user explicitly specifies his/her feature/attribute preferences and the

order in which there are to be effected. Hence the complex preferences

constructors to combine preferences on attributes to get the preference (Pareto

and Prioritised preferences) on an item were defined accordingly. This makes it a

qualitative user preference model. This then poses a problem in applying the

framework with automatically analysing preference models. Automatically

analysing preference models require a quantitative preference model.

Furthermore, it will be difficult to use the models without human intervention.

2.2.1.2 The Feature Preference Model.

Quantitative preference models lack preference measures that give an intuitive

measure of a preference (Jung et ai, 2003; Jung et ai, 2005). Most of them use

the frequency of selection of an item (directly or indirectly) as a measure of a

preference on an item. Frequency of selection fails in this respect based on the

following arguments:

26

• Although a user likes an item, the selection frequency can be low if the

item is rarely distributed in that domain.

• On the other hand, although a user may not like an item, its selection

frequency can be high if the item appears very frequently in that domain.

Thus, to get an intuitive measure of a preference on a set of items, the

accessibility of the items in question should be considered. Jung et al (2005)

presented a very intuitive measure of a preference based on the fact that the

probability that a user selects an item is determined by both the preference and

the accessibility of the item.

Intuitively, a user's preference for an item is determined by the user's

preferences for the features of the item. This is generally assumed in most

preference models, including the Strict Partial Order preference model discussed

above and in most content-based vector similarity preference models. An intuitive

preference model, which considers this fact and the accessibility of an item in

determining the user's preferences on an item, was presented in Jung et al

(2003, 2005). Their work defines a preference as the concept where a

relationship is made between a person and a target item which contains several

kinds of attributeslfeatures. From this point of view, preference for an item can be

expressed as a function of preferences for the attributes contained in the item. A

preference was then mathematically represented as a function of item)(and the

user profile G, were the user profile will be approximated by the User History U,

Le

27

Prej(X) = j(x,G) .. j(x,U) (2.1)

The user history is represented by a set of selected itemsu = (x"X2,X3,X.,··,xn).

Each item has a set of several attributeslfeatures denoted by w. Item x is then

defined as a set of features, x = (w"w2 , w3 ,··,w",). The User Profile G is defined

by the preference of each feature w, i.e. G = {prej(w,),prej (w2),pref (w3),-··}.

The feature preference Pref(w) is computed from the user history. Since the user

profile G and the item x can be represented by common attributes, W; 's, they can

be compared through these attributes. As a consequence, a preference of an

item x is then represented as follows:

1
Pref(x) = --:LPref(w,)

M (x) WE'

(2.2)

where M(x) is a normalisation term which is defined as the number of features in

item x. Mutual information is used as a measure of a feature preference,

Pref(w) =I(X(w)·U) =In(P(X(W);U»)
, P (X(w»

(2.3)

where X(w) = {x I w EX}; P (X (w); U) is the feature selection probability

given the user history and P(X(w» is the unconditional feature probability, which

gives a measure of the feature's accessibility.

Having discussed how preferences can be modelled, the following section

discusses some research efforts towards mining of user preferences from user

session data.

28

2.2.2 User Preferences Mining

Over the years, data mining have been typically used to extract information that

users can view and use for decision making. Recently, more and more work is

now looking at ways of addressing the need for mining information that computer

systems will use. The web, its resources and users offer a wealth of information

for data mining and knowledge discovery (Yang et al 2004). The availability of

resources for data mining on the web can be attributed to the success of

applications of data mining techniques in recommender systems. Over the past

decade, data mining based personalisation techniques, which include

collaborative filtering (e.g. Resnick et ai, 1994), content-based filtering (e.g.

Paulson et aI, 2003), association rule mining (e.g. Shyu et ai, 2005; Kim and Kim,

2003), pattem discovery (e.g. Tseng and Lin, 2005), etc, for recommender

systems have been developed. The major draw back of these techniques in

relation to this work is that none of these techniques explicitly mine for user

preferences.

Our work is concemed with mining of user preferences from archived user

session data and using them for personalisation of the access and provisioning

of m-services. In mobile computing, there are three main levels where user

preferences can be used, and these are:

I. User preferences for device and user interface settings,

11. User preferences for personalised automatic service discovery, selection,

and composition, and

29

Ill. User preferences for personalisation within m-service applications.

The first level does not have enough resources to support mining of user

preference mining and hence preference elicitation is restricted to user input. The

availability of data in the form of web logs in the last two levels makes them

lucrative areas for application of data mining techniques as a way of soliciting

user preferences. The next two subsections discuss some research efforts

towards mining of user preferences at both these two levels.

2.2.2.1 Mining User Preferences for Automatic Service Discovery

and Selection.

To the best of our knowledge no studies have explored the area of mining user

session data that contain both the context histories and service request data, in

order to get actionable knowledge on user preferences for context-based service

discovery, selection, and composition. An effort closer to this goal is the work by

Tseng and Un (2005) for location based services. The research conducted by

Tseng and Un (2005) did not involve user preference mining per se, but it

proposed a data mining method, SMAP-Mine, that can discover pattems of

sequential movement associated with requested services for mobile users in a

mobile web system. These pattems will then be used for wireless applications

like data allocation, data replication; location based personal agent and context­

aware and personalised services.

30

2.2.2.2 Mining User Preferences for Personalisation within

Applications

Most of the research efforts in user preference mining have been directed

towards mining of user preferences for personalisation within applications. Most

approaches to preference-based recommender systems such as collaborative

filtering; context-based filtering and their variants have over the years found wide

applications in e-Commerce applications (Scafer et ai, 2000), personalised news

recommender systems (Tintarev and Masthoff 2006; Wang et ai, 2004), Digital

TV program recommendation system (Jung et ai, 2003). As discussed earlier,

these approaches lack intuitive preference measures and representations, hence

in this section we only focus on the approaches that are closely related to this

study.

As a follow up to the framework developed in (Kiessling, 2002) the work in

(Holland et ai, 2003) presents an approach for automatically mining strict partial

order preferences from e-commerce user log data. The user preference mining

framework to be developed in this study builds upon the work done by Holland et

al (2003) with the aim of filling the following gaps:

• The approach uses frequency of selection as a measure of a preference.

As discussed earlier this does not give an intuitive measure of a

preference, and

31

• In a mobile computing environment, user preferences depend on the

dynamic user, application and environmental context. The approach does

not provide a mechanism of mining context-based user preferences.

2.3 User modelling

One fundamental prerequisite for applications to be able to adapt to the user's

needs and preferences is that the system requires a representation of the user's

preferences, interests, behaviour, and any other user specific information. Such a

representation is typically conveyed as a user model and hence why

personalisation in computing is sometimes defined as the adaptation to user

models (Bonett, 2001). User modelling is an important part of mobile computing.

It is essential for the personalisation of the user environments and the

serviceslinformation that a mobile user accesses. Considering the enormous

growth of web content and web based applications and the importance of

customisation of service access in a mobile computing environment, there is a

need for the development of user models that can be reused and shared among

different types of applications. This paradigm is known as cross personalisation.

The emergences of technologies such as XML that allow parsing and sharing of

information over the web makes cross personalisation a reality. This section

discusses some of the existing user modelling approaches with the aim of finding

how they can be adapted to support distributed personalisation/cross

personalisation in the access and use of m-services.

32

User modelling approaches exploit the fact that the user revisits the same system

with similar requirements (Niederee et ai, 2004). Traditional user modelling

approaches started with user modelling shell systems which came out of

academic research, e.g. UMT, BGP-MS, um, etc (Kobsa, 2001). The increase in

the value of personalisation due to the popularity of electronic commerce in the

late 1990s led to the development of commercial user modelling servers. The

major stride which was taken to move from academic user models to commercial

user modelling servers was the decoupling of the user modelling and the

applications themselves. In the commercial user models, the user models are not

functionally integrated into the application, but communicate with the application

through inter-process communication and can serve more than one client

application at the same time (Kobsa, 2001).

Apart from the many advantages of centralised user modelling system design,

the key advantages which are of particular importance are that the user

modelling servers relieve clients from user modelling task and can take

advantage of powerful hardware resources. The major drawbacks in the use of

commercial user modelling servers are the necessity to connect to the server and

potential single point of failure. Due to the network instability in mobile

computing, the user models in this environment should not be completely

insulated from the application. Furthermore, the need to support mobile ad hoc

33

networks calls against the complete insulation of user modelling from the

application.

Not much is available in literature in the area of user modelling for mobile

computing. This research adopts the models developed for ubiquitous computing

as a point of origin. Generally, user models in an ubiquitous computing

environment have the following characteristics (Byun and Cheverst, 2001):

• Data acquisition for user models is largely from interaction with the user;

• Representation of data in user models can work effectively as a hybrid

model of a data and a behavioural model;

• User models need sufficient time to interact with the user for the model to

learn the user's behaviour, and

• In general user models do not work efficiently if completely insulated from

applications.

Based on the characteristics of user models in ubiquitous computing mentioned

above, the architecture shown in Figure 2.2 was proposed by Kay and

Kummerfeld (2003). The architecture addresses the issues of distributed

personalisation with particular attention to reusability of the user models. It also

ensures that the user models are not completely insulated from the applications.

The architecture introduces a model, which have a definitive user model, U,

which can be shared by different applications. Apart from the definitive user

34

model there are several partial user models. Each application, A, has its own

associated user partial model u.

r<s)
'--- ---.::

\
,"---5' ".- -..., \, ,", _~~-s~:,
'--'j -_·_-~~~1j~::I~~ -_.

Rgure 2. 2: Architecture for distributed personalisation proposed by (Kay et ai, 2003).

The inference sources labelled I in the Figure 2.2 are internal reasoning

mechanisms for each user model and each of these is a potential source of

information. The figure also shows some sensors,S, which also contribute user

modelling information in the form of context data to the user model. Instead of the

user model getting context information directly from sensors, the user model can

get abstracted context information from the uniform service infrastructure like the

one proposed in (Riva, 2004). This will greatly reduce the task of personalised

context-aware application developers, since they need not to develop some

contexts abstraction components for the user models.

35

2.4 Middleware for Context-Aware Mobile Services

Although, over the past decade, a lot of effort has been directed at finding

methods for capturing, representing and using context information, context-aware

applications are still not common. Context gathering methods are tightly

integrated into single applications and cannot be reused or shared among

applications. Each new application must be built from the ground up, thus

requiring a large effort and nontrivial knowledge. This results in the development

of complex applications and it makes it difficult to transfer existing applications to

new environments with different sensing technologies. The most widely proposed

solution to this challenge (e.g. Dey and Abowd, 2000; Altvin, 2003; Fahy and

Clarke, 2004; Riva and flora, 2006) is decoupling application development and

context abstraction methods.

Several approaches have been proposed to decouple context abstraction and

application development. The first one is the tool kit approach developed by Dey

and Abowd (2000). The tool kit approach provides a number of reusable

components to support rapid prototyping of context aware applications. Besides

the tool kit approach, middleware infrastructures have been proposed. Over the

past few years a lot of research efforts have been directed towards developing

context-aware middleware infrastructures for mobile computing (e.g. Altvin, 2003;

Fahy and Clarke, 2004; Riva and Flora, 2006; Gu et ai, 2004; Gehlen and

Mavromatis, 2003). Middleware infrastructures encompass uniform abstractions

of reliable services for common operations and support for handling and dealing

36

with context thus simplifying the development of context-aware applications. An

analysis of the research that has been conducted on this subject matter

categorised context-aware middleware into two main groups along the line of the

purpose for which they have been develop. These categories are:

• Middleware infrastructures aimed at easing the development of context

aware applications, and

• Middleware infrastructures aimed at providing adaptive and reconfigurable

execution environment.

This research work is more inclined towards easing the development of context­

aware applications, but with more emphasis on context-based personalisation.

Lesser effort has been put into developing middleware infrastructures that

specifically addresses personalisation issues. This is due to the fact that the

research assumes personalisation as a subset of context-awareness. Table 2.1

shows some of the recent research efforts towards development of middleware

infrastructures to support development of mobile context-aware applications.

Since our work is based on component-based Service Oriented Architecture, it

takes inspiration for designing the middleware for context-aware applications

from the work done by (Riva, 2004). Each context provider is a service provider

that can be configured by the middleware at runtime according to the client's

(application's) requirements. The infrastructure

37

Table 2. 1: Middleware aimed at supporting the development of mobile context-aware
r rapplcalons

Middleware Design Goal Architectural Communication
styles paradigm

Controy Supporting Multiple Context Client-5erver, Push and pull
(Riva and Provisioning Strategies. Peer-to peer
Flora, 2006)
CASS server-based middleware to Client-server No communication
(Fahy and counteract the memory paradigm discussed
clarke, 2004) computational power limitations in

mobile devices
CAMUS Design consideration for a unified Service Oriented No communication
(Ngo et ai, sensing framework, formal Architecture paradigm discussed
2005) modelling and representation of

the real world, Pluggable
reasoning engines for high level
context data, and context delivery
runtime service composition
mechanism.

SOCAM Providing middleware support for Service Oriented Publish-subscribe
(Gu et ai, the bUilding and rapid prototyping Architecture, model
2004) of context-aware mobile services.
Conceptual Decoupling of applications and Component - Publish/subscribe
model for the actual process of context based - push and pull
structuring extraction process using a Service oriented
Context- uniform service infrastructure Architecture
aware
applications
(Riva, 2004)
TOTA Supporting uncoupled and Peer- to-peer Tuple space
(Mamei, adaptive interaction between communication
2003) application components. model

proposed by Riva (2004) is designed in such a way that it provides a uniform

abstraction of context, facilitates easy creation of context-aware applications,

reusing software and hardware designs. It also provides easy system

maintainability and rapid extensibility, and supports collaboration and context

sharing among diverse applications. From the point of view of the application

designer, such context provider components absolve to the role of common

software libraries. From the point of view of the service infrastructure they

constitute reusable bUilding blocks for context provisioning that can be added or

38

ignored according to the application's needs. The architecture is as shown in

Figure 2.3.

Figure 2. 3: Context Infrastructure proposed by (Riva, 2004)

We envisage an architecture that distributes personalisation among both the

middleware and application layers, providing a service oriented point of view, that

allows reuse and sharing of user modelling information, software and hardware

components. This will not be a completely new approach since most of the

current middleware infrastructures consider the user profile as context data, and

hence they assume that there are components that provide the user profile. In

response to the call by Jameson (2001) to expand the focus on context-aware

computing to take a more user oriented approach to building user adaptive

systems, this research will divide the uniform service infrastructure proposed by

Riva into two modules: namely the Context and the Personalisation module.

Our division of context and personalisation will be based on the discussion given

in Section 2.1.

39

2.5 Personalised Context-aware Service Discovery,

Selection and Composition

As discussed in Section 2.3.2, there are two main areas where user preference

mining can be applied in an m-services environment: within applications and at

middleware level for mining user preference for automatic service discovery,

selection and composition. Preference models based on the item's features can

easily be adapted for mining user preference within applications (e.g. e­

commerce applications). Unlike for user preference mining within applications,

preferences models based on the item features can not be directly adapted at

middleware level for mining preferences for automatic service discovery,

selection and composition. This is because of the way the current standardisation

in service directories and registries are designed. The user preference model

envisaged in this work requires an enriched semantic service description, which

can capture the attributeslfeatures of the services. The commonly used, service

discovery and selection technologies, UDDI, ebXML and WSDL still essentially

lack strong concepts for semantically rich service description (Balke and Wagner,

2003). Approaches from the Semantic Web like DAML-S or WSMF are first

efforts that try to provide semantically rich service descriptions through the use of

ontology. But even letting aside the problems of different ontology or missing

concepts of interoperability the human interaction with services poses severe

problems due to the lack of personalisation (Balke and Wagner, 2003). This is

mainly because these technologies were designed for business-to-business

40

interaction. This calls for a paradigm shift in service description technologies to

descriptions that support consumer-oriented automation of service discovery,

selection and ·composition. As can be established from the user preference

modelling frameworks discussed in Section 2.3, such technologies should

represent services in terms of their attributeslfeatures. Efforts towards this goal

include the now defunct HP's E-speak (E-Speak, 2001). E-speak describe

services as a set of attributes within several different vocabularies which are sets

of attributes common to a logical group of services. Lookup requests are

matched against service descriptions with respect to these attributes.

Another weakness with the current standardisation efforts regarding service

directories is that they are not designed to support mobility and context-aware

service discovery. However with the emergence of some research efforts, which

include (Doulkeridis et ai, 2006; Klan, 2006; Bormann et ai, 2005) towards this

goal, the future of context-aware service directories looks very bright.

Another interesting work towards this goal specifically aimed at providing a

service description technology for pervasive computing environments is

Pervasive Service Description Language (PSDL) and its counter part the

Pervasive Service Query Language (PSQL) (Thompson and Midkiff, 2005). PSDL

does not define the specific content for service descriptions but it generically

contains the following information: Device information (make, model, software,

resources); Service information (type, attributes); Physical information (location,

41

accessible items); Methods provided (e.g. WSDL). The PSQL is responsible for

describing a service from the client side point of view. It compares the service's

attributes to the ones requested by the user and uses that comparison to

discover, select and compose services.

However, most of these promising emerging technologies are still very immature

and lack standardisation, which is a necessity in this area. The design of service

registries and directories that provide a semantically rich way of describing

services that will cater for personalisation, contextualisation and mobility issues

in service discovery, selection and composition is still an open area which needs

further research.

2.6 Data Mining

Data mining is a multi-disciplinary field with threads from Statistics, machine

learning, pattern recognition and Artificial Intelligence. Data mining is defined as

the non-trivial extraction of implicit, previously unknown, and potentially useful

information from data (Klevecz, 1999). Over the years a lot of data mining

techniques have been developed, some of which are discussed in the following

sections. This section will give a brief overview of some few data mining

techniques which are: association rule mining, classification and clustering. Much

more emphasis will be put on clustering, which is the only classical data mining

technique used in this study.

42

2.6.1 Association Rule Mining

Association rule mining is one of the most commonly applied data mining

techniques for local pattem discovery in unsupervised leaming systems

(Kantardzic, 2003). Given a collection of sets of items, association rules describe

how likely various combinations of items are to occur together in the same set.

As discussed earlier association rule mining, though used in some indirect

preference models, can not be used to automatically mine for intuitive user

preference.

2.6.2 Classification

Classification is a process of assigning unlabeled samples to discrete labelled

classes. This is achieved by training a function that maps a sample into one of

the several predefined classes. Data mining approaches to classification can

either be statistical or logical. Statistical classification models are based on

leaming a classification rule that minimises the Expected Cost of

Misclassification (ECM). The ECM provides the cost undergone (in terms

uncertainty) in allocating samples in to the predefined classes. Fisher's

discriminant function and the quadratic classification rule are examples of

statistical classification rules (Kantardzic, 2003). Logical classification models are

based on expressions that are evaluated true or false by applying Boolean

comparative operators to new samples. Decision trees and decision rules are

43

typical examples of logical classification techniques. A discussion of the specific

classification rules is beyond the scope of this work. To the best of the

researcher's knowledge, there are no preference measures which are based on

this technique.

2.6.3 Clustering

Cluster analysis is a set of methodologies for automatic classification of samples

into a number of groups using a measure of association, so that the samples in

one group are most similar and samples belonging to different groups are least

similar (Kantardzic, 2003). Clustering is one of the most widely used data mining

technique for identifying interesting distributions and patterns in the underlying

data in large and growing databases.

The fundamental clustering problem is to partition a given set of data in to groups

(clusters), where the samples in each cluster are most similar. The main

requirements of clustering algorithms are:

• Scalability with data size;

• Dealing with different types of attributes;

• Discovering clusters with arbitrary shapes;

• Minimal requirements of domain knowledge to determine input

parameters;

• Ability to deal with noise and outliers;

44

• Insensitivity to order of input records, and

• High dimensionality Interoperability and usability.

There are quite a number of problems with clustering algorithms. Some of them

are:

• Current clustering techniques do not address all the requirements

adequately (and concurrently);

• Dealing with large number of dimensions and large number of data items

can be problematic because of time and space complexity;

• The effectiveness of the method depends on the definition of "distance"

(for distance-based clustering);

• If an obvious distance measure doesn't exist one must define it, which is

not always easy especially in multidimensional spaces, and

• The result of the clustering algorithm (that in many cases can be arbitrary

itself) can be interpreted in different ways.

Clustering algorithms can be classified based on how they perform their

clustering process, which gives the following categories:

• Hierarchical clustering;

• Partitional clustering, and

• Incremental clustering.

45

The type of clustering algorithm to use depends on the type of data to be

analysed and how the results are to be used. The Table 2.2 shows the

weaknesses and strength of each category of clustering algorithms.

Table 2. 2: Comparative analysis of some clustering algorithms

Class Strenath Weakness
Hierarchical 1.No need to assume any 1. Fail to handle convex and elongated

particular number of shapes of clusters.
clusters. Any desired 2. Construction of dendograms for large
number of clusters can be data sets is computationally very
obtained by 'cutting' the expensive
dendogram at the proper
level.

2. They may correspond to
meaningful taxonomies.
E.g. taxonomies in biology

Partitional 1.Time and space 1.lack of guidelines available for choosing
complexity relatively low k-number of clusters.

2.Perforrn better than 2. May result in the break up of genuine
hierarchical algorithms in clusters
application with large 3.Ambiguity about the best direction of
datasets initial partition, updating the partition,

adjusting the number of clusters and
stopping criterion.

4. Face difficulties in determining clusters
with larae variances

Incremental 1. Incremental algorithms 1. the generated clusters depends on the
non-iterative and therefore order of processing of the samples.
time requirements are 2. it starts to regenerate with small
less. increases in database sizes

2. less space requirements
3. Can work with very large

data sets with some of the
data stored in secondary
memory

4. Can cluster data streams

Clustering is the most widely used data mining technique in vector similarity

based preference models, which include collaborative filtering and content-based

models. The advantage of clustering techniques over classification techniques

towards this goal, is that classification requires that groupings be predetermined

46

using domain knowledge were as clustering lets the data determine the groups

based on the similarities of the items in question. Thus clustering can be used to

cluster all the items in a given domain and an inference that items in the same

cluster with the items the user have shown interest in are equally preferred, can

be made.

This chapter presented some of the work that has been done in trying to solve

the research challenges raised in this work and issues that lay the foundation for

the solution to these challenges. We started by presenting issues around

personalisation and context-awareness in relation to mobile computing. We then

presented some user preference modelling and mining techniques that are

relevant to this study. We discussed research issues around creating a platform

to support user preference mining in mobile computing. Lastly, we have

presented some data mining techniques that can be applied in mining user

preferences.

47

CHAPTER THREE

MODEL DEVELOPMENT

3.0 Introduction

This Chapter presents the proposed preference model and a framework for user

preference mining and usage in an m-services environment. Our first research

challenge is to find ways of representing/modelling user preferences that gives

an intuitive interpretation of a preference and user expressiveness to enhance

user models for advanced personalisation in the provision of m-Services.

Therefore, Section 3.1 addresses these two weaknesses of traditional

automatically analysing user preference models. In Section 3.2 we present our

proposed user preference mining framework. Our second research challenge is

the mining of context-based user preferences from user session data. Therefore,

Section 3.3 presents our context model and discusses how our preference

mining framework can be adapted for mining context based user preferences in

mobile computing environment. Furthermore, in Section 3.4 we present our

context-based preference mining algorithms. Our last research challenge is to

find a representation of user models in support of advanced personalisation in

the provision and access of m-services. To address this challenge, in Section

3.5 we present our approach to user modelling in an m-Services environment. In

48

Section 3.6 we give an architectural framework to support the mining and usage

of context-based user preferences in an m-Services environment.

3.1 User Preference Modelling

In this section we address two very important aspects of preference models,

which have been identified to be the main weaknesses of traditional

automatically analysing user preference models. Traditional automatically

analysing user preference models:

1. lack user expressiveness, and

2. employ preference measures that do not give an intuitive measure of a

preference.

In Section 3.1.1 we address the lack of user expressiveness and in Section 3.1.2

we deal with the second weakness, namely the lack of intuitiveness in the

preference measures. Section 3.1.3 presents our user preference model, based

on the solution to the afore-mentioned challenges.

3.1.1 Preferences Representation: Addressing the lack of

user expressiveness

Preferences are comparative in nature and are considered on a set of given

options. It should be possible to identify preferences even amongst disliked

items. Current user preference models do not capture this and they are thus said

49

to lack user expressiveness. In a real life situation, a user is able to make

preference relationships even amongst a set of disliked items. That is, if a set of

items available contains three disliked items a, b and c, a user is still able to make

a preference relationship on these items (e.g. I prefer b to a and c) even though

he/she does not like any of them.

So the challenge is to be able to represent these real life cases in a model. This

is of great importance in an m-service environment, where a user may be in need

of a service to accomplish a particular task. All the services that may be available

might not be in the set of services that the user likes but, because the user

needs a service to accomplish a task, a service that is most preferred amongst

all the available services has to be recommended. To address the problem of

user expressiveness, the strict partial order preference model is adopted. In this

research work, we therefore define a user preference as follows:

A preference is strict partial order relation on a set ofgiven items.

3.1.2 Addressing the Lack of Intuitiveness in the

Preference Measures

A user prefers one item to the other because he/she likes it more than the other.

In instances where the user explicitly gives his/her preferences, such preferences

can be directly modelled by a qualitative modelling framework such as the Strict

Partial order framework. This cannot be directly done when preferences are

50

being implicitly learnt from user session data without a quantitative measure of

how much a user prefers an item. So the challenge here is to define a measure

of the degree to which a user likes an item. As discussed in Section 2.2.1,

association rules and vector similarities cannot be directly used to define a

preference measure. The most popularly used preference measures: scores and

frequencies (or probability) of selection do not give an intuitive measure of a

preference. Against this background, the discussion that follows illustrates how

frequency (or probability) of selection fails to give an intuitive preference

measure.

Consider a universal set, !; of all item occurrences for a given user in a given

domain; the set, U of items selections (viewings) by the same user in the

same domain; and occurrence sets XI. X2. X3 and X4 , of items Xl , X2 , X3 and X4

in the universal set respectively. Refer to Figure 3.1.

u
XIo

Figure 3. 1: Item accessibility, probability of selection, and preferences

51

Figure 3.1 depicts that the viewings (selections) of Xl in the user session,

(Xl nU) is less than that of X2, in the user session, (X2 nU). Thus, iffrequency

(or probability) of selection is used as a preference measure on items Xl and X2,

item X2 will be taken as more preferred to item Xl' However, relative to the

occurrence of the items Xl and X2 in the universal set, it can be deduced that Xl

was selected by the user almost half of the times it occurred and X2 was selected

far less than a third of the time it occurred. This implies that item Xl is preferred to

item X2' It should be noted that Xl was selected less often than X2 because it is

rarely distributed (not easily accessible) in the universal set. It is obvious that X3

is the most preferred item since it was selected each time there was a hit on it

and X4 is the least preferred since in spite of its high occurrence the user never

selects it.

From the foregoing discussion and the illustration in Figure 3.1, it is clear that an

intuitive measure of a preference on a given set of items, in a given domain

should consider the probability of the item being selected relative to the

accessibility ofthe items in question. Le.

,-r() (P(X;U»)preJ X =
P(x)

3.1

where P(x;U) is the probability of item x being selected and P(x) is the

accessibility probability of item X •

52

3.1.3 Our User Preference Model

As proposed in (Jung et ai, 2005), the measure of a preference on an item is

calculated from the preferences of the item's features. The challenge that now

arises is how the accessibility probability of a feature can be measured. To

address this challenge we adapt the Closed World Assumption (CWA) introduced

in (Kiessiling, 2002). The Closed World Assumption (CWA) states that the user

knows of all possible values of all the choices that he/she can make. Unlike the

way the CWA was used in (Kiessling, 2002) to detect negative preferences, in

this work it is used to define the accessibility probability of a feature.

In domains where the CWA holds, the accessibility probability of a feature, W, to

a given user is given by the following equation:

P
A

(x(w» = n(A(w»
n(A)

3.2

where n(A(w» is the total number of items with feature w in domain A, and n(A)

is the total number of items in domain A. Equation 3.2 says the accessibility of a

feature in the product catalogue or service registry can be generalised to all the

users since they are all aware of its existence.

In domains where the CWA can not be assumed, the accessibility of an item to a

given user is now dependent on whether the user is aware of its existence or not.

In this case the accessibility of an item, and hence its features, differ for different

53

users. Equation 3.3 estimates the accessibility probability of a feature, W, to a

given user in domains where the Closed World Assumption does not hold.

3.3

where jreqA.R(x(W);V) is the frequency of hitsllogslrecommendations of items

with feature W in domain A for a given user, U and freq A.R (V) is the total number

of item hits for a given user, U, in domain A.

Another important concept this work defines is the concept of a Strong Negative

Preference. An item is said to be a Strong Negative preference if the user is

aware of its existence but he/she never selects it. In Table 3.1 we give

definitions and notation of the parameters to be used in subsequent sections to

get the preference measures to be used in this study.

3.2 User Preference Mining

The actual user preferences will be predicted from implicit preferences hidden in

the user session data. Data mining techniques will be used to extract the

preferences from the user session data. The mining of the user preferences will

involve three major stages. These are:

1. Mining of attribute value preferences from the user session data;

2. Matching items' features and the user's feature preferences to compute

the user's preferences on an item, and

54

3. Representation of preferences as Strict Partial Order relations.

Table 3. 1: Notation and Definitions

Notation Definition
n(A(w» Number of items with feature w in the in domain A.

n(A) Number of all items in domain A.

freq AR(x,U)
The frequency item x was recommended to a given user for
selection in domain A including cases were the user did not
select it (Le. number of hits on item x in domain A).

freq A,S (x,U) The frequency item x was selected by the user in domain A.

freq A,R(U) Total number of item recommendations to a given user in
domain A.

freq AR(X(W);U) Frequency of recommendation of items with feature W to a
given user in domain A.

freq AS (x(w); U) Frequency of selection of items with feature W by a given
user in domain A.

freq A,S(U) Total number of item selections by a given user in domain A.

n(A(w»jn(A) , measures accessibility probability of
feature w in domain A, where the CWA can be assumed

PA(x(w»
OR

jreqA,R(x(W);U)/ jreqA,R(U) , measures the accessibility

probability of a feature W in domain A, where the CWA can
not be assumed

PA(x(w), U) jreq A,S (x(w);U)/ jreq A,S (U), measures the probability

that a given user selects an item with feature w in domain A.

prefA (w) In (P A (x(w); U)) , measures the preference offeature w.
PA(x(w»)

pref,(x)
1 I prej A (W i) , measures the user's preference
M(x) W,E'

on itemx.

3.2.1 Mining Attribute Value Preferences

Mining of attribute value preferences is divided in to two components, which are

mining of attribute value preferences in continuous domains and mining of

attribute value preferences in discrete domains. Each of these components is

briefly discussed below.

55

A. Mining Attribute Value Preferences in Categorical Domains

The parameters defined in Table 3.1 are used to mine for preferences on

categorical domains. The preference on a given feature is given by the mutual

information

pre£(w}: In(PA(X(W);U))
PA (x(w»

(3.3)

where the PA(x(w),u)and PA(x(w» defines the selection probability of an item

with feature w and the accessibility probability of an item with feature w in domain

A respectively.

B. Mining Attribute Value Preferences in Continuous Domains

Continuous attributes need a different approach to data driven preferences. This

is because the domain for continuous domains contains an infinite number of

values. In this case one value occurs once or just a few times. In such situations

the approach for mining preferences in discrete domains does not work, since it

is based on preferences on values. (Holland, 2003) highlighted two issues about

numeric data that can be exploited in order to mine preferences in continuous

domains:

• Continuous data is ordered. This additional knowledge should be used for

preference mining, and

56

• Statistics has lots of tools for analysing continuous data (density

estimation, histograms, etc). Possibly some are appropriate for preference

mining task.

The distribution of the continuous numeric values defines a probability density

functionj(x). The major challenge here is that the density function is not known a

priori and therefore it has to be estimated. This work adopts the use of

histograms to estimate the underlying density function. The distribution of the

values in the continuous domain is used to estimate the accessibility of the

values in a given range of values. The selection probability of the values in a

given range will be estimated using the values that are in the log relation data.

3.2.2 Computing Item Preference Values

Preferences on the items are obtained by matching the items' features and the

user's attribute value preferences (both for attributes in discrete and continuous

domains) using the equation:

pre.t(x) =_1_ Lpre!A(Wi }

M(x) W,E>

(3.4)

where M(x) is the number of common attributes for items in domain A. This approach

was chosen over the approach of aggregating preferences using prioritised and

Pareto preference constructors as proposed in the preference modelling

framework in (Kiessling, 2002) after the follOWing consideration:

The strict partial order preference framework as presented in (Kiessling,
2002) was designed for situations were the user explicitly specifies his

57

preferences and the order in which they are to be considered and hence
the complex preference constructors were designed accordingly. In this
case it will not be appropriate to apply such constructors for automatically
analysing preference models without human intervention.

However, apart from the gaps left out by the strict partial order preferences

framework (Kiessling, 2002) and the subsequent preference mining framework in

(Holland et ai, 2003), we adopt the concept of Data Driven Preferences, denoted

by PD = (A,-<PD). from (Holland et ai, 2003). This concept forms the basis for

extraction of user preferences from user session data in our work. Holland et al

(2003) defines the following data driven preferences:

• For preference in a categorical(discrete) domain, dom(A), a data-driven

• For preferences in a continuous domain, dom(A), data driven preference

PD = (A,-<PD) is defined as x<PD yiff 3 e> 0: freqA([x-e,x+c])<

Unlike what was proposed in (Kiessling, 2002), our research work's approach

does not need representation of preferences at feature level as Strict Partial

Orders. Only preferences on items are represented as strict partial orders and

hence no need to consider representation of strict partial order preferences in

continuous domains. Replacing the frequency of selection with the value of

prefA(x) as a measure of a preference, we define a data driven preference on an

item as follows:

58

• For Vx,y E dom(A), a data-driven preference PD = (A'-<'PD) is defined as:

x-<'PDY iff prefA(x) < prefA(y)

Using the above mentioned definition of a data driven preference on an item. the

following Classes of preferences are defined:

• An item x is a Strong Negative (STRONG_NEG) preference in domain A

iff freq A,R (x, U) > freqA,R(threshold) andfreq A,S (x;U) = 0

• An item x is a Soft-Negative (SOFT_NEG) preference in a given domain if

prefAx) < 0,

• Item x is a Positive (POS) preference in domain A only if prefAx)? 0

where freqA(threshold) is threshold frequency item x must have been made

available to the user for selection in dom(A) for it to be considered to have been

recommended sufficiently enough for the user to be aware of it

The positive and soft-negative preferences classes defined above form a bipolar

preference scale with a preference value of zero being the pivot point /tems with

preference values less than zero represents the disliked items and those greater

or equal to zero representing the liked items, This allows for representation of

negatively preferred items as strict partial order relations, which the Strict Partial

order framework presented in (Kiessling, 2002) in cannot do. The work done in

(Sicilia and Garcia, 2004) found that the consideration of negative preference

measures (i.e. bipolar preference modelling approaches) as inhibitors of the

recommendation process may be more appropriate to reduce false positives.

59

3.2.3 Strict Partial Order Representation of Preferences

Using the definition of preference classes given above the following strict partial

order data driven preferences are defined:

• There is a data-driven POS preference, iff 'IIx E POS- set, Vy ~ POS - set

:Y-<PD x .

• There is a data-driven preference, iff

VWESTRONG _NEG-set, Vy~STRONG _NEG -set: W-<PD y.

• There is a data-driven SOFT NEG preference, iff

VXESOFT_NEG-se~VWESTRONG_NEG-set,Vz<l(SOFT_NEG--setuSTRONQNEG--sef):

W -< PD x, X -< PD Z.

• There is a data-driven POS/POS preference, iff vX E POS I - set,

Vy E POS 2 - set, Vz ~ (POSl-setu POS2-set): z -<PD y ,y-<PD X.

• There is a data-driven SOFT_NEG/SOFT_NEG preference, iff V x E

SOFT _NEGI-set,VYESOFT_NEGl-set,'iwESTRONG_NEG-set, Vz ~ (SOFT _NEGlu

SOFT _NEG2-set uSTRONG_NEG-set): W -<PD Y, Y-<PDx, X -<PD Z.

• There is a data-driven POS/SOFT_NEG preference, iff

VXEPOS-sef, VyESOFT.-NEG--se4 'o'wESTRONQNEG-set, VZ<l(POS-setuSOFT_NEG-set

uSTRONG _ NEG -set: W -<PD y, Y -<PD Z, Z -<PD X.

• There is a data-driven EXPLlCIT_SOFT_NEG preference, iff

Vy, E CATEGORYSN1-set, Vyz E CATEGORYSN2 - set .. , VYm E CATEGORY SNm -set,

VWESTRONG NEG -set: Y2 -<PD Y" Y3 -<PD Y2 '" Ym -<PD Ym-J and W -<PD Y m·

60

• There is a data-driven preference. iff

"Ix, E CATEGORY pl- set. "Ix, E CATEGORY p2 -set··· "Ix. E CATEGORY pn - set.

Vw E STRONG_NEG-set :yz --<PD Y,. Y3 --<PD Yz ••• Ym--<PD Ym-l and W --<PD Ym·

• There is a data-driven POS/EXPLlCIT_SOFT_NEG preference. iff VXEPOS-se~

'l7'y, ECATEGORYI-set, 'l7'Y2 E CATEGORY2-set .. · Vy. ECATEGORYN-set,

• There is a data-driven EXPLlCITPOS/SOFT_NEG preference. iff

Vy, ECATEGORY I-set ,VY2 ECATEGORY 2-set··· Vy. ECATEGORYN -set.

VXEPOS-se~ VWESTRONG_NEG-set: YZ--<PDY'" Y3--<PDYZ'" Yn--<PDYn-l.

X --< PD Ynand W --< PD X .

• There is a data-driven EXPLlCIT_POS/EXPLlCIT_SOFT_NEG preference, iff

VXI E CATEGORY pI - set. Vx 2 E CATEGORY p2 - set .,. Vx. E CATEGORY pn - set.

VYI E CATEGORYSN I-set. Vy, E CATEGORYsN 2 -set .. · VYm E CATEGORY SNm-set.

YZ--<PDY" Y3--<PDYZ'" Ym--<PDYm-l and w--<PDYm-

• Let -<E a strict partial order on E. A data-driven EXPLICIT preference holds. iff

-'I7'x,YEE withx-<E y,x-<PDY'

- Vu E E, Vv ,; E : v --< PD U .

61

The formalisation of the above defined preferences based on the Preference

Algebra defined in (Kiessling. 2002) is shown in Appendix D.

3.3 Mining Context-based User preferences

The foregoing discussion of the user preference mining framework was an

attempt to solve the first research challenge raised in this study which is: Finding

ways of representing/modelling user preferences that gives an intuitive

interpretation of a preference and user expressiveness to enhance user models

for advanced personalisation in the provision of m-Services. This section

discusses how our proposed user preference mining framework can extract

context-based user preferences from user session data. There are quite a

number of challenges that have to be addressed for this goal to be a reality. The

key challenge is the need for a sound context model for an m-services

environment. In this work we defined our envisaged context model. The

evaluation of this context model is beyond the scope of this work and will be left

as part of our future work. The model will only be justified on the basis of its

complexity analysis. The following section discusses our proposed context model

for a mobile computing environment.

62

3.3.1 Context Model for Mobile Services

Holland and Kiessling (2004) proposed an e-commerce context meta-model with

three high level context components:, location, time and influences. Due to the

fact that in a mobile computing scenario the user might be involved in some other

activities other than computing (e.g. driving, running, etc), the user's activity has

to be considered to avoid recommendations that are irrelevant to the user's

activity. Based on this consideration we came up with the context meta-model

shown in Figure 3.2, in which a forth component, activity was added to location,

influences and time.

Locarion

Tun"Id

Loc:a:iocld

1 I..has has.

1 1 1 1.~ ..~ ... ~ .. ~
Conten

CID

1 __ -".

Figure 3. 2: Context Meta-Model for m-5ervices, an Adaptation of the Context Meta-

Model from (Holland et ai, 2004)

63

Considering the nitty-gritties of context each context occurs once or just a few

times, which tends to discourage the whole idea of detecting context-based user

preferences. Based on the context model for a context-based service registry in

(Doukeridis et ai, 2006), we develop a context model to support the mining and

usage of context-based user preferences. Since we do not want each context

description to be unique, context descriptions have to be clustered based on their

similarities. Some incremental clustering algorithm will be defined to cluster

context first relative to time, then location, activity and lastly influences. A Context

Identity (CID) is assigned to every leaf of the tree structure shown in Figure 3.3.

The tree structure applies a breath first search for the CID, which any given

context description is most similar to.

Time

Location

Activity

Influences

ContextID

Figure 3. 3: Context modelling in an m-Services environment.

64

To get the CID most similar to the current context, the algorithm has to span at

most N nodes for time, M nodes for location, K nodes for activity and L nodes for

influences. This gives a linear (N+M+K+L) time complexity. The space complexity

is also minimal since the algorithm only has to store only the node with the

minimum distance from the current context description at each level.

3.3.2 Our Context Model and User Preference Mining

The personalised CID generated from the context modelling framework

discussed in Section 3.3.1 will be used as an index for storing the user session

data (from which the context-based user preferences are to be mined). Each time

the user preference miner is invoked three parameters are passed to it; the

current context (CID) generated form the framework discussed in Section 3.3.1,

userlD (unique user identifier) and the domain the user is interested in. Thus

each time the preference miner is invoked, it retums preferences for items in a

given domain relevant to the current context.

3.4 User Preference Mining Algorithms

This section presents algorithms that are to be used to extract context-based

user preferences based on the preference model and the preferences mining

framework presented in Section 3.1 and Section 3.2. The proposed user

preference mining algorithm consists of four parts namely:

65

1. Mining of item attribute value preferences;

2. Matching items' features and the user's feature preferences to compute

the user's preferences on an item;

3. Mining for SPO categorical preferences, and

4. Mining for explicit preferences within preference categories.

A. Algorithm for Mining Attribute Value Preferences

This algorithm takes the userlD, CID and the Domain of the items whose

preference are to be mined as input. The user input is first used to compute the

selection and accessibility probabilities for all item features in that Domain. both

in discrete and continuous domains. These probabilities are then used to

compute the user's preferences on each of the attribute values (features).

Equation 3.3 is used to compute the attribute value preferences from the

accessibility and selection probabilities. This algorithm returns a vector of the

user's feature preferences in a given domain (Domain) under a given context

(CID). The algorithm is shown in Figure 3.4. This algorithm runs at the database

layer.

B. Algorithm for Matching items' features and the user's feature

preferences

The algorithm for matching the user's feature (attribute value) preferences and

the items' features take the vector of feature preferences from the attribute value

preference mining algorithm and the item profiles as input (see Figure 3.5).

66

Input: UserID, CID, Domain.

1. get ail the attributes in discrete domains under the current Domain

2. for a given UserID:

a compute the accessibility probability ofeach feature value, w••under the current context (CID).

b. compute the selection probability of each feature value, W 1 ,using the user history under the

current context (CID).

3. get all the attributes in continuous domains under the current Domain

4. for each attribute estimate the density function using its attribute values in the current Domain.

5. For a given UserID:

a estimate the accessibility probability ofeach range ofvalues, W1 , under the current context

(CID) using the density function estimated by (4)

b. estimate the selection probability of each range ofvalues, w. , under the current context (CID)

based on the density function estimated by (4)

6. For a given UserID, and Domain under the current context (CID) compute the attribute value

preferences, prefA(wJ. for attributes both in discrete and continuous domains

Output: User Preference Profile = {prefA(wJ •prefA(wJJ, prefA(w3J, ... , prefA(w"JJ

Figure 3. 4: Algorithm for mining preferences on item features/attribute values

Input: User Preference Profile (Vector), item profiles (Vector)

for each item (Xi) in the item profiles (Vector) get its attnbutes and attnbute values

{

I. for each entry in the User Preference Profile

{

ifthe attnbute value in the product profile is equal to attnbute value in the User Profile

{

pre/tx.) ~ pre/tx.) + attnbute value preference(pr<if.;(wJ)

}

}

2. Normalise pre/tx,)

}

Output: ItemPretValues = {pref(xt), pref(Xl), pref(x3), .. , , pref(x;)}

Figure 3. 5: Algorithm matching Items' features to the users attribute value preferences

67

The algorithms matches product's features to the attribute value preferences and

compute the preferences on an item by summing the attribute value preferences

of the features of an item and normalise them by dividing the 'sums' by the

number of features the item has. This then gives the user's preference value on a

given item. Equation 3.4 is used to compute the user's preference values for

each and every item in a given domain. The algorithm outputs a vector of item

preferences under the current context in a given domain.

C. Algorithm for mining SPO Categorical Preferences

The algorithm for mining Strict Partial Order categorical preferences on items

(shown Figure 3.6) takes the output from the matching algorithm, plus the Userld,

the context (CID) and the domain. The algorithm first identifies the

STRONG_NEGset and removes it from the set of items to be clustered. After

removing the STRNG_NEGset the algorithm then invokes the clustering

algorithm, first, to cluster the POS preferences and then second, to cluster the

SOFT_NEG preferences. The POS and SOFT_NEG preferences are clustered

separately to avoid cases where the clustering algorithm puts SOFT_NEGs and

POSs in the same cluster. The algorithm outputs strict partial order data driven

categorical preferences (Note that categorical preferences were defined in

Section 3.2.3). Since our preference mining algorithms will be running online,

hierarchical clustering algorithms will tend to take more time in the process of

synthesising SPO categorical preferences due to their high time and space

complexities (see Table 2.2). Incremental clustering algorithms return

68

inconsistent clusters for each run depending on the order in which the processing

of samples was done. Partitional clustering algorithms work best for our

purposes. This is because of their relatively low time and space complexities and

relatively high consistency in the retumed clusters. Against this background the

k-means partitional clustering algorithms is used in this study. The silhouette

technique (Holland, 2003) is adapted to determine the best possible clustering.

D. Algorithm for Mining Explicit Preferences within Preference

Categories

Within preference categories the user preferences will be represented as

EXPLlCT preference (See definition in Section 3.2.3) where applicable. The

algorithm for mining explicit preferences adapted from (Holland, 2003) is shown

in Figure 3.7. This algorithm takes as input the highest preference category from

the SPO Categorical preference mining algorithm and some log relations

LR(LogID, UserlD, ContextlD, SessionlD, ltemld, Attribute value, selected) for

the items in the same preference category corresponding to a given user. For

each instance the algorithm is invoked, it initialises an empty Directed Acyclic

Graph (DAG). Then it does preference comparisons of each item in that

category to each of the items in the same category with it. The comparison is

done through checking that for all the sessions two items appeared together,

which one was selected more than the other. If an item, x, is found to have being

selected more times than item, y, then a relation x is better than y (i.e. x is

preferred to y) is added to the DAG.

69

Input UserID, CID, domain, ItemPrefVallles ={pref(XI), pref(xz), pref(x3), ... , pref(xn}.

I. For each x, in a given domain, A, under the current context compute freq .(x;U) and jreqA(x)

2. Remove all x,: freq • (Xi; U) = 0 and freq • (x,) ;, freq • (threshold) from the item set. This is a set

ofStrong Negative (STRONG_NEG) preferences.

3. Extract the prefA(x) values for the remaining items

4.COmpllte a clustering of the x,'s with Prif..(x);'O and that of the x,'s with PrefA(x) < oseparately,

using a clustering technique

Depending on the clustering resu1ts we have the following possibilities:

a One cluster, Ch we have a:

i. SOFT_NEG(A, C,; (x E dam (A) I Pr efA (x) < 0) }),

ii Pos(A,C,;{ xEdam(A)IPrefA(x);;:,O)})

b. Two clusters, C, andC" where V c, E C"Vcz E C z, Pr ef.(cz) < Pr ef.(c,). We have a:

i. POS/SOFT_NEG(A,C,:{x E dom(A) IPrif.<x);;:, O}; Cz:{xedo17(A)IPre!.(x)<O})

ii. POSIPOS (A,C,:{ x e dom(A) IPref.<x);;:, 0 }; Cz:{xedo17(A)1 Pre!.(x);'O})

iii. SOFT_NEG/SOFT_NEG(A,CI:{x E dom(A) IPref.(x) < O}; Cz:{xedo17(A) IPre!.(x)<O})

Pr efA(cn) < ···<Pre!.(cz) < Pre!.(<;) . Wehave:

i. an EXPIJCIT POS preference with

Prej;,(x) < 0, Vc" i = 1"'n

iii. an EXPLICIT_POS/SOFT_NEG preference E(A, -< EP) with Cn -<E Cn-I ~ ··········-<E G:

c n Edam(A) IprefA(cn) <0, c, Edom(A) IprefA(c,) ~O,Vi=I,2,3···n -I .

iv. a POS/EXPLICIT_SOFT_NEG preference E(A,-<£?) with Cn -<E Cn-! -<E •• ..······-<.E '1:

Cl E dam(A) IprefA (Cl) ~ 0, C, E dom(A) IprefA (c,) < 0, Vi = 1,2,3"'n-I .

v. an EXPIJCIT]OS/EXPLICIT_SOFT_NEG preference E(A,-<£?) with

Cn-<ECn_I-<E -<ECl: c,Edom(A)lprefA(c,)~0,Vi=I,2···m,

c, Edom(A)1 prefAc,) <0, Vi =m +l,m+2···n

5. In all the other cases there are no data-driven preferences

Output: The detected categorical preferences or no preference was found

Figure 3. 6: Algorithm for mining categorical preferences

70

Input: log data: LR(LogID, UserID, ContextID, SessionID, Itemld, Attribute value, selected) for a

given preference category; highest preference category from the SPO preference mining algorithm.

I. Compute the k-occurring values (x/, x'" ..., xJ in the log relation. Initialise the better than graph

with E - graph = 0

2. FOR (i~l, ...,k) and FOR (j~i+1,,k) DO:

a Consider the sessionIDs, whose according values contain X, and xr
b. Compute, s, the number ofSessionIDs, where x, was selected and x) wasn't

c. Compute, t, the number ofSessionIDs , where x) was selected and x, wasn't

dl. Ifs> t, set E-graph = E - graph U (x"x,).

d2. Ifs < t, set E-graph ~ E - graphu(x"x).

d3. IfFt do nothing.

3. Remove all circular paths by removing edges to the item with the highest out degree in the

circular path.

Output: the detected EXPLICIT preferences represented in a DAG

Figure 3. 7: Algorithm for mining explicit preferences

Circular path are removed by removing all the edges to the item with the highest

out degree in the cycle. The algorithm outputs EXPLICIT preferences

represented in a DAG. In this case all the items in the highest preference

category will be in the DAG and are thus detected to be more preferred to all the

items in the lower categories, which fulfils the fact that all the items in the DAG

are more preferred to all the items not in the DAG in the definition of EXPLICIT

preference presented in Section 3.2.3.

The logic behind the explicit preferences stems from the fact that since

preferences are deduced from the features which are common to items in a given

71

domain, items with almost similar features will have preference values close to

each other and hence are most likely to be in the same preference category. To

get which one is more preferred to the others, we need to compute relative

preferences of each item to all the other items in the same preference category

with it. The irreflexive, asymmetric and the transitive properties of strict partial

order relations are used to get an explicit representation of the preferences of all

the items in that category.

3.5 User Modelling for m-Services

User preferences mining framework in the foregoing discussion is meant for

mining user preferences for supporting advanced personalisation in Mobile

Services. A typical way of achieving this is by incorporating user preferences into

a user model, which in turn is used to personalise mobile services

We take inspiration for user modelling from the work done by (Kay et ai, 2001).

The architecture was selected because of the following reasons:

• It supports distributed context based personalisation, and

• Allows different applications to share their user models (Cross

Personalisation).

This work proposes the user modelling architecture for an m-services

environment shown in Figure 3.8. The Capital letter U represents the Definitive

User Model. Each application, A, has its own Partial User Model, u. The ovals

72

marked I represent inference engines, the internal reasoning mechanism for the

user models. The applications can share user models through the Definitive

User Model which will be held in the middleware as shown both in Figure 3.8 and

Figure 3.9. The Definitive User Model will also be responsible for handling user

preferences for automatic service discovery, selection and execution.

:MIDDLEWARE

CONTEXT MODULE

PFRSONAUSATION MODULE

1

u

1

Figure 3. 8: User Model Architecture for Personalisation in m-5ervices

3.6 Infrastructure for User Preference Mining and

Usage in m-Services

It follows from the foregoing discussion that a mechanism is required to put the

various components developed in this research together. To this effect, this

Section presents an infrastructure for user preference mining and usage in an m-

73

services environment we named User Preference Centred Architecture for

Mobile Services (UPCAMS).

Following the discussion presented in Section 2.3.2, user preferences can be

mined and used at two levels in an m-services environment. The first one, which

is at middleware level, involves mining of user preferences from sequential

service access data in the form of web logs. The preferences mined at this level

are on the m-services and will be used for automatic service discovery, selection

and composition. Based on the preference model defined above there is a need

for an enriched service description, which clearly specifies the attributes/features

for each and every m-service available. The second one involves user

preference mining from web logs from the application servers within applications

such as e-Commerce applications, map services, restaurant finders, etc. In this

section we will start by presenting the design principles of UPCAMS in Section

3.6.1. In Section 3.6.2 we present UPCAMS and its components

3.6.1 UPCAMS Design Considerations

The key design considerations which influenced the designing of our framework

for user preference mining are: separation of context and personalisation in

mobile computing, capacity scalability of the user preference mining architecture,

and reusability of software and hardware components.

74

3.6.1.1 Separation of context and personalisation

We have demonstrated in Section 2.2, that context-aware computing takes

personalisation information as context information. This results in personalisation

information such as user preferences being taken as part of context data. Ideally

in context-aware computing, all context abstraction processes are handled in the

middleware. Applications subscribe, poll or query for relevant context from the

middleware. In a bid to effectively use the techniques that have emanated from

both the fields of context-aware computing and personalisation, we have in this

research separated personalisation from context based information as discussed

in Section 2.1 and later reflected in this Sub-section 3.6.2 in the architecture

developed in this work.

3.6.1.2 Capacity Scalability

Scalability of a system indicates the ability of a system to scale up with the

growing amounts of work. Since the proposed data mining algorithms will be

working on large amounts of data, it is important that they scale up with the large

amounts of data. To this end, this research work is so particular on the choice of

the data mining algorithms to be used. The user preference mining framework

presented in Sections 3.2, 3.3 and 3.4 are designed in such a way that they will

scale up with increase with in the number of tuples in the underlying data

warehouse. Only the data access is affected by the increase in the number of

tuples in the database. The DAG will only be expensive when the clustering

75

algorithm has failed to find a reasonable structure among the items to be

clustered. The matching and the clustering algorithm do not depend on the

number of tuples in the data warehouse. The major scalability drawback on the

clustering algorithm is in the number of items in a given domain. This is taken

care of by the fact that our clustering algorithm runs on onEHiimensional data,

which lessens the time it takes to cluster the items. Thus our preference miner

will be much faster than vector similarity based preference models, the content

based and collaborative filtering based models, since they deal with running

through and clustering multi-dimensional data.

3.6.1.3 Reusability and Sharing of Software and Hardware

Components among Applications

This is attained through modular programming and through the emerging web

services technology. The need for modular programming makes JAVA a natural

solution for implementing a prototype of the proposed user preference mining

framework. This is because of JAVA's ability to support reusability, rapid

prototyping and easy integration of existing modules. Modular solutions bring

advantages of reusability and extensibility among other advantages. To simplify

the task of creating, maintaining, and extending context-aware m-services and to

support collaboration among similar applications much of the weight of context­

aware computing and personalisation must be shifted to the middleware. The

implementation of the preference miner as a service also serves this purpose.

76

3.6.2 UPCAMS and its Components

This research work proposes architecture for mining and usage of user

preferences in an m-Services environment shown in Figure 3.9. The architecture

is divided into three layers, the User Interface, Middleware, and Application

layers where user preferences can be used, but preference mining is only done

in the Middleware and the Application layer. Each of these two layers has its own

components to support the mining and usage of user preferences, except for the

context module, which is only in the Middleware layer. Applications access this

module through polling, querying or subscribing for the context relevant to them,

based on the nature of the application and/or the user's preferences. For

instance, some applications support context triggered actions and hence they

need to keep checking (through polling or subscribing for the relevant context) for

context changes for all users who need to be notified of any context changes.

3.6.2.1 Middleware Components

As discussed in Section 3.6.1 another very important design consideration for the

efficiency of the framework proposed in this work is the separation between

context and personalisation in the middleware layer. The middleware is divided

into two modules the context and the personalisation modules based on the

separation of personalisation and context discussed in Section 2.2.

77

3.6.2.1.1 Context Module

The context module provides the basic functionalities of a context-aware

middleware such as context extraction, abstraction and modelling, except for the

handling of personalisation information such as user preferences, interest, etc,

which will be handled in the personalisation module. Applications subscribe, poll

or query for context information from this module and the module will in turn

configure some context provider components according to the application's

requirements.

3.6.2.1.2 The Personalisation Module

The personalisation module holds the functionalities for personalisation required

at middleware level. The module consists of four main components which are

User Session Manager, Context History, Middleware User Session Data

Warehouse, and the definitive user model.

A. User Session Manager (USM)

The user session manager is responsible for handling all interaction sessions in

the personalisation module. It gets the context data from the context module and

initiates some context triggered actions at middleware level.

78

USER INTERFAOE LA YER

-
r~ User Interface"-----------.--
1---------

USD MIDDLEWARELA YER I --
cc~c:XS---~~D

I I I

U 0

,-- -..

Preference
Reposjtory

, --,,,
,-- -..

.
User

Preference
Profile.. Definitive User

. Model

I

,,
UPQ:,
User Session

Manager

Middleware User
preference

Miner

USO-----
C-=--~-~S
Middleware User __ •

Session Data

'-...~rehou~_/

CCO Personalised
- -. context PCD

Generator

Context Model

High level Context

C:~--==~
- -.. Context ----------------

History
'---~

Context Mudule Personalisation Module

•

I
UMD

Partial User
Model

"'~:>
I' Preference

~~

-

-.--~_J_

I--------c~../
Userit'lL Preference

/# profile
Application User " -.---~

Preference
Miner

UPQ

(~~~=-~~:>
USD
-- Application User _

Session Data

'--~~~ ...-/

APPLIOATIONLA YER
,-
Notification I

I Subscribe

(~t__ I
Personalised

context Il Generator
I

PCD I

Kev
CCO: Current Context Data; CPC: Context Provider Component; UMO: User Modelling Data;
UMOQ: User Modelling Data Query; USO: User Session Data; PCO: Personilised Context Data.
UPQ: User Preference Query.

Figure 3. 9; User Preference Centred Architecture for Mobile Services (UPCAMS).

79

B. Personalised Context Generator

This component is a data model responsible for personalising the context data

from the context module and assigning it to a context cluster whose elements it is

most similar to (see Section 3.3.1).

C. Context History

This is a repository where context data is stored. The data from context histories

can be used for user modelling and for higher level context abstraction. That is

the context history can also act as a context provider component. The context

history is placed in the personalisation module based on the definitions of context

and personalisation given in this study. This is based on the fact that the context

history is meaningless if not attached to a specific user. This decision also eases

the management of context histories.

D. Middleware User Session Data Warehouse (MUSDW)

This component is a persistent repository for user session data, responsible for

creating a platform for user preference mining in the middleware layer. It holds all

the user session data and the details of the items whose preferences are to be

mined.

E. Definitive User Model (DUM)

The Definitive User Model holds all the personalisation data needed at

middleware level including the user preferences mined from the middleware user

80

session data warehouse and the rules on how the data is going to be used for

personalisation. The user preferences are queried autonomously based on the

current context and used to recommend services to the user. The definitive user

model is also responsible for facilitating sharing of User Preference Profiles

among similar applications.

3.6.2.2 Application Components

The application Layer has 5 main components. These are the Application Server,

Personalised Context Generator, Application User Session Data Warehouse,

Application User Preference Miner and the Partial User Model.

A. Application Server (AS)

Wireless intemet service applies application servers to execute the service

business logic and hosts the database that stores web content (Pashtan, 2005).

Typical services provided by the application server infrastructure include multiple

processing to handle multiple client requests and simultaneous backend

database queries, client session management, page caching and data streaming.

Taking advantage of their user session management capabilities our user

session data is going to be drawn from the application server. The application

server will also be responsible for polling, querying, or subscribing for context

data from the context module.

81

B. Personalised Context Generator (PCG)

This functions the same way as the peG in the middleware layer. Before the

context description can be used in the personalisation process it has to

personalised and assigned to a context cluster with a unique identifier (See

Section 3.3.1) based on its similarity to the context in that cluster.

C. Application User Session Data Warehouse (AUSDW)

The Application User Session Data Warehouse is persistent database that

provides a platform for user preference mining in the application layer. It holds all

the user session data at application level and the details of the items whose user

preferences are to be mined.

D. Partial User Model (PUM)

This is a repository that holds all the personalisation information needed at

application level and the rules on how it is going to be used in the personalisation

process. Preferences mined from the Application User Session Data Warehouse

are stored in this repository. The preferences are queried based on the current

context and used to recommend items to the user. Partial User Models of similar

application can share User Preference Profiles and other user modelling data

through the Definitive User Model.

82

3.6.3 The User Preference Mining Component

Ideally the data mining component should be implemented as a service that can

invoked, in the middleware or by different m-services applications to synthesise

reasonable preferences and store them in the respective Preference

Repositories. Further details on this component are in Chapter 4, which presents

the design and implementation of user preference mining prototype.

In this chapter we presented our model to the research challenges raised in this

dissertation. We developed a user preference model that has an intuitive

preference measure and strict partial order preference representation. We then

discussed how this preference model can be used for mining and representing

context-based user preferences in an m-Services environment. To support

integration of the mined preferences into an m-services operational environment,

we presented a user model for an m-services environment that supports cross

personalisation. The User Preference Centred Architecture for Mobile Services

(UPCAMS) is presented to put together all the concepts modelled in this chapter.

83

CHAPTER FOUR

PROTOTYPE DESIGN AND IMPLEMENATION

4.0 Introduction

The previous chapter presented the User Preference Centred Architecture for

Mobile Services (UPCAMS), an architecture for mining and usage of context­

based user preferences in the access and provision of m-services. In this

research work our main focus is on the User Preference Mining component of

UPCAMS, the User Preference Miner, and its peripheral components. Hence, in

this chapter we present the design (Section 4.1), implementation (Section 4.2)

and evaluation (Section 4.3) of the prototype of our user preference mining

framework.

4.1 Design of a Prototype

This section presents the UML modelling of the User Preference Miner

developed in this work and the Design of the peripheral components tightly

integrated to it.

84

4.1.1 The Preference Miner in UML

Figure 4.1 shows the use cases for the prototype for user preference mining

framework implemented in this research work. The system has four (4) actors

and these are: the User Session Manager (USM), the User Session Data

Warehouse (USDW), the User Preference Profile (UPP), and the Preference

Repository (PR).

The preference miner has one use case which is a request for user preferences

which is forwarded to the Preference Miner by the User Session Manager. This

use case has two sub-tasks which are: (1) query for user item preferences; which

queries for the user's preferences on items from the Preference Repository for

initial recommendation to the user, and (2) mine user item preferences; As the

user interacts with the system the user session data gets updated. The quality of

the recommendations can be improved by using the updated user session data

in the recommendation process. This is done through the invocation of the mine

for user item preference task. The mine for user preference task has two

alternative sub tasks. If a given application has got enough user session data for

mining user preferences for a given user in the current context under the current

domain the mine Attribute Value preferences task is invoked otherwise the

application queries for attribute value preferences from similar applications

through the query for attribute value preferences task. The mine attribute value

preferences task uses the data from the User Session Warehouse through the

85

supply data to be mined task. The supply data to be mined task have two

subtasks, which are get item details and get user session data.

get for user item
preferences

«Include» «Include»

Preference
Repository
«~System»~

query for user item
preferences

supply spa item
preferences

query for Attribute
Value preferences

«Include»

mine for user
item preferences

mine Attribute
Value preferences

«Include»

User Session
Manager

<<System»

supply data to be
mined

supply user
preference profile

User Session Data
Warehouse
«~System»~

«Include»

get item
details

«Include»

get user
session data

User Preference
Profile

«~System»~

Figure 4. 1: Prototype Use Case Diagram

A. User Session Manager

In the Application Layer, the application server is responsible for user session

management. It is responsible for generating context based queries for user

preferences. At the middleware layer, the user session manager, in the

personalisation module, is responsible for session management, which includes

86

generating context based user preference queries and supplying user session

data to the User Session Data Warehouse (See Section 3.6.2).

B. User Session Data Warehouse

The User Session Data Warehouse is a structured data repository where all the

data needed for mining the user preferences is kept. This component is the

platform upon which the user preferences are mined. In this case the warehouse

can be the application or the middleware User Session data warehouse.

c. User Preference Profile

This is an XML data repository that stores the mined attribute value preferences

of each and every user, who have interacted with the application/system. This

repository can also be queried for user attribute value preferences for mining

user preferences in similar applications.

D. Preference Repository

This is an XML data repository that stores the mined Strict Partial Order

categorical preferences of each and every user, who have interacted with the

application/system. This repository is also queried for item SPO preferences

within the same application at the beginning of every session for a returning user.

The activity diagram in Figure 4.2 shows the dynamic nature of our user

preference miner prototype. The structural view of the preference miner is shown

87

in the class diagram in Appendix C. The preference mining process starts with

the user preference miner requesting for data for mining user preferences from

the User Session Data Warehouse. If the user session data warehouse has

enough data for mining user preferences the algorithm for mining attribute value

preferences is invoked. The results from this algorithm are used by the matching

algorithm to compute item preferences and are also sent to the User Preference

Profile to update the profile. The item preferences are then input into the

algorithm for mining Strict Partial Order categorical preferences, which gives

SPO categorical preferences as output. The mined SPO categorical preferences

are used to update the Preference Repository. If the maximal set of the SPO

categorical preferences is greater than the maximum number (n) of Items that

can be recommended to a given user, the maximal set is passed to the algorithm

for mining EXPLICIT preference, otherwise the maximal set is recommended.

The algorithm for mining EXPLICIT preferences represents maximal set in a

Directed Acyclic Graph (DAG). If the DAG's maximal set is still more than the

maximum number (n) of items that can be recommended to the user, the top n

items in the DAG's maximal set are recommended, otherwise the maximal set is

recommended.

4.1.2 User Session Warehouse Data Model

The User Session Data Warehouse model defines a general structure for

handling user session and item details data to provide a platform for the user

preference mining framework designed in this work. The warehouse was sits on

88

User
Interface

User Preference
Profile

Preference
Repository

Preference MinerUser Session
Data VVarehouse 0 , , 0

0 , 0
0 0 0
0 0 0,

0 ,
Check wbether 0 0 ,

0

Rfquest for Data from
, 0

there is enough '+- , 0

Store user
0

data to mine the Oat! warehOUle 0
0 , 0

pffieren<es
0 0 Attribute Value 0,

0,
0 pffieren<es 0,
0 0

0 , 0

J. Yes
0 0 ,
0 Compute attribute 0 0
0 0 0

value preferences 0 0,
0 0

No
0 0 0
0 , ,
0 0 ,
0 0 ,
0 0

Request for a
0

0 0
0

0 User Preference 0
0 0 ,
0

Compute preferences
0 profile from a

,, 0 ,, 0 IimiIar 0
0 onittms 0 0
0
0 appication
0, 'I'
0
0 Compute SPO0
0

categorical preferences0 ,,,
Store !be0

I0

UleI's SI'O0
0

prierelIce0

~,
• proIile on ,
0 0
0 llJeck wbether the items 0
0 0
0

maximal set is
,

0 0
0

greater than the
,, , ,

0 0 0, maximum number of , ,
0 0
0 recommendations 0, 0, 0
0

Y~
,

0 0
0 0
0 No 0, ,

0

I Run a OAG I
0
0
0

;,
0

<}-
0,

o..d< whether !be
,
0,

rnaxinaI set is greater 0
0, t!Ian dle nminum 0 ,

number If
0
0

reamnendations
,
0 \how th<
0

re<DIIIIl",ded

~
0
0 ,

items
No

0 0
0 0
0 0

0

L..--, 0,, 0

0 , 0

J.0 , 0

0 0 0
0 Recommend the top 0 0

0
0 0 0

0 n items from the 0, 0 ,
0 OAGs maximal set 0 0
0 0 0

0 , 0

0 , 0, 0 0

Figure 4. 2: User Preference Miner Activity Diagram.

89

two databases. The first one is kind of a transaction log that holds all the user

session data. The second one is a persistent database that holds all the item

details. In the application layer the user session database gets its session data

from the application server and in the middleware the session data is derived

from the user session manager. The Service registry acts as the item details

database in the middleware layer.

Dimensional modelling is used to model the warehouse. Dimensional modelling

is a logical design technique that seeks to present the data in the standard,

intuitive framework that allows for high access performance. The snowflake

design is chosen as the preferred dimensional modelling technique over the star

schema because of the following reasons:

• the query performance is improved due to minimised disk storage for data,

and

• the general performance is improved by joining smaller normalised tables

rather than denormalised tables in the star schema.

The data warehouse model is shown in Figure 4.3. In order to construct the data

warehouse model, the following design principles were considered:

• Data retrieval of Userld, DomainlD, CID, and item attributes must be

optimised, and

• The warehouse should support retrieval of items at different levels of

categorisation (e.g. domain, sub-domain, category and sub-category,

90

e.t.c). To this effect we used domain modelling framework in designing the

item details database.

• •."""'" ..., ."""'""'-' Go.. n- o>
Slb_cattq:ry ,~- ~..... ".."" 'illb_Caf"'QTII

""'" <>- ...,- Y_J"oe '""",-, .,.....,.... '" - '" ... v

• lO<!D

I"'""_-{""''''CJI)

55SI<><lD

""""""'m

((J\fEXr

.""~~_i'"".lD-..
lQCATlCffiD

ACTl~1Y1t>

"""""''''

DAlES

.­[-
!flftJ:e}
[H"".]

"-"'"[""""J
t'f~l

Figure 4. 3: The ERD for the data warehouse model

4.1.3 Context-Based User Preference Profiles

With the increasing popularity of Service Oriented Architectures and the enabling

technologies such as web services, some intermediate results of the preference

91

model developed in this work can be shared among similar applications. This is

despite the seemingly obvious security, custody and privacy issues, which still

need to be solved.

<?xml version="l.O'" encoding="tITF-8"?>
<!OOClYPE UserProIiIe SYSTEM "UserProfile.dtd"(»
<!-

a repertoire of preferences that may occur in the DVDs application
->
<UserProfile>
<tJserldentifier Value="90000001">

<UserProfiIeOala Value----"DVOs">
<Context Value="l000000l">

<TrneStampdateTIJT1e="2007~27T04;38;18"J>

<Attribute Value="Genre">
<AltributeValue Ke)"""Adion" Value--"2.89"J>

<AttributeValue Ke;r-"Comedy" Value="2.56"J>
<AttributeValue Ke;r-"Adventure" Value--"O.098"/>
<AttributeVaIue Ke;r-"Classicar Value="-1.67"J>

</Altribute>
<Attribute Value="Aclor">

<AttributeValue Key="Me1 Gibson" Value="1.67"1>
<AttributeValue Ke)"""Sy1vesler Slalona" Value="-3.89"J>
<AttribuleValue Ke;r-"Sharon Stone" Value--"O.9"1>

<AttributeValue Key="Tom Cruise" Value ='-0.67"
<JAttribute>

<!Context>

</UserProfiIeOala>

<IUserl'rofile>

Figure 4. 4: User Preference Profile

Figure 4.4 shows a sample of an XML repository for some intermediate results

from our user preference mining framework. We named this repository User

Preference Profile. The DTD for the User Preference Profile is shown in

Appendix A. The User Preference Profile holds each registered user's

92

preferences on the features/attribute values for a given product domain under a

given context. The Attribute Value preferences will then be used to compute the

preferences on individual items using equation 3.4 presented in Section 3.2.2. As

long as the applications involved follow a standard way of defining items the User

Preference Profile generated from one application can be used in another similar

application. The need to allow similar applications to share User Preferences

Profiles makes XML the best option to implement the User Preferences profiles.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE PrererenceReposilory SYS1EM "prererence.dld'TI>
<l-

a repertoire of preferences in an m-comrnerce application
->
<PreferenceReposilory>

<Usertdentifier Value ="90000001" >
<PreferenceData Value :"DVOs">

<Context Value = "100000001">
<TirneStamp daleTII11e="2007-Q5-27T04:38:22"/>
<Preference>

<POS __OVOS">

<POsset>
<Value val=="Lethal Weapon" I>
<Value val=="The Matrix'" I>
<Value va}:::"$eason FIVe" J>
<Value val==wrhe Blues Brothers" t>
<Value val=="Moonstruck." I>
<Value va1=="Nine Months" I>

<Value val=='Winners and Sinners" I>
<JPOS5el>

</POS>
</Preference>

</Context>
<Context Value = "I 0000036">

</Cantext>
<lPreferenceData>

</Userldenlifier>
<Usertdentifier Value == "9OO00CXl02..>

</PreferenceReposilory>

Figure 4. 5: User Preference Repository

93

4.1.4 Context-Based User Preference Repository

After preferences on items have been computed, what remains is the intelligent

storage and usage of such preferences. The preference repository will have to

give an appropriate storage structure of the preference model developed in this

work. XML is also used to implement the preference repository. Figure 4.5 show

a sample XML file for the preference repository. The DTD for the Preference

Repository is given Appendix B.

4.2 Implementation Environment

The Preference miner was implemented using the JBuilder 2005 IDE (Integrated

development Environment) for Java with Java Development Kit Version 6

(JDK6). The underlying database used is the MS SOL server (using default

settings). The preference miner and the SOL server were running on the same

machine with a 2.8 GHz processor and 512 megabytes memory CPU.

The implementation of the User Preference Miner prototype necessitates a test

environment for testing the functionalities of the preference prototype. The

Interface for our user preference miner is shown in Figure 4.6. First the userlD is

input in the upper area. A click of the 'Enter' button in the upper area searches

for the contexts under which a given user has interacted with the application

before. Selection of the subsequent parameters in the middle area and a click of

the 'Execute' button give the results in the lower area.

94

Vser (j>references ~iner
rfftertnot-..,.... totno_-- ----­

_11

.-m 19lmD35 -...", 1.0
L ',efu c

C- 11IIDU75 8 -- 1
10PI efuuw::u 1JIreIbailI

11_- I'IB- ------...", I. 58 _lbr...... 10.51• , ..
8

Recommended ttems

n.~ fa- GIoboI """"""'",T,_ GIoboI "'""'""' GIoboI~AdY_
TectneaI AnaIvsis d the Fn!ndai Mnets: A Coi.CA&'la bite GUde to Trd'lo Meth::Jds.nt~
Q.ide to fu:w,eb iCS
Audti'lQ.rd Assw«a: 5erYices

Preference Categories

EXPUaCPOSE)IlUaT_SOFT_t£G

P05 CATEGORY [l]

D:I)4~ and A5szance 'SerYUs O.6,'?oamS6WJl48823
DI37 Qcba&.Jsness Today 0.5761015041853+98
DXI5 Aid:ng &. As9¥¥n SerW:es: A 5ysI:ematic AR:ro«h 0.6133389636671795
D)41 lhe QJe5t fU' Global Dtwr*'Iafn: Tra"!Sftwmino~ Pres!n:e i"to GmaI CcIrpeI:IjYe Ad'+'<Ytage O.6J22Z3J3S721SD..
3IDlB The IrtemaI Au:bw;J Pod:et Gl.*ie 0.616957..106715381

Figure 4.6: The User Preference Miner Test environment

We used the GUI shown in Figure 4.7 for performance evaluation of our

preference mining algorithms. The procedure to get the results in the lower layer

of Figure 4.7 is the same as the one for Figure 4.6. In the lower layer of Figure

4.7 the execution time up to the end of a given algorithm is recorded. The

execution time for a given algorithm was derived by subtracting execution time

up to the end of the same algorithm from that of the one preceding it.

95

Vser Preferences :Miner P'fJa{uation

_11 '--I (.....)

.-m [0"'", --, -..... r;-
PldUUWL C ' ...

ea.e- 11DOX11J6 8 -- 110PacfauktS TIreshaId

loYDs B .- r;s- 8-_-
-_.....

I. f -""....... 10,51 -- ElRa..... I •

-- I...
lIpto_ r--' toprocluds \1250

____..... rno;;--1

--- 17625_ --l

Deci:Iiaft F......

POS--.... lo.mn_....... .,.-
... fI.n: e.tlfIIOry IZ1

_ .. fW3
_a..-ed

Figure 4, 7: User Preference Miner Performance evaluation environment

4.3 Evaluation of the Preference Mining Framework

The evaluation of the preference mining framework developed in this work is

twofold: First, in Section 4.3.1, the effectiveness of the user preference model is

evaluated using some simulated users. Second, the perfonmance of the

algorithms developed in this work to fonm components of the preference miner is

evaluated in Section 4.3.2. The data for this evaluation was generated by

simulating user sessions. Literature (e.g, Kobsa and Fink, 2003, Montgomery

and Faloutos, 2000) has shown that url hits and viewings tend to follow a Zipf

density function. To this end, the simulation of users we carried out in this work

used a Zipf density functions to generate user transactional data.

96

4.3.1 Effectiveness of the User Preference Model

To evaluate the accuracy of our user preference mining framework we have

chosen to prove that our user preference model reflects the user preference

accurately. This section presents the Test design of the experimental

environment for evaluating the effectiveness of the preference model presented

in this work and the test results.

4.3.1.1 Test Design

Preference profiles of 35 users were generated through passing log file data (all

hits) generated in Matlab 7.1 through the preference miner prototype developed

in this work. Two Zipf density function were considered in generating the user

profiles and these: the one for item selection (viewings) and the other for all hits.

Item selections (viewings) were generated from a Zipf Probability Density

Function (pdf) derived from the MATLAB 7.1's Generalised Pareto Probability

Density Function (gppdf) with shape, scale and threshold parameter of 1.25, 1,

and 0 respectively. The shape parameter for item selection was chosen on the

basis of the observation made in (Montgomery and Faloutos, 2000) that the

maximum likelihood estimate for the Zipf shape parameter of un viewings

(selections) and not hits (analogical to recommendations in this work) is 1.25.

The findings by (Montgomery and Faloutos, 2000) also showed that even though

the number of sessions per user and the number of viewings per month were

97

growing exponentially, the number of viewings per session is stable through time

at an average of 48 viewings per session. Based on this fact and the fact that the

user preference mining framework developed in this work is to be used in a

mobile computing environment, where the session are bound to be smaller and

hence the number of viewings, we opted for viewings ranging from 1 to 25

viewings per session, with a few outlier values above 25. The average number of

views per session in the data we simulated was eleven (11).

The log data (all hits) was generated using a Zipf density function derived from

Matlab 7.1's Generalised Pareto Probability Density Function (gppdf) with a

shape parameter 1.4, scale parameter 1 and threshold parameter O. The shape

parameter of the Zipf pdf for generating log data was chosen taking special care

that the number of options available for a user to select is always greater than

the number of selections made for each item. Each session had an average of 18

hits and 11 viewings.

The resulting user profiles created from the process discussed above is then

used to query the product database. A total of 51990 log relations were

generated for all the users. The synthesised log data was then passed through

the preference miner to investigate whether the preference miner will be able to

retum the original user profiles as illustrated in Figure 4.8. A comparison of the

item preferences detected with the original item preferences is used to show the

effectiveness of the developed preference mining framework.

98

The following parameters (as defined in (Holland et ai, 2003)) are used to

evaluate the accuracy of the preference model presented in this work:

. . numher of correctly det ected item preferences of user i
PreCISIOn =

number of all det ected item preferences of user i

numher of correctly det ected item preferences of user i
Recall =-------=---~------~~--~--­

numher of all item preferences of user i

4.1

4.2

Preference Recall measures how good the model developed in this work is, in

making sure that there are no missing relevant recommendations. Preference

Precision measures how good the framework is in reducing irrelevant

recommendations. A good preference model is expected to optimise these two

parameters.

Product Database

.,
•

User Session Data
Warehouse

Figure 4. 8: Experimental set up for evaluating the preference mining framework

99

4.3.1.2 Test Results

All the sets of results presented in this section were obtained from the preference

miner with a silhouette value of at least 0.51 for the k-means algorithm. If the

silhouette is less than 0.51, it is concluded that there is no reasonable structure

found in the data and hence the clustering algorithm retums the unclustered data

set The silhouette value was chosen based on the partitioning suggested in

(Holland, 2003). Using a minimum silhouette value of 0.71 made the clustering

algorithm too restrictive, so much that it was only recognising the lower level

preferences (i.e POS, SOFTNEG, and POSSOFTNEG).

In domains where the Closed World Assumption (CWA) holds, the model was

found to be significantly accurate in predicting user preferences with preference

recall and precision values of about 82% (see Figure 4.9).

100%

90%

80%

70% .

600/0

50%

400/0

30%

20%

10% -

00/0
Recall

Precision

Figure 4. 9: Preference Recall and Precision (CWA)

100

Figure 4.10 shows the results obtained from running the preference miner in

domains where the Closed World Assumption does not hold. The first set of

results was obtained from running preference miner on the generated log data

allowing maximum of 10 preference categories for each run of the k-means

algorithm and the second was run allowing 20 preference categories for each run

of the k-means algorithm. A tighter clustering reduced the preference recall and

increased the preference precision slightly.

0%

100%

90% t----

80%

70% +---

60%+---===

50%

40%

30%

20% +----1

10%

Recall

III 10 Categories
--- ---

Precision

• 20 categories

Figure 4. 10: Preference Recall and Precision (-,CWA)

An analysis of the nature of our preference measure in the domains where the

closed world assumption cannot be applied shows that the preference measure

is bound to be too sensitive to features with single hits and single viewings in a

given domain. This sensitivity makes the preference model very anticipative and

this may result in incorrect recommendations. The features concerned will load

high in all the items they appear in thereby giving them high preference values.

Over a period of time the model will always work to correct this anomaly through

101

the fact that persistent recommendation of a feature which is never selected

reduces its preference value and hence its load on the items that contains it.

One way to counter this anomaly is to have as much historical data as possible

to dump down the anticipative effect of our model. Hence in our experimental set

up, we combined the original data which was used to generate initial user profiles

(training data set) and the data obtained from querying the product database

using the generated user profiles (Test data) to create a single data set. In reality

the mined user preferences get sharper after every session, and this could not be

captured in the experimental set up used in this research war!< due to the fact

that, it will be cumbersome to update the Test data after each and every session.

A run of the combined data through the preference miner produced the results in

Figure 4.11. Both preference recall and precision improved from about 60% to

about 70%.

100%

90%

80%

70%

80%

50%

40%

30%

20%

10%

0%
Recall Precision

Figure 4. 11: Preference Recall and Precision (,CWA , Combined Data)

102

4.3.2 Quality of the User Preference Mining Algorithms

This section evaluates the quality of the user preference mining algorithms

developed in this work in terms of capacity scalability. Apart from accessing data

in the data warehouse, the developed preferences mining framework employs

three algorithms which are susceptible to scalability problems. These algorithms

are:

• the algorithm to match the feature preferences to the product profile,

• the clustering Algorithm, and

• the Directed Acyclic Graph algorithm.

In the next two sub-sections we discuss the test design and results for evaluation

of the quality of the aforementioned algorithms.

4.3.2.1 Test Design

The data for evaluating the performance of our preference mining framework was

generated by simulating a single user with 3000 sessions with a total of 50000

hits under five different contexts. Thus each session on average had about 17

hits. The data was simulated using MATLAB 7.1 's gppdf with a shape parameter

of 1.4 for hits (logs) and 1.25 for viewings (selections). Log files of sizes of

10000, 20000, 30000 and 40000 tuples were extracted randomly from the data

set mentioned above. The individual log files including the original 50000 tuple

file were passed through the preference miner and the time taken by each

algorithm to do its task were observed.

103

4.3.2.2 Test Results

12000 -

Figure 4.12 shows that generally, the preference miner does not scale well with

the increase in the number of tuples. Against this background, we investigated

each algorithm's effect on the overall execution time as the number of tuples in

the user session data warehouse increases.

1400U -

--- ------_. -~~--='~-

~ 'ooo0t--- -- _------ ~~~
i 11000 -- -_. ~---
~ I .___----
~ 1:;000 -.- ~--=----

~ 4000 j" -----
2000

o ----
10000 20 ODD 30 000 40000

Number of Toples

50000

Figure 4. 12: Sealability of our preference mining with increases in the number of tuples

Generally, regardless of the JDSe used, data access does not scale well with the

increase in the number of tuples. Figure 4.13 shows that the time required to

access the data from the database increases with the increase in the number of

tuples per user.

3500

~ 1500

~ 1000

500

0-'

10000 20 000 30 000 40 000

Number of Tuples

50000

Figure 4. 13: Sealability of data access from the data warehouse with increases in the
number of Tuples.

104

The algorithms to match feature preferences to product preferences and the k-

means clustering algorithms are not affected by the increase on the number of

tuples (see Figure 4.14 and Figure 4.15). This is because these algorithms only

deal with the summarised output from the data warehouse.

120

100.,
~ 800

II.,
60

i
I :[i=

10000 20000 30000

Number of Tuples

40000 50000

Figure 4. 14: Scalability of the matching algorithm with increases in the number of tuples.

7000 -,

6000

i soda
c
o
g 4000
•
~ 3000
'0
E 2000...

1000

o
10000 20000 30000

Number of Tuples

40000 50000

Figure 4. 15: Scalability of the k-Means algorithm with increases in the number of tuples

Figure 4.16 shows that the construction of a Directed Acyclic Graph (DAG) to

represent relative preferences on items in preference category is affected by the

105

number of tupies. The time to synthesise a DAG increases with increases in the

number of tupies per session.

=I=:~­
J=l~--~--.---
i 4000 --

f 3000 ---

F= 2ooot.~-
1000· -

o -
10000 20000 30000

Number of Tuples

40000 50000

Figure 4. 16: Scalability of the DAG with increase in the number of tuples

An analysis of the results presented in Figure 4.13 to Figure 4.16 reflects that

database access and the DAG algorithm do not scale well with the increase in

the number of tupies in the database. The matching algorithm and the k-means

are not affected by increases in the number of tuples in the database.

Scalability of the k-means: other factors

The major scalability constraint on the k-means algorithm derives from the

increase in the number of clusters the algorithm should run in-order to get a

relatively optimal clustering structure. Figure 4.17 shows that the time to execute

the k-means algorithm increases exponentially with the increase in the number of

preference categories (clusters) to be synthesised.

106

.--=-=­
----~~

.- - -----------

2000

o

16000

14000

j 6000

4000

.... 12000 t----------------­i 'DODO

8000

5 Categories 10 categories 20 Categories

Figure 4. 17: Scalability of the k-means algorithm with increase the number of clusters

Apart from this, the execution time of the k-means is also adversely affected by

the increase in the number of products (Figure 4.18) in a given domain.

4000

3500

! 3000

i 2500

= 2000

1'500

1000 .-- --..

..--. ----7"'=------

500

o
20 40 60 80 100 120

Number of Items

Figure 4. 18: Scalability of the k-means algorithm with increase in the number of items to

be clustered

Scalability of the DAG: Other factors

The DAG, like the k-means is negatively affected by the increase in the number

of items whose relative preferences should be synthesised. The DAG performs

(see Figure 4.1 g) well when the k-means have found well defined cluster

107

structure. In this case DAG has to represent considerably few items and

therefore its execution time will be less.

7000,------ _

6000

. __ . ---- ---------/-

12010080604020

o
o

1000

f5000

o
~ 4000

~ 3000t----­

l2000

Number of ttems

Figure 4.19: Scalability of the DAG algorithm with increases in the number of items to be

represented.

Trade- off between Clustering and DAG algorithm

From the foregoing discussion it can be deduced that a trade-off need to be

reached on which of the two algorithms, the k-means or the DAG, should be

relieved at the expense of the other while still maintaining the effectiveness of our

preference mining framework. Running the user preference miner with the

clustering algorithm retuming a single cluster, shift the whole load of preference

extraction to the DAG algorithm and hence the DAG will take more time to

execute. A run of the preference miner with the clustering algorithm retuming a

number clusters increases the time it takes for the clustering algorithm to

execute, but it lessens the number of items the DAG has to represent and hence

its execution time will be less. Figure 4.20 shows that as the number of tuples per

user increases, it is profitable to relieve the DAG at the expense of the clustering

108

algorithm. This is because the clustering algorithm is not affected by the number

of tuples in the user session. Thus, provided that the clustering algorithm finds a

well defined structure our user preference mining framework scales well with

increases in the number of tuples in the data warehouse.

10000 1===
=F- -­f ::F ,------:----!-- .. --
5000 - ~~-

'4000 ~~F 3000 ~-~-
2000 -------------

1000

o

•

J
10000 20000 30000 40000 50000

Number of Tuples
--C=~

- +- k-means _ Total "nme(10 CJusters) ~-TotaITime(SingleCluster)

Figure 4. 20: Effect of the number of clusters on the total execution time as the number

of tupies increases.

In this Chapter, we presented the implementation of our user preference mining

framework prototype. The prototype was used to evaluate our user preference

mining framework with respect to the effectiveness of our preference model and

the quality of the preference mining algorithms.

109

CHAPTER FIVE

CONCUSIONS AND FUTURE WORK

5.0 Introduction

This research work's goal was to develop a user preference model and mining

framework that integrates into an m-services environment. To this end, we

developed a user preference model that gives user expressiveness and an

intuitive interpretation of a preference. To address the dynamic nature of user

preferences in a mobile computing environment, a context model for an m­

services environment was given. We also developed algorithms suitable for

mining context-based user preferences in a mobile computing environment

based on the preference model and the context model we developed in this work.

The preference miner and all its peripheral components were put together in the

form of a Framework that integrates into an m-Services environment. The

framework is meant to support advanced personalisation in an m-services

environment by allowing sharing of user profiles among similar applications. To

ensure this sharing, a user model that supports cross personalisation has been

defined. A prototype of the preference miner and its peripheral components (the

user session data warehouse, User Preference Profile repository, preference

repository) were used to evaluate our user preference model and quality of the

preference mining algorithms.

110

The remainder of this chapter is organised as follows: Section 5.1 presents a

discussion of the results obtained in Section 4.3.1 and Section 4.3.2, and their

implication on our model. Section 5.2 presents our future research directions.

5.1 Conclusions

The expected impact of our preference mining framework is two fold:

• Our user preference model demonstrates both an intuitive measure of a

preference and user expressiveness in the representation of preferences

for automatically analysing preference models, which none of the existing

memory-based preference model can do. Most of these preference

models use indirect measures of a preference and they do not handle the

issue of preference representation at all, and

• Our framework shows the feasibility of mining of context-based user

preferences in an m-services environment.

An evaluation of the effectiveness of our user preference model showed that the

model is very promising. Performance analysis of the algorithms we developed in

this work, presented in (Jembere et ai, 2007), reflected that our user preference

mining framework scales relatively well with increase in the number of tuples to

be spanned through, provided that much of the preference extraction process is

not shifted from the clustering algorithm to the DAG algorithm. An attempt to

increase the maximum number of permissible clusters to reduce the time it takes

III

a DAG to synthesis Strict Partial preferences, within a preference category,

resulted in the ballooning of the overall execution time of the preference miner.

Thus, for optimal performance of the preference miner, the number of

permissible preferences must be kept as minimal as possible.

Having evaluated the preference mining framework developed in this work, it is

also important to benchmark it with modern recommendation tools. The

experimental comparative analysis to this effect is beyond the scope of this work.

However, it is important to analyse how it compares to them from a logical point

of view.

Classical recommender systems use historical data on user preferences to

predict items the user might be interested in. Approaches to recommender

systems can broadly be categorised as memory based, if they operate over the

entire data to make predictions and as model based if they use the historical data

to build a model which will then be used for predictions (Zhang et ai, 2002). The

user preference model presented in this work is one of the memory based

approaches to item recommendations.

Apart from the lack of intuitive preference measures and user expressiveness,

most of the approaches to memory-based recommender systems do not scale

with increases in the number of tuples in the underlying database, since they

have to run on multidimensional data. Our preference mining framework first

112

reduces the multi-dimensional structure to a single dimension, without losing any

information, before applying computationally expensive algorithms. Thus the

preference model developed in this research work can be logically viewed as a

content-based vector similarity model enhanced to give an intuitive measure of a

preference, an intuitive representation of preferences, and to provide

computational efficiency.

One other significant problem in memory-based preference model is the latency

problem - Le. the problem of how the system should behave when they have low

volumes of historical data (Sicilia and Garcia, 2004). Though data sparseness

results in poor predictions, it is not critical to our preference model. Even in

instances where the user has just a few tuples of data and a single item

selection, our framework, still allows detection of Strict Partial Order categorical

preferences.

A comparison of the results on the effectiveness of the model in the domains

where the CWA holds and where it does not hold, shows that the model is more

effective in domains where the CWA holds than in those domains where the

CWA does not hold. This might be, because of the fact that our preference model

is more anticipative in domains in domains where the CWA does not hold. For

instance, if a feature only appears in one hit and it was selected, the feature will

have the maximum possible loading on the preference values of all the items it

appears in. This results in these items having high preference values and may

113

subsequently be in the maximal set. Thus our model, depending on the loading

of the user's other preferences on the product features, anticipates that such

items are among the most preferred items and hence it may recommend them. If

the features in question are not significantly preferred, the preference model will

eventually correct this with time as the items will keep getting recommended and

yet never selected, there by reducing the features preference to approach its true

value. Thus our model is bound to be robust in detecting the user's new

preferences and the subsequent correction of some biased preferences.

However this still needs to be investigated using real life data.

Apart from the above discussed merits of our preference mining framework, our

results showed that our framework does not scale well with increases in the

number of items in the domain whose preferences are to be synthesised. The

negative effect of the increases in the number of items on the performance of our

preference mining framework can be kept minimal by ensuring that the maximum

number of preference categories to be detected by the clustering algorithm is

kept small enough not to shift the bulk of the work to the DAG.

Another potential point of weakness of our preference mining framework

emanates from the fact that our framework assumes that the user's preferences

on a set of items in a given domain are determined by the user's preferences on

the domain's common attributes. In reality some items have some extra features,

not possessed by other items in the same domain. It is possible that the user's

114

preferences on a given set of items might be highly influenced by these extra

features and hence our preference model will not be able capture this.

5.2 Future Work.

This study raised a lot of issues which need further study. Our context model was

only analysed from a theoretical point of view. The envisaged next step is to

investigate this model's performance with simulated data. The infrastructure for

user preference mining and use in mobile computing shows that preference

mining and usage can be done in two layers, that is the middleware and the

application layer. Our evaluation only investigated the use of the model in the

application layer. Its evaluation in the middleware layer is still to be done.

115

BIBLIOGRAPHY

Adomavicius, G., Tuzhlin, A. (2002). Expert-Driven Validation of Rule-Based User

Models for Personalisation Applications, Data Mining and Knowledge Discovery,5

Alvin, T.S., Chuang, S. N. (2003). MobiPADS: A Reflective Middleware for

Context- Aware Mobile Computing, IEEE Transactions on Software

Engineering; December 2003 (Vol. 29, No. 12), pp. 1072-1085.

Balke, W. T., Wagner, M. (2003). Towards Personalised Selection of Web

Services; In Proceedngs 1t1IW1t1I, 2003, Budapest, Hungary, May 2003

Barkhuus, L. (2005). The Context Gap: An Essential Challenge to Context­

Aware Computing; Ph.D. dissertation, The IT University of Copenhagen, 20

January 2005 http://www.itu.dklpeoplelbarkhuusllou thesis05.pdf (Last

accessed 29 March 2007)

Biegel, G., Cahill V. (2004). A Framework for Developing Mobile, Context-aware

Applications, In proceedings of the ~ IEEE Conference on Pervasive Computing

and Communications, Orlando,FL, March 14-17.

Bonett, M. (2001). Personalisation of Web Services: Opportunities and Challenges.

ARIADlNE, 28, June 2001, http://www.ariadne.ac.uklissue28/personalization (Last

accessed on 24 April 2006).

Bormann, F., Flake, S., Tacken, J., Zoth C. (2005). Towards Context-Aware

Service Discovery: A Case Study for a new Advice of Charge Service.

http://www.eurasip.org/contentlEusipco/IST05/papers/502.pdf (Last Accessed on

12 June 2007)

116

Byun, H. E., Cheverst, K. (2001). Exploiting user models and context-awareness

to support personal daily activities; in Proceedings of the workshop on user

modelling for context-aware applications (UM 2001), Germany, July 2001.

Coppola, P., Mea, V. D., Gaspero, L. D., Mizzaro, S., Scagnetto I., Selva A,

Vassena L., Rizio, P. Z. (2005). MoBe: A Framework for Context-aware Mobile

Applications; Workshop on Context-Aware Proactive Systems, Helsinki, Finland; 16­

17 June 2005.

Dey A K., Abowd, G.D. (2000). Towards Better Understanding of Context and

Context-awareness, In Workshop on The What, Who, Where, When, and How of

Context-Awareness.

Douikeridis, C., Loutas, N., Vazirgiannis, M. (2006). A System Architecture for

Context-Aware Service Discovery; CWS Preliminary version, Electronic Notes in

Theoretical Computer Science.

Douikeridis, C., Vazirgiannis, M. (2004). Querying and Updating a Context­

Aware Service directory in Mobile Environments; In Proceedings of the

IEEEMlICIACM International Conference on Web Intelligence (WJ'04).

E-Speak (2001), E-Speak Architectural Specification Release AO, htlp:lJwww.e­

speak.hp.comlmediaJaO/architectureaO.pdf, (Last accessed on 29 June 2006)

Fahy, P., Clarke, S. (2004). CASS-Middleware for Mobile Context-Aware

Applications; In Mobisys 2004 Workshop on Context Awareness;

www.sigmobile.org/mobisys/2004/context awareness/papers/cass12f.pdf (Last

accessed on 29 June, 2006).

Gehlen, G., Mavromatis, G. (2003). Mobile Web Services Based Middleware for

117

Context-aware applications; www.comnets.rwth-aachen.de/436+M5cc1c271ec8

.pdf (Last accessed on 29 June, 2006).

Goker, A., Myrhaug, H. I. (2002). User Context and Personalisation. In

Proceedings of the fIh European Conference/1/Vorkshop on Case-Based

Reasoning (ECCBR 2002), Aberdeen, Scotland, UK, September 4-7, 2002

http://www.smartweb.rgu.ac.uklpapers/AGoker.pdf (Last accessed 29 March

2007)

Gorgoglione, M., Palmisano, C., Tuzhilin, A. (2006). Personaliastion in Context:

Does Context Matter When Building Personalised Customer Models, In

Proceedings of the sixth International Conference on Data Mining (lCDM'06), pp.

222-231

Gu, T., Pung, H. K., Zhang D. Q. (2004). A Middleware for Building Context­

Aware Mobile Applications; www.comp.nus.edu.sg/-gutao/gutao NUS

NTC2004 gutao.PDF (Last accessed on 29 June, 2006).

Holland, S. (2003). Preference Mining and Preference Repositories: Design,

Algorithms and Personalised Applications, PhD Thesis, University of Augsburg,

German, 01 January 2003.

Holland, S., Ester, M., Kiessling, W. (2003). A Novel Approach on Mining User

Preferences for Personalised Applications. In: Knowledge Discovery in Databases

(PKDD 2003), Dubrovnik, Croatia, 22-26 September 2003; pp 204-216

http://www.cs.uoLgr/-ksteflPreferenceMining.Ddf (last accessed on 24 April 2006).

Holland, S., Kiessiling, W. (2004). Situated Preferences and Preference

Repositories for Personalised Database Applications; In Proceedings of the 2~

International Conference on Conceptual Modelling, http://www.cs.uoLgr/-kstef/

2004 hol kie er2004.pdf (last accessed on 24 April 2006).

118

Jameson, A. (2001). Modelling Both the Context and the User; Personal and

Ubiquitous Computing, Volume 5, Issue 1, Feb 2001, pp 29-33

htto:/Iwww.dfki.deHamesonlpdf/pete01 .jameson.pdf (last accessed on 24 April

2006)

Jembere, E., Adigun, M. a., Xulu S. S. (2007). Mining Context-based User

preferences for Mm-Services Applications: In Proceedings of the 2007

IEEElvVICIACM International Conference on Web Intelligence (W1'2007), Silicon

Valley, USA, 2-5 November 2007 (Still to be published)

Jembere, E., Adigun, M.a., Xulu, S.S., Emuoyibofarhe a. J. (2006). A

Conceptual Model for Supporting Advanced Personalisation in Personalisation in

m-Services Applications; lASTED Intemational Conference on Software

Engineering and Applications (SEA 2006), Dallas, USA, 13-14 November 2006,

pp 567-573

Jorstad, I., Thanh, D. V., Dustdar, S. (2006). Service Personalisation in Mobile

Heterogenous Environments. In Proceedings of Advanced International

Conference on Telecommunications (AICT2006), Guadeloupe, French

Caribbean, February 19-22, 2006.

Jung, S. Y., Hong, J. H., Kim, T. S. (2003). A Formal Model for Preference, In

proceedings of the 2002 IEEE international Conference on Data Mining (ICDM'02),

Maebashi TERRSA, Maebashi City, Japan, 9-12 December 2002, pp 235.

Jung, S. Y., Hong, J. H., Kim, T. S. (2005). A Statistical Model for User Preferences,

IEEE Transaction on Knowledge and Data Engineering, Vol. 17, No 6, June 2005;

pp 834-843.

Kantardzic, M. (2001). Data Mining Concepts, Models, Methods, and Algorithms;

119

IEEE Press.

Kay, J., Kummerfeld, R. J. (2003). Managing Private User Models and Shared

Personas; In: k. Cheverst, B. N. de Carolis &A. Kruger, eds, 'UM03 Workshop on

User Modelling for Ubiquitous Computing', 22-23 June 2003.

http://www.di.uniba.iV-ubium03Ikay-4.pdf (last accessed on 24 April 2006).

Kiessling, W. (2002). Foundations of Preferences in Databases; In: Proceedings

2f!h Intemational Conference on Very Large Databases (VLDB 2002), Hong Kong,

China, 20-23 Aug 2002 http://www.vldb.orglconfI2002lS09P04.pdf (Last accessed

on 24 April 2006)

Kiewera, M. (2005). Iterative Discovering of User's Preferences Using Web Mining;

Intemational Joumal of Computer Science &Applications, Vol.lI, No.l/, pp 57-66.

Kim, C., Kim, J. (2003). A Recommendation Algorithm Using Multilevel Association

Rules, In Proceedings of the IEEEJWIC International Conference on Web

Intelligence (WI'03), Beijing, China, 13-17 October 2003, pp 524 - 527

Klan, F. (2006). Context-aware Service discovery, selection and usage; In

Proceedings 1f!h G/-Workshop on the Foundations of Databases, Wittenberg,

Saxony-Anhalt, June 2006, http://hnsp.inf-bb.uni-jena.de/DIANE

Idocs/GvD06.pdf. (Last accessed 29 march 2007)

Klevecz, B. (1999). The Whole EST Catalog" Scientist 12 (2): 22 Jan 18 1999

Kobsa, A. (2001). Generic User Modeling Systems. User Modeling and User­

Adapted Interaction 11 (1-2), 49-63. http://www.ics.ucLedu/-kobsalpapers/2001­

UMUAI-kobsa.pdf. (last 29 March 2007)

Kobsa, A., Fink, J (2003). Performance Evaluation of User Modeling Servers

120

Under Real-World Workload Conditions. In: P. Brusilovsky, A. T. Comett and F.

de Rosis, eds: User Modeling 2003: 9th International Conference, UM 2003,

Johnstown, PA, Springer Verlag (LNCS) , pp 143-153.

http://www.ics.ucLedu/-kobsalpapers/2003-UM-kobsa.pdf. (Last accessed 29

March 2007)

Mamei, M., Zambonelli, F., Leonardi, L. (2003). Tuples On The Air: A Middleware

for Context-Aware Computing in Dynamic Networks; In the 1st International

ICDCS Workshop on Mobile Computing Middleware (MCM03), Providence,

Rhode Island. May 2003. http://citeseer.ist.psu.edu/cache/papers/cs

132918/http:zSzzSzzeus.elet.polimLitzSzis-manetzSzDocument izSzpap-dismi­

11.pdf/mamei03tuples.pdf (Last accessed on 29 June 30, 2006).

Mantyjarvi, J., Himberg, J., Korpipaa, P. & Mannila, H. 2001. Extracting the

context of a mobile device user. In Proceedings of the International Symposium

on Human-Machine Systems (HMS), Kassel, Germany, pp 445-450.

Montgomery, L. A., Faloutos, C. (2000). Trends and Patterns of WWW Browsing

Behaviour. http://www.andrew.cmu.eduluser/alm3/paperslweb%20trends.pdf

(Last accessed on 29 March 2007)

Niederee, C., Stewart, A., Mehta, B., Hemmje, M. (2004). A Multi-Dimensional,

Unified User Model for Cross-System Personalization; In Proceedings of the

Workshop on Environments for Personalized Information Access Working

Conference on Advanced Visual Interfaces AVI 2004; Gallipoli, Italy, May 25,

2004, pp 34-54. http://www.dLuniba.itlavi2004/e4pialEPIA2004 proceedings.pdf

(Last accessed on 23 February 2007)

Pashtan, A. (2004). Mobile Web Services pst Edition); Cambridge University

Press, The Edinburgh building, Cambridge CB2 2RU, UK

121

Paulson, P., Tzanavari, A (2003). Combining Collaborative and Content-Based

Filtering Using Conceptual Graphs. In J.Lawry, J.G.Shanahan and A.Ralescu

(eds.): Modeling with Words: Learning, Fusion, and Reasoning within a Formal

Linguistic Representation Framework, LNA12873, Berlin Heidelberg, pp 168-185

Resnick, P., lacovou, N., Suchak, M., Bergstrom, P., Riedl, J. (1994). Grouplens:

An Open Architecture for Collaborative Filtering of Netnews; In Proceedngs of

ACM Computer Supported Cooperative Work, Chapel Hill, pp 175-186

Riva, O. (2004). A Conceptual Model for Structuring Context-Aware Applications;

Forth Berkeley-He/sinki student workshop on telecommunication Software

architectures; University of Berkeley USA; 2004.

Riva, 0., Flora, C. (2006). Controy: A Smart Phone Middleware Supporting

Multiple Context Provisioning Strategies; 2nd International Workshop on

Services and Infrastructure for the Ubiquitous and Mobile Internet (SIUMI'06), at

the 26th International Conference on Distributed Computing Systems

(ICDCS'06), Lisbon (Portugal), 4-7 July 2006.

www.cs.helsinkLfIlu/rivaJpublications/riva siumi06 paper.pdf (Last accessed

on 29 June 2006).

Schafer, J. B., Konstan, J. A, Riedl, J. (1999). Recommender Systems in E­

Commerce; In Proceedings of the ACM Conference on Electronic Commerce,

Denver, Colorado, USA, 3-5 November 1999.

Schmidt, A, Adoo K. A., Takaluoma, A, Tuomela, U., Laerhoven, K. V., Velde,

W. V. (1999). Advanced Interaction in Context; Lecture Notes in Computer

Science, htto:J1citeseer.ist.psu.edulcache/paperslcsl12585/htto:zSzzSzwww.teco

.uni-karlsruhe.dezSz-albrechtzSzpublicationzSzhuc99zSzadvanc ed interacti

on context.pdf/schmidt99advanced.pdf (last accessed 24 April 2006)

122

Shyu, M. L., Haruechaiyasak, C., Chen, S. H., Zhao, N. (2005); Collaborative

Filtering by Mining Association Rules from User Access Sequences; In

Proceedings of 2005 International Workshop on Challenges in Web Information

Retrieval and Integration (WIRI2005), Tokyo, Japan, 8-9 April 2005, pp 128-135,

http://www.cs.fiu.edu/-chens/PDF/\/vIRI05.pdf (Last accessed 29 March 2007)

Sicilia, M. A, Garcia, E. (2004). On the Use of Bipolar Scales in Preference­

Based Recommender Systems,in Proceedings 5th International Conference on

Electronic Commerce and Web Technologies (EC-Web 2004), zaragoza, Spain,

August 31-September 3, 2004; pp 268-276

http://citeseer.ist.psu.edu/cache/papers/cs2l93/http:zSzzSzwww.cc.uah.eszSzm

siciliazSzpaperszSzSicilia ECWEB 2004.pdf/sicilia04use.pdf (Last accessed on

12 June 2007)

Tintarev, N., Masthoff, J. (2006). Similarity for News Recommender Systems;

http://www.csd.abdn.ac.ukHmasthof/Publications/\/VPRSIUI06.pdf (Last

accessed on 12 June 2007)

Toivonen, S. (2004). Hybrid service provision model for mobile users: Prospects

for the DYNAMOS project. In Proceedings of the 11th Finnish Artificial

Intelligence Conference (STeP 2004), Vantaa, Finland, September 1-3, 2004,

Volume 2. (2004), pp 183-192 http://virtual.vtt.filvirtuallproj2

Idynamos/pubsftoivonendynamos.pdf (Last accessed 29 March 2007)

Tompson, M. S., Midkiff, S. F. (2005), Service Description for Pervasive Service

Discovery; In Proceedings of the 2~ IEEE International Conference on

Distributed Computing Systems Workshops (ICDCSW05),

Columbus, OH, USA, 6-10 June 2005, pp 273 - 279

Tseng, V. S. M., Lin, K. W. C (2005). Mining sequential mobile access patterns

efficiently in mobile Web systems; In Proceedings of the 19t/' International

123

Conference on Advanced Information Networking and Applications, 2005 (AINA

2005), Volume 2,28-30 March 2005, Taipei, TAIWAN; pp762 - 767

Wang, Q., Balke, W., Kiessling, W., Huhn, A. (2004); P-News: Deeply

Personalized News Dissemination for MPEG-7 Based Digital Libraries; In

Proceedings of the European Conference on Digital Ubraries (ECDL), Bath,

London, UK, September 12-17, 2004, pp 256-268

Yang, Q., Knoblock, C. A., Wu, X. (2004). Guest Editors' Introduction: Mining

Actionable Knowledge on the Web, Intelligent Systems

Volume 19, Issue 6, Nov.-Dec. 2004, pp 30 - 31

Yang, Y., Williams, H. M., Pooley, R., Dewar, R. (2006). Context-Aware

Personalization in Pervasive Communications; In Proceedings of the IEEE

International Conference on e-Business Engineering (ICEBE'06) , Shanghai,

China, October 24-26, 2006, pp. 663-669

Zheng, T., Iyengar, V. S. Recommender Systems Using Linear Classifiers,

Journal of Machine Learning 2(2002), pp 313-334.

124

APPENDIXA

User Preference Profile DTD

<?xml version="1.0" encoding ="UTF-8"?>
<!-

->

<!-

Title
Descrption
Date
Author

UserPreferenceProfile
Document Type Definition for the persistent storage of user preference profiles
05.01.07
Edgar Jembere

->

UserPreferenceProfile is the root element
Profiles can be stored for several users

<!ELEMENT UserPreferenceProfile

<!-

(Userldentifie"»

Each user is identified by the unique name and may have several User Preferences Profiles
->

<!ELEMENT Usertdentifier
<!ATTLIST Userldentifier

<!-

(UserPreferenceProfileData+»
Value CDATA #REQUIRED>

Each user has preferences preference under different domains
->

<!ELEMENT UserPreferenceProfileData
<!ATTIJST UserProfileData

<!-

(Conlext+»
Value CDATA #REQUIRED>

A context is specified by a specific unique key determined by the context model
->

<!ELEMENT Conlext
<!ATTLIST Context

<1-

(TImeStamp, Altribute+»
Value CDATA #REQUIRED>

TimeStamp contains the date and Time when a preference was mined.
->

<!ELEMENT TJrneStamp
<!ATrUST TImeStamp

<!-

EMPTY>
daleTIme CDATA #REQUIRED>

An Attribute has one or more featuresJ attribute values
->

<!ELEMENT Attribute
<lATTLIST Attribute

<!-

(AttributeValue+»
Value CDATA #REQUIRED>

An Attribute Value is defined by the Attribute Value name (Key) and a preference value (Value)
->

<!ELEMENT Attr1buteVa[ue
<!ATTLIST AttributeValue
<!ATTUST AttributeValue

EMPTY>
Key CDATA #REQUIRED>
Value CDATA #REQUIRED>

125

APPENDIX B

Preference Repository DID

<?xml version="1.0" encoding ="UTF-8"?>
<!-

->

<!-

Tille
Descrption
Date
Author

Preference Repository
Document Type Definition for the persistent storage of user preferences
02.11.06
Edgar Jembere

->

PreferenceRepository is the root element
Preferences can be stored for several users

<!ELEMENT PreferenceReposilory

<!-

(Usertdentifier"»

Each user is identified by the unique name and may have several preferences
->

<!ELEMENT Usertdentifier
<!ATnIST Usertdentifier

<!-

(PreferenceData+»
Value CDATA #REQUIRED>

Each PreferenceData (Domain) has one or more contextlsituation(s} under which a given user's preference can
be defined

->

<!ELEMENT PreferenceData
<!ATILIST PreferenceData

<!-

(Context+»
Value CDATA #REQUIRED>

A context is specified by a specific unique key determined by the context model. This part of the OTD can be
adapted to application-specific needs.

->

<!ELEMENT Context
<!ATTUST Context

<!-

(TImeStamp, Preference+»
Value CDATA#REQUIRED>

TimeStamp contains the date and Time when a preference was mined.
->

<!ELEMENT TlfT1eSlamp
<!ATTLIST TimeStamp

<!-

EMPTY>
dateTime CDATA #REQUIRED>

Preference defines a user preference by using the Preference type.
->

<!ELEMENT Preference (POS
ISTRONG_NEG
I SOFT_NEG
IPOSPOS
IPOSSTRONG_NEG
I POSSOFT_NEG

126

I SOFT_NEGSOFT_NEG
I POSSOFT NEGSOFT NEG- -
I SOFT_NEGSTRONG_NEG
I EXPLlCITITEM
I EXPLlCITPOS
I EXPLlCITSOFT_NEG
I POSEXPLlCITSOFT_NEG
I EXPLICIT POSEXPLlCIT SOFT NEG
» - --

<!-
P~S Preference
POSSet Set of positively prefered valuesrrt:ems

->

<!ElEMENT POS
<!ATILIST POS
<!ELEMENT POSSel

<!-

(POSSel»
all CDATA #REQUIRED>
(Value+»

Auxiliary definition for the values of a POS-set, SOFT_NEG-set, e.t.c.
->

<!ELEMENTValue
<lArruST Value

<!-
SOFT NEG Preference
SOFT:NEG-set Set of soft negative valuesfrtems

->

<!ElEMENT SOFT NEG
<!ATILIST SOFTjiEG
<!ElEMENT SOFT_NEGSet

<1-

EMPTY>
val CDATA#REQUIRED>

(SOFT_NEGSet»
all CDATA #REQUIRED>

(Value+»

STRONG NEG Preference
STRONG::NEG-5et Sel of strong negative values/items

->

<'ELEMENT STRONG_NEG
<'ATILIST STRONG_NEG
<'ELEMENT STRONG_NEGSet

<!-
POSPOS Preference
POS1-set: set of positive values
POS2-set set of alternative positive values

->

<!ELEMENT POSPOS
<!ATTLlST POSPOS
<!ELEMENT POS1Sel
<'ELEMENT POS2Sel

<!-
POSSOFT_NEG Preference
POS-set set of positive values
SOFT_NEG-set: set of soft negative values

->

<!ElEMENT POSSOFT_NEG
<!ATTLlSTPOSSOFT_NEG

<!-
POSSTRONG_NEG Preference
POS-5et set of positive values
STRONG_NEG-set set of strong negative values

->

(STRONG_NEGSel»
all CDATA #REQUIRED>
(Value+»

(POS1Set, POS2Set»
all CDATA #REQUIRED>
{VaJue+}>
(Value+»

(POSSel, SOFT_NEG5eI»
all CDATA #REQUIRED>

127

<'ELEMENT POSSTRONG_NEG
<!AT11.IST POSSTRONG_NEG

<1-
SOFT_NEGSTRONG_NEG Preference
SOFT_NEG-set: set of soft negative values
SOFT_NEG-set: set of soft: negative values

->

<'ElEMENT SOFT NEGSOFT NEG
<'AT11.IST SOFTjlEGSOFTj~'EG
<!ELEMENT SOFT_NEG1 Set
<!ELEMENT SOFT_NEG2Sel

<!-

->

<!ELEMENT POSSOFT NEGSOFT NEG
<lAT11.IST POSSOFTj;jEGSOFTjiEG

<!-

(POSSe!, STRONG_NEGSet»
att CDATA #REQUIRED>

(SOFT_NEG1Set, SOFT_NEG2Set»
att CDATA #REQUIRED>
(Value+»
(Value+»

(POSSet, SOFT_NEG1Se~ SOFT_NEG2Set»
att CDATA #REQUIRED>

SOFT_NEGSTRONG_NEG Preference
SOFT_NEG-set: set of soft negative values
STRONG_NEG-set set of alternative soft negative values

->

<!ElEMENT SOFT NEGSTRONG NEG
<'AT11.IST SOFTj;jEGSTRONGjiEG

<!-

(SOFT_NEGSe~STRONG_NEGSet»
att CDATA #REQUIRED>

EXPLlCITPOSCATEGORICAL: defines preference categories when we have more
than two(2) POS preference categories

->

<!ELEMENT EXPLlCITPOS
<lAT11.IST EXPLlCITPOS

<!ELEMENT CATEGORY
<lAT11.IST CATEGORY

(CATEGORY+»
att CDATA #REQUIRED>

(Value+»
att CDATA #REQUIRED>

<!-
EXPlICITSOFT_NEGCATEGORICAl: defines preference categories when we have more
than one (1) SOFT_NEG preference categories

->
<'ElEMENT EXPLlCITSOFT_NEG
<'AT11.IST EXPLlCITSOFT_NEG

(CATEGORY+»
att CDATA #REQUIRED>

<!-
POSEXPUCrrSOFT_NEG: defines preference categories when we have one (1) POS category and more than one

(1) POS preference categories

->

<!ELEMENT POSEXPLlCITSOFT_NEG
<!ATTLlST POSEXPLlCITSOFT_NEG

(POSSet,CATEGORY+»
att CDATA #REQU!RED>

<1-
EXPLlCITPOSEXPLlCITSOFT_NEG: defines preference categories when we have more thanone (1) POS category

and more than one (1) P~S preference categories

->

<'ElEMENT EXPLlCITPOSEXPLlCITSOFT_NEG
<lAT11.IST EXPLlCITPOSEXPLlCITSOFT_NEG

128

(CATEGORY+, CATEGORY+»
att CDATA#REQUIRED>

APPENDIX C

Class Diagram

I
0 ..~ r- -- --- ---------- _

ItemPr",lcr...nCl'"
O.n:

:1.'-">.....
~..

1--"_=_"_"_'~_'"_~_'_~~k~'~:;:..'~'~"_'O_' -r:U_"S'_ _
· ~" \,'U-...,,~,I,<:, I.",;.;oil,),,-.(111·\" \","'"
'.'d \.""",I"~.l',,,~,I:I") \~.1."

•~'<tF.":I,un:Pr"h.~,-nc",,('\\ ,", " \ .."tor
-~"'"L""J<c"",,?,,'Nbh'~I'V~,"'r

· g~' I·~..=r.dcn:"'- , \,"-.."

~,-------,
u.* ,,

------- ----

---------.,,
,
,
L _

,------
,,,

~ ,
------- .. I

"~ .·0'10------ ..

-""""ID L<ll

--.iorn.Il"-~

."llll!<:UJD UI1

--numOf&-kcliOll>.doubIc
-teul'urnRa."OOI.J..",bi<:

It>rolSclectionOblect

--a1D1"""-'. SInm!
,~nrII>llk:V:w"", MI<ng
"nUJnh",~J~.'lw<b <.\uubl~

,ID nU
'<i.lm.iln:~m""

FearureSclectlonObject

r- "_.__jr-C-._'_._.,--------------------------

-dumalll.~lring

-numOfl"""", d<>ubl<'
-OoJ'ILlm:Slnn"
-Almhuh:. s~"
....;mnt>me\-alll". Smn:;
--nlll:nFeJ.lun:Ol:~'Ul'CflC."' . .lotJblc

~~"tl>~l-'l) \<:<.1':"
-lleml""",,,n.;,,,,, I V"'lOr

Record

-lug-ID. im
......'10- 1nl
~,,,,,,",,,,lD. ,,"
..-....-......~llD·IJ1i

~''''''']l)-'n'
,,,,k.:"'<LmL.;u.l:

Pn:terenceClll~t.:rs

("'mul ml
• S')h'''''"..t~ Wul-I.-
- Prd,r.n<,-el~"'= L"lu.>l,.... lb'.-all

_IJn.lOpl1ltl.lln""""'Jl~ un
• "'C-~I.:Prdc·"'.....c>{·I","',""ll. CIU".:rOt>I,"'I!:

Prd...'1".:m::CCal~gon~

·I}.owP.""" h ... t",
. ~l'hl•.,jlnr"l \~","'II

D.>nl""""'~:'>.<r""''' Vc",...

~[}~taP"H1t>l1 \',....,'"
, I "mb,,,,,l'r",c"'""'c'" I""~N 1. \C"I....
- ,pl"Jnpu" l \ ~",o'1l

_• ,,"~l<rr< ,c""',<'l·... l<~vne'>' I. \'0:..1<)<

-">I)ft!"d.,.""",-(~,,·~.....) \,....'"

n.-

Prt'fcn::nc~

:u:..::;
I ..

I__="":'='o:~=":'"="":' :":"~:::'---l "~ f-::~(~·,~"~·'~'"~n~'~,I~P,2'~·,~',;,:":·':·':...-i-'--~:.:.,I Ha" a
.frr,,(·<o'~'0" \~ - Preh:ren"~ Pcekr~."cc

....,."'·oJmC><"I>o.l.oI'vr» \",,'vr - U,"fI1>. V",,"'r I
• P...s.lnl

~;;."IR.....ornn""'<l"""'")\ ,<1<><

XMLRepositories Ii

·
··
, .
,
,-----_ ... ,

-------_.

Prefcrence

·r..un" ~!Jlne

.p"J,"-,,~ \,ct-..
o.•

-l.....:rl'rd...,...-n.:cProfik \ ,'"
• L,.J.kT.IlI"i,·,....0<l<:N,,&:
· t."'rPrd~""t,.eProflkDJt:l.... ...J.: ,,>&.'
l.>n'",~,""""'" ,,,J,:

· Tlill,,~"'od.: :'>.UIk
- Ar:nb\lld.... ><k l'o..><k
· .\u.n""1.:\:"1",'0<1:>Jo;

UserPrefercnceProfik

· Cr.·"'ePrclc"','1t<·,-.l J J'rd~'TI.'tIc"

U",,"" - ~ .."t:'>umP""""<:t) rnlr··-··'. --.J

u",,'"

PcfercnccR,:poSllory

· L.....,-]J<:n1JJi,.,....(",k~odc
- Pn:lcn:n.;e[}~L:l"'ud.:0<1.:

_("<>n\C~,"'od.: "'<"o<3c-
- Tu""Sulllp!'\.><iL:· ,.>do:
· Pn:f""c"Tll:"~"JI,kl\w.­

Pn:1<'f"nccV~j",,!,\ud~' !'\<JJc.

,,
'.'AdjacencyMatrixGrnpb

f'ruduo:t~: "·...."lur
- AdJa.;.:ncyMatn1l: .-\d}'lC~""}\talm:Groph
- f:d~t:'>~L>nu:ml/][J

-1n_axEdh't">·\btrv;; ,,\lOO
_f malDAG DAti

+ M....\Im.lI\'alu~ "<Xl''!"

",eaIo:"'oJl",,~.....,\blr,~() AdJ""~ \l.urn{ir.lr>h
· =.ili:fd...",,~IJUL~' ,. mti III
-~\'ecll)fO \",,11)1

E'qlhcitPrcferenc~

-""J....~l>C~"'Iauv..· imfl[]
- oIdJaoxno;,.Mam.xlv~·i"Il
- m<iaC"um.'1lI\<'"II<'"X·UU
"ob)",''''''''''''''}' Oh,,,,-·,n
· ,""'coMap.H.....h\1,,1'
- rc'1t1llHlmglu.'1I1-': Ha.-J!"lap

DAG I

+ :iJJV""~x· \U1d
,. J<lJfdl!~' "Old
• ~L-\J)-;"~."cyr'..mI.\L>IrU(~.\rr."L""
-l!~"!~JJ:lO..""\.crn.::.:..) la'fJll<v
T gelEd;.'C\\".~u)· 1nl
T g~'tPr"d,""""lr'il);hcr~I"f

+ rcm.n,E.k<.11 '[>Id
-,...:mo',V~-na..): H.1--.h.\t-'P

_cn:-.ll~L","!ld.:nuJ;er".M) "ode
_c"C"'cl'r.·k,,,,,,,~D~I:IC>iu.l<.i lx
_er=c,""nl"",Ir...U<kt I "'Olk

e"'~ld·r"J""t:n<:r:!'.udetl. "'oJc
_cn:-.lIeTllllCS=I':'>o.l<kl) :'>00.:
• Cn:au:.\Ilnt>lJ.I,... :IJ""....o.k1).C>iod.:

- ."I~~t"L ""I.kntllie""'kiJ !'\'-'<k
· ,·.,.~I.·Pn:I'=...d'rof,ldht.l.~,...:.."tI !'<udc
· wc..'., "m",,:'>..>J.:, I .,,',!c
",'~I~.\llnlnM,J."!l '<l<lo:

• .:r...-..'dlmeSl.>mr:'>,.u..11 !'>od,.

c"'.:.>'~A!lnbIMVJ;""...,1<kt r "'OOe
· u;><:JtdJ.",,,m,,,m I. \uld

129

APPENDIX D

Formalisation of the Categorical Preferences as

Strict Partial orders
This section serves to show that the presented user preferences representation is strict

partial order. Two properties of strict partial order preferences presented in (Kiessling,

2002), hierarchical properties and duality of preferences will be presented.

A.D.1 Preferences Hierarchies

From the preference framework presented in (Kiessling, 2002) preferences can be

arranged in hierarchies. Given constructors C1 and C2, C1 is a preference sub­

constructor of C2 (Cl :0:; C2)', if the definition of C1 can be obtained from the definition of

C2 by some specializing constraints.

/ ~"=-~""-=-'= ~

EXPLICIT_POS EXPLIClT_SOFf_NEG
EXPLIClT_POS/SOFf_NEG

POSIEXPLIClT_SOFf_NE

POS/POS

Figure D. 1: Preference Hierarchies

I ~ denotes "is a sub-eonstructor of'~ and not "'less than or equal to"

130

Based on this argument the preference hierarchy of base preference constructors in

Figure D.1 is derived as follows:

- STRONG NEG ~ POS , if POS - set = 0 .

- STRONG _ NEG ~ son NEG, ifSOFT _ NEG - set = 0.

- POS ~ POS / POS ,if POS2 - set = 0.

- POS ~ POS / son NEG, if SOFT _NEG-set =0.

- SOFT _NEG5,SOFT _NEG/SOFT _NEG, if son_NEG2-set=0.

- SOFT _NEG 5, pas / SOFT _ NEG, if pas - set = 0

- pas / pas 5, EXPLICIT _ pas, if EXPLICITp - graph = (POSJ- set)~ El) (POS2 - set)~2.

- SOFT NEG / SOFT NEG": EXPLICIT SOFT NEG, if EXPLICIT SN - graph =

(SOFT_NEG1-set)~El) (SOFT_NEG2-set)~.

- POS / SOFT NEG 5, pas / EXPLICIT SOFT NEG. if EXPLICIT SN - graph

if

(SOFT _ NEG - set)~ .

- pas/SOFT NEG":EXPLICIT pOS/SOFT_NEG, if EXPLICIT - graph = (POS-set)~.

- paS! EXPLICFCSOFT_ NEG.,: EXPLIC/~ POS/ EXPLICnSOFT_NEe, if EXPLlCITp - graph =

(POS -sel)~.

- EXPLICITPO S / SOFT NEG.,: EXPLICIT _pas / EXPLICIT _SOFT _NEG ,

EXPLICFf.-graph= (SOFT _NEG-set)~.

- EXPLICITPO S 5, EXPLICIT pas / EXPLICIT _ SOFT _ NEG , if EXPLICII;;N - graph =0.

if- EXPUCITSOFT _NEG 5, EXPLICIT _POS / EXPLICIT _SOFT _NEG,

EXPLICIT p - graph = 0 .

AD.2 Duality of Preferences

According to the preference algebra presented in (Kiessling, 2002), Strict Partial order

preferences have the duality property.

2 EB denotes the linear sum preferences and .- marks an anti-chain preferences as defined in (Kiessling,

2002)

131

Definition A.D.1

For two values a and b the dual data-driven preference a -<~D b holds if and only if

b-<PD a.

Proposition A.D.1

For the data-driven preferences POS and SOFT_NEG, we have the following duality

correlations:

POs' = SOFT _ NEG and SOFT ~ NEG' = pos

Proof

POSa denotes that all values of POS-Set have negative preference values. :., we have

a SOFT_NEG preference

Proposition A.D.2

For the data-driven preferences POS/POS and SOFT_NEG/SOFT_NEG, we have the

following duality correlations:

POS / pos' ~ SOFT NEG ISOFT NEG and SOFT _ NEG ISOFT _ NEG' = POS I POS

Proof

pos / pos a denotes that all values of POSl- Set have lesser negative preference

values than all value of POS2 - Set This implies that we have

SOFT _NEGI-Set{POS2-Set} and SOFT _NEG2-Set(POS I - Set). Therefore we

have SOFT NEG / SOFT NEG

Proposition A.D.3

A POS/SOFT_NEG is dual to itself. Thus we have the following duality relation:

POS / SOFT _ NEG C = POS / SOFT _ NEG

Proof

132

POS I SOFT _ NEG" denotes that all values of POS - Set have negative preference

values and all the values of SOFT NEG - set have positive values. Therefore we a

POS I SOFT _ NEG preference

Proposition A.D.4

For the data-driven preferences POS/EXPLlCITSOFT_NEG and

EXPLlCTPOS/SOFT_NEG, we have the following duality correlations:

POS / EXPLICITSO FT _ NEG a = EXPLICITPO S / SOFT NEG and

EXPLICTPOS / SOFT _ NEG' = POS / EXPLICTl7S0FT _ NEG

Proof

pos / EXPLICITSO FT NEG adenotes that all values of POS - Set have negative

preference values, CATEGORY1 have the least positive values followed by

CATEGORY2 then CATEGORY3 up to CATEGORYN, which have values with the

highest positive preference values. Therefore, we have EXPLICITPOS I SOFT _ NEG

Proposition A.D.S

A EXPLICITPOS / EXPLICITSOFT NEG preference is dual to itself. Thus we have the

following duality relation:

EXPLICITPOS / EXPLICI7S0FT NEG' = EXPLICITPOS / EXPLICI7S0FT NEG

Proof

The proof of this proposition follows from the proof of Proposition A.D.4 by replacing the

POS set with n EXPLlCITPOS sets and the SOFT_NEG set with m

EXPLlCITSOFT_NEG sets, where n = 2, 3, 4... and m= 2, 3, 4....

133

	Declaration
	Dedication
	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abstract
	Chapter 1: Introduction
	Chapter 2: Literature review
	Chapter 3: Model development
	Chapter 4: Prototype design and implementation
	Chapter 5: Concusions and future work
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D

