

A Model-Based Service Customization Framework
for Consumer Variability Management in

Service-Oriented Architectures

by

Sandile Wilmoth Dlamini

(200702501)

A dissertation submitted in fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science and Agriculture

Department of Computer Science

University of Zululand

KwaDlangezwa

RSA

Supervisor: Prof. M.O Adigun

Co-supervisor: Mr. P. Tarwireyi

2014

i

DECLARATION

I, Sandile Wilmoth Dlamini, hereby declare that except where due acknowledgement has been

made, this dissertation describes my own research work; and the work has not been submitted

previously, in whole or in part, to another tertiary institution for any other degree or professional

qualification.

Signature: ____________

Date: ________________

ii

DEDICATION

This dissertation is dedicated

 to my family

iii

ACKNOWLEDGEMENTS

The successful completion of this research has been made possible through the contributions of

many people for the past two and half years. Their contributions came in different forms and

were very important to the accomplishment of my study. Thus, I would like to express my

appreciation for their help and support, and show my gratitude.

First, I would like to appreciate and thank God the Almighty, for giving me the strength to rise

out of a large number of difficult circumstances to finish the journey I have started; and for

teaching me how to develop patience with persistence, and how to be strong but compassionate.

Many thanks go to my supervisors, Professor Matthew O. Adigun and Mr. Paul Tarwireyi, for

giving me advice, support and guidance without pushing too hard; and for being so patient and

understanding all the way. This work would never have been possible if it were not for the

freedom they gave me to choose an important and controversial research topic that interested me.

I am grateful to the members of the Centre of Excellence for Mobile e-Services, particularly, Mr.

Edgar Jembere for fruitful discussions and feedback on early drafts of this dissertation, although

he had a busy schedule himself.

I would also like to thank Telkom SA SOC Limited for their financial support during the course

of this research.

Finally, I would like to express my appreciation and thanks my family and friends, for being

there when I needed them; and for putting up with my obsessive and endless rants about all the

various problems encountered throughout.

iv

ABSTRACT

In today‘s service-oriented business environments, the standard Publish-Find-Bind model as

embodied by the Service-Oriented Architecture (SOA) paradigm presents a new strong challenge

in the consumption and applicability of services to its consumers. This is because services in

SOA-based environments are not built and published for predefined consumers; rather they are

advertised for potentially many unknown consumers. Thus, they could be (re) used by various

anonymous consumers with varying requirements and business needs. Hence, to increase service

applicability and efficiency in the consumption of services, as well as to stay relevant in today‘s

global market economy, service providers are expected to provide services covering such a wide

variety of demands. However, they are still faced and have to deal with a number of problems

which need to be balanced.

Consequently, this research work addresses the problem of how to deliver customizable software

services, as a way to address and/or increase the applicability and efficiency in the consumption

of software services. In particular, this research proposed a service customization framework

called FreeCust, which exploits the feature modeling concepts or techniques from the Software

Product Line Engineering (SPLE) discipline.

The FreeCust framework as suggested in this research was constructed, validated, and evaluated

through practical use case scenarios, proof-of-concept prototype implementations, experiments,

and a comparative (static) analysis. This was to show its utility, technical feasibility, functional

correctness, and business benefits. The evaluation and validation results demonstrated that the

FreeCust approach has the potential or is appropriate for minimizing the complexities involved

in consumers‘ service customization processes and increasing service applicability.

v

TABLE OF CONTENTS

DECLARATION.. i

DEDICATION... ii

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF ACRONYMS .. xii

LIST OF PUBLICATIONS .. xiv

Chapter 1 ... 1

INTRODUCTION... 1

1.1. Research Context Overview .. 1

1.2. Problem Domain .. 3

1.3. Statement of the Problem ... 6

1.4. Rationale of the Study .. 7

1.5. Research Goal and Objectives ... 8

1.4.1. Research Goal ... 8

1.4.2. Research Objectives .. 8

1.6. Research Methodology .. 8

1.5.1. Literature Survey .. 9

1.5.2. Framework Development.. 10

1.5.3. Proof-of-Concept .. 10

1.7. Scope and Delimitation .. 11

vi

1.8. Definition of Key Terms .. 12

1.9. Structure of the Dissertation .. 12

Chapter 2 ... 14

BACKGROUND AND LITERATURE REVIEW .. 14

2.1. Introduction .. 14

2.2. Service-Oriented Architecture ... 15

2.2.1. Basic Component Types ... 16

2.2.2. Basic Design Principles .. 17

2.2.3. Implementation Technologies ... 19

2.3. The GUISET Project .. 22

2.4. SOA and GUISET Challenges ... 25

2.5. Software Product Line Engineering ... 26

2.5.1. Software Product Line .. 27

2.5.2. Model-Driven Development in SPLE ... 30

2.5.3. Variability Management ... 32

2.5.4. Feature Modeling .. 34

2.6. Overview of Related Work .. 37

2.7. Summary .. 40

Chapter 3 ... 42

DESIGN OF THE MODEL-BASED SERVICE CUSTOMIZATION FRAMEWORK 42

3.1. Introduction .. 42

3.2. Design Criteria ... 43

3.3. The FreeCust Approach ... 44

3.3.1. Framework Architecture ... 44

3.3.2. Extended Feature Model ... 49

vii

3.4. Example Application Scenarios ... 52

3.4.1. Live Match Score Application Scenario ... 52

3.4.2. Purchase Order Application Scenario ... 54

3.5. Summary .. 56

Chapter 4 ... 57

IMPLEMENTATION AND EVALUATION .. 57

4.1. Introduction .. 57

4.2. Implementation Overview ... 57

4.2.1. FreeCust in UML .. 58

4.2.2. FreeCust Underlying Technologies, Tools, and System Packages 61

4.2.2.1. The GUI-flavored Mechanism .. 63

4.2.2.2. The Feature Management Engine ... 64

4.2.3. FreeCust Proof-of-Concept Implementation... 66

4.2.3.1. The Development and Discovery of Software Service Feature Models 66

4.2.3.2. The Validation of Service Customization Requests ... 70

4.3. Experimental Evaluations .. 72

4.3.1. Usability Experiment .. 72

4.3.1.1. Experimental Design ... 73

4.3.1.2. Process, Results and Analysis ... 74

4.3.2. Request Validation Experiment .. 79

4.3.2.1. Experimental Design ... 80

4.3.2.2. Process, Results and Analysis ... 80

4.4. Experimental Evaluations Result Discussion .. 81

4.5. Comparative Analysis .. 82

4.6. Summary .. 85

viii

Chapter 5 ... 87

CONCLUSION AND FUTURE WORK .. 87

5.1. Research Summary .. 87

5.2. Conclusions .. 89

5.3. Review of the Research Methodology and Contributions ... 91

5.4. Limitations and Future Work ... 94

BIBLIOGRAPHY ... 96

APPENDICES ... 112

Appendix A: Consent Form .. 112

Appendix B: Background Questionnaire (Pre-Experiment) ... 114

Appendix C: Usability Questionnaire (Post-Experiment) .. 115

Appendix D: Detailed Usability Evaluation Instructions or Task List 116

Appendix E: XMethods Demo Service Terms and Conditions .. 117

Appendix F: Live Match Score Service Feature Model and Consumer‘s Feature Configurations

Request in XML .. 118

ix

LIST OF FIGURES

Figure 1.1: SOA Architectural Model .. 2

Figure 1.2: Overview of the Research Methodology .. 9

Figure 1.3: Dissertation Structure, with Dependencies between Chapters 13

Figure 2.1: GUISET Architecture ... 24

Figure 2.2: SPL Engineering Overview .. 28

Figure 2.3: A Sample Feature Model Diagram ... 35

Figure 3.1: FreeCust Framework Architecture ... 45

Figure 3.2: Interaction Diagram of the Framework Components ... 48

Figure 3.3: Non-Functional Property (NFP) Model ... 49

Figure 3.4: Cardinality-Based Feature Model with Non-Functional Properties 50

Figure 3.5: A Sample Feature Model for the Live Match Score Service 54

Figure 3.6: A Simplified Purchase Order SaaS Feature Model .. 55

Figure 4.1: FreeCust Use Case Diagram... 59

Figure 4.2: FreeCust Activity Diagram .. 60

Figure 4.3: High-Level Layered Technological View of FreeCust Implementation 61

Figure 4.4: The Dependencies among the Core Packages that implemented the GUI-flavored

Mechanism .. 64

Figure 4.5: The Dependencies among the Core Feature Management Engine Packages 64

Figure 4.6: Provider‘s Live Match Score Service Feature Model in FreeCust 67

Figure 4.7: XMethods Service Directory .. 68

Figure 4.8: Automatic Selection of an Interdependent Feature (bet365) 69

Figure 4.9: bet365 Customization Request ... 70

x

Figure 4.10: Key Java Snippet for Validating Service Customization Requests 71

Figure 4.11: Participants Demographic Results (n=10) .. 75

Figure 4.12: Participants Task Success Levels (n=10) ... 77

Figure 4.13: Participants Cognitive Load Using a 7-point Semantic Differential Scale (n=10) .. 78

Figure 4.14: Ease of Use Results Using a 7-point Likert scale (n=10) .. 78

Figure 4.15: Overall Satisfaction Using a 7-point Likert scale (n=10)... 79

Figure 4.16: Service Customization Request Validation .. 81

xi

LIST OF TABLES

Table 4.1: Summary of Key Platforms and Frameworks Used In the Realization of FreeCust ... 62

Table 4.2: Usability Evaluation Tasks .. 75

Table 4.3: Comparative Analysis of Existing Service Customization Approaches 85

xii

LIST OF ACRONYMS

CBE Component-Based Engineering

CBFM Cardinality-Based Feature Modelling

CORBA Common Object Request Broker Architecture

CSP Constraint Satisfaction Problem

CSUQ Computer System Usability Questionnaire

DSL Domain-Specific Languages

ebXML electronic business XML

EMF Eclipse Modelling Framework

FAMA FeAture Model Analyzer

FODA Feature-Oriented Domain Analysis

FOPLE Feature-Oriented Product Line Engineering

FORM Feature-Oriented Reuse Method

FreeCust Feature Model-based Service Customization

GSD Generative Software Development

GUI Graphical User Interface

GUISET Grid-based Utility Infrastructure for SMMEs Enabling Technology

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

ISO International Organization for Standardization

JMS Java Messaging Service

MDD Model-Driven Development

xiii

MDE Model-Driven Engineering

NASA-TLX NASA Task Load Index

NFP Non-Functional Property

OOD Object-Oriented Databases

SaaS Software-as-a-Service

SAT Boolean Satisfiability

SMMEs Small, Medium and Micro Enterprises

SMTP Simple Mail Transfer Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPL Software Product Line

SPLE Software Product Line Engineering

SSDL SOAP Service Description Language

UBR UDDI Business Registry

UML Universal Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WSDL Web Services Description Language

WSIL Web Service Inspection Language

WSOL Web Service Offerings Language

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

xiv

LIST OF PUBLICATIONS

Parts of the work presented in this dissertation have been published in the following conference

and journal paper(s):

 S. W. Dlamini, P. Tarwireyi, and M. O. Adigun, ―On the Delivery of Consumer Variability-

Aware Services in Service-Oriented Architectural Environments,‖ In: Proceedings of the

16th Annual Southern Africa Telecommunication Networks and Applications Conference

(SATNAC), Spier Wine Estate, Stellenbosch, Western Cape, South Africa, 2013.

 S. W. Dlamini, P. Tarwireyi, and M. O. Adigun, ―Maximizing Web Service Applicability

and Consumption through Customization with Feature Modelling,‖ In: Proceedings of the

15th Annual Conference on World Wide Web Applications, CPUT, Cape Town, Western

Cape, South Africa, 2013.

 S. W. Dlamini, P. Tarwireyi, and M. O. Adigun, ―A Model-Driven Approach for Managing

Variability in Service-Oriented Environments,‖ In: International Journal of Information

Technology & Computer Science, vol. 8(1), pp. 91 – 97, 2013.

1

Chapter 1

INTRODUCTION

1.1. Research Context Overview

The University of Zululand‘s Centre of Excellence for Mobile e-Services is currently working on

a project called Grid-based Utility Infrastructure for SMMEs Enabling Technologies (GUISET).

This project was proposed by Adigun et al. (2006), as an infrastructure aimed at addressing the

problems of software and hardware acquisition experienced by resource constrained enterprises

such as Small, Medium, and Micro Enterprises (SMMEs) in Africa. In essence, GUISET was

motivated and informed by the following main reasons: (i) the inability of SMMEs to afford the

cost of owning Information and Communication Technology (ICT) infrastructures and services,

and (ii) the lack of ICT experts within SMMEs.

One of the key success factors of GUISET is the efficient delivery of ICT solutions that meet

consumer demands. Accordingly, to enable SMMEs to have access to ICT services on-demand,

in support of their business processes, GUISET leverages on service-orientation and implements

the Service-Oriented Architecture (SOA) paradigm. Thus, the challenges towards realizing SOA

are GUISET challenges as well.

SOA is an architectural paradigm that has recently become one of the preferred choices for

designing and developing systems that are characterized by coarse-grained services and service

consumers (Lewis, Smith, & Kontogiannis, 2010). One of the key motivating factors behind the

adoption of this paradigm is the capacity to deliver flexible ICT solutions, which have the ability

to respond quickly and prove cost-effective to changing business or consumer requirements.

2

According to Papazoglou and Heuvel (2007), the other key characteristic for the popularity of

SOA is that it addresses the requirements of loosely-coupled, standard-based and protocol

independent distributed computing, by mapping enterprise information systems to the overall

business process flow.

In SOA, software components are encapsulated as services. A service is a self-contained,

loosely-coupled and reusable business element or software artifact that can be advertised,

discovered and used in order to perform certain business operations or combined with other

services to produce value-added business applications (Papazoglou & Georgakopoulos, 2003).

For the provisioning and consumption of services, SOA embodies the model of Publish-Find-

Bind (see Figure 1.1), in which service providers offer their application functionalities as a

service (SaaS), by publishing and/or advertising them over a network (such as the Internet).

Service consumers then search and discover these services on-demand, based on their business

needs and requirements.

Figure 1.1: SOA Architectural Model (Papazoglou, 2003)

3

1.2. Problem Domain

Despite the major benefits and success of SOA in terms of its adoption, it is still facing some

challenges. SOA presents a strong challenge in the consumption and applicability of services to

service consumers. This is because services in SOA models are built with little or no knowledge

about service consumers, that is, they are not developed and published for predefined consumers;

rather they are advertised for potentially many unknown consumers. Hence, software services

could be used by a number of anonymous consumers with varying feature
1
 requirements and

business needs. In addition, to drive business competitiveness in today‘s service-driven business

environment, most business enterprises usually prefer services that are tailored to their business

needs. Therefore, to increase service applicability and efficiency in service consumption, service

providers are expected and/or required to provide services covering such a wide variety of

demands. However, they are still faced and have to deal with a number of problems which need

to be balanced.

First, in order for service providers to draw a significant number of service consumers, they need

to manage and take into account the varying requirements of their potential consumers, by

providing highly adaptable and flexible services. Second, to minimize development cost and

achieve economies of scale, they need to make sure that different variants of their services

preserve enough commonalities. According to Papazoglou and Heuvel (2007), service providers

rely on industry best practices to address requirements variability. However, they cannot cover

or handle all possible specific service consumers‘ requirements and business scenarios. Hence,

the management of consumer requirements variability is still one of the challenges facing SOA.

1
 A feature is a distinguishing characteristic of a software item (IEEE Standard Glossary of Software Engineering

Terminology, 1990).

4

One of the well-known approaches for dealing with consumers‘ requirements variability in SOA

is service versioning. According to Sarang et al. (2007), versioning in SOA is very important

because of re-usability. Versioning ensures that multiple implementations of the same thing can

co-exist. In SOA, service versioning equates to the co-existence of multiple variants of the

original service, which enables consumers satisfied with the original service to continue using it

unchanged, while ensuring that a new variant of a service is created to meet the needs of

consumers with different requirements (Woolf, 2007).

Another approach for managing requirements variability is through service customization (Frei,

2006), whereby service consumers are permitted to perform customizations in order to generate

specific service variants meeting their feature requirements and business needs. In its basic

form, service customization is described as a process whereby service consumers perform a set

of operations (e.g., modifying service interface description documents) to adapt a service to their

application scenarios. According to Stollberg and Muth (2010), this is a nontrivial task that

requires both technical knowledge as well as business expertise and hence, most business

enterprises usually appoint service experts to carry out this task. Moreover, there exist three

major challenges to providing customizable services in SOA, and these are: (i) reduction of

service customization complexities, (ii) validation of service customization requests, and (iii) the

dynamic deployment of customized services.

The first challenge emanates from the fact that modifying a service description document such as

the Web Services Description Language (WSDL) document is a daunting process, especially

since services support a plethora of possible customization options with a massive number of

dependencies scattered among those options. In addition, these dependencies are normally

5

expressed in natural language(s). For these reasons, it becomes a very complex task for service

consumers to perform service customizations. Because of the previously explained complexities,

the process of customizing a service can be a very error-prone process (Stollberg & Muth, 2009).

Thus, consumers‘ customizations need to be automatically validated, to make sure that they do

not breach any properties (i.e., functional and non-functional) described by service providers.

The last challenge results from the fact that in SOA, service consumers usually do not have

similar requirements and business needs. Thus, different customization requests can be

generated by service consumers, and the implementations of each specific service variant will

not be the same. Hence, to ensure that development time and computing resources are not

wasted, a mechanism to avoid redundant running of service variants should be employed.

To this end, and based on the literature, approaches for addressing requirements variability in

SOA can be classified into two categories: (i) design-time (service versioning) and (ii) run-time

(service customization) approaches. In the first approach, variant services satisfying specific

consumers‘ requirements are developed and deployed as individual services, meaning that

service consumers are the ones responsible for searching, binding and invoking appropriate

services. The second approach allows service consumers to perform run-time customizations in

order to generate specific services satisfying their needs. In examining these two approaches, if

there exist a small number of service consumers requiring variant services, the first approach is

considered simpler and requires less effort from service consumers. However, if the number is

very large (which is the case in today‘s service-driven business environments), the second

approach becomes more appropriate, because developing and deploying individual service

variants for each service consumer or for meeting all possible specific consumers‘ requirements

will result in development cost and computing resources being wasted. The development effort

6

will also be wasted because the commonality of the core requirements will not be exploited to

support reuse efficiently.

1.3. Statement of the Problem

From the foregoing discussion, it is clear that in today‘s service-oriented business environments,

the different business sizes (i.e., large and small), and the ever-changing requirements of service

consumers pose a great challenge in the applicability and consumption of services. Thus, to

enhance service applicability and improve the consumption of services in such environments,

mechanisms for handling and managing consumer-introduced variability (i.e., the variability

caused by the commonalities and differences in service consumers‘ requirements) are becoming

more fundamental. Hence, this work seeks to contribute by proposing a model-based service

customization framework. Various solutions do exist that attempt to address requirements

variability through enabling service customization in SOA, however, these solutions suffer from

a number of drawbacks (as discussed later in Chapter 2). One of the major drawbacks in these

solutions is that these solutions do not take into consideration the need to address the first

challenge in providing an efficient service customization solution. That is, they do not consider

reducing the complexities faced by service consumers when they are performing customizations.

Thus, a crucial research question that this work was formulated to investigate is:

1. How can we ensure that complexities involved in consumers‘ service customization

processes are minimized to a potential efficient level
2
?

2
 A level at which non-ICT experts (such as SMMEs) without good background knowledge in Web service related

technologies are able to customize software services.

7

The sub-questions that emanated from the central research question include:

a. How can a mechanism that enables graphical and/or visual representation of service

customization options be implemented?

b. Can possible interdependencies among service customization options be automatically

selected?

1.4. Rationale of the Study

As mentioned earlier, SOA has emerged as a cross-disciplinary and predominant architectural

paradigm for implementing large distributed systems that are characterized by business services

and service consumers (Hassanzadeh, Namdarian, & Elahi, 2011; Lewis, Smith, & Kontogiannis,

2010). However, with the continuing advancement and adoption of this (SOA) paradigm, and

the evolution of service-oriented systems, as well as the frequent change of consumers‘ demands

in service-driven business environments, the need for flexible business solutions that respond to

requirements and business context changes is becoming more fundamental. Hence, there is a

need for tools, methods, and mechanisms for supporting and managing variability, and improve

reuse in service-based environments. According to Cohen and Krut (2010), the development of

such tools and mechanisms is still on-going and solutions are still being sort. Thus, the work in

this dissertation aims at contributing to the ongoing research towards finding and developing

solutions for managing variability in service-oriented environments. In addition, this work also

aims at contributing to GUISET. This work will ensure that the GUISET infrastructure can, in

an ad-hoc manner and cost-effectively provide services that are highly adaptable and appropriate

to its consumers.

8

1.5. Research Goal and Objectives

1.4.1. Research Goal

The goal of this work was to develop a service customization mechanism with less customization

complexity, for managing consumer-introduced variability in SOA-based environments.

1.4.2. Research Objectives

The above goal was formulated as an equivalent of some lower-level objectives, which were:

(i) To investigate how service properties (functional and non-functional) should be

represented in order to support model-based service customization.

(ii) To investigate existing mechanisms and techniques used to facilitate customization

processes and for communicating customization options, which could enable or assist

service providers and service consumers in service customization processes.

(iii) To design and develop a model-based service customization framework.

(iv) To implement as a proof-of-concept prototype the framework developed in (iii) for

descriptive and experimental evaluations.

1.6. Research Methodology

The goal and objectives of this research were accomplished by means of following the design

science research methodology (see Figure 1.2): (i) establishment of state of the art, (ii) solution

design, and (iii) solution validation and evaluation, as described in software engineering and

computer science (Elio et al., 2008; Hevner et al., 2004).

9

The aforementioned research steps consisted of three major activities, namely literature survey,

framework development, and proof-of-concept. A brief overview of each of these activities is

respectively given in the following sub-sections: 1.5.1 to 1.5.3.

Literature

Survey

Objective

1

Objective

2

Step 1: State of the Art

Establishment

Framework

Development

Step 2: Solution

Design

Objective

3

Step 3: Solution

Validation & Evaluation

Objective

4

Proof

of

Concept

Research

Goal

Figure 1.2: Overview of the Research Methodology

1.5.1. Literature Survey

As compared to conventional service provisioning and consumption, service customization puts

into effect extra communications between service providers and service consumers. In other

words, there are additional operations that need to be in place for the delivery and consumption

of customizable services (e.g., propagation of customization request from the service consumer‘s

side to the service provider). Hence, an extensive literature survey on some of the recent trends

in the area of service computing, with special focus on how service customization is supported

was conducted. A comprehensive review of other software engineering disciplines such as SPLE

was also carried out, with the purpose of finding out how their methodology and paradigm

10

enable a flexible and adaptive system. Thereafter, an investigation on how services‘ functional

and non-functional properties should be represented and communicated in order to support

model-driven service customization was conducted. The information and knowledge gained

from these investigations helped in identifying an appropriate mechanism for describing and

communicating service variability information between service providers and consumers.

1.5.2. Framework Development

Based on the knowledge that was gained from the literature on what has already been achieved in

addressing the issue(s) of variability in SOA and the recent trends of service computing, software

product line and model-driven engineering, as well as the design requirements that were gleaned

from reviewing and analyzing existing service customization solutions, a set of design principles

that a complete service customization solution should support were drawn. A design of

FreeCust - a Feature Model-based Service Customization framework was then developed

according to the constructed design criteria.

1.5.3. Proof-of-Concept

This part of the research involved implementing and evaluating the developed service

customization framework as a proof-of-concept prototype. In particular, the implementation was

carried out using Eclipse, the Eclipse Modelling Framework (EMF), and some other relevant

open-source frameworks and tools in the fields of service computing and software product line

engineering. To demonstrate the applicability and utility of the proposed service customization

solution, real-life descriptive application scenario(s) were constructed. A number of controlled

experimental evaluations were also conducted to determine and evaluate the reliability and

efficiency of the FreeCust framework.

11

1.7. Scope and Delimitation

The focus of this dissertation was to develop a service customization mechanism for managing

consumer-introduced variability, i.e., the variability caused by the commonalities and differences

in the requirements of service consumers in SOA-based environments. This mechanism needed

to have less customization complexity. This, along with the duration of the research project, as

well as the considerations of the environment in which FreeCust would function, meant that the

major concern was to find appropriate tools and mechanisms to the specific research questions

and/or challenges addressed in this dissertation. Thus, the FreeCust prototype developed in this

dissertation is intended to demonstrate the proof-of-concept implementation (with special focus

on the simplification of the service customization process), rather than the actual realization of a

fully-fledged unified service creation environment for delivering customizable software services.

In brief, the process of customizing a software service involves both the service provider and

consumer. Hence, this process is generally seen and broken down into two major parts. That is:

(i) the part whereby service consumers comprehend customization options and perform service

customizations, and (ii) the part where service providers derive and deploy customized software

service variants and manage those variants.

The FreeCust proof-of-concept implementation and evaluations focus only on the first part. The

realization of the second part is beyond the scope of this dissertation. However, occasional

reference is made to the concepts related to this part (in the subsequent Chapters), for clarifying

the core issues related to the proposed FreeCust solution.

12

1.8. Definition of Key Terms

Due to the fact that some important terms could have varying definitions in the literature and

might cause confusion, this section provides definitions of such terms. The goal is to establish a

consistent level of understanding for terms used throughout this dissertation.

Functionality: captures an intuitive notion of the amount or quantity of functional and non-

functional properties contained in a delivered product or in a description of how the product is

supposed to be (Fenton & Pfleeger, 1998).

Feature: a feature is defined as a logical unit of behaviour of a software system or product that

satisfies functional and non-functional requirements. Features are a set of functionality by which

different software or service products can be created and distinguished (Bosch, 2000).

Software Product Line (SPL): is a family of software-intensive products that share a common

set of features, developed from a base set of core assets to satisfy a particular market segment,

while allowing a specific margin for differentiation to satisfy different and specific customers‘

needs (Clements & Northrop, 2001; Pohl, Bockle, & Linden, 2005).

1.9. Structure of the Dissertation

The remainder of this dissertation is structured as follows:

 Chapter 2 gives background information on the fundamental concepts that are crucial for

this dissertation and, a preliminary review of relevant research work, which establish a

foundation for the contents presented in the rest of this dissertation.

13

 Based on the understanding of the literature reported in Chapter 2, a conceptual design of

the FreeCust framework, as suggested in this dissertation is described in Chapter 3.

 Chapter 4 discusses the proof-of-concept implementation and reports on the experiments

conducted to evaluate the FreeCust approach (presented in Chapter 3). It also compares

FreeCust with other existing service customization solutions.

 Chapter 5 concludes the dissertation, outlines the contribution of this research work, and

discusses research issues needing further investigation.

Figure 1.3 provides an illustration of the overall dissertation outline and how the different

chapters relate to each other.

Figure 1.3: Dissertation Structure, with Dependencies between Chapters

14

Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1. Introduction

In today‘s global economy, business enterprises either small or large are striving for growth and

competitiveness in order to be at the cutting-edge. Moreover, to increase agility and flexibility

of their business processes, business enterprises face the need to quickly react to changes in the

market and business environments as such. The need to respond quickly and cost-effectively to

ever-changing market conditions and business environments led many businesses to service-

oriented architectures, where services are the fundamental building blocks that enable the reuse

of business functionalities within and across business enterprises (Papazoglou et al., 2007). As

reuse becomes more and more the driving factor for developing cost-effective, agile, and high

quality business solutions, services in service-oriented architectures could be (re) used by a large

number of anonymous service consumers. Although these consumers share the same vision with

regard to the offered services, their business needs, usage scenarios and applications are usually

different from one consumer to another or change from time to time.

As mentioned in the previous chapter, the aim of this research was to develop a model-based

service customization framework for managing consumer-introduced variability in SOA-based

environments. This chapter, therefore, provides background information on the fundamentals

and basic domain concepts used in this research and discusses existing relevant research work.

Section 2.2 gives an overview of the SOA paradigm. It describes SOA underlying components,

design guidelines, as well as implementation techniques. The idea of the GUISET undertaking is

15

provided in Section 2.3. Section 2.4 discusses the challenges of SOA that are similarly faced by

the GUISET infrastructure, particularly, the issue of variability management. In view of the fact

that variability management is the core subject in the field of SPLE, Section 2.5 is dedicated to

this engineering discipline. Section 2.6 discusses existing related work, while the chapter is

summarized in Section 2.7.

2.2. Service-Oriented Architecture

Over the past years, Service-Oriented Architecture (SOA) has attracted more and more interest

from both organizations and the research community. This comes from the fact that SOA

promises and/or enables the delivery of flexible ICT solutions to satisfy business goals. These

goals include, easy and flexible integration with legacy systems, streamlined business processes,

innovative solutions to customers, reduced costs, and agile adaptation and reaction to

opportunities and competitive threats (Bianco, Kotermanski, & Merson, 2007; Papazoglou et al.,

2008; Trkman, Kovacic, & Popovic, 2011).

SOA is an architectural style that provides guidelines for building infrastructures or distributed

systems which support rapid development and delivery of software components in a form of

interoperable and loosely-coupled business aligned services (Hunaity, 2008; Lewis, Smith, &

Kontogiannis, 2010). A service is a self-contained, reusable, and loosely-coupled unit of

functionality or software artifact that can be advertised, discovered and invoked in order to

perform a certain business operation or combined with other services to produce value-added

applications (Papazoglou & Georgakopoulos, 2003). According to Shaw and Garlan (1996) as

cited in Gohar (2010), an architectural style defines a vocabulary of component and connector

types and constraints on how they can be combined or work together. For SOA, the basic

16

component types are: service providers, service registry, and service consumers (as discussed

shortly in Section 2.2.1). Connector types include synchronous and asynchronous calls using

Representational State Transfer (REST) protocol, bare Hypertext Transfer Protocol (HTTP),

SOAP, and other messaging paradigms and/or infrastructures (Bianco, Kotermanski, & Merson,

2007). The Publish-Find-Bind interaction model as illustrated in Figure 1.1 shows how the

components of SOA are constrained in their interactions.

2.2.1. Basic Component Types

The fundamental component behind the notion of service-orientation is, of course, the service

itself. However, SOA is an architecture not only about software services; it is a relationship of

three types of participants, as they are described below.

Service Providers are organizations or companies that offer their software functionalities as a

service (SaaS) to the public, through advertising them over a network (such as the Internet). In

principle, service providers create and publish service descriptions on a service registry to enable

consumers to search and discover them (cf. Figure 1.1). A service description is a document or a

file that contains the necessary information about the service. This document enables service

consumers to understand the functionality of the offered services.

One of the other basic and important components of SOA is a mechanism for services to be

discovered by potential service consumers. For this reason, the Service Registry (often also

called a service broker) serves as a middleman between service providers and service consumers.

The goal is to offer the possibility to provide access to service descriptions and to discover

services. In fact, service registries allow providers to advertise their services by publishing their

17

service descriptions, and enable potential consumers to discover and retrieve them based on their

demands.

Service Consumers are organizations or entities that look for a software service to execute a

required business function. They are usually considered as a client, either an end-user, another

service, or some other type of software module that might need a service (Lu & Yu, 2007;

Papazoglou, 2003).

2.2.2. Basic Design Principles

According to Valipour et al. (2009), software architectures have some specific characteristics

and principles that need to be followed in order to fully utilize their capabilities. This section

takes a closer look at some of the special characteristics of SOA. These characteristics can also

be found in other concepts of software engineering, but, the combination and descriptions are

very specific to SOA and this dissertation.

 Loose-Coupling: is the most fundamental characteristic of SOA. Basically, coupling

refers to the degree or level of dependencies among software system components

(Krafzig, Banke, & Slama, 2005), and describes the way in which different components

are connected. Coupling can be categorized as either loosely-coupled or tightly-coupled.

A loosely-coupled software system is one in which each of its components has, or makes

use of, little or no knowledge of the definitions of the other separate components

(Pautasso & Wilde, 2009). SOA emphasizes developing loosely-coupled services, which

means, there should be minimal dependencies between service consumers and providers.

This encourages the independent design and evolution of a service‘s logic and provides

interoperability with service consumers.

18

 Discoverability: is a prerequisite for using a service. Thus, service providers should

allow their service descriptions to be easily discovered and understood by humans and

other services that may be able to make use of their logic. In practice, the service and its

capabilities should be discovered by either the software architect or an automatic

mechanism. Discoverability is very important to leverage the true potentials of SOA, as

it also promotes reuse of services. If the ability to find adequate services that offer the

required functionality is not specified or not convenient for use, the stakeholders of SOA

would rather build redundant services than to use existing ones.

 Reusability: is the principle that requires that a software service is self-contained in a way

that it can be used for more than one business case. That is, it offers its capabilities such

that they can be utilized for multiple usage scenarios to support requirements in different

contexts. To exploit fully the benefits and potentials of SOA, effective methodologies to

support systematic, agile, and cost-effective reuse during the development of software

services are very important (Papazoglou & Heuvel, 2006).

 Granularity: is a relative measure to define how detailed a required piece of functionality

must be in order to address the need at hand (Bloomberg, 2007). Subsequently, service

granularity defines the scope of functionality exposed by a service (Papazoglou &

Heuvel, 2006). Services can be fine-grained or coarse-grained. Fine-grained services

address small units of functionality or exchange small amounts of data. Whereas, coarse-

grained services encapsulate larger chunks of business capabilities within a single

abstracted interface, reducing the number of service calls necessary to accomplish a

business task (H. Ying, Wu, & Liu, 2010).

19

In SOA, the general idea in designing services is that services need to have business value

(Krafzig, Banke, & Slama, 2005). This leads to coarse-grained services that are closely aligned

to business functions. However, the drawback in designing coarse-grained services lies in the

fact that they might return excessive quantities of data, be difficult to reuse, or prove difficult to

change to meet new requirements (Kulkarni & Dwivedi, 2008). Consumers that only need parts

of the offered capabilities might not be interested in using the provided service. As a result,

service providers must determine and craft the appropriate optimum balance or level of service

granularity with respect to all the principles listed above, to ensure that services are reusable and

accommodate new consumers‘ requirements.

To be precise, services must be designed for appropriate granularities that offer greater flexibility

to service consumers. Granularity should also make it easy for consumers to assemble a service

to execute specific business scenarios. According to Kulkarni and Dwivedi (2008), well-

designed or implemented services should be fine-grained enough to be reusable, but coarse-

grained enough to make business sense.

2.2.3. Implementation Technologies

As described earlier, SOA is an architectural model, not a technology. Meaning, it cannot be

bought and used, but can be realized and implemented using several technologies such as Web

services, CORBA (Common Object Request Broker Architecture), and REST (Papazoglou &

Heuvel, 2007; Pastore, 2008). However, the Web services method is currently the most popular

technology for realizing SOA. Web services are a specific kind of software services that use

Web technologies and protocols such as HTTP and XML, to expose their features to the Internet,

and are usually implemented using open standards like SOAP (Simple Object Access Protocol),

20

WSDL (Web Services Description Language), and UDDI (Universal Description, Discovery,

and Integration). This section, therefore, provides a brief overview of these concepts and other

related ones.

SOAP: is an XML-based protocol for communication over standard transportation protocols,

such as HTTP, Java Messaging Service (JMS), Simple Mail Transfer Protocol (SMTP), and the

eXtensible Messaging and Presence Protocol (XMPP). SOAP is lightweight and geared for the

exchange of information in a distributed environment. The use of XML technologies to define a

messaging framework allows it to be platform and programming language-independent (Gudgin

et al., 2007). Web services take advantage of this fact in the exchange of messages with other

Web services.

Web Services Description Language (WSDL): introduces a common grammar to describe

Web services in an XML format (World Wide Web Consortium [W3C], 2007). It describes the

Web service interface, which includes the service‘s location on the Web (mostly in the form of a

URI.), as well as the functionality and interaction specifications of the Web service (Cavanaugh,

2006; Papazoglou & Heuvel, 2007). Web service consumers make use of the WSDL description

to find and utilize Web services. Alternatives to WSDL are, the SOAP Service Description

Language (SSDL) (Parastatidis et al., 2005) and Web Service Offerings Language (WSOL)

(Tosic, Patel, & Pagurek, 2002). Both SSDL and WSOL are also XML-based languages for

describing Web services, however, SSDL only focuses on Web services that make use of SOAP,

while WSOL enables and facilitates formal specification of functional and non-functional

constraints, context monitoring, and relationships with other service offerings (Tosic, Lutfiyya,

& Tang, 2006). According to Tosic, Patel, and Pagurek (2002), describing Web services in

21

WSOL in addition to WSDL, provides a method to select a more appropriate Web service for a

particular situation. For more details about WSOL, interested readers are referred to Tosic

(2004).

Universal Description, Discovery, and Integration (UDDI): is a technique which provides

the infrastructure required to publish and discover Web services (Clement et al., 2004). It

enables organizations (service providers) to advertise their businesses by publishing their Web

service descriptions in a public or private repository and also makes it possible for service

consumers to search and inspect appropriate Web services. At the start of Web services, big

vendors such as Microsoft, SAP, and IBM maintained a registry called the UDDI Business

Registry (UBR) as a single repository for publishing Web service information (Al-Masri &

Mahmoud, 2008a). But, this attempt has been neglected, because the employed categorization

scheme, as well as the UDDI support for publishing and discovering services turned out to be

insufficient (Stollberg, 2008). One of the reasons of the UDDI registry being insufficient, as

stated by Al-Masri and Mahmoud (2008b), is the inability to support representation of Web

services‘ non-functional properties. Hence, it does not provide a suitable Web service discovery

method that is able to satisfy consumers‘ demands (Hunaity, 2008).

There exist various techniques that provide an alternative to UDDI, for example, ebXML

(electronic business XML) and WSIL (Web Service Inspection Language). However, these

registries are not as well-known as the UDDI registry. The ebXML standard is a centralized

Web service registry which allows businesses to collaborate and conduct business activities

(Dustdar & Treiber, 2005). This registry (ebXML) is broader than UDDI as it is able to store

more data, such as business process models and collaboration-protocol profiles (Dustdar &

22

Treiber, 2005). The WSIL provides a distributed metadata model for Web service information.

WSIL supports aggregating different types of Web service descriptions in a single file (Dustdar

& Treiber, 2005). This means, there are no restrictions on the type of Web service information

published for a Web service.

In summary, it should be noted that although Web services technology is the most prominent

implementation platform for SOA, it is just one demonstration of SOA and does not necessarily

fully adhere to SOA design principles (Erl, 2005; Huhns & Singh, 2005).

2.3. The GUISET Project

In Africa, as in most emerging and developing economies, the significance of SMMEs in

stimulating economic growth and generating employment that results in local development is

absolute. However, SMMEs, especially those in rural areas are faced by a number of business

challenges, which hinder them from easily expanding their businesses, maintaining business

competitiveness, engaging with their trading partners, and responding quickly to rapidly

changing business markets. These problems include the inability to afford adequate ICT

infrastructures, the lack of supply-chain volumes, limited understanding of ICT technologies, and

little or no knowledge to inform decision making (Adigun et al., 2006; Dai, 2010; Zadeh,

Mukhtar, & Sahran, 2012).

In an attempt to overcome the aforementioned business problems, an open dynamic service-

oriented and grid environment called Grid-based Utility Infrastructure for SMMEs Enabling

Technologies (GUISET) was proposed (Adigun et al., 2006). Technically, the concept of the

GUISET infrastructure is based on the idea that there is the need for a technology or platform

that would enable SMMEs to have access to ICT services on-demand, without owning the

23

infrastructure on which the services are running. GUISET leverages on service-orientation to

enable services to be discovered and invoked in order to support the business processes of

SMMEs. In this infrastructure, software services are shared among consumers with different

needs, thus, as mentioned previously, services in SOA-based environments like GUISET could

be (re) used by a number of anonymous consumers with varying feature requirements and

business needs. Hence, the need to support and manage service changes and variability in such

environments is a real necessity, with a view to increasing service applicability and efficiency in

service consumption and ensuring that the GUISET infrastructure continues to provide highly

flexible and valuable services to its targeted consumers.

GUISET is a three-tier layered architecture (see Figure 2.1), consisting of the Multi-modal

Interfaces Layer, Middleware Layer, and Grid Infrastructure Layer. The Multi-modal Interfaces

Layer deals with rendering information to GUISET clients and provides support for universal

accessibility to all GUISET services. In essence, this layer establishes the necessary interactions

with the external entities (e.g., SMMEs) and the Middleware Layer. The Middleware Layer is a

utility broker, which manages the sharing of resources and enables dynamic service discovery,

selection, and deployment. This layer underlines the link between the Multi-modal Interfaces

Layer and Grid Infrastructure Layer, which is the layer at which GUISET services and resources

reside.

As mentioned previously, GUISET leverages on the service-oriented archetype to offer software

functionalities as a service (SaaS) to its targeted consumers. In the process of providing such

software artifacts, GIUSET acts as two different variants: (i) as a single service provider and (ii)

as an intermediary provider. In the former variant, having both the resources and knowledge to

24

offer the required functionalities, GUISET provides software services by assembling its own

resources (i.e., native GUISET services). The latter involves linking and having knowledge of

the resources of third-party service providers which would meet the required service capabilities.

The consumers (e.g., SMMEs) subscribe to the GUISET infrastructure and look for software

services (service-on demand), and only require Web technologies to access and use the offered

services.

Figure 2.1: GUISET Architecture (Adigun et al., 2006)

Delivering high quality services has always been the ultimate goal for GUISET. However, there

are several challenges that hinder GUISET in achieving such, and these challenges need to be

addressed for the GUISET infrastructure to be as successful as possible. Some of the GUISET

25

challenges are posed by the technology and computing paradigms that GUISET leverages on,

and they are discussed in the next section.

2.4. SOA and GUISET Challenges

Although SOA is not new, it still poses a number of challenges to organizations and the business

community as a whole. This section discusses some of these challenges, which include security,

SOA governance, and variability management.

Security: as mentioned earlier, SOA is built on open standards such as XML, WSDL, SOAP,

UDDI, and these standards do not have concrete security of their own. This, together with the

heterogeneous, dynamic, and business-oriented nature of SOA, make services and SOA systems

vulnerable to different attacks and hence make addressing security a challenging issue. Thus,

appropriate security developments and mechanisms are very important to the success of SOA

systems (Arsac, Laube, & Plate, 2013; Kanneganti & Chodavarapu, 2008).

SOA governance: is the process of ensuring and validating that assets and artifacts within the

SOA architecture are acting as expected and maintaining a certain level of quality (Manes,

2005). Governance encompasses a broad area, including the management of all elements in

SOA-based systems, such as software services, the service infrastructure, and artifacts across

their life-cycle. As services are one of the most important reusable assets in SOA systems, lack

of SOA and service governance would therefore lead to a number of flaws (e.g., having services

that cannot be reused easily, because they were not designed with reuse in mind). Moore (2006)

states that proper governance minimizes the risk of mismatched services as well as redundant

development efforts. Hence, governance is also important to the success of SOA systems

(Tibco, 2011).

26

Variability management: variability in software systems refers to the notion that the elements

constituting the software architecture may vary (Aiello, Bulanov, & Groefsema, 2010; Williams

& Carver, 2010), due to a range of factors including diverse customer needs, business strategies,

and technical constraints. In SOA systems, variability can occur or manifest itself in various

ways and at different levels of abstraction. For example, it manifests itself in the varying

functional and non-functional requirements of service consumers, changing architectures, and

changing execution environments. Requirements change because the business needs, usage

scenarios, and applications of service consumers are often different from one consumer to

another or change from time to time. This type of variability is called consumer-introduced

variability (Kannan & Proenca, 2008).

Variability can also manifest itself in the execution environments of SOA-based systems,

because of the available variations in service middleware environments, operating systems, and

implementation languages. According to Cohen and Krut (2010) and Sun et al. (2010),

variability in SOA is driven by the continuing advancement in Internet technologies, market

situations, new marketing strategies, and other factors related to business. Therefore, it is very

important to systematically identify and manage variability in order to realize variability-aware

service-oriented systems. As mentioned in Chapter 1, the work in this dissertation focuses

mainly on managing consumer-introduced variability, with the view to increase service

applicability and efficiency in service consumption.

2.5. Software Product Line Engineering

In the previous section, a number of key SOA challenges were identified and described. The

challenge and/or focal point of the research presented in this dissertation was then pointed-out

27

(i.e., variability management). This section takes a deeper look at Software Product Line

Engineering (SPLE), where variability management is an extensively researched subject. SPLE

is an efficient engineering paradigm for supporting and managing variability (Kim, Lee, & Jang,

2011). The rest of this section is structured as follows. Section 2.5.1 discusses the notion of

Software Product Line (SPL), while Section 2.5.2 illustrates the possible functions of Model-

Driven Engineering (MDE) in SPL engineering. The concepts related to variability management

are presented in Section 2.5.3. Section 2.5.4 discusses feature modeling as a successful and vital

technique for identifying and representing variability.

2.5.1. Software Product Line

In contrast to the traditional focus of software engineering paradigms, on developing individual

software products (i.e., one software application
3
 at a time), Software Product Line (SPL)

focuses on the development of multiple related software products (Bosch, 2009; Pohl, Bockle, &

Linden, 2005). SPL enables the systematic reuse of software assets such as features during the

process of developing software applications, which aims at decreasing development and

maintenance costs and time, as well as increased quality and productivity. The main goal of this

engineering paradigm is to address issues related to designing and developing software for reuse,

variability management and/or mass-customization (Kang, Lee, & Donohoe, 2002; Pohl Bockle,

& Linden, 2005).

3
 The terms ―application‖ and ―product‖ refer to the outcome of a product line or customization process, and are

used interchangeably in this dissertation.

28

SPL focuses on the means of efficiently producing and maintaining multiple related software

products, exploiting what they have in common and managing what varies among them. Hence,

the concept of variability is a central idea of systematic reuse in SPL engineering (Pohl, Bockle,

& Linden, 2005). Variability enables software applications to be efficiently extended, changed,

configured or customized for use in a particular context (Svahnberg, van Gurp, & Bosch, 2005).

The identification and management of variability are the key concerns with identifying reusable

assets (Kang, Lee, & Donohoe, 2002), and representing variability to achieve further software

reuse, adaptation, and customization. In SPL engineering, related variants of software products

are developed in a systematic and coordinated way, providing tailor-made solutions for different

customers. Instead of independently developing each variant from scratch, commonalities are

conceived only once (see Figure 2.2).

Domain Analysis
(e.g., domain knowledge, common domain

requirements, variability identification)

Domain

Engineering

Application

Engineering

Application Requirements
(e.g., customer requirements, concrete

application scenario)

Domain Implementation
(including testing)

Application Implementation
(product derivation, variant configuration

or generation)

Problem Space Solution Space

Reusable assets

(e.g., features)

Configuration

(e.g., feature selection)

Mapping

Reusable assets

(e.g., implementation)

Figure 2.2: SPL Engineering Overview (adapted from (Pohl, Bockle, & Linden (2005))

The domain engineering phase concentrates on development for reuse. It focuses on analyzing

the entire targeted market (i.e., business area) and its potential requirements. Specifically, the

goal is to determine common and variable requirements between software products and identify

reusable assets. The potential reusable assets are factored-out so that their re (use) is facilitated.

29

In principle, domain engineering starts with domain analysis, in which the commonalities and

differences between potential product variants are determined and described, (e.g., in terms of

features). Feature models, as presented later in Section 2.5.3, are known as an effective method

for abstracting variability and configuration options in terms of features in the target market

(Czarnecki et al., 2012; Lee & Muthig, 2006). Subsequently, product developers or providers

design and develop the SPL in such a way that different variants can be constructed from

common and variable parts. Application engineering focuses on development with reuse. In

particular, tailored applications are developed, configured or customized based on the common

and reusable assets created in the domain engineering phase. This process of building specific

applications using a base set of common and reusable assets is usually called product derivation

(Deelstra, Sinnema, & Bosch, 2005). Depending on the form of implementation, there can be

different automation levels of the application engineering process, from manual development

effort to more advanced technology including automated variant configuration and generation.

The terms problem space and solution space (or problem analysis and solution design), as also

shown in Figure 2.2, are normally employed to illustrate the distinction between the problem or

system under study and its application domain (Genova, Valiente, & Marrero, 2009). In the SPL

domain engineering phase, the commonalities and variabilities of potential products can be

identified and modeled for both problem space and solution space (Kang & Lee, 2013). The

problem space comprises domain-specific concepts that describe the requirements of software

products and the intended behavior (i.e., the customers‘ objectives and/or requirements, and the

situations in which the software products are used). Requirements are modeled to capture and

express the high-level abstraction of the functionalities that need to be addressed by the product

line. As stated earlier, the results of this process are usually documented in terms of features.

30

Solution space comprises implementation-oriented concepts describing how the customers‘

requirements are fulfilled and how the intended behavior is implemented. This might include

designing and specifying features as a set of functional and non-functional properties at different

level of abstraction. In SPLE, the concept of features or feature models may serve as a means of

domain modeling, variability modeling and management, encapsulating functionality or product

requirements, decision-making, and communication among application or system stakeholders

(Sochos & Riebisch, 2004). The following section discusses possible roles of Model-Driven

Engineering (MDE) in SPL engineering processes.

2.5.2. Model-Driven Development in SPLE

Abstraction and model: according to Kramer (2007), abstraction is ―the mapping from one

representation of a problem to another which preserves certain desirable properties and which

reduces complexity‖. In other words, the purpose of abstraction is to decrease the number of

elements and focus on the important points rather than details. Approaches centered on the use

of models (e.g., model-driven engineering, aspect-oriented modeling, generative programming)

have been proposed in order to effectively represent, define, and use abstractions for any part of

a software system.

Models have been used for many years in various research disciplines including mathematical

sciences, biology, economics, house building, and geography (Bezivin, 2005). In the context of

software engineering, several definitions of the notion of model have been given, for example,

nine definitions are reported in Muller et al. (2012), but, in essence, a model is an abstraction of

some aspect of a system under study. A system under study can be an actual existing system, or

a system under development. A model is an abstraction since some details are hidden and/or

31

removed to simplify and focus attention (Selic, 2003). A model is an abstraction because general

concepts can be created by abstracting common properties of instances or by extracting common

features from specific examples. Models are created to serve particular purposes, for example, to

present a human-relevant and understandable description of some aspects and properties of a

system. Moreover, models can be processed by computer-based tools in order to derive other

useful models or some artifacts (such as test cases, performance profiles, or documentation)

composing a real-life software system (Czarnecki & Helsen, 2006). This process is called model

transformation (France & Rumpe, 2007). Numerous approaches and techniques have been

developed for supporting model transformations (e.g., see Czarnecki & Helsen (2006) for an

overview of model transformation approaches).

Model-Driven Development (MDD) and other related paradigms are not primarily targeted at the

development of SPLs. However, SPL engineering can benefit from models and transformations.

Models such as feature models, as mentioned earlier, can be used both in the problem space and

solution space to represent different aspects of an SPL and provide domain-specific abstractions.

Model transformations can then be performed to generate lower-level models, and eventually

program code, from higher-level models (Czarnecki & Helsen, 2006). In SPLE, MDD is gaining

more attention as a provider of tools and techniques that can be used to manage the complexity

of SPL development. For example, Generative Software Development (GSD) has been proposed

to model and implement system families in such a way that a given system or product can be

automatically generated from a specification or model written in one or more textual or graphical

domain-specific languages (Czarnecki & Eisenecker, 2000).

32

2.5.3. Variability Management

Variability management is one of the fundamental concepts in SPLE as the main purpose of SPL

is to support the development of related software product variants, by taking into account the

commonalities and variabilities extracted from the targeted domain. Variability management is

described as a set of activities for explicitly representing variability in software artifacts

throughout the lifecycle, managing dependencies among different variabilities, and supporting

configuration or instantiation of the variabilities (Schmid & John, 2004). This definition points

out two important concepts related to variability management: (i) variability modeling and (ii)

variability instantiation (J. Lee & Muthig, 2006).

Variability modeling: encompasses the explicit representation of variability and dependency

description (Bachmann et al., 2004). The main focus of variability representation is to identify

and introduce variation points and variants in domain artifacts. A variation point is a location or

a point where differences (variations) in software artifacts might exist and/or occur. Variation

points are the source of variants existent in the targeted market or in a domain to be satisfied

(Linden, Schmid, & Rommes, 2007; Pohl, Bockle, & Linden, 2005). Dependency description

provides constraints on how variants are bound and connected to variation points, and aid in

generating valid products (Sinnema et al, 2006). For instance, the binding of variant X1 to

variation point X might require the binding of variant Y1 to variation point Y, if there exists a

relation ―X requires Y‖, and vice-versa: if there exists a relation ―X excludes Y‖.

Variability constraints or dependencies can be divided into two sets, structural interdependencies

(Jarzabek, Yang, & Yoeun, 2006) and implicit interdependencies also referred to as cross-tree

constraints (Fernandez-Amoros, Gil, & Somolinos, 2009; Lee & Kang, 2004). While the latter

33

are visible and of much interest to customers, as they provide guidance for variants or feature

selection during application engineering, the former are obscure in nature and are mostly of

much concern to providers only, to fully support and realize application variability. Pohl,

Bockle, and Linden (2005) define the distinction between these two groups as external variability

and internal variability respectively. There exist several popular techniques for identifying and

representing variability, such as decision modeling (Dhungana, Grunbacher, & Rabiser, 2011),

UML-based approaches (Oliveira et al., 2005), goal modeling (Semmak, Laleau, & Gnaho,

2009), Domain-Specific Languages (DSL) (Voelter, 2009), and feature modeling (Shaker, 2010).

However, to efficiently describe and represent variability in domain artifacts, modern approaches

use feature modeling (discussed later in Section 2.5.4) as a crucial concept for variability

representation. According to Shaker (2010), one of the advantages of using feature-based

modeling concepts is that features can be easily understood by stakeholders from different

backgrounds.

Variability instantiation: following the domain analysis process, and when variability is fully

captured in domain artifacts (e.g., in feature models), variability instantiation involves deriving a

software product based on customer decision-choices, using configuration tools such as model

transformation tools (Perrouin et al., 2008). The goal of variability instantiation is to produce a

product that satisfies the requirements of a specific customer or a market segment (Svahnberg,

Gurp, & Bosch, 2005). Variability in software systems can be instantiated or implemented at

different stages, e.g., during the design of software products (Svahnberg, Gurp, & Bosch, 2005)

or during the execution of a software system (Bosch & Capilla, 2012; Capilla & Bosch, 2011).

In the context of SOA-based systems and the work presented in this dissertation, variability

instantiation is only considered at execution or run time. This is due to the fact that software

34

services are usually developed for unknown consumers and/or because of the loosely-coupled

nature of service providers and consumers. According to Sinnema et al. (2006), an effective and

efficient means of instantiating variability is to describe variability at the highest level of

abstraction, and propagate decision-choices toward lower levels of abstraction. This helps

software developers to deal with fewer variation points and variants.

2.5.4. Feature Modeling

The notion of feature modeling was introduced by Kang et al. (1990) in the Feature-Oriented

Domain Analysis (FODA) method and generated a lot of attention in SPL engineering. Feature

modeling makes use of the concept of features as they are externally visible characteristics that

can be used to differentiate one product from the next (Kang, Lee, & Donohoe, 2002). The term

‗feature‘ is defined as a distinctive user-visible characteristic of a software product. Lee, K.,

Kang, and Lee, J. (2002) define feature modeling as the activity of identifying features of the

family of software products in the targeted domain and organizing them into a model called a

feature model. Feature models help in abstracting commonalities and differences in software

products derived from the targeted market and/or stakeholders‘ requirements. Antkiewicz and

Czarnecki (2004) describe this process as domain scoping, and according to Fernandez-Amoros,

Gil, and Somolinos (2009), a poorly scoped product domain may lead to inefficient development

and maintenance costs (i.e., if the most relevant requirements as derivation points for features

may not be realized or if some of the implemented ones may never be reused).

As the key elements for identifying and managing variability, feature models consist of both

formal and graphical representation and encompass variability relations as well as constraints or

dependencies defined over the product features (Lee & Muthig, 2006). There are different

35

notations in the literature that extend FODA for expressing the relations between features in a

feature model, such as Feature-Oriented Reuse Method (FORM) (Kang et al., 1998), Feature-

Oriented Product Line Engineering (FOPLE) (Kang, Lee, & Donohoe, 2002), and Cardinality-

Based Feature Modelling (CBFM) (Czarnecki, Helsen, & Eisenecker, 2005). However, the most

comprehensive and widely used notation is the CBFM notation. In CBFM, a feature model (see

Figure 2.3) is described as a tree-like or hierarchical structure, where features are represented in

terms of consist-of relations as well as cardinalities annotated against the features of the feature

model. A feature cardinality describes an interval [m,n], where m and n represent the minimum

and maximum number of sub-features to be selected within a single parent feature. For example,

the cardinality [1,1] in Feature 2.3 for the feature F3A2 implies that this feature must be selected

when its parent feature F3A is selected. Furthermore, the cardinality [0,1] for the feature F3A1

means that this feature might be selected if its parent feature is also selected.

F1B

F3A2

F3F1

F1A F1C

F4

F3B

Root Feature

F2

F3A1

F3A

Legend:

Mandatory Optional

Or

Group

Alternative

Group

Consist-of

relationship

Feature

[m,n] [m,n]

Feature

Cardinality

Group

Cardinality

Implicit

Interdependencies:

Requires

Excludes

[1,2] [1,1]

[0,1]

[1,1]

[0,1][0,1]

[0,1]

[1,1] [1,1]

[0,1]

[0,1] [0,1]

[0,1]

Figure 2.3: A Sample Feature Model Diagram

Stemming from the FODA method, features can be classified into four categories: mandatory

features, optional features, alternative-group features, and or-group features. Mandatory features

(i.e., common features) are the features that must appear in all product instances or customers‘

36

decision-choices. These features are represented by means of grey circles in the sample feature

model above, with cardinality [1,1]. Optional and variable features only appear in one or more

customer product choices and are indicated with white circles, and with cardinality [0,1]. The

alternative-group feature indicates that if the parent feature is selected, only x out of n features

can be selected in the group. For example, the features F1A to F1C as illustrated in the feature

model form an alternative-group features; and at most two [1,2] of these features can be selected

when the parent feature F1 is selected. Feature F3 represents the or-group feature with F3A and

F3B as its sub-features. In this group, one and only one feature must be selected when the parent

feature is selected. As was mentioned previously (cf. Section 2.5.2), implicit interdependencies

(i.e., includes and excludes) can be introduced to describe dependencies that might exist among

the features of a feature model. In the sample feature model (Figure 2.3), the selection of feature

F4 requires the inclusion of feature F3B. On the contrary, the selection of feature F1C imposes

the exclusion of F3A1.

Briefly, feature models are an efficient and effective technique for abstracting product variability

drawn from the targeted business domain or stakeholders‘ requirements (Czarnecki et al., 2012).

They also provide or serve as a means for communicating product commonalities and differences

between software application developers and customers, to assist software development (Trujillo,

Batory, & Diaz, 2007), and promote customization (Cohen & Krut, 2010). As a consequence,

they play a significant role in abstracting and managing variability as well as supporting software

development (Heidenreich et al., 2010; J. Lee & Muthig, 2006).

37

2.6. Overview of Related Work

The foregoing section (Section 2.5) gave a general literature on how variability is dealt with in

SPLE, the efficient engineering paradigm for supporting and managing variability. This section

drills down to the relevant existing works that are closely related and which inspired the work

presented in this dissertation. These efforts are presented in two different parts. The first part

focuses on existing service customization efforts, while the second part discusses the literature

on service variability modeling.

Service Customization: as described in Chapter 1, is a process whereby service consumers

perform a set of operations, such as modifying service description documents in order to adapt a

software service to their specific usage or application scenarios. To enable efficient provisioning

and delivery of customizable services, a number of key aspects need to be taken into account.

First, since service customization allows and/or requires service consumers to execute a set of

operations in order to derive specific service variants meeting their feature requirements and

business needs, the service customization method needs to be simplified and consumer friendly.

In particular, service capabilities (i.e., common and variable properties) should be communicated

at the highest level of granularity or abstraction, to enable consumers to easily interpret and make

business-sense decisions (cf. Section 2.2.2). Another important aspect to consider is the fact that

service capabilities might have interdependencies among each other. That is, one service

capability might require the existence of a certain service capability within the communicated

and defined capability space (cf. Section 2.5.3). Thus, service customization requests need to be

automatically validated to avoid invalid requests, and wastage of computing time and resources.

38

Liang et al. (2006) described an approach which leverages on existing web service standards for

supporting service customization. Basically, these authors extended the WS-Policy framework

for expressing customization policies, which are then used by service consumers to construct

customization requests. According to the information contained in consumers‘ customization

requests, a customized service is developed and deployed by service providers. Although this

approach guarantees valid service customizations, it creates an unwanted burden for service

consumers, because they have to perform a lot of tasks when they are preparing customization

requests, that is, they need to think about customization policies as well as service interface

descriptions. As a result, this approach does not satisfactorily fulfill the need for simplification

of customization processes. Moreover, this approach assumes that service consumers have the

knowledge of how and where to express and communicate customization information. Nguyen

and Colman (2010) proposed an SPL-based approach to customize Web service interfaces. The

authors use feature modeling to describe variability and variation points existing in the service

interface (e.g., operations and message types). Stollberg and Muth (2009; 2010) and Barros et

al. (2011) also adopted variability modeling concepts from SPLE in order to support service

customization. However, these authors focused only on handling variability at technical level or

low-level of abstraction, leaving-out variability at higher level of abstractions (i.e., requirements

or feature level). Moreover, these authors‘ approach does not take into account adapting internal

service implementations. Therefore, their approach permits running redundant service variants,

which increases development time and consumption of computing recourses.

Most importantly, since variability is only represented at low-levels of abstraction (e.g., in the

aforementioned approaches), which includes a large number of variation points and variants,

customizing a service in these approaches necessitates the understanding of technical details and

39

can be a very complex and error-prone task for service consumers. This can also create a lot of

work for service providers, because of the amount of variation points to be handled.

Service variability modeling: the research works in this group focuses mainly on variability

modeling techniques to identify and represent variability in service-oriented systems. Although

this group does not describe mechanisms or techniques for enabling service customization, they

are related to the work presented in this dissertation in terms of variability modeling methods

(i.e., the methods for identifying and representing variation points and variants). Acher et al.

(2010) proposed a feature-oriented method to model functional variability in service workflows.

In their method, three feature models are constructed for each service. These feature models are

used to represent functional variability at different levels (i.e., service interfaces, service inputs,

and service outputs). Medeiros, Almeida, and Meira (2010), also motivated by the SPL concepts,

describe a feature modeling method to represent functional and non-functional (QoS) variability

in business processes. Chang and Kim (2007), and Kim and Doh (2008) also modeled variability

at business process level (i.e., technical level) using SPL concepts.

In all of the research efforts reported in the first group, the researcher found that although the

authors try to address the issue of consumer-introduced variability, they only focus on handling

consumers varying functional requirements; they do not consider managing the non-functional

requirements. However, in practice or in today‘s service-driven business environments, service

consumers usually exhibit varying functional and non-functional requirements. For this reason,

it is very important to ensure that their varying non-functional requirements are also considered,

because non-functional properties such as security give consumers assurance and confidence that

they are using the best software service. The reviewed efforts also do not consider managing the

40

life-cycle of service variants, thus, they do not reuse service capabilities and hence, reusability is

not promoted in these works. In modern service-oriented business environments, the demanding

requirements of service consumers increase the cost and time involved in building or generating

variants of a service, thus, it is important to reuse service capabilities in order to support different

usage scenarios. Moreover, in both groups (i.e., service customization and variability modeling)

the authors represent variability at low-levels of abstraction, which might be very difficult for

service consumers to interpret and understand. Hence, the techniques presented in the afore-

discussed research works do not address the issue of simplifying and minimizing complexity in

the service customization processes.

2.7. Summary

In this chapter, the necessary setting and preliminary review of related literature to understand

the work presented in this dissertation was given. First, an overview of the SOA paradigm and

its underlying components, as well as the Web services technology was presented. Then, the

notion of GUISET was introduced. The key challenges facing SOA and GUISET, as one of the

existing service-oriented infrastructures, were identified and described. These challenges include

variability management, which is the main subject of this research and widely studied in SPLE.

Hence, SPLE and its fundamental concepts were also introduced.

Finally, existing research efforts on service customization were presented and analyzed. Several

research efforts relating to service variability modeling were also explored. Based on the analysis

of all the relevant research efforts, a number of shortcomings were identified. For example, none

of the works cover the aspect or concern of simplifying and reducing complexity in providing an

effective and efficient service customization approach. The work in this dissertation argues that

41

this concern can be dealt with by capturing and describing variability at requirements (feature)

level, and enabling or supporting service consumers to customize software services at that level.

Another drawback is that all the reviewed efforts focus only on handling varying functional

requirements, not taking into account that consumers usually do not only have varying functional

requirements, their non-functional requirements also vary. Hence it is imperative that their non-

functional requirements are also considered.

In brief, the main aim of this research was to create an approach that avoids the aforementioned

shortcomings. The approach is outlined in the next chapter. It is aligned with several techniques

and methods that are described in the preceding sections of this chapter, in particular, the feature

modeling technique.

42

Chapter 3

DESIGN OF THE MODEL-BASED SERVICE CUSTOMIZATION
FRAMEWORK

3.1. Introduction

As mentioned in the previous chapters, Service-Oriented Architecture (SOA) enables the design

and implementation of a Software-as-a-Service (SaaS) business model, where organizations such

as Small, Medium, and Micro Enterprises (SMMEs) can acquire software services embodied and

maintained by service providers, through the Internet, without having to purchase their own ICT

infrastructures. Even though consumers (e.g., SMMEs) can have access to software services and

utilize them in their business processes, in reality, they often have different business and varying

requirements. Consequently, service providers are faced with various challenges to stay relevant

in today‘s global economy. This, together with new market opportunities requires mechanisms

for rapid development and delivery of software services that best meet consumers‘ demands.

Hence, some providers have motivated the acceptance of customizable software-development

methods to build and deploy customized services for their potential consumers.

Nevertheless, as also stated in Chapter 2, in order for service providers to systematically provide

flexible and efficient software services, they need to consider both the technological knowledge

as well as variable functional and non-functional requirements of (potential) service consumers.

This chapter introduces the proposed FreeCust (Feature Model-based Service Customization)

approach as a solution for managing consumer-introduced variability in SOA environments. The

remainder of this chapter is structured as follows. Section 3.2 gives an overview of the design

principles for an efficient service customization solution. Section 3.3 introduces the FreeCust

43

approach. It describes the architecture of FreeCust and its components, as well as the details of

how non-functional properties can be incorporated and represented in a feature model. Section

3.4 takes FreeCust into the real-world by demonstrating its applicability using two application

scenarios, while Section 3.5 concludes the chapter.

3.2. Design Criteria

Stollberg and Muth (2009) remarked that the process of customizing a service is a nontrivial task

that necessitates technical knowledge as well as business expertise. As a result, most business

organizations usually appoint experts to carry out this task. For this reason, and the fact that

service providers would need to fully exploit economies of scale, lower service development

costs and promote service reusability, a complete service customization solution needs to tackle

and/or cover problems coming from both the service provider and consumer perspectives. That

is: (i) how should service variability (i.e., customization options) be captured, represented, and

communicated, and (ii) how to facilitate customizations at the service consumer‘s side. More to

the point, in order to effectively design and develop an efficient service customization solution,

the following key design principles gleaned from the literature, (which also served as the basis

for the formulation of the proposed FreeCust approach), need to be considered:

 Because of the fact that software services usually have and/or support an excess number

of possible customization options, with numerous of interdependencies scattered among

those options, which in turn creates a burden and becomes a complex task for consumers

to perform service customizations, a successful and efficient service customization

solution should, therefore, consider simplifying and minimizing such complexities.

44

 Due to the excessive number of possible customization options and the great number of

interdependencies across those options, as explained above, customizing a service can be

a very error-prone process. Thus, a mechanism for validating consumers‘ customization

requests should be provided by the service customization solution. This is to ensure that

service consumers do not violate any properties described by providers, and to minimize

wastage of computing time and resources.

 Since service consumers exhibit different or varying requirements, which (may) lead to

different customization requests, different service implementations may also exist. Thus,

to minimize development costs, and to ensure that computing resources and development

efforts are not wasted, running redundant service variants should be avoided. Therefore,

a mechanism for deploying customized services dynamically should be provided by the

customization solution.

3.3. The FreeCust Approach

This section presents FreeCust, a Feature Model-based Service Customization approach which

was designed according to the abovementioned design criteria. The section starts by describing

the FreeCust framework architecture and the interactions among its components. Subsequently,

the details of how to represent and incorporate non-functional properties into software product

models (i.e., feature models) are presented.

3.3.1. Framework Architecture

The feature model-based service customization framework (FreeCust) enables the provisioning

and delivery of consumer variability-aware (customizable) software services. In this framework,

45

the service customization process employs the Model Driven Development (MDD)
4
 approach to

automate almost all the parts and/or operations of the framework. Figure 3.1 illustrates the

overall architecture of the framework. It consists of five major components: a service provider,

service registry, service consumers, feature management engine, and variants repository. These

components interact with one another to accomplish the service customization task and deliver

consumer variability-aware software products. As mentioned in Section 3.2, one fundamental

requirement for an efficient service customization solution is the ability to capture, represent, and

communicate customization options, together with their interdependencies to service consumers.

Figure 3.1: FreeCust Framework Architecture (Dlamini, Tarwireyi, & Adigun, 2013)

4
 The goal of MDD is to increase automation, simplify the process of design, increase re-usability and productivity

by maximizing compatibility between systems (France & Rumpe, 2007).

46

In addition, the service customization process should be consumer friendly, in such a way that

consumers can easily interpret service variabilities to make business-sense decision choices. As

mentioned in Chapter 2, this aspect can be addressed by capturing and describing variability at

the highest level of abstraction (i.e., requirements or feature level), and supporting consumers to

customize software services at that level. For these reasons, the FreeCust solution follows the

MDD approach. MDD is considered as efficient and exhaustive when it comes to developing

software systems, something which is also true for service-based systems (Srinivasan, Paolucci,

& Sycara, 2006). Models (in MDD) are important for code generation, due to the different levels

of abstraction (Nassar et al., 2009), thus simplifying and minimizing complexity, as well as

maximizing service development productivity.

The FreeCust approach, as illustrated in Figure 3.1, is particularly guided by feature modeling,

an efficient technique for capturing and describing variability at any level of abstraction, using

feature models. Shaker (2010) stated that one advantage of using feature modeling concepts is

that features can be easily understood by stakeholders from different backgrounds. The steps

and interactions involved in the FreeCust approach for the provisioning of customizable services

are described below and illustrated in Figure 3.2.

First, the service provider creates and publishes a service description (e.g. a service interface)

into the service registry. In the context of FreeCust, a service description artifact is considered

as a feature model, which incorporates both the functional and non-functional properties of a

software service. A feature model is used to guide and ease the customization process, and to

capture the core and varying functional and non-functional requirements of service consumers.

In addition, a feature model is considered as a description artifact because the service interface

47

that consumers will use would not be the same. This is due to the fact that service interfaces are

allied to business objectives and requirements. Hence, they would be the final product of the

service customization process.

The second step involves service consumers searching and/or looking for software services of

interest in the service registry. Once a service of interest is discovered and located, a service

consumer then retrieves a feature model of that particular software service and starts selecting or

providing all the necessary functional and non-functional features required in the specialized

service. This information is then communicated to the feature management engine, which

utilizes automated analysis techniques of feature models (Benavides, Segura, & Ruiz-Cortes,

2010; Benavides, 2009), and is responsible for analyzing and checking whether the provided

customization information, does not violate the properties described in provider‘s feature model.

If the customization information is valid, it is forwarded to the service provider side, otherwise

an invalid message is sent to the service consumer.

Before a service is generated, in case of a valid request, a service provider first checks on the

variants repository to see if there exists any software service variant matching the consumer‘s

customization information. If there is any and that variant is still running, the service‘s endpoint

would be communicated to the service consumer and the consumer would then bind, invoke and

start using the customized service in the application scenario(s) that the service is required.

Otherwise, a different service variant would be created and before it is deployed it is registered

in the variants repository. The main role of the variants repository is to store and keep track of

the existing and deployed service variants.

48

Figure 3.2: Interaction Diagram of the Framework Components (Dlamini, Tarwireyi, & Adigun , 2013)

From the foregoing discussion, it is clear that there is a strong relationship between a product

family and a customizable software service. That is, they both represent a set of products that

share a common set of properties and each product contains a set of distinct properties, which aid

in differentiating one product from the next. Another important relationship is that a product

family and a customizable service need to represent variability options to enable the delivery of

products tailored to specific consumers‘ demands. Hence, a feature model was adapted in the

49

FreeCust approach to represent functional and non-function properties of a customizable service.

The following section describes how non-function features can be included in a feature model.

3.3.2. Extended Feature Model

As mentioned in Chapter 2, software services should be developed to satisfy diverse functional

and non-functional requirements of service consumers. So far, the main focus of existing service

customization approaches is (or has been) on functional variability. Diversity of non-functional

requirements has been neglected. However, in order to deliver customizable software services

that best fit both functional and non-functional requirements of service consumers, it is very

important to capture and represent non-functional properties along with functional properties in

the product feature model.

Accordingly, this section introduces the solution proposed in this research for incorporating non-

functional properties into software product models. It comprises a Non-Functional Property

(NFP) model (see Figure 3.3) and extends the cardinality-based feature model with features

containing non-functional properties (see Figure 3.4).

Figure 3.3: Non-Functional Property (NFP) Model

50

Figure 3.4: Cardinality-Based Feature Model with Non-Functional Properties

Based on the existing research in software engineering, software product line, and requirements

engineering, handling non-functional requirements is very challenging (Glinz, 2007; González-

Baixauli, Laguna, & Crespo, 2004; Mairiza, Zowghi, & Nurmuliani, 2010). This is because of

the complex nature of non-functional properties. However, as mentioned before, non-functional

properties are crucial to the success of an efficient service customization solution and/or delivery

of effective software services.

In general, non-functional properties are broadly classified into two groups: (i) properties that a

software product must exhibit and (ii) properties that describe the quality attributes of a software

product (Mairiza, Zowghi, & Nurmuliani, 2010). The first group covers all the non-functional

properties and characteristics of a software product, which includes aspects such as development

and maintenance cost, availability, reliability, security, and so forth, whereas the second group is

a subset of the first group. That is, it only covers a slight range of non-functional properties (i.e.,

quality of service attributes).

51

As inspired by the following scholars (Benavides, Trinidad, & Ruiz-Cortes, 2005 and Siegmund

et al., 2012), who have extended the notation of feature model with non-functional properties to

represent the non-functional aspects of software products. The work in this dissertation has also

proposed a method to incorporate non-functional properties in CBFM (Cardinality-Based Feature

Modeling) notations (cf. Figures 3.3 and 3.4). The method focuses only on the second group of

non-functional properties, i.e., the properties that describe the quality attributes of a software

product. This is due to the fact that this group covers almost all the non-functional aspects that

can be described and represented in such a way that consumers can define their preferences. For

instance, some service consumers may call for high-level of security in their software product,

while others, security might not be of that magnitude. As shown in Figure 3.3, the NFP solution

further sub-divides the non-functional property group (i.e., quality attributes) into two groups: (i)

qualitative non-functional properties and (ii) quantitative non-functional properties.

Quantitative non-functional properties are the non-functional aspects that are measurable and can

be represented by a numerical value or interval. Cost, availability, throughput, response time are

examples of quantitative non-functional properties. The other group of non-functional properties

consists of properties that cannot be exactly measured. These include properties like security and

reliability, and can be represented using linguistic labels (Andres, Garcia-Lapresta, & Martinez,

2010) such as high, medium, and low. In the context of the NFP model and FreeCust, where it is

necessary for service consumers to specify their decision-choices (i.e., choosing functional and

non-functional properties of their specialized software service), the offered and variable options

defined over non-functional properties are represented using linguistic quantifiers
5
. For instance,

5
 Linguistic quantifiers are operators that limit the variables of a proposition (Geurts, 2003).

52

the quantifiers mentioned earlier, i.e., high, medium, and low are used for the security feature.

The fundamental reason behind the use of linguistic quantifiers is because of the complex nature

of non-functional properties, and that linguistic quantification has been used and is extremely

decisive in requirements and knowledge representation (Luisa, Mariangela, & Pierluigi, 2004;

Ying, 2006). The following section demonstrates the utility and applicability of the notion of

FreeCust and its underlying concepts.

3.4. Example Application Scenarios

In the preceding sections of this chapter, the FreeCust approach and its basic components were

introduced. This section, therefore, seeks to illustrate the usefulness and relevance of FreeCust,

using two real-life examples: a live match score application scenario inspired and adapted from

Schoneveld and Philip (2007), and a purchase order application scenario, one of the widely used

research-demonstrating and motivating scenarios in software product line and service computing

research.

3.4.1. Live Match Score Application Scenario

The live match score service is a sample software as a service (SaaS) component, which enables

consumers to display the most recent score of a particular sport match on their business websites.

This service can be exploited by various consumers, such as sport clubs, sports federations, and

gambling companies, to display the latest match score in their portals and/or websites. Given the

fact that, in real-life, service consumers usually have different business goals and objectives, as

well as dissimilar business sizes, their service requirements may not be identical. Take for

example two consumers, e.g., a cricket club and a gambling company such as bet365 (one of the

world‘s leading online gambling companies), requiring the live match score service for use in

53

two special cricket matches. Between these two matches, one match is a domestic league match,

for example, Chevrolets Warriors against Queensland, and the club wants to display the real-time

score and commentary on their website. The second match is an International Cricket Council

(ICC) match, between Australia and South Africa, and bet365 needs to display the score and live

commentary for its potential customers.

Certainly, a domestic league match is less important than an international match so during the

course of these two matches, more applications and/or visitors will access the bet365 website, as

compared to the club‘s website. For this reason, and the fact that the involved consumers have

different business objectives, different feature requirements for the live match score service will

exist. Case in point, bet365 may require that the service updates information at the frequency of

60 seconds, while the club may require information to be updated after 20 minutes. Bet365 may

also require a 99% to 100% availability of the service, whereas for a club 70 to 80% availability

might be sufficient. Availability in this case refers to the degree of availability of the software

service relative to a maximum availability of 24 hours, seven days a week. From a security point

of view, bet365 is more vulnerable to different kinds of attacks (such as distributed denial-of-

service attacks); thus, security can be of great value to them. Finally, due to the fact that the

number of visitors may increase rapidly during the international match, bet365 might also require

the service to be highly scalable.

As mentioned before, services advertised to a large public could be used by various consumers,

with varying feature requirements and business needs. Thus, to facilitate the process of building,

deploying and consuming services in such situations, and to meet the specific requirements of

54

service consumers in a timely and cost-effective manner, it is very important to systematically

identify and manage variability.

In applying the FreeCust method, a service provider can create and develop a feature model (as

illustrated in Figure 3.5), encapsulating all the commonalities and variable features of the live

match score service, and make it available for potential service consumers. From the live match

score feature model, service consumers such as the application developers of the sport club and

bet365 company, can generate their specialized live match score variant by choosing all the

properties and/or features that they require their service to support.

Medium

AvailabilitySecurity

Low High

At_most_99%

Live Match Score

Update Information

At_least_70%

Legend:

Mandatory Optional

Or

Group

Alternative

Group

Consist-of

relationship

Feature

[m,n] [m,n]

Feature

Cardinality

Group

Cardinality

Implicit

Interdependencies:

Requires

Excludes

[1,1] [1,1]

[1,1]

[0,1][0,1]

[0,1]

[0,1] [1,1]

[0,1] [0,1]

After60sec After10min

[1,1]

[0,1] [0,1]

Figure 3.5: A Sample Feature Model for the Live Match Score Service

3.4.2. Purchase Order Application Scenario

To further demonstrate the concept of FreeCust, Figure 3.6 provides a simplified feature model,

representing the commonalities and variabilities of the purchase order SaaS. This service can be

used by both SMMEs and large organizations to support their on-line shopping and trading

business. As was also stated in the previous section, different business sizes imply different

business objectives, thus different consumer requirements for the purchase order service would

55

exist. For instance, depending on the business objectives and strategy of an SMME, one SMME

might be focusing on marketing and selling art and craft products, while another is focused on

providing bed and breakfast (Gumbo, Terzoli, & Thinyane, 2013; Sibiya et al., 2008). The one

that is centered on art and craft production might require a specialized purchase order service

that supports both debit and credit card features (see Figure 3.6). While the same SMME may

also require the shipment optional feature, the one focusing on bed and breakfast might not be

interested in such a kind of feature.

As can also be seen in Figure 3.6, security is mandatory in all instances of the purchase order

SaaS. This means, all purchase order service variants must and/or will support the security

feature. And, depending on the choices made under the payment method feature, the credit card

feature necessitates a higher level of security.

Medium

Confirmation Security

Low High

Electronic Page

Purchase Order

E-mail

Legend:

Mandatory Optional

Or

Group

Alternative

Group

Consist-of

relationship

Feature

[m,n] [m,n]

Feature

Cardinality

Group

Cardinality

Implicit

Interdependencies:

Requires

Excludes

[1,1]

[0,1][0,1]

[0,1]

[1,1] [1,1]

[0,1]

[0,1]

Shipping

[0,1]

SMS

[0,1]

[1,2]

Payment Options

[1,1]

Fraud Detection Payment Method

[1,2]

[0,1] [1,1]

Debit Card

Electronic Cheque

Credit Card

[1,1] [0,1]

[0,1]

[1,2]

Figure 3.6: A Simplified Purchase Order SaaS Feature Model

56

3.5. Summary

As mentioned in Chapter 2, in order to effectively deliver customizable software services, that

best meet consumers‘ demands, a service customization mechanism needs to be straightforward

and consumer friendly. That is, service capabilities (i.e., the common and variable functional

and non-functional properties) should be described and communicated at the highest level of

granularity and/or abstraction, to enable service consumers to interpret easily and make business-

sense decisions. The research in this dissertation argues that this concern can be dealt with by

capturing and describing service variability at feature level, and enabling or supporting service

consumers to tailor software services at that level. Hence, this chapter presented the Feature

Model-based Service Customization approach (FreeCust), as put forward by the work in this

dissertation. First, the design criteria or requirements that guided the construction of FreeCust

were outlined. Then, the FreeCust framework architecture and the functions of its components,

as well as a mechanism for incorporating non-functional properties in software product models

were described. Finally, the chapter demonstrated the applicability and utility of the FreeCust

approach using two real-life scenarios.

57

Chapter 4

IMPLEMENTATION AND EVALUATION

4.1. Introduction

As this research was guided by the design science research methodology, in which one of the

crucial research processes is the implementation and evaluation of the design artifact (Elio et al.,

2008; Hevner et al., 2004), this chapter aims to provide the technical feasibility and evaluation of

the suggested FreeCust design, as presented in the previous chapter. In particular, it focuses on

the implementation details and evaluates FreeCust through several controlled experiments (i.e.,

usability and effectiveness tests). Subsequently, the benefits of FreeCust are represented via a

criteria-based comparison against other existing service customization approaches (referred to as

static analysis in the design evaluation stage of design science research (Hevner et al., 2004)).

This chapter is structured as follows: Section 4.2 presents a high-level overview of the FreeCust

prototype implementation and its details. Section 4.3 reports on the experiments conducted to

evaluate the FreeCust approach. The results of the experimental evaluations are discussed in

Section 4.4. Section 4.5 compares FreeCust with other existing approaches, while Section 4.6

ends the chapter by summarizing and highlighting the significance of FreeCust.

4.2. Implementation Overview

Before exploring the implementation details, this section starts by presenting Unified Modeling

Language (UML) diagrams, that is, a use case diagram and an activity diagram. These diagrams

are used to give a high-level prototype overview of the FreeCust framework.

58

4.2.1. FreeCust in UML

In Sections 3.2 and 3.4 of the previous chapter, the design requirements and/or considerations, as

well as the applicability and utility of the FreeCust approach were presented respectively. This

section, therefore, presents a use case diagram and activity diagram, as the mechanism to provide

a high-level overview of the FreeCust framework prototype and, through which the framework

prototype can be evaluated. Figure 4.1 represents the FreeCust prototype use case diagram. As

shown in the diagram, the FreeCust prototype has two primary actors, i.e., the stakeholders that

initiate or trigger a use case process, to achieve a specific goal (Bocchi, Fiadeiro, & Lopes, 2008;

Oracle, 2007). These primary actors are the service provider and service consumer. The feature

management engine is regarded as a supporting actor. This is because it offers additional

functions to support the use cases of the primary actors in achieving their specific goals.

The Primary Actors:

The fundamental goals of the service provider and consumer actors are to respectively provide

adaptable and flexible software services, in a rapid and cost-effective manner and to find and

utilize an appropriate focused software service. These goals are achieved through the functions

illustrated in Figures 4.1 and 4.2. That is, in order for the service provider to efficiently provide

a flexible software service, the first action is to develop a software service description (i.e., the

service feature model), which enables service consumers to easily interpret service customization

options and fashion-out their required software service. Thereafter, publicly market the software

service, by publishing its description in the service registry. For the service consumer (e.g., an

application developer, a business analyst or a business owner), the initial step is to look for a

software service of interest in the service registry and then retrieve the software service feature

59

model, and perform service customization operations (i.e., selecting and de-selecting the required

and unwanted features), and then finally to send the customization request.

Figure 4.1: FreeCust Use Case Diagram

The Supporting Actors:

The feature management engine acts as a supporting actor. In particular, it employs automated

analysis techniques of feature models (Benavides, Segura, & Ruiz-Cortes, 2010; Benavides,

2009) for verifying whether a customization request is valid or not. As shown in Figure 4.2, if a

60

Figure 4.2: FreeCust Activity Diagram

61

customization request is valid, it is communicated to the service provider‘s side, otherwise the

service customization process is stopped. In the event of a valid request, the service provider

checks the variants repository, to find out if there exists no specialized service variant(s)

containing similar features with the ones requested. As previously mentioned, this process

ensures that running redundant services is avoided, and guarantees that computing time and

development efforts are not wasted. The following sub-sections detail how FreeCust was

realized, describing the various tools, platforms, and frameworks used in the implementation.

4.2.2. FreeCust Underlying Technologies, Tools, and System Packages

The FreeCust prototype implementation was carried out using Java technologies. Eclipse Juno

IDE for Java EE Developers and the Eclipse Modeling Framework (EMF) were chosen as the

core development platform. The reason behind this decision was because of the escalating level

of support, community involvement, and custom acceptance of Web services and modeling tools

in Eclipse (Blewitt, 2012; Skerrett, 2012). Figure 4.3 shows a layered technological view of

FreeCust implementation, while Table 4.1 summarizes the tools, platforms, and frameworks

exploited in the realization of FreeCust, as well as their roles.

Figure 4.3: High-Level Layered Technological View of FreeCust Implementation

62

Table 4.1: Summary of Key Platforms and Frameworks Used In the Realization of FreeCust

Platform /

Framework

Description Role in FreeCust

Eclipse Juno

An IDE for Java EE Developers.
Main programming environment for

components of FreeCust.

Java SE 7

Java Standard Edition version 1.7. Java compiler.

EMF

Eclipse Modeling Framework.

Modeling platform used to generate

the basic structure of software

service capabilities using the

generator for tree-oriented model

editors.

featurePlugin

An EMF-based open source tool

(written in Java programming

language) for feature modeling.

Used to implement the graphical user

interface flavored mechanism, which

enables the development or creation

of software service feature models,

and facilitates all the operations of

service customization.

XMethods

An open platform for advertising and

registering software services.

Used as the registry to publish a

customizable software service for

demonstration and experimentation.

FAMA

FeAture Model Analyzer framework

(written in Java programming

language).

Used to implement the Feature

Management Engine - the request

validation component.

The sub-sections that follow (4.2.2.1 to 4.2.2.2) give a brief preview of the critical packages of

the tools (i.e., featurePlugin
6
 and FAMA

7
 framework) that implemented the major functions or

components of FreeCust, particularly, the Graphical User Interface (GUI) flavored mechanism,

which enables and facilitate service customization, and the feature management engine.

6
 http://gsd.uwaterloo.ca/projects/fmp-plugin

7
 http://www.isa.us.es/fama

63

4.2.2.1. The GUI-flavored Mechanism

The GUI mechanism was implemented through an open-source tool called featurePlugin, which

is an EMF-based tool for supporting requirements and/or feature modeling. The core packages

that implemented this mechanism and its operations are described below and illustrated in Figure

4.4.

ca.uwaterloo.gp.fmp.presentation: This package has classes that implement and present to

the service provider and consumer, a model wizard, with a set of commands or operations that

can be performed and executed to develop a software service feature model and carry out service

customizations, respectively. The classes contained in this package work together with several

classes defined and implemented in ca.uwaterloo.gp.fmp.imp, ca.uwaterloo.gp.fmp.system,

and ca.uwaterloo.gp.fmp.system.drillDown to create a model and configuration wizard, as

well as to handle user interaction in viewing and selecting the desired and unwanted feature

configurations.

The utility class called fmp.system.MetaModel and a method called makeProject() (contained in

ca.uwaterloo.gp.fmp.system) are used and are responsible for the creation of the contents of

an empty service feature model. The operations of creating and adding features (as well as their

cross-tree constraints) into the software service feature model are implemented and handled by

classes in ca.uwaterloo.gp.fmp.provider.action and ca.uwaterloo.gp.fmp.constraints. The

ca.uwaterloo.gp.fmp.constraints.ui package contains classes that implement a window, which

informs users (e.g., service consumers) about the existence of feature cross-tree constraints or

feature interdependencies, as well as their information. The way in which the GUI-flavored

mechanism is used is demonstrated in Section 4.2.3.

64

Figure 4.4: The Dependencies among the Core Packages that implemented the GUI-flavored Mechanism

4.2.2.2. The Feature Management Engine

The realization of the component feature management engine is based on the FAMA framework.

Figure 4.5 illustrates the dependencies among the packages that implemented the main function

of the feature management engine, that is, to check the validity of service customization requests.

Figure 4.5: The Dependencies among the Core Feature Management Engine Packages

65

es.us.isa.FAMA.main: This package has a class called FaMaMain that starts the execution of

the request validation process or the feature management engine. This class is responsible for

the initialization process, which runs after receiving a service customization request. During the

initialization process, the validation engine accepts and parses the service customization request,

in an XML-based format, as well as the specifications of the service provider‘s feature model, to

the process carried out by the classes contained in the following described packages.

es.us.isa.FAMA.models.variabilityModel: This package contains three classes for reading the

consumer‘s requested feature configurations and provider‘s service feature model. These classes

co-operate with several classes defined in the es.us.isa.FAMA.models.featureModel package

(e.g., Cardinality, Constraint, and GenericRelation classes).

es.us.isa.FAMA.stagedConfigManager: This package has and/or implements a class called

Configuration, which creates a configuration container with the set of selected and disabled

features, from the consumer‘s feature configuration request.

es.us.isa.FAMA.Reasoner: This package mainly includes classes that implement the feature

model reasoners. These reasoners are responsible for determining if the set of requested feature

configurations are valid for a given (provider‘s) service feature model. In particular, the set of

requested feature configurations represented by a service feature model are converted into a

propositional formula defined over a set of Boolean variables, where each variable corresponds

to a feature. From the propositional formula, various reasoning operations are then performed.

There are helper classes defined in this package to support the reasoning process. These classes

co-operate with classes contained in the es.us.isa.FAMA.Reasoner.questions package.

66

es.us.isa.FAMA.Reasoner.questions: This package contains classes that define various types

of questions against the service provider‘s feature model and the consumer‘s requested feature

configurations.

4.2.3. FreeCust Proof-of-Concept Implementation

The previous chapter elaborated the design rationale of the FreeCust approach. It covers the

overall architecture of the FreeCust framework, the major constituent elements, and the critical

technique for incorporating non-functional features in software product models. Moreover,

Sections 4.2.1 and 4.2.2 gave a high-level prototype overview of the FreeCust framework, as

well as the key development platform and technologies used to implement the components and

functions of FreeCust. This section demonstrates the FreeCust proof-of-concept implementation.

The proof-of-concept implementation necessitated a testing environment for testing the functions

of FreeCust, in a service-oriented way. Hence, the live match score usage scenario introduced in

Section 3.4.1 was reused, as highlighted in the sub-sections that follow.

4.2.3.1. The Development and Discovery of Software Service Feature Models

Figure 4.6 presents a screenshot of how providers prepare software services for customizations,

that is, the creation of a software service‘s feature model, describing all customization options

and their implicit interdependencies (i.e., the requires and excludes cross-tree constraints). As

mentioned in Section 4.2.2.1, this was realized using the open-source tool called featurePlugin.

The screenshot illustrates how the service provider of the live match score software service can

create a software service feature model and prepare the service for customizations. As revealed

by the screenshot, the requires and excludes cross-tree constraints are defined and represented as

conditional formulas among the features of the service feature model. This ensures automatic

67

selection and de-selection of connected and/or linked features, and enables customizations with

minimum efforts, while maintaining the validity of the resulting service customization requests.

Figure 4.6: Provider’s Live Match Score Service Feature Model in FreeCust

Following the service provider in creating the live match score service feature model, the service

needs to be advertised by publishing or registering it into a service registry, to enable potential

consumers to discover it and formulate customization requests. This process was realized using

the XMethods service directory (see Figure 4.7), which is an open platform for advertising and

registering software services. In reality, XMethods is an organization dedicated to supporting

and promoting the development, deployment, and use of software services. Besides, XMethods

support and promote research activities by providing a way through which service developers

and researchers can register their software services as sample services for experimental purposes.

68

Hence, the live match score software service was registered as a demo service. However, there

are terms and conditions for registering and using demo services (see Appendix E).

Figure 4.7: XMethods Service Directory

As mentioned prior to this section, once consumers have searched and discovered their service of

interest, for example, the live match score service in the XMethods service directory, they then

retrieve the service‘s feature model and, start fashioning-out their specialized software service,

by selecting and disabling their required and unnecessary features. Figure 4.9 demonstrates how

bet365 as a potential consumer of the live match score software service (cf. Section 3.4.1) can

perform the selection of appropriate features and communicate a customization request. All the

required and unwanted features are represented by a tick and a cross, respectively.

69

As pointed out earlier, the mutually inclusive and exclusive features are automatically selected

and disabled, respectively, when the primary feature is selected (e.g., Figure 4.8). Figure 4.8

illustrates how the automatic selection or de-selection of interdependent features take place.

Referring back to the ―live match score software feature model‖, as described in Figure 3.5

(Section 3.4.1 of Chapter 3), the selection of the feature ―After60sec‖ requires and/or includes

the selection of the ―At_most_99%‖ availability feature. Hence, the bet365 selection of the

―After60sec‖ update information feature, as shown in Figure 4.8, compelled an automatic

selection of the ―At_most_99%‖ availability feature. This is illustrated by the two ticks in the

check-boxes of these features.

Figure 4.8: Automatic Selection of an Interdependent Feature (bet365)

70

Figure 4.9: bet365 Customization Request

4.2.3.2. The Validation of Service Customization Requests

As mentioned before, in order to ensure the minimization of wastage of computing time and

resources, service customization requests need to be validated. This is the main function of the

feature management engine (cf. Section 3.3.1). This component was implemented by leveraging

on the FAMA framework, which employs several Java logic representations and solvers, such as

Boolean Satisfiability (SAT) and Constraint Satisfaction Problem (CSP) for enabling automated

analysis of feature models. To validate a service customization request, the feature management

engine takes as input the provider‘s software feature model and consumer‘s requested feature

configurations, in an XML-based format (see Appendix F) and performs operations such as the

validation of a feature model or validation of feature configurations.

71

Figure 4.10 represents the key code fragment for validating service customization requests. In

the first line, the FAMA framework main class is instantiated, while lines 3 to 5 load the software

service feature model. To read and get the features of the software service in question, lines 7 to 8

create two variables, one variable for iterating and reading through the service feature model, and

the other for storing the returned element(s). Line 9 generates a configuration container, to store

the requested set of (selected and disabled) features configurations, while lines 11 to 19 perform

the actual reading and storing of required (selected) and unnecessary (disabled) features. The

resulting set of feature configurations are applied to the provider‘s software service feature

model (line 20). To finish, lines 21 to 26 query the validity of the customization request and

check the results of the query.

Figure 4.10: Key Java Snippet for Validating Service Customization Requests

72

4.3. Experimental Evaluations

This section presents the experiments conducted to evaluate the FreeCust approach described in

this dissertation. The experiments are divided into two parts: usability experiment and request

validation experiment. Each of these parts begins with a description of the experimental design

and then details the evaluation.

In order to conduct the usability experiment, as reported or discussed in the succeeding sub-

section (section 4.3.1), appropriate measures were taken to ensure that the rights and welfare of

participants in the study were protected. All participants were given the information and

informed consent form (Appendix A). This information and informed consent form introduced

the researcher, explained the purpose of the study, the risks involved, and the fact that

participants are free and/or have the right to withdraw at any stage from the study. The manner

in which the results of the study would be used was also explained. No specific ethical

considerations were applicable to this study.

4.3.1. Usability Experiment

A usability evaluation was conducted to determine consumers‘ perception of FreeCust after an

interaction experience. According to the International Organization for Standardization [ISO]

924-11 (1998) as cited in Daramola (2009) and ISO/NP 9241-11 (2008), usability is the degree

to which specified stakeholders can use a system to achieve specified goals with effectiveness,

efficiency and satisfaction. Moreover, usability is a perception of a system‘s ease of learning

and use, from both the experienced and inexperienced stakeholders‘ viewpoint (Lindgaard, 1994

as cited in Daramola, 2009).

73

4.3.1.1. Experimental Design

The fundamental goal of the usability evaluation was to measure consumers‘ perception of

FreeCust after an interaction experience. Correspondingly, the aim was to respond to the main

research question raised in Chapter 1, namely, how can we ensure that the complexities involved

in consumers‘ service customization processes are minimized to a potential efficient level?

Efficient level is defined as a level at which non-ICT experts (such as SMMEs) without good

background knowledge in Web service related technologies are able to customize software

services.

The usability evaluation was conducted in the Postgraduate lab at the University of Zululand.

The targeted population was non-ICT professionals (e.g., SMMEs), as well as other professionals

with little knowledge in Web service related technologies. However, a representative sample

size consisting of ten participants (six males and four females) was used in this evaluation. This

was because a good quality usability test requires a set of five participants (Nielsen & Landauer,

1993; Nielsen, 2000; Virzi, 1992); while ten participants can give the most efficient feedback

(Faulkner, 2003; Schmettow, 2012).

According to Steinberg (2011), a representative sample is a population in which participants

have characteristics related to the actual targeted population of the study. Thus, the participants

were required to have some experience and/or knowledge in operating a computer system and

using the Internet. The participants were also required to have a little knowledge on Web

services tools and software services in general. This type of data was collected using a pre-

experiment background questionnaire (Appendix B). The usability metrics that were used in this

evaluation are described as follows:

74

(i) Effectiveness, which measures task success (the level of success to which participants

completed the usability evaluation tasks), and

(ii) Consumer satisfaction, the degree to which participants are content with FreeCust.

In order to obtain and determine participants‘ views on effectiveness and consumer satisfaction,

a post-experiment usability questionnaire (see Appendix C) was used. The following section

presents how the evaluation took place and the results that were obtained.

4.3.1.2. Process, Results and Analysis

As the first step, all participants were required to provide their informed consent to participate in

the evaluation (Appendix A), and complete a background questionnaire (Appendix B). After

that, the participants were briefed about the main purpose of the evaluation and the evaluation

procedure, as well as the evaluation tasks (Table 4.2). Then, the evaluation started, with 35

minutes being set as the finish point for completing all the evaluation tasks. This was to reveal

the approximate effective time for completing all the evaluation tasks.

Each participant was given a detailed task list (see Appendix D), and evaluated the notion of

FreeCust individually. After the allocated time elapsed, all participants stopped and completed

the post-experiment questionnaire (see Appendix C), which was adapted from the Computer

System Usability Questionnaire (CSUQ) (Lewis, 1995) and NASA Task Load Index (NASA-

TLX) (Hart & Staveland, 1988). Finally, the post-experiment questionnaires were collected from

each participant, and the responses were correspondingly verified with respect to the (very) last

executed task in the computer system.

75

Table 4.2: Usability Evaluation Tasks

Evaluation Tasks

1. Search for the live match score software service in the XMethods service directory.

2. Retrieve the software service feature model (i.e. the Live_Match_Score_Software_Service.fmp) file.

3. Import the software service feature model file in Eclipse, where the FreeCust GUI-flavored

implementation is running.

4. Select and disable all the required and unnecessary features (features of interest).

5. Send customization request.

Figure 4.11: Participants Demographic Results (n=10)

76

Participants were in the age range of 20-30 years, and they all had at least five years‘ experience

in operating a computer system. They were also asked whether they had any prior experience in

using the Internet and Web services tools, as well as knowledge of software services (cf. Figure

4.11). 90 and 80 percent of the participants had respectively used Internet and Web services

tools prior to taking part in the evaluation, and most of them had at least two years‘ experience

and/or knowledge of software services.

As indicated earlier, FreeCust usability was tested using two usability metrics: effectiveness and

consumer satisfaction. The results were captured in the post-experiment questionnaires, using a

7-point Likert scale and a 7-point semantic differential scale, and are presented next.

Effectiveness: for each task in the evaluation task list, (refer to Table 4.2), participants were

required to respond to a question relating to each task. Accordingly, task success was measured

as the percentage to which participants are able to complete each evaluation task. For instance,

each completed task without assistance from the evaluator implies a successful rate of 100% task

completion, while with a single iteration of the evaluator‘s assistance each completed task is

given a 75% completion rate. Figure 4.12 displays the task success and failure rates for tasks 1

to 5. Each bar represents a single task, and is sub-divided into chunks, which represent the

completion rate attained by participants. As the results indicate, all the evaluation tasks were

successfully completed with a 100% completion rate, except for task 3, where 30% (n=3) of the

participants completed the task with 75% completion rate, meaning that these participants

needed some help from the evaluator. Nevertheless, the overall results show that, although

participants were not proficient or familiar with the evaluation tasks, they managed to complete

all the tasks within the finish mark, without facing any major challenges.

77

Figure 4.12: Participants Task Success Levels (n=10)

Consumer Satisfaction: the results of consumer satisfaction were captured and determined

using two different aspects: (i) cognitive load and (ii) ease of use. Figures 4.13 and 4.14 show

the results of these measures respectively. From the results, it can be deduced that the usability

evaluation tasks outlined in Table 4.2 and the set of instructions detailed in Appendix D were not

difficult to learn and perform. This is reflected in the fact that the mean average scores of ―ease

of use‖ ratings (see Figure 4.14) are above 6, on a scale 1 to 7. Accordingly, the results show

and attest that all participants could effectively and efficiently complete the usability evaluation

tasks, and that the process of learning and performing the novel tasks was not difficult (see

Figure 4.13). This is also supported by the results showed in Figure 4.15, which highlight that

participants were very satisfied with FreeCust.

78

Figure 4.13: Participants Cognitive Load Using a 7-point Semantic Differential Scale (n=10)

Figure 4.14: Ease of Use Results Using a 7-point Likert scale (n=10)

79

Figure 4.15: Overall Satisfaction Using a 7-point Likert scale (n=10)

4.3.2. Request Validation Experiment

This section describes the experiment conducted to evaluate the effectiveness of the feature

management engine. In particular, the experiment was carried out to test the capability of the

feature management engine in validating customization requests, i.e., checking whether a

software service customization request is valid or not.

Taking into account the fact that the FreeCust GUI-flavored mechanism provides the capability

to automatically confirm the validity of feature configurations (because of the automated

selection and de-selection support of connected or dependent features) during the consumer‘s

customization process. It means all feature configuration requests produced by the GUI-flavored

mechanism are valid with respect to the original software service feature model. However, for

testing whether the feature management engine is able to identify invalid requests, the FreeCust

80

GUI-flavored mechanism was not sufficient. The following sections describe how the invalid

test was conducted as well as the outcome of the test.

4.3.2.1. Experimental Design

As mentioned in the foregoing section, the FreeCust GUI-flavored implementation only permits

valid customization requests. Therefore, to generate and test if the feature management engine is

able to detect invalid customization requests, the implementation was bundled as a jar file, and

the console window program was used to simulate or send invalid customization requests. The

test computations ran on a Windows 7 Home Premium Machine, with 3GB of RAM, 2.67 GHz

Intel Core i5 processor, and version 7 Java Runtime Environment (JRE). The live match score

software service feature model (cf. Sections 4.3.4.1 and 3.4.1) was used for the test.

4.3.2.2. Process, Results and Analysis

Because of the small size of the live match score service feature model, only two invalid requests

were simulated, as demonstrated in Figure 4.16. Evidently, from the figure, both requests are

completely invalid; in particular, the first customization request is invalid in the sense that the

mandatory ―Update Information‖ feature was disabled, while the second request is invalid since

the implicit interdependent feature of the ―After60sec‖ update information child feature was

disabled (i.e., the ―At_most_99%‖ availability child feature). Hence, this violated the cross-tree

constraint defined on these features. The responses shown in the console window (Figure 4.16),

for each customization request confirm the correctness of the feature management engine in

validating service customization requests.

81

Figure 4.16: Service Customization Request Validation

4.4. Experimental Evaluations Result Discussion

As mentioned earlier, the main goal of the foregoing experimental evaluations, particularly the

usability experimental evaluation, was to test the notion of FreeCust and correspondingly answer

the key research question raised in Chapter 1. The question reads as follows: how can we ensure

that the complexities involved in consumers‘ service customization processes are minimized to a

potential efficient level? Efficient level was defined as a level at which non-ICT experts (such as

SMMEs) without good background knowledge in Web service related technologies are able to

customize software services. From the overall usability evaluation results, it can be inferred that

the FreeCust approach simplifies the service customization process, since it provides a user-

friendliness solution that is easy enough to be used by novice users and/or non-ICT experts. In

particular, the results show that the complexities involved in consumer‘s service customization

processes can be effectively dealt with by describing and representing service capabilities (i.e.,

functional and non-functional properties) at the highest level of abstraction, and by introducing a

visual view mechanism for representing customization options, as well as a mechanism that can

82

automatically select and disable dependent customization options. These enable and help service

consumers to easily comprehend and make business-oriented service customization choices.

4.5. Comparative Analysis

According to Hofstee (2006), a comparative analysis plays a critical role in assessing any new

solution against the existing similar solutions. Thus, to systematically compare FreeCust with

existing service customization solutions, and note its benefits, the research in this dissertation

devised a number of criteria that need to be supported by service customization solutions, in

order to efficiently deliver customizable software services (that best meet the varying demands

of consumers), in a rapid and cost-effective manner and to provide a consumer-aware and

friendly customization solution.

As motivated by (Czarnecki et al., 2012; Schmid, Rabiser, & Grunbacher, 2011), the group of

criterions that formed part of the systematic comparison were defined by following the bottom-

up and top-down practices. That is, in following the bottom-up practice, a number of important

aspects that were identified from analyzing and reviewing existing related works were included

in the criteria group. The other important aspects that were included in the group, through the

top-down practice, are the aspects that were gathered from critically reviewing, analyzing, and

reasoning about existing literature on software variability management (e.g., how is consumer-

introduced variability handled in the SPL engineering discipline).

These criteria include: (i) minimizing customization complexity, (ii) request validation, (iii)

technical blindness, (iv) implicit interdependencies, and (v) the management of functional and

non-functional requirements. It is not claimed that the aforementioned list is complete, but it

does provide appropriate aspects to compare the FreeCust approach with existing approaches.

83

The rest of this section analyzes existing service customization approaches, with respect to the

aforementioned criteria. The results of the comparative analysis are summarized in Table 4.3

using the following symbols: (+) criterion met, (-) criterion not met, and (+/-) criterion partially

met.

Minimizing Customization Complexity: as mentioned in the rest of this dissertation, service

capabilities should be modeled and/or represented at the highest level of abstraction. This is

because the number of variation points and variants increase when variability is modeled at the

lowest levels of abstraction; which in turn creates a burden and becomes a complex task for

service consumers to easily interpret and make customization decisions. Hence, describing and

representing service properties at the highest level of abstraction (i.e., at feature or requirements

level) exhibits fewer variation points and variants compared to the service interface level. Thus,

when comparing FreeCust – the Feature Model-based Service Customization approach with

existing similar approaches reviewed in Chapter 2, that describe variability at technical levels,

FreeCust is the only approach which describes and represent service capabilities at the highest

level of abstraction. Accordingly, it minimizes customization complexities and simplifies the

customization task for service consumers.

Request Validation: as also mentioned in the rest of this dissertation, the excess number of

possible customization options that software services exhibit make customizing a service a very

error-prone task. Thus, to ensure that service consumers do not breach any properties described

by service providers, and to minimize wastage of computing time and resources, a mechanism

for automatic validation of consumers‘ customization requests is necessary. Hence, the FreeCust

84

approach and most of the other reviewed service customization approaches, expect Liang et al.

(2006) and Barros et al. (2011), support such a mechanism.

Technical Blindness: as compared to other customization approaches reviewed in Chapter 2,

FreeCust is the only approach that does not require service consumers to be familiar with the

technicalities of realizing software services in order to perform service customizations. Rather, it

enables consumers, during the customization task, to reason more about what a software service

can provide and achieve, at the highest level of abstraction.

Implicit Interdependencies: most of the existing service customization approaches represent

the dependencies among service customization options using natural languages. However, this

adds more complexities in consumers‘ service customization processes. The employment of the

feature modeling technique in FreeCust enables the capturing of (inter) dependencies among

customization options as cross-tree constraints (cf. Sections 2.5.3 and 4.3.4.1). This ensures a

consistent way of representing customization options and helps in reasoning more about service

customization decisions.

Managing Functional and Non-functional Requirements: as stated in Chapter 2, existing

service customization approaches only focus on managing variable functional requirements of

service consumers; they do not take into consideration the fact that, in reality, consumers usually

exhibit varying functional and non-functional requirements. Accordingly, the FreeCust approach

covers both the variable functional and non-functional requirements of service consumers.

85

Table 4.3: Comparative Analysis of Existing Service Customization Approaches

 Criteria

 Approach M
in

im
iz

in
g

C
u

st
o
m

iz
a
ti

o
n

C
o
m

p
le

x
it

y

R
eq

u
es

t
 V

a
li

d
a
ti

o
n

T
ec

h
n

ic
a
l

B
li

n
d

n
es

s

Im
p

li
ci

t

In
te

rd
ep

en
d

en
ci

es

M
a
n

a
g
in

g
 F

u
n

ct
io

n
a

l

a
n

d
 N

o
n

-F
u

n
ct

io
n

a
l

R
eq

u
ir

em
en

ts

Liang et al. (2006) - - - - +/-

Stollberg and Muth (2009) - + - - +/-

Nguyen and Colman

(2010)
- + - +/- +/-

Barros et al. (2011) - +/- - - +/-

The FreeCust Approach + + + + +

The comparative analysis presented in this section revealed some distinctive differences between

the FreeCust approach and existing similar solutions. Where essential aspects were found to be

supported across other solutions, the differences between those aspects also revealed how the

FreeCust approach addresses the challenges of building and provisioning efficient customizable

software services.

4.6. Summary

In this chapter, the proof-of-concept implementation and technologies exploited to realize the

notion of FreeCust were demonstrated. First, the chapter gave a high-level overview of the

FreeCust proof-of-concept prototype. Thereafter, the platforms, tools and frameworks that were

used in the implementation to realize the functions of FreeCust were presented. Then, the notion

and functions of FreeCust were evaluated, with the aim of testing the effectiveness of FreeCust

86

and responding to the key research question raised in Chapter 1. The results of the usability

evaluation show that this research question was dealt with. Finally, the chapter, systematically

compared FreeCust with other existing service customization approaches. The comparative

analysis results demonstrate that the FreeCust approach has and/or delivers the necessary

characteristics for an effective and efficient service customization solution. To round off the

work done in this research, the next chapter summarizes the dissertation by highlighting the key

achievements and contributions of this work. The chapter also gives the limitations of the

FreeCust approach as presented in this dissertation, as well as future directions for further

investigations.

87

Chapter 5

CONCLUSION AND FUTURE WORK

This chapter concludes the research work presented in this dissertation. It first highlights the

achievements, according to the objectives set out at the beginning of this dissertation (Section

5.1), and the major conclusions drawn from this research (Section 5.2). Thereafter, it reviews the

research methodology, through which the contributions of this research to the field of service-

oriented computing are outlined (Section 5.3). Finally, the chapter describes the limitations of

the feature model-based service customization approach as presented in this dissertation, and

points out a number of interesting avenues of future research (Section 5.4).

5.1. Research Summary

As mentioned throughout this dissertation, SOA enables the design and realization of Software-

as-a-Service (SaaS) business model, where organizations such as SMMEs can acquire software

services embodied and maintained by service providers, through the Internet, without having to

purchase their own ICT infrastructures. Although these organizations (i.e., service consumers)

can have access to software services and utilize them in their business processes, in reality, they

often have diverse business and feature requirements. As a result, service providers are faced

with various challenges to stay relevant in today‘s global economy. This, together with new

market opportunities, necessitates mechanisms for rapid development and delivery of software

services that best meet consumers‘ demands. Hence, some service providers have motivated the

acceptance of customizable software-development methods, to develop and deploy customized

services for their potential consumers. However, during this process of offering customizable

88

services, for service providers to systematically provide efficient services, they need to consider

both the technological knowledge as well as variable functional and non-functional requirements

of service consumers.

Chapter 1 (Section 1.4) stated that the main goal of this dissertation was to develop a service

customization mechanism for managing consumer-introduced variability in SOA environments.

This mechanism needed to have less customization complexity. To tackle this, several research

objectives and questions were formulated as a guide for which the research in this dissertation

was conducted. The primary research question was phrased as follows: how can we ensure that

the complexities involved in consumers‘ service customization processes are minimized to a

potential efficient level? Efficient level is the level at which non-ICT experts without good

background knowledge in Web service related technologies can be able to customize software

services. The aforementioned research question generated two sub-questions: (i) how can a

mechanism that enables graphical and/or visual representation of service customization options

be implemented? And, (ii) can the number of possible interdependencies among service

customization options be automatically selected? The following summarizes how the primary

research question and its sub-questions were addressed.

Sub-Research Questions: the FreeCust consumer-oriented GUI implementation as presented

in Chapter 4 addressed both the sub-research questions. In particular, the sub-questions were

dealt with by exploiting the concepts, techniques, and tools of feature modeling from the SPL

engineering discipline. Precisely, in order to graphically represent service customization options,

the open-source tool called featurePlugin was leveraged. The function of automatic selection

and de-selection of interdependent service customization options was also implemented through

89

the exploitation of this tool; as it also supports the feature cross-tree constraint mechanism. This

covered the second sub-research question.

Main Research Question: with the support of the answers of the sub-research questions, the

main research question was addressed through a usability test (cf. Section 4.4.1), where a sample

of ten representative participants tested the effectiveness of the notion of FreeCust. The overall

results of usability testing show that the complexities faced by service consumers when they are

performing service customization tasks can be efficiently minimized by taking advantage and/or

bringing in the concepts and techniques of SPL engineering to the development and delivery of

customizable software services. Hence, FreeCust was guided by the feature modeling concept.

5.2. Conclusions

As mentioned before, the main purpose of this research study was to investigate and formulate a

service customization mechanism, so as to manage consumer-introduced variability and simplify

the complexities involved in building and provisioning customizable software services. In an

attempt to design and realize such a solution, it became essential to specify the design principles.

These principles, which are presented and discussed in Chapter 3 (Section 3.2) emanated from

the literature, that is, from critically reviewing, analyzing, and reasoning about existing related

research and the relevant literature on software variability management.

The design principles provided the basis for designing and developing a solution that would not

only address the challenges of building customizable software services, but would further ensure

that the solution is future-proof in terms of extensibility and re-usability. Once the principles

were specified, a Feature Model-based Service Customization (FreeCust) framework was

designed and developed.

90

To validate the plausibility and the relevance of the FreeCust solution approach, a number of

different research evaluation techniques were adopted. In particular, qualitative and quantitative

approaches were exploited. Using two real-world use case scenarios, the utility and applicability

of the FreeCust solution were demonstrated. This was followed by two controlled experimental

evaluations (i.e., usability and effectiveness). The main goal of these experimental evaluations

was to demonstrate the practicability and evaluate the significance and relevance of the notion of

FreeCust.

From the overall results obtained in the experimental evaluation activities, particularly usability

evaluation, it can be reasoned and concluded that the FreeCust solution minimizes customization

complexities and simplifies the customization task and/or procedure for service consumers. This

is due to the fact that FreeCust presents a user-friendly solution that is simple and yet useful for

supporting either the novice users or non-ICT experts, as well as expert service engineers. In

particular, the findings reveal that the complexities involved in service customization processes

can be effectively addressed by: (i) describing and representing service capabilities at the highest

level of abstraction, (ii) introducing a visual view and/or graphical mechanism for representing

customization options, and (iii) building a mechanism that can automatically select and disable

dependent customization options. These aforementioned aspects (will) enable and help service

consumers to easily comprehend and select business-oriented customization options.

The FreeCust solution was further evaluated through a comparative analysis (referred to as static

analysis in the evaluation stage of design science), which provided a setting for systematically

and qualitatively gauging the solution with existing solutions in the literature.

91

In the analysis (cf. Section 4.5), the key differentiators between FreeCust and related solutions

were highlighted and clarified. From the analysis, it became evident that the value propositions

of the FreeCust solution are: (i) handling both the functional and non-functional requirements of

service consumers, (ii) minimizing the complexities and simplifying the customization task for

service consumers, and (iii) providing a consistent way for representing customization options

and helping facilitate the reasoning of customization decisions.

5.3. Review of the Research Methodology and Contributions

As stated in Chapter 1 (Section 1.5), the research in this dissertation followed the design science

research methodology. Thus, to assess the results of this research against the requirements for an

effective design science research, Hevner et al. (2004) defined seven guidelines, which are

summarized as follows:

Design as an Artifact: this guideline states that research efforts guided by the design science

research paradigm must produce some viable artifacts. Thus, the research work presented in this

dissertation produced two viable artifacts, that is, the FreeCust architecture framework and its

proof-of-concept implementation, as well as the Non-Functional Property (NFP) model.

Problem Relevance: this guideline requires design science research to develop technology-

based solutions to truly important and relevant business problems. As defined in Chapter 1, the

consumer-introduced variability problem, which is caused by the diversity of business needs and

requirements of service consumers, as well as the technological knowledge level of consumers in

modern service-oriented business environments, is truly an important business problem. Hence,

it requires organizations (i.e., service providers) to keep up with global market changes, and

necessitates efficient mechanisms and/or solutions for the rapid development and delivery of

92

customizable software services that best meet consumers‘ demands. The FreeCust technology-

based solution as developed in this dissertation is totally in line with and attempts to address the

aforementioned business problem.

Design Evaluation: this aspect involves and/or requires well-executed evaluation methods to

evaluate the utility, relevance and applicability of the proposed solution to the identified business

problem. In the context of the research in this dissertation, two real-world application scenarios

were constructed to demonstrate the utility and applicability of the FreeCust solution approach.

Furthermore, two controlled experimental evaluations (i.e., usability and effectiveness) were also

conducted to illustrate the practicability and evaluate the significance and relevance of FreeCust.

The key characteristics and benefits of the proposed (FreeCust) approach were presented via a

comparative analysis against other existing similar approaches.

Research Contributions: this guideline states that the proposed solution must provide clear

contributions. The conceptual FreeCust architecture framework as suggested in this dissertation

serves as the primary contribution to the field of service-oriented computing, as it provides a

solution or method in which organizations such as service providers and service consumers can,

respectively, realize the design and provisioning of efficient customizable software services, and

help in minimizing development time and costs of software services, since consumers may not

need to hire too many experts from different fields in order to customize software services. The

NFP model (cf. Section 3.3.2) is the secondary contribution. It contributes to both the fields of

service and software product line engineering.

Research Rigor: this refers to the rigorous way in which the design science research was

undertaken. For the research in this dissertation, rigorous methods were used in both the

93

construction and evaluation of the FreeCust approach. As a case in point, the FreeCust

framework was formulated based on the results that were gleaned from reviewing, analyzing,

and reasoning about the characteristics of an efficient and effective software customization

solution, and from analyzing relevant existing service customization solutions. The feasibility,

applicability, and utility of the FreeCust approach were demonstrated through real-world use

case scenarios and proof-of-concept experimentations. In addition, a comparative evaluation

(called static analysis in the evaluation stage of design science research) was performed, to

systematically compare FreeCust with other existing service customization solutions.

Design as a Search Process: this guideline requires that when conducting design science

research, an effective solution to the identified business problem must be found through a

thorough search process. In view of that, the development of the FreeCust solution approach

was really a search process. Hence, the research was conducted over the period of two and a half

years, where different research methods and strategies were employed in the development and

evaluation of FreeCust.

Communication of Research: this is the final guideline. It states that design science research

must be reported or presented to both technology-oriented and management-oriented audiences.

As mentioned at the beginning of this dissertation (cf. LIST OF PUBLICATIONS), portions of

the work reported in this dissertation have been published and/or presented at the 16
th

 Annual

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2013,

15
th

 Annual Conference on the World Wide Web Applications (ZA-WWW) 2013, and Volume

8, Issue No.: (1) of the International Journal of Information Technology and Computer Science

(IJITCS) 2013.

94

5.4. Limitations and Future Work

The FreeCust approach as implemented in this dissertation has several limitations. This section

describes the limitations and discusses the possible directions of future work, to which the

FreeCust solution can be improved and enhanced for addressing its limitations.

As mentioned in Chapter 1 (Section 1.6), the service customization process can be generally

broken down into two parts. That is, the part whereby consumers comprehend customization

options and perform service customizations, and the part where service providers derive and

deploy customized software service variants and manage those variants. The FreeCust proof-of

concept implementation, as carried out in this dissertation focused only on the first part of the

service customization process, as described above. The realization of the second part is the

subject of future research. In addition, the following techniques - (Java) reflection, XSL and

ATLAS model transformation languages, as well as Acceleo and WSDL2Java tools could be

investigated in trying to realize this part.

Although the use of feature models has its merits in the FreeCust approach, when addressing the

second part of the service customization process, it should be noted that feature models might

only be more appropriate for software services that are owned and maintained by the developing

organization. For instance, when taking GUISET into context, feature models might be more

appropriate for GUISET native services only; this is because the logic and implementations of

software services would be owned by GUISET and available for alterations. In the case where a

customizable service requires a feature that is provided by an external entity to GUISET, the use

of feature models might not be sufficient. Hence, more work would have to be carried out to

95

explore how the identification and mapping of features to the implementation logic of external

services can be integrated in the FreeCust service derivation and deployment process.

96

BIBLIOGRAPHY

Acher, M., Collet, P., Lahire, P., & France, R. (2010). Managing variability in workflow with

feature model composition operators. In B. Baudry & E. Wohlstadter (Eds.), Software

Composition (pp. 17–33). Springer Berlin Heidelberg.

Adigun, M., Emuoyibofarhe, O., & Migira, S. (2006). Challenges to access and opportunity to

use SMME enabling technologies in Africa. Paper presented at the 1st All African

Technology Diffusion Conference, Johannesburg, South Africa.

Aiello, M., Bulanov, P., & Groefsema, H. (2010). Requirements and tools for variability

management. Proceedings of the 2010 IEEE 34
th

 Annual Computer Software and

Applications Conference Workshops (pp. 245–250). Washington, DC, USA: IEEE

Computer Society.

Al-Masri, E., & Mahmoud, Q. H. (2008a). Investigating web services on the World Wide Web.

Proceedings of the 17
th

 International Conference on World Wide Web (pp. 795–804).

New York, NY, USA: ACM.

Al-Masri, E., & Mahmoud, Q. H. (2008b). Toward quality-driven web service discovery. IT

Professional, 10(3), 24–28. doi:10.1109/MITP.2008.59

American National Standards Institute. (1990). IEEE Std 610.12-1990: IEEE standard glossary

of software engineering terminology. doi:10.1109/IEEESTD.1990.101064

Andrés, R. de, García-Lapresta, J. L., & Martínez, L. (2010). A multi-granular linguistic model

for management decision-making in performance appraisal. Soft Computing, 14(1), 21–

34. doi:10.1007/s00500-008-0387-8

Antkiewicz, M., & Czarnecki, K. (2004). FeaturePlugin: Feature modeling plug-in for eclipse.

Proceedings of the 2004 OOPSLA Workshop on Eclipse Technology eXchange (pp. 67–

72). New York, NY, USA: ACM.

Arsac, W., Laube, A., & Plate, H. (2013). Policy chain for securing service-oriented

architectures. In R. D. Pietro, J. Herranz, E. Damiani, & R. State (Eds.), Data Privacy

97

Management and Autonomous Spontaneous Security (pp. 303–317). Springer Berlin

Heidelberg.

Babar, M. A., Chen, L., & Shull, F. (2010). Managing variability in software product lines. IEEE

Software, 27(3), 89–94. doi: 10.1109/MS.2010.77

Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K., Ramesh, B., & Vilbig, A. (2004). A

meta-model for representing variability in product family development. In F. J. van der

Linden (Ed.), Software Product-Family Engineering (pp. 66–80). Springer Berlin

Heidelberg.

Barros, A., Allgaier, M., Charfi, A., Heller, M., Kylau, U., Schmeling, B., & Stollberg, M.

(2011). Diversified service provisioning in global business networks. Annual SRII Global

Conference (SRII) (pp. 716 –728). doi:10.1109/SRII.2011.78

Benavides, D. (2009). Automated analysis of feature models: A detailed literature review

(Version 1.0). Retrieved from http://www.lsi.us.es/~dbc/en/?download=isa-09-tr-04-

v1.pdf

Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models 20

years later: A literature review. Information Systems, 35(6), 615–636.

Benavides, D., Trinidad, P., & Ruiz-Cortés, A. (2005). Automated reasoning on feature models.

In O. Pastor & J. F. e Cunha (Eds.), Advanced Information Systems Engineering (pp.

491–503). Springer Berlin Heidelberg.

Bézivin, J. (2005). On the unification power of models. Software & Systems Modeling, 4(2),

171–188. doi:10.1007/s10270-005-0079-0

Bianco, P., Kotermanski, R., & Merson, P. (2007). Evaluating a service-oriented architecture

(Technical Report No. CMU/SEI-2007-TR-015). Pittsburgh, PA, Carnegie Mellon

University: Software Engineering Institute.

Blewitt, A. (2012). Eclipse juno and the future of the eclipse platform. Retrieved March 9, 2014,

from http://www.infoq.com/news/2012/01/eclipse-juno

http://dx.doi.org/10.1109/MS.2010.77

98

Bloomberg, J. (2007). How to define a business service (White paper). Retrieved from

http://www.softwareag.com/jp/Images/HowDefineBusinessService-SoftwareAG-112007-

WP-0165-1_tcm87-35243.pdf

Bocchi, L., Fiadeiro, J. L., & Lopes, A. (2008). A use-case driven approach to formal service-

oriented modeling. In T. Margaria & B. Steffen (Eds.), Leveraging Applications of

Formal Methods, Verification and Validation (pp. 155–169). Springer Berlin Heidelberg.

Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a product-

line approach. New York, NY, USA: ACM Press/Addison-Wesley Longman Publishing

Co., Inc.

Bosch, J. (2009). From software product lines to software ecosystems. Proceedings of the 13
th

International Software Product Line Conference (pp. 111–119). Pittsburgh, PA, USA:

Carnegie Mellon University.

Bosch, J., & Capilla, R. (2012). Dynamic variability in software-intensive embedded system

families. Computer, 45(10), 28–35. doi:10.1109/MC.2012.287

Capilla, R., & Bosch, J. (2011). The promise and challenge of runtime variability. Computer,

44(12), 93–95. doi:10.1109/MC.2011.382

Cavanaugh, E. (2006). Web services: Benefits, challenges, and a unique, visual development

solution (White paper). Retrieved from

http://www.altova.com/whitepapers/webservices.pdf

Chang, S. H., & Kim, S. D. (2007). A variability modeling method for adaptable services in

service-oriented computing. Proceedings of the 11
th

 International Software Product Line

Conference (pp. 261–268). Washington, DC, USA: IEEE Computer Society.

Chen, L., Ali Babar, M., & Ali, N. (2009). Variability management in software product lines: a

systematic review. Proceedings of the 13
th

 International Software Product Line

Conference (pp. 81–90). Pittsburgh, PA, USA: Carnegie Mellon University.

99

Clement, L., Hately, A., von Riegen, C., Rogers, T., Kochman, R., Macias, P., Dovey, M.

(2004). UDDI Version 3.0, Organization for the Advancement of Structured Information

Standards (OASIS). Retrieved from http://uddi.org/pubs/uddi_v3.htm

Clements, P., & Northrop, L. (Eds.). (2001). Software product lines: Practices and patterns (3
rd

ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Cohen, S., & Krut, R. (2010). Managing variation in services in a software product line context.

(Technical Report No. CMU/SEI-2010-TN-007). Pittsburgh, PA, Carnegie Mellon

University: Software Engineering Institute.

Czarnecki, K., & Eisenecker, U. W. (2000). Generative programming: methods, tools, and

applications. New York, NY, USA: ACM Press/Addison-Wesley Longman Publishing

Co., Inc.

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., & Wkasowski, A. (2012). Cool features

and tough decisions: a comparison of variability modeling approaches. Proceedings of

the Sixth International Workshop on Variability Modeling of Software-Intensive Systems

(pp. 173–182). New York, NY, USA: ACM.

Czarnecki, K., & Helsen, S. (2006). Feature-based survey of model transformation approaches.

IBM Systems Journal, 45(3), 621–645. doi:10.1147/sj.453.0621

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality-based feature

models and their specialization. Software Process: Improvement and Practice, 10(1), 7–

29.

Dai, W. (2010). The impact of emerging technologies on small and medium enterprises. Journal

of Business Systems, Governance and Ethics, 4(4), 53–60.

Daramola, J. (2009). A software product line approach to ontology-based recommendations in e-

tourism systems (Doctoral dissertation). Covenant University, Ota, Nigeria.

de Oliveira Junior, E. A., Gimenes, I. M. S., Huzita, E. H. M., & Maldonado, J. C. (2005). A

variability management process for software product lines. Proceedings of the 2005

100

Conference of the Centre for Advanced Studies on Collaborative Research (pp. 225–

241). Toranto, Ontario, Canada: IBM Press.

Deelstra, S., Sinnema, M., & Bosch, J. (2005). Product derivation in software product families:

A case study. Journal of Systems and Software, 74(2), 173–194.

doi:10.1016/j.jss.2003.11.012

Dhungana, D., Grünbacher, P., & Rabiser, R. (2011). The DOPLER meta-tool for decision-

oriented variability modeling: A multiple case study. Automated Software Engineering,

18(1), 77–114. doi:10.1007/s10515-010-0076-6

Dlamini, S. W., Tarwireyi, P., & Adigun, M. O. (2013). Maximizing Web Service Applicability

and Consumption through Customization with Feature Modelling. In Proceedings of the

15th Annual Conference on World Wide Web Applications. CPUT, Cape Town, Western

Cape

Dustdar, S., & Treiber, M. (2005). A view based analysis on web service registries. Distributed

and Parallel Databases, 18(2), 147–171. doi:10.1007/s10619-005-2460-y

Elio, R., Hoover, J., Nikolaidis, I., Salavatipour, M., Stewart, L., & Wong, K. (2008). About

computing science research methodology penned by Jose Nelson Amaral with significant

contributions from Michael Buro (Research Report No. 45940429). Retrieved from

http://webdocs.cs.ualberta.ca/~c603/readings/research-methods.pdf

Erl, T. (2005). Service-oriented architecture: Concepts, technology, and design. Upper Saddle

River, NJ: Prentice Hall Professional Technical Reference.

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in

usability testing. Behavior Research Methods, Instruments, & Computers, 35(3), 379–

383. doi:10.3758/BF03195514

Fenton, N. E., & Pfleeger, S. L. (Eds.). (1998). Software metrics: A rigorous and practical

approach (2
nd

 ed.). Boston, MA, USA: PWS Publishing Co.

101

Fernandez-Amoros, D., Gil, R. H., & Somolinos, J. C. (2009). Inferring information from feature

diagrams to product line economic models. Proceedings of the 13
th

 International

Software Product Line Conference (pp. 41–50). Pittsburgh, PA, USA: Carnegie Mellon

University.

France, R., & Rumpe, B. (2007). Model-driven development of complex software: A research

roadmap. Proceedings of FOSE 2007 Future of Software Engineering (pp. 37–54).

Washington, DC, USA: IEEE Computer Society.

Frei, F. X. (2006). Breaking the trade-off between efficiency and service. Harvard Business

Review, 84(11), 93–101, 156.

Genova, G., Valiente, M., & Marrero, M. (2009). On the difference between analysis and design,

and why it is relevant for the interpretation of models in model driven engineering.

Journal of Object Technology, 8(1), 107–127. doi:doi:10.5381/jot.2009.8.1.c7

Geurts, B. (2003). Reasoning with quantifiers. Cognition, 86(3), 223–251.

Glinz, M. (2007). On non-functional requirements. Proceedings of the 15
th

 IEEE International

Requirements Engineering Conference, RE ’07 (pp. 21–26). Delhi: IEEE Computer

Society.

Gohar, A. (2010). Analyzing service-oriented architecture (SOA) in open source products

(master's thesis). Uppsala University, School of Innovation, Design and Engineering

(IDT). Retrieved from www.diva-portal.org/smash/get/diva2:360992/FULLTEXT01

González-Baixauli, B., Laguna, M., & Crespo, Y. (2004). Product line requirements based on

goals features and use cases. Paper presented at the International Workshop on

Requirements Reuse in System Family Engineering (IWREQFAM). Retrieved from

http://giro.infor.uva.es/Publications/2004/GLC04/bruno-ws_icsr_v3.pdf

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H., Karmarkar, A., & Lafon,

Y. (2007). SOAP version 1.2 part 2: Adjuncts. Retrieved from

http://www.w3.org/TR/soap12-part2/

102

Gumbo, S., Terzoli, A., & Thinyane, M. (2013). Living labs as South Africa‘s enabler for ICT

services creation: The siyakhula living lab experience. Proceedings of the 16
th

 Annual

Southern Africa Telecommunication Networks and Applications Conference (SATNAC)

(pp. 1–5). Spier Wine Estate, Stellenbosch, Western Cape, South Africa.

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX: Results of empirical and

theoretical research. Retrieved from

http://archive.org/details/nasa_techdoc_20000004342

Hassanzadeh, A., Namdarian, L., & Elahi, S. (2011). Developing a framework for evaluating

service-oriented architecture governance (SOAG). Knowledge-Based Systems, 24(5),

716–730.

Heidenreich, F., Sánchez, P., Santos, J., Zschaler, S., Alférez, M., Araújo, J., Rashid, A. (2010).

Relating feature models to other models of a software product line. In S. Katz, M.

Mezini, & J. Kienzle (Eds.), Transactions on Aspect-Oriented Software Development VII

(pp. 69–114). Springer Berlin Heidelberg.

Helferich, A., Herzwurm, G., Jesse, S., & Mikusz, M. (2007). Software product lines, service-

oriented architecture and frameworks: Worlds apart or ideal partners? Proceedings of the

2
nd

 International Conference on Trends in Enterprise Application Architecture (pp. 187–

201). Berlin, Heidelberg: Springer-Verlag.

Hevner, A., March, S., Park, J., & Ram, S. (2004). Design science in information systems

research. Management Information Systems Quarterly, 28(1), 75–105.

Hofstee, E. (2006). Constructing a good dissertation: A practical guide to finishing a Masters,

MBA or PhD on schedule. Sandton, South Africa: Exactica.

Huhns, M. N., & Singh, M. P. (2005). Service-oriented computing: Key concepts and principles.

IEEE Internet Computing, 9(1), 75–81. doi:10.1109/MIC.2005.21

Hunaity, M. A. R. (2008). Towards an efficient quality based web service discovery framework.

Proceedings of the IEEE Congress on Services - Part I (pp. 261–264). Honolulu, HI:

IEEE Computer Society.

103

International Organization for Standardization. (1998). ISO 9241-11: Ergonomic requirements

for office work with visual display terminals (VDTs) — Part 11: Guidance on usability.

Retrieved from https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-1:v1:en

International Organization for Standardization. (2008). ISO/NP 9241-11: Ergonomics of human-

system interaction - Part 11: Usability: Definitions and concepts. Retrieved from

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63500

Jarzabek, S., Yang, B., & Yoeun, S. (2006). Addressing quality attributes in domain analysis for

product lines. IEE Proceedings - Software, 153(2), 61–73. doi:10.1049/ip-sen:20050008

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., & Huh, M. (1998). FORM: A feature-oriented

reuse method with domain specific reference architectures. Annals of Software

Engineering, 5(1), 143–168. doi:10.1023/A:1018980625587

Kang, K. C., & Lee, H. (2013). Variability modeling. In R. Capilla, J. Bosch, & K. C. Kang

(Eds.), Systems and Software Variability Management (pp. 25–42). Springer Berlin

Heidelberg.

Kang, K. C., Lee, J., & Donohoe, P. (2002). Feature-oriented product line engineering. IEEE

Software, 19(4), 58–65. doi:10.1109/MS.2002.1020288

Kang, K., Cohen, S., Hess, J., Nowak, W., & Peterson, S. (1990). Feature-oriented domain

analysis (FODA) feasibility study (Technical Report No. CMU/SEI-90-TR-021).

Pittsburgh, PA, Carnegie Mellon University: Software Engineering Institute.

Kannan, P. K., & Proenca, J. F. (2008). Design of service systems under variability: Research

issues. Proceedings of the 41
st
 Annual Hawaii International Conference on System

Sciences (pp. 116–126). Waikoloa, HI: IEEE Computer Society.

Kanneganti, R., & Chodavarapu, P. (2008). SOA security. Greenwich, CT: Manning Pubns Co.

Kim, Y., & Doh, K.-G. (2008). Adaptable web services modeling using variability analysis.

Proceedings of the Third International Conference on Convergence and Hybrid

104

Information Technology, ICCIT ’08, volume 1 (pp. 700–705). Busan: IEEE Computer

Society.

Kim, Y.-G., Lee, S. K., & Jang, S.-B. (2011). Variability management for software product-line

architecture development. International Journal of Software Engineering and Knowledge

Engineering, 21(07), 931–956. doi:10.1142/S0218194011005542

Krafzig, D., Banke, K., & Slama, D. (2005). Enterprise SOA: Service-oriented architecture best

practices. Indianapolis, IN: Prentice Hall Professional Technical Reference.

Kramer, J. (2007). Is abstraction the key to computing. Communications of the ACM, 50 (4), 36–

42. doi:10.1145/1232743.1232745

Kulkarni, N., & Dwivedi, V. (2008). The role of service granularity in a successful SOA

realization: A case study. Proceedings of the 2008 IEEE Congress on Services - Part I

(pp. 423–430). Washington, DC, USA: IEEE Computer Society.

Lee, J., & Muthig, D. (2006). Feature-oriented variability management in product line

engineering. Communications of the ACM, 49(12), 55–59. doi:10.1145/1183236.1183266

Lee, K., Kang, K. C., & Lee, J. (2002). Concepts and guidelines of feature modeling for product

line software engineering. Proceedings of the 7
th

 International Conference on Software

Reuse: Methods, Techniques, and Tools (pp. 62–77). London, UK: Springer-Verlag.

Lewis, G., Smith, D. B., & Kontogiannis, K. (2010). A research agenda for service-oriented

architecture (SOA): Maintenance and evolution of service-oriented systems (Technical

Report No. CMU/SEI-2010-TN-003). Pittsburgh, PA, Carnegie Mellon University:

Software Engineering Institute.

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation

and instructions for use. International Journal of Human-Computer Interaction, 7(1), 57–

78. doi:10.1080/10447319509526110

105

Liang, H., Sun, W., Zhang, X., & Jiang, Z. (2006). A policy framework for collaborative web

service customization. In Second IEEE International Workshop on Service-Oriented

System Engineering, SOSE ’06 (pp. 197 –204). Shanghai: IEEE Computer Society.

Linden, F. J. van der, Schmid, K., & Rommes, E. (2007). Software product lines in action: The

best industrial practice in product line engineering. Secaucus, NJ, USA: Springer-Verlag

New York, Inc.

Lindgaard, G. (1994). Usability testing and system evaluation. London: Chapman & Hall.

Lu, J., & Yu, Y. (2007). Web service search: Who, when, what, and how. Proceedings of Web

Information Systems Engineering (pp. 284–295). Nancy, France: Springer Berlin

Heidelberg.

Luisa, M., Mariangela, F., & Pierluigi, I. (2004). Market research for requirements analysis using

linguistic tools. Requirements Engineering, 9(1), 40–56. doi:10.1007/s00766-003-0179-8

Mairiza, D., Zowghi, D., & Nurmuliani, N. (2010). An investigation into the notion of non-

functional requirements. Proceedings of the 2010 ACM Symposium on Applied

Computing (pp. 311–317). New York, NY, USA: ACM.

Manes, A. (2005, July 6). The elephant has left the building. InformationWeek. Retrieved from

http://www.informationweek.com/software/business-intelligence/the-elephant-has-left-

the-building/164301126

Medeiros, F. M., Almeida, E. S. de, & Meira, S. R. de L. (2010). Designing a set of service-

oriented systems as a software product line. In 2013 VII Brazilian Symposium on

Software Components, Architectures and Reuse (pp. 70–79). Los Alamitos, CA, USA:

IEEE Computer Society.

Moore, J. (2006, February 7). Primer: Web services governance. Baseline. Retrieved from

http://www.baselinemag.com/c/a/Tools-Primers-hold/Primer-Web-Services-Governance

106

Muller, P. A., Fondement, F., Baudry, B., & Combemale, B. (2012). Modeling modeling

modeling. Software & Systems Modeling, 11(3), 347–359. doi:10.1007/s10270-010-0172-

x

Nassar, M., Anwar, A., Ebersold, S., Elasri, B., Coulette, B., & Kriouile, A. (2009). Code

generation in VUML profile: A model driven approach. Proceedings of the IEEE/ACS

International Conference on Computer Systems and Applications (AICCSA 2009) (pp.

412–419). Rabat: IEEE Computer Society.

Nguyen, T., & Colman, A. (2010). A feature-oriented approach for web service customization.

Proceedings of the 2010 IEEE International Conference on Web Services (ICWS) (pp.

393–400). Miami, FL: IEEE Computer Society.

Nielsen, J. (2000). Why You Only Need to Test with 5 Users (Research Report). Retrieved from

http://www.biology.emory.edu/research/Prinz/Cengiz/cs540-485-

FA12/resources/5userTesting.pdf

Nielsen, J., & Landauer, T. K. (1993). A mathematical model of the finding of usability

problems. Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human

Factors in Computing Systems (pp. 206–213). New York, NY, USA: ACM.

Oracle. (2007). Getting started with use case modeling (White paper) (pp. 1–19). Retrieved from

http://www.oracle.com/technetwork/testcontent/gettingstartedwithusecasemodeling-

133857.pdf

Papazoglou, M. P. (2003). Service-oriented computing: concepts, characteristics and directions.

Proceedings of the Fourth International Conference on Web Information Systems

Engineering, WISE '03 (pp. 3–12). Washington, DC, USA: EEE Computer Society.

Papazoglou, M. P., & Georgakopoulos, D. (2003). Service-oriented computing: Introduction.

Communications of the ACM, 46(10), 25–28.

Papazoglou, M. P., & Heuvel, W. V. D. (2006). Service-oriented design and development

methodology. International Journal of Web Engineering and Technology, 2(4), 412–442.

doi:10.1504/IJWET.2006.010423

107

Papazoglou, M. P., & Heuvel, W.-J. (2007). Service-oriented architectures: Approaches,

technologies and research issues. The VLDB Journal, 16(3), 389–415.

doi:10.1007/s00778-007-0044-3

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented

computing: State of the art and research challenges. Computer, 40(11), 38–45.

doi:10.1109/MC.2007.400

Papazoglou, M., Traverso, P., Dustdar, S., & Leymann, F. (2008). Service-oriented computing:

A research roadmap. International Journal of Cooperative Information Systems, 17(02),

223. doi:10.1142/s0218843008001816

Parastatidis, S., Webber, J., Woodman, S., Kuo, D., & Greenfield, P. (2005). An introduction to

the SOAP service description language (White paper, version 1.3). Retrieved from

http://savas.me/ssdl/docs/v1.3/html/SSDL%20whitepaper%20v1.3.html

Pastore, S. (2008). The service discovery methods issue: A web services UDDI specification

framework integrated in a grid environment. Journal of Network and Computer

Applications, 31(2), 93–107. doi:10.1016/j.jnca.2006.05.001

Pautasso, C., & Wilde, E. (2009). Why is the Web loosely coupled?: A multi-faceted metric for

service design. Proceedings of the 18
th

 International Conference on World Wide Web

(pp. 911–920). New York, NY, USA: ACM.

Perrouin, G., Klein, J., Guelfi, N., & Jézéquel, J.-M. (2008). Reconciling automation and

flexibility in product derivation. Proceedings of the 12
th

 International Software Product

Line Conference (pp. 339–348). Washington, DC, USA: IEEE Computer Society.

Pohl, K., Bockle, G., & Linden, F. J. van der. (2005). Software product line engineering:

Foundations, principles and techniques. Secaucus, NJ, USA: Springer-Verlag New York,

Inc.

Sarang, P., Jennings, F., Juric, M., & Loganathan, R. (2007). SOA approach to integration:

XML, Web services, ESB, and BPEL in real-world SOA projects. Packt Publishing.

108

Schmettow, M. (2012). Sample size in usability studies. Communications of the ACM, 55(4), 64–

70. doi:10.1145/2133806.2133824

Schmid, K., & John, I. (2004). A customizable approach to full lifecycle variability management.

Science of Computer Programming, 53(3), 259–284. doi:10.1016/j.scico.2003.04.002

Schmid, K., Rabiser, R., & Grünbacher, P. (2011). A comparison of decision modeling

approaches in product lines. Proceedings of the 5
th

 Workshop on Variability Modeling of

Software-Intensive Systems (pp. 119–126). New York, NY, USA: ACM.

Schoneveld, A., & Philip, M. (2007, February). The service-oriented club. Retrieved from

http://www.slideshare.net/mphilip/the-service-oriented-club

Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19–25.

doi:10.1109/MS.2003.1231146

Semmak, F., Laleau, R., & Gnaho, C. (2009). Supporting variability in goal-based requirements.

Proceedings of the Third IEEE International Conference on Research Challenges in

Information Science (pp. 271–280). Fès, Morocco. doi:10.1109/RCIS.2009.5089287

Shaker, P. (2010). Feature-oriented requirements modeling. Proceedings of the 32
nd

 ACM/IEEE

International Conference on Software Engineering, volume 2 (pp. 365–368). New York,

NY, USA: ACM.

Shaw, M., & Garlan, D. (1996). Software architecture: perspectives on an emerging discipline.

Upper Saddle River, N.J.: Prentice Hall.

Sibiya, M., Jembere, E., Xulu, S., & Adigun, M. (2008). A web services based e-commerce

business model for resource constrained SMMEs. Proceedings of the 11
th

 Annual

Southern Africa Telecommunication Networks and Applications Conference (SATNAC)

(pp. 1–6). Wild Coast Sun, Wild Coast.

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., & Saake, G. (2012). SPL

conqueror: Toward optimization of non-functional properties in software product lines.

Software Quality Journal, 20(3-4), 487–517. doi:10.1007/s11219-011-9152-9

109

Sinnema, M., Deelstra, S., Nijhuis, J., & Bosch, J. (2006). Modeling dependencies in product

families with COVAMOF. Proceedings of the 13
th

 Annual IEEE International

Symposium and Workshop on Engineering of Computer Based Systems, ECBS ‘06 (pp.

299–307). Postdam, Germany: IEEE Computer Society.

Skerrett, I. (2012, June). Eclipse survey 2012 report. Technology. Retrieved from

http://www.slideshare.net/IanSkerrett/eclipse-survey-2012-report-final

Sochos, P., & Riebisch, M. (2004). Feature-oriented development of software product lines:

Mapping feature models to the architecture. Proceedings of the 5
th

 Annual International

Conference on Object-Oriented and Internet-Based Technologies, Concepts, and

Applications for a Networked World, Net.ObjectDays 2004 (pp. 138–152). Erfurt,

Germany: Springer Berlin Heidelberg.

Srinivasan, N., Paolucci, M., & Sycara, K. (2006). Semantic web service discovery in the OWL-

S IDE. Proceedings of the 39
th

 Annual Hawaii International Conference on System

Sciences, HICSS ’06 (p. 109b–109b). doi:10.1109/HICSS.2006.431

Steinberg, W. J. (2011). Statistics alive! Thousand Oaks, Calif.: Sage Publications.

Stollberg, M. (2008). Scalable semantic web service discovery for goal-driven service-oriented

architectures (Doctoral dissertation). Retrieved from http://www.michael-

stollberg.de/phd/docs/phdthesis-mstollberg.pdf

Stollberg, M., & Muth, M. (2009). Service customization by variability modeling. Proceedings

of the International Conference on Service-Oriented Computing/ Service Wave (pp. 425–

434). Stockholm, Sweden: Springer-Verlag Berlin Heidelberg.

Stollberg, M., & Muth, M. (2010). Efficient business service consumption by customization with

variability modeling. Journal of Systems Integration, 1(3), 17–32.

Sun, C., Rossing, R., Sinnema, M., Bulanov, P., & Aiello, M. (2010). Modeling and managing

the variability of web service-based systems. Journal of Systems and Software, 83(3),

502–516. doi:10.1016/j.jss.2009.10.011

110

Svahnberg, M., van Gurp, J., & Bosch, J. (2005). A taxonomy of variability realization

techniques: Research articles. Software - Practice & Experience., 35(8), 705–754.

Tibco. (2011). The Role of Governance in Ensuring SOA Success (White paper). Retrieved from

http://www.tibco.com/multimedia/wp-role-of-governance-ensuring-soa-success_tcm8-

8998.pdf

Tosic, V. (2004). Service offerings for XML web services and their management applications

(Doctoral dissertation). Retrieved from http://atp-

webproxy1.it.nicta.com.au/__data/assets/pdf_file/0010/21223/TosicPhDThesis-Final.pdf

Tosic, V., Lutfiyya, H., & Tang, Y. (2006). Web service offerings language (WSOL) support for

context management of mobile/embedded XML web services. Proceedings of the

International Conference on Internet and Web Applications and Services/Advanced

International Conference on Telecommunications, AICT-ICIW ’06 (pp. 156–161).

doi:10.1109/AICT-ICIW.2006.208

Tosic, V., Patel, K., & Pagurek, B. (2002). WSOL — Web service offerings language. In C.

Bussler, R. Hull, S. McIlraith, M. E. Orlowska, B. Pernici, & J. Yang (Eds.), Web

Services, E-Business, and the Semantic Web (pp. 57–67). Springer Berlin Heidelberg.

Trkman, D. P., Kovačič, D. A., & Popovič, D. A. (2011). SOA adoption phases. Business &

Information Systems Engineering, 3(4), 211–220. doi:10.1007/s12599-011-0168-2

Trujillo, S., Batory, D., & Diaz, O. (2007). Feature-oriented model driven development: A case

study for portlets. Proceedings of the 29
th

 International Conference on Software

Engineering (pp. 44–53). Washington, DC, USA: IEEE Computer Society.

Valipour, M. H., Amirzafari, B., Maleki, K. N., & Daneshpour, N. (2009). A brief survey of

software architecture concepts and service-oriented architecture. Proceedings of the 2
nd

IEEE International Conference on Computer Science and Information Technology,

ICCSIT '09 (pp. 34–38). Beijing: IEEE Computer Society.

Virzi, R. A. (1992). Refining the test phase of usability evaluation: How many subjects is

enough? Human Factors, 34(4), 457–468.

111

Voelter, M. (2009). Using domain specific languages for product line engineering. Proceedings

of the 13
th

 International Software Product Line Conference (pp. 329–329). Pittsburgh,

PA, USA: Carnegie Mellon University.

W3C. (2007). Web services description language (WSDL) version 2.0 part 1: Core language.

Retrieved from http://www.w3.org/TR/wsdl20/

Williams, B. J., & Carver, J. C. (2010). Characterizing software architecture changes: A

systematic review. Information and Software Technology, 52(1), 31–51.

Woolf, B. (2007). Introduction to SOA governance. CT316. Retrieved April 3, 2014, from

http://www.ibm.com/developerworks/library/ar-servgov/#servver

Ying, H., Wu, Y., & Liu, F. (2010). Research on the SOA-based service granularity control.

Proceedings of the Second International Conference on Information Technology and

Computer Science (ITCS) (pp. 443–446). Kiev: IEEE Computer Society.

Ying, M. (2006). Linguistic quantifiers modeled by Sugeno integrals. Artificial Intelligence,

170(6–7), 581–606. doi:10.1016/j.artint.2006.02.001

Zadeh, A., Mukhtar, M., & Sahran, S. (2012). A comparative study of enterprise resource

planning vs service-oriented architecture in small medium enterprises. Journal of

Computer Science, 8(8), 1389–1396. doi:10.3844/jcssp.2012.1389.1396

112

APPENDICES

Appendix A: Consent Form

INFORMATION AND INFORMED CONSENT FORM

RESEARCHER’S DETAILS
Title of the research project A Model-Based Service Customization Framework

for Managing Consumer Variability in SOA

Principal investigator Sandile Wilmoth Dlamini

Contact telephone number
(research office)

035 902 6012

A. DECLARATION BY OR ON BEHALF OF THE PARTICIPANT Initials

I, the participant and the undersigned

(full names)

 A.1. HEREBY CONFIRM AS FOLLOW: Initials

I, the participant was invited to participate in the above-mentioned research
project

that is being undertaken by Sandile Wilmoth Dlamini

from Department of Computer Science

of the University of Zululand
3

 A.2. THE FOLLOWING ASPECTS HAVE BEEN EXPLAINED TO
 ME (THE PARTICIPANT)

 Initials

Aim The investigator is studying how the complexities
involved in consumers’ service customization processes
can be minimized, in order to support non-ICT experts,
without good background knowledge in web service
related technologies to customize software services.

The information will be used for research purposes.

Risks I understand that there are no risks involved in
participating in this process.

Confidentiality I am fully aware that my identity will be known and only
be visible to me and the researcher. It will not be
revealed in any discussion, description or scientific
publications.

Access to findings I am also aware that any new information that develops
during this process would be shared as follows: In a
dissertation, journal or conference article.

113

Voluntary participation
/ refusal /
discontinuation

My participation is voluntary Y N

My decision whether or not to participate will in
no way affect my present or future
career/employment/lifestyle

T F

No pressure was exerted on me to consent to participate and I understand that I
have the right to withdraw at any stage without penalization.

Participation in this study will not result in any additional cost to me.

I HEREBY VOLUNTARILY CONSENT TO PARTICIPATE IN THE ABOVE-
MENTIONED RESEARCH PROJECT

Signed at: (place) on the (date) of (month) 20 (year)

Signature

Signature of witness:

Full name(s) of witness:

114

Appendix B: Background Questionnaire (Pre-Experiment)

PARTICIPANT DETAILS

1.

Name

2.

Gender

Male

Female

3.

Age

18-20

21-25

26-30

31-35

4.

Occupation

Student

Business

Sector

Education

Sector

ICT

Sector

5.

Years of Computer Experience

< 1

1-2

3-4

5+

6.

Years of Internet Experience

< 1

1-2

3-4

5+

7.

Years of Software Services Experience

< 1

1-2

3-4

5+

8.

Have you used Web services tools before?

Yes

No

115

Appendix C: Usability Questionnaire (Post-Experiment)

FreeCust Evaluation

Section A: Cognitive Load

1. Mental Demand: How mentally demanding were the tasks?

1 2 3 4 5 6 7

2. Physical Demand: How physically demanding were the tasks? 1 2 3 4 5 6 7

3. Performance: How successful were you in accomplishing what you

were asked to do? 1 2 3 4 5 6 7

4. Effort: How hard did you have to work to accomplish your level of

performance? 1 2 3 4 5 6 7

5. Frustration: How insecure, discouraged, irritated, stressed, and

annoyed were you? 1 2 3 4 5 6 7

Section B: Overall Satisfaction

1. I am satisfied with how easy it is to follow and perform the task of

the notion of FreeCust.
1 2 3 4 5 6 7

2. I am satisfied with the GUI-flavored view of software service

customization options (i.e., service capabilities).
1 2 3 4 5 6 7

3. Overall, it was easy to understand and use the GUI-flavored view

in order to customize a software service.

1 2 3 4 5 6 7

Section C: Usability

1. I was able to find the live match score service in the XMethods

service repository.

1 2 3 4 5 6 7

2. I was able to retrieve the software service description (i.e., the

feature model).

1 2 3 4 5 6 7

3. I was able to comprehend and formulate a service customization

(i.e., selected and disabled all features that I was interested on).
1 2 3 4 5 6 7

4. I was able to send a software service customization request. 1 2 3 4 5 6 7

116

Appendix D: Detailed Usability Evaluation Instructions or Task List

Task 1: Search for the live match score software service in the XMethods service
directory.

1.1

Open a web browser and go to the XMethods web site (http://www.xmethods.net/ve2/index.po).

1.2

Click on the link ―FULL LIST‖ to view all the software services available in the XMethods

directory, and look for ―Live Match Score Service‖ under the ―Service Name‖ column. Once

located,

Task 2: Retrieve the software service feature model (i.e., the
Live_Match_Score_Software_Service.fmp) file.

2.1

Download the Live_Match_Score_Software_Service.fmp file to your computer system.

Task 3: Import the software service feature model file in Eclipse, where the
FreeCust GUI-flavored implementation is running.

3.1

Start Eclipse and create a general project.

3.2

Import the Live_Match_Score_Software_Service.fmp file into the project.

Task 4: Select and disable all the required and unnecessary features.

4.1

Double-click on the Live_Match_Score_Software_Service.fmp file will open it in the content

panel of Eclipse.

4.2

Right click on the node ―My Feature Model‖ in the content panel, then select ―Expand Subtree‖

to expand the service feature model.

4.3

Scroll down to see the node ―Configuration 1of Live_Match_Score_Software_Service (1

configuration(s)).

4.4

Once opened - to select a feature, click on the box next to it. To disable a feature, hold the ―Ctrl‖

key while clicking on the box. Repeat clicking to remove the selection.

Task 5: Send customization request.

5.1

Right click on the node ―Configuration 1of Live_Match_Score_Software_Service" and select

"Send Customization Request‖.

http://www.xmethods.net/ve2/index.po

117

Appendix E: XMethods Demo Service Terms and Conditions

118

Appendix F: Live Match Score Service Feature Model and Consumer’s

Feature Configurations Request in XML

