
DYNAMIC SERVICE RECOVERY IN

A GRID ENVIRONMENT

Sihle Sicelo Sibiya

 20034232

A dissertation submitted in fulfilment of the requirements for

the degree of

Master of Science (Computer Science)

Department of Computer Science, Faculty of Science and

Agriculture, University of Zululand

Supervisor: Dr S.S. Xulu

Co-Supervisor: Prof M.O. Adigun

2008

i

DECLARATION

I, Sihle Sicelo Sibiya, declare that this dissertation represents my work

and that it has not been submitted in any form for another degree or

diploma at any university or other institution of tertiary education.

Information derived from published or unpublished work of others has

been acknowledged in the text and a list of references is given.

 Signature of student

ii

DEDICATION

I dedicate this work to my loving family, for believing in and encouraging me

through the difficult times. None of this would be possible without their love,

support and encouragement.

iii

ACKNOWLEDGMENTS

I thank the Lord for all His blessings bestowed on me in seeing this research work

through; without which this research could not have become a reality.

I would like to extend my sincere thanks to my supervisor Dr S.S. Xulu for his

advice, guidance and fatherly talks. He gave me courage to face the challenges in

research.

I extend my special thanks to my co-supervisor, Prof M.O. Adigun, who willingly

assisted and guided me right through my research work and for making us become

better researchers. I will like to thank him for believing in me and giving me the

courage to face up to my uncertainties.

I would also like to thank J.S. Iyilade, O.O. Olugbara, E. Jembere and all the

research assistants in the Department for their contribution to this work.

I am indebted to all who have helped me in making this research work a great

success in all aspects.

iv

TABLE OF CONTENTS

DECLARATION... i

DEDICATION ... ii

ACKNOWLEDGMENTS...iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vii

LIST OF TABLES.. viii

ABSTRACT ... ix

CHAPTER ONE .. 1

INTRODUCTION... 1

1.1 Overview .. 1

1.2 Background.. 4

1.3 Research Problem.. 5

1.4 Rationale of the study.. 5

1.5 Research Questions ... 6

1.6 Goal and Objectives .. 6

1.6.1 Goal ... 6

1.6.2 Objectives .. 6

1.7 Research Methodology .. 7

1.7.1 Literature Review. ... 7

1.7.2 Model formulation.. 7

1.7.3 Proof of concept.. 7

1.8 Organisation of the Dissertation .. 8

CHAPTER TWO ... 9

BACKGROUND.. 9

2.1 Introduction .. 9

v

2.3 Grid Computing and GUISET...11

2.4 Service Dependability ..15

2.5 Autonomic computing ..17

2.6 Summary ..19

CHAPTER THREE..20

LITERATURE REVIEW..20

3.1 Overview ..20

3.2 Self-Healing..20

3.3 Fault detection...23

3.4 Fault Recovery ...26

3.4.1 Fault Removal ...27

3.4.2 Fault Tolerance and Prevention...27

3.4.2.1 Replication based fault recovery ..29

3.4.2 .1.1 Replication based on both same or different replicas.........29

3.4.2 .1.2 Replication based on the same replicas32

3.4.2 .2 Checkpointing based fault recovery ...33

3.4.2 .3 Multiple recovery strategies based fault recovery34

3.5 Summary ..35

CHAPTER FOUR..36

MODEL DESIGN AND DEVELOPMENT ...36

4.1 Introduction...36

4.2 Design Requirements ..36

4.3 Model Architecture ...43

4.3.1 Fault Recovery Component..44

4.3.1.1 Service Group manager..45

4.3.1.1.1 Planner...46

4.3.1.1.2 Fault Isolation..48

4.3.1.1.3 Recovery algorithm..49

vi

4.3.1.2 Service replication manager ...51

4.3.1.3 Service recommender...53

4.3.1.4 DSR model information storage..53

4.3.2 Model component interaction ...54

4.4 Summary ..57

CHAPTER FIVE ..59

MODEL IMPLEMENTATION AND EXPERIMENTATION........................59

5.1 Introduction ..59

5.2 Basic assumptions of the simulation model ...60

5.3 Description of the simulation ...60

5.4 Simulation environment ...62

5.5 Performance evaluation...65

5.6 Experimental results ..66

5.7 Summary ..70

CHAPTER SIX ...71

CONCLUSION AND FUTURE WORK...71

6.1 Introduction ..71

6.2 Summary ..71

6.3 Limitations and Future Work...73

BIBLIOGRAPHY ...74

APPENDIX ...84

A.1 Service Recovery Algorithm Implementation ...84

A.2 Service Implementation ...91

A.3 Database accessing Implementation ..95

vii

LIST OF FIGURES

Figure 2. 1 Service-request interaction [IBM, 2004] ..10

Figure 2. 3 A Grid computing environment showing four sites11

Figure 2. 4 Grid service virtualization [Dai and Wang, 2006]13

Figure 2. 5 Grid-Based Utility Infrastructure for SMME-Enabling Technologies

[Adigun et al, 2006] ..14

Figure 2. 6 Service dependability.. 1

Figure 2. 7 Service Composition .. 1

Figure 2. 8 MAPE loop [IBM, 2004] ..19

 Figure 3. 1 Steps in the self-healing process (Shin, 2006)22

Figure 3. 2 Policy driven fault detection (Tang et al 2005)26

Figure 4. 1 Service life cycle..39

Figure 4. 2 Dynamic Service Recovery Model ...44

Figure 4. 3 Planning process..47

Figure 4. 4 Planner algorithm...48

Figure 4. 5 Service recovery algorithm ...50

Figure 4. 6 Fault recovery sequence diagram ...54

Figure 4. 7 SDR interaction diagram ...55

Figure 4. 8 History updating algorithm..56

Figure 5. 1 Service table..62

Figure 5. 2 Replicas table..63

Figure 5. 3 SDR interface A ...63

Figure 5. 4 SDR interface B..64

Figure 5. 5 Response time vs number of faults..67

Figure 5. 6 Response time vs number of replicas ..68

Figure 5. 7 Performance overhead vs number of replicas69

viii

LIST OF TABLES

Table 4. 1 Fault classes table...41

Table 4. 2 Possible fault recovery mechanism table...42

ix

ABSTRACT

Grid computing is fast becoming a popular technology in both academic and

business environment. The adoption of this technology into the business

environment has been slow due to some challenges such as how to overcome low

service availability. This challenge emanates from the dynamic nature of the Grid

environment and the complexity of services. These two cause services to be fault-

prone. Therefore, there is a need to develop an autonomic fault recovery

mechanism that will effectively monitor, diagnose and recover a running service

from failure.

In addressing the above mentioned challenge, a dynamic service recovery model

has been proposed. The model uses the replication approach to improve service

availability whenever service failure is envisaged. The performance of the

replication approach depends on how well a reliability index can be used to

dynamically select two services of high reliability to serve an incoming service

request. The service with higher reliability between the two selected services

becomes the primary service while the other one becomes an active replica. An

autonomic computing MAPE loop is implemented by the model to achieve

runtime fault recovery.

A simulation was carried out to evaluate the performance of the proposed model.

The model was also compared with the existing active replication model. The

results revealed that the newly proposed model exhibits superior performance

characteristics especially when there are services with high and low reliability. It

was also found that dynamic service recovery efficiently utilizes resource as a

result of not-more-than two services serving a request.

1

CHAPTER ONE

INTRODUCTION

1.1 Overview

Software development and operating environment both change along with the

changing computing environment. Software that used to be executed only in

closed and independent environments is now executed in a distributed

computing environment. Service Oriented Architecture (SOA) is a paradigm for

organizing and utilizing distributed computing capabilities. SOA is an

information technology approach that emphasizes implementation of

components as services that can be discovered and used by clients. By promoting

reuse of software components, SOA delivers flexibility, interoperability and cost

saving (Gadgil et al, 2007). This architecture uses the web service technology to

enable distributed resources to be utilized in the current web environment.

The web service technology facilitates the development of software (i.e. web

applications) by allowing the integration of independently published web services

as components of a new business solution. Lee et al (2005) define a web service as

a service module that enables a user to receive the desired service through the

Internet regardless of time, place, and platform. According to these authors, web

services have three enabling technologies. The first one is Simple Object Access

Protocol (SOAP) that allows the exchange of messages between web services. SOAP

is used during service communication over either HTTP or HTTPS. The second is

Web Service Description Language (WSDL) that exposes the operation or the

functionality of the web service to the service client.

2

It can be just an ordinary standalone application or any other web service. The

third enabling technology is the Universal Description Discovery and Integration

(UDDI). This is a registry or repository, which enables service providers to register

their web services, and clients to search for web services that will help them to

accomplish their business objectives.

Web services are of two types, namely: Functional web services and Autonomic web

service (Guinea and Ghezzi, 2005). Functional web services provide computational

functionalities over the Internet. Autonomic web services are services that

encapsulate autonomic attribute to provide autonomic behavior over the

Internet. Autonomic attributes include characteristics like self-healing, self-

configuring, and self-optimization (Zeid and Gurguise, 2005).

 Our main interest in this research work is on self-healing. Ghosh et al (2006)

define self-healing as the property that enables a service to perceive that it is not

operating correctly and, without human intervention, make the necessary

adjustment to restore itself to normality. Self-healing consists of autonomic fault

detection and recovery from failure to achieve service availability. Ghosh et al

(2006) further define fault tolerant computing, as the ability of a system to

respond seamlessly or with minimal disruption in the presence of fault. Thus,

fault-tolerant computing forms part of self-healing.

 When a service client requests a service that conforms to a certain task, he or she

expects that the required objectives will be fulfilled. This, therefore, requires that

web service provisioning must be reliable and fault free. The main challenge is to

develop a fault free service while predicting possible failure states for complex

web services is even more difficult.

3

A failure affects availability, reliability and usability. These can be used as

measures of Quality of Service (QoS) for web services. Availability and reliability

of web services are not guaranteed since web services are stateless from the fact

that they don’t keep the state of the service. Grid technology extends web services

into Grid services by providing some functionality into web services that will

maintain the state of the service.

Grid is a dynamic environment where resources are virtualized and shared as if a

single machine offers all the resources which, in reality, are geographically

distributed and may possibly be managed by different organizations. Given the

dynamic nature of the Grid environment, as new resources and machines join

the Grid, the need for autonomic fault management that will keep the QoS stable

becomes even more important. Autonomic failure recovery in Grid services is

required to provide high availability and reliability of the service to the users. The

importance of this autonomic behavior is amplified by the fact that such behavior

will increase the trustworthiness and QoS of these services to users.

Our research specifically aimed to enhance the Grid-based Utility Infrastructure for

SMME Enabled Technology (GUISET) (Adigun et al, 2006) to achieve high service

availability by automatically detecting anomalies and reconfiguring a system

without disturbing service client’s task. GUISET is an infrastructure used to

support business processes for Small, Medium and Micro Enterprises (SMME)

through shared Grid services. GUISET extends Grid middleware to facilitate

sharing and management of resources available in a GUISET Grid. GUISET

needs a layer of autonomic services in order to guarantee autonomic response to

failure. GUISET is the mediator between the service clients and service providers.

4

Since the GUISET infrastructure supports marketing and selling of SMME

products there is a high demand for Quality of Service (QoS). In this work, QoS

is being achieved through self-healing.

1.2 Background

SOA uses web service technology to achieve business collaboration. However, this

paradigm is still inhibited by quite a number of open challenges. Fault

management (Hanemann et al, 2004) is one of the areas which still presents some

open problems, some of which this work will address. Many strategies have been

proposed to address issues related to fault management in Grid services.

Self healing (Fugini and Musi, 2006) is one of the most adopted autonomic fault

management strategies for fault handling (Cook et al, (2007); (Guinea and

Ghezzi, 2005); (Pereira et al, 2006). This is because it reduces service down time

during fault recovery. This strategy automates fault detection and fault recovery in

order to increase service reliability and availability. This research focuses on both

fault detection and fault recovery strategies.

What mechanism should fault detection use in order to efficiently detect and

report fault occurrence? Though this might sound trivial, in reality it is not easy

to enumerate all possible failures in a large and complex system during service

execution.

To counter this glitch, Arshad et al (2004) proposed a planning-based approach to

enumerate occurred fault in order to recover from them. On the other hand, a

number of fault-recovery strategies (e.g. (Guinea and Ghezzi, 2005); (Fugini and

Musi, 2005)) have been proposed to recover from occurred faults.

5

 Unfortunately, the existing fault-recovery strategies are heavily inhibited by lack

of efficiency and transparency during service execution. The inefficiency of these

strategies emanates from the fact that there is no standard way of using these fault

recovery strategies. Transparency is still a challenge because the more a number of

strategies fail in sequence, the greater the response delay. This research

investigates fault management mechanisms.

1.3 The Research Problem

Grid services focused mostly on providing computing functionalities without

taking into consideration service failures in the process of supplying these

services. An optimal service selection provided by the Grid middleware does not

guarantee fault free service execution. The dynamic nature of the Grid

environment increases the demand for fault detection and recovery during service

execution. Availability of accurate and efficient mechanisms for fault detection

that take into consideration service provider’s QoS expectations for the service, is

still a challenge in Grid services. The presence of an accurate and efficient fault

detection mechanism will surely improve service recovery. It should also reduce

service downtime during the process of service recovery. This research therefore,

proposed an efficient, transparent and autonomic fault detection and recovery

mechanism in GUISET. This dynamic fault recovery mechanism was crafted with

the goal of increasing QoS to the service consumers.

1.4 Rationale of the study

This research work contributes to GUISET and also to Grid middleware

especially Global Toolkit 4 (GT4). GUISET is a Grid based infrastructure to

enable on-demand services provision to SMMEs.

6

Due to the dynamic nature and heterogeneity of Grid environment, fault

monitoring, detection, diagnosis and recovery are still challenges. GT4 tries to

overcome some of these challenges through WS_Reliability and Optimal service

selection. WS_Reliabilty guarantees message delivery and elimination of message

duplicates. However, this does not provide a mechanism for automatic recovery

from service faults during service execution. We hope that our work will ensure

service execution continuity when faults occur. This would enhance service

trustworthiness, availability and reliability during service execution.

1.5 Research Questions

An investigation of the existing approaches identified the following issues which

this research addresses:

1. How can we reduce the occurrences of faults during service execution?

2. How can we reduce mean time to recovery after the occurrence of service

failure?

1.6 Goal and Objectives

1.6.1 Goal

 The goal of this research was to develop an autonomic service recovery

mechanism for Grid services.

1.6.2 Objectives

In fulfilling the goal of this research the following list of objectives will be

taken into consideration:

1. To formulate a dynamic fault detection and recovery architecture for Grid

services.

2. To simulate the proposed architecture.

7

3. To evaluate the performance of the simulated architecture.

1.7 Research Methodology

In fulfilling the goal of this research, literature review, model formulation and

proof of concept were carried out.

1.7.1 Literature Review.

A literature survey on existing fault detection and recovery models in distributed

computing was conducted. The aim was to investigate existing frameworks and

standards for fault detection and recovery that relate to this work. The survey for

efficient modeling frameworks was conducted together with the analysis of those

frameworks with the aim of establishing sound basics for fault recovery

mechanisms.

1.7.2 Model formulation

Relevant existing research results were analyzed with the aim of identifying the

strong points of existing models. These strengths assisted in fashioning out the

design criteria that drove the design of a new model fulfilling our GUISET

purpose.

1.7.3 Proof of concept

The proposed model was simulated using J2EE, taking into consideration the

Grid environment behavior. The performance evaluation of the model and the

experimentation and evaluation of how the model fits the GUISET architecture

was then carried out.

8

1.8 Organization of the Dissertation

The rest of the dissertation is organized as follows:

Chapter two presents the background concepts of this research work. It also lays

the foundation for our proposed model. Chapter three presents literature

relevant to this study. This chapter starts with the introduction on fault recovery

and detection on Grid services. We discuss existing related work, outlining the

challenges associated with the design of autonomic service recovery model. The

chapter concludes with a brief overview of the proposed model.

In chapter four we present the description of the model development. This

chapter begins with an introduction followed by design requirements and the

solution approach to solve the problem. The Dynamic Service Recovery Model is

then presented with full detail. Performance analysis and a discussion of the

result of the model follow. A summary of this chapter is then presented.

Chapter five gives the description of the design of the Dynamic Service Recovery

Model with the implementation. The experiments, analysis, performance

evaluation of the model and result are presented in this chapter.

Chapter six concludes the dissertation. The recommendations for future work are

also presented.

9

CHAPTER TWO

BACKGROUND

2.1 Introduction

Each company customizes its computer services according to its specific

requirements. This has given rise to services which are isolated. On the other

hand business growth requires sharing both information and applications which

are already available. The emergence of the Internet and the service oriented

computing paradigm provides enabling technologies to fulfill this need. In

chapter one, we indicated that the goal of this research is to develop a service-

recovery mechanism for Grid services. In this chapter we introduce the following

background concepts which are fundamental to our research: In section 2.2 we

briefly discuss Service Oriented Architecture and Web Services. This is followed

by section 2.3 where we discuss Grid Computing and GUISET. Section 2.4 and

section 2.5 cover service interaction in the Grid environment and Autonomic

computing. Finally we give a conclusion of this chapter in section 2.6.

2.2 Service Oriented Architecture and Web Services

Service Oriented Architecture (SOA) (Dai and Wang, 2006) can be defined as an

architecture that separates functions into distinct units called services, which are

made accessible over a network in order that they can be combined and reused in

the production of business applications. Web services are a solution to the

heterogeneity and platform dependence problem of distributed computing. Web

service technology provides a uniform framework to increase cross-language and

cross-platform interoperability for distributed computing and resource sharing

10

over the Internet. SOA enables services to be published and discovered by service

clients.

The common communication protocol in a web services enabled environment is

SOAP over Hypertext Text Transfer Protocol (SOAP/HTTP). Web Services

Description Language (WSDL) is a specification to describe networked XML-

based services and how to access them. It provides a simple way for service

providers to describe the format of requests to their systems regardless of the

underlying protocols. The service interface (WSDL) is registered to the UDDI

registry for service client to discover and match the service capability. After a

service client has found a required service, the UDDI successful search allows

communication to the provider of the web service. The diagram in Figure 2.1

depicts the interaction between a service client and a service provider.

Figure 2. 1 Service-request interaction [IBM, 2004]

WSDL and SOAP technologies rely on XML to make possible interoperability in

web services.

11

2.3 Grid Computing and GUISET

Grid computing is a distributed computing environment where disparate

resources such as computer CPUs, storage, applications and data, often spread

across different physical locations and administrative domains, are utilized

through virtualization and collective management. Figure 2.2 shows a typical

Grid computing environment. Grid nodes communicate with one other while

Grid access nodes (workstations, laptops, etc) are connected to a particular Grid

node. Services in Grid computing are called Grid services. Grid services can be

web services with additional functionality to keep the service state. Grid

computing uses SOA approach for service provisioning and utilization. Grid

computing enables service clients to use services without knowing where those

services reside through a Grid middleware.

Figure 2. 2 A Grid computing environment showing four sites

12

Grid middleware (Globus Toolkit, Condor, etc) acts as a broker to achieve service

virtualization in each server in a Grid computing environment. Globus toolkit 4

is the reference framework in this research work. Grid middleware allows

services to join and leave the Grid network at any time. The Resource

Management System (RMS), which is also called the “brain” of the Grid

middleware, manages resource matching and execution. All the Grid nodes have

a Resource Manager (RM) that manages local execution in each Grid node.

When service clients initiate a request to a particular service, or to access remote

resources in the grid, they would send their requests to the RM first because they

do not know where the service or resources are provided. The RM will then

match the service request with the optimal service and manage the execution of

the service request if the service is provided locally. Figure 2.3 shows the Grid

RMS and RM interaction. In the process of serving a remote service request, RM

interacts with RMS to virtualize the service in the Grid network. The RMS then

sends the request to RM where that particular service is deployed.

GUISET has been proposed as an enabling platform for the SMMEs to access

ICT services without owning the infrastructure on which the services are

deployed. The GUISET services are distributed and GUISET Grid middleware

allows the virtualization and access to the services. This concept makes life

simpler in service provision for the service provider by taking service provider’s

responsibility through enabling services usage by the service clients. In this

context users (providers, SMMEs and customers) with different capabilities are

able to use services without owning the infrastructure and knowing the service

provider. Service providers deploy services. SMMEs subscribe for services that

help them in their business. Customers also use these services to purchase

SMME’s products.

13

This increases GUISET challenges to ensure service availability during service

execution to improve service trustworthiness. RM enables GUISET to achieve

node by node management of services, while RMS allows service sharing from all

the nodes.

Figure 2. 3 Grid service virtualization [Dai and Wang, 2006]

GUISET Grid nodes are managed by different organizations, which mean that

the nodes are running different applications, different processing capabilities,

different firewalls and security. During the execution of a particular request, one

may find that two or more nodes are required to fulfill a request. This also

becomes a GUISET challenge to make sure that user expectations are met for

example, service reliability and availability.

14

Figure 2. 4 Grid-Based Utility Infrastructure for SMME-Enabling Technologies

[Adigun et al, 2006]

A service is available only if service consumers get the service whenever a request

for the service is issued. The failure-free web service has to be available until the

task of the requester is accomplished. Reliability connotes that the web service

meets the expectations of the consumer exactly the way the user expects it to be.

This also depends on the availability of the web service. Service availability tends

to vary dynamically and is dependent upon the service provider’s requirement

and the environment where the service is running.

Reliable service provides QoS and trustworthiness to service consumers. Usability

has to do with how difficult it is to use the service. Reliability and availability are

of interest to this research work. Figure 2.4 show the layers of GUISET

architecture. The multi-modal interfaces layer of GUISET deals with rendering

information to the user while the middleware layer concerns managing the

sharing of resources and selection.

15

The Grid infrastructure layer is where resources and services are hosted. This

research is an attempt to address one of the challenges of the middleware layer

which is service failure.

 2.4 Service Dependability

Grid services reduce both the development work and maintenance work of

software development due to their reusability. On the other hand, it raises the

demand for self-recovery in grid services during service interaction. In a Grid

environment, the larger the number of services that depend on one another, the

higher the likelihood of fault occurring. Also the larger the number of individual

services involved in a composite service, the greater the possibility of failure of the

composite service. Service composition increases service complexity due to service

dependability. The diagram in Figure 2.5 illustrates a scenario for requests for

possible dependable services.

Figure 2. 5 Service dependability

Service D
Resource
[R1, R2]

Service 1
Resource
[R1][D]

Service 2
Resource
[R1][D]

Service N
Resource
[R1][D]

. .

Request 1

Request 2

Request N

16

Different services might use the same resource (e.g. service, processor, secondary

storage, etc). For example, as illustrated in Figure 2.5, in order to fulfill a

particular request, service 1 has to invoke service D which requires the same

resource as services 2, 3, 4 up to N. However, since service D is servicing each

request from services 1, 2, 3… N, the QoS of service D will degrade because

resource R1 is being shared by all the services. This would mean that service D

would not be able to fulfill its allocated role in meeting the QoS specified in SLA.

The QoS of services 1, 2, 3 … N, depend on QoS level of Service D. Therefore, all

of these services QoS would be degraded.

We now take a closer look at composite services. The availability of a composite

service in a Grid environment depends on the availability of the other services

from which it is composed. The diagram in Figure 2.6 illustrates service

composition.

 Figure 2. 6 Service Composition

Service L
Resource

[S1, S2,..,SN]

Service S1
Resource

[SS4]

Service S2
Resource

[SS7]

Service SN
Resource

[SS6]

Node N1 Node N2 Node NN

Node NL

.

.

17

Due to many possible faults such as server crashes, communication failure, etc it

becomes more difficult for a composite service such as service L to constantly

maintain its availability. The probability that a composite service will fail

decreases with the number of services composing such a service. The equation 2.1

depicts the probability of fault occurrence for service L.

 (2.1)

Let the probability of service L having a fault when invoked be pi. The total

number of node is n. Equation 2.1 illustrates that the more the number of service

composing a composite service the greater the probability of fault in a composite

service. This raises challenges for service recovery.

2.5 Autonomic computing

The growing complexity of the Grid service platform and their dynamic varying

workloads make manual management of Grid service platform a very challenging

and time consuming task. Grid service platform is enhanced by autonomic

computing capabilities in providing QoS. Autonomic computing has been

inspired by human autonomic nervous system (Parasha and Hariri, 2005). Its goal

is to realize the way human nervous system works and apply the same behavior in

software system. Autonomic computing is a self managing computing model

(Kephart and Chess, 2003).

An autonomic computing system must have a mechanism whereby changes in the

system can trigger changes in the behavior of the computing system such that the

system is brought back into its normal operational state. Autonomic computing

has become the most popular paradigm for the provision of QoS in software

18

development and management (Tian et al, 2005). IBM defined four components

that enable autonomic computing systems to be self managed: self healing, self

optimization, self configuration and self protection.

 Self-configuration is the capability that enables the system to adapt to

unpredictable anomalies by automatically changing its configuration, such as

adding or removing new services or resources, or installing changes without

disrupting the service.

Self-healing is the capability that the service can prevent and recover from failure

by automatically discovering, diagnosing and recovering from anomalies that

might cause service disruptions with minimal performance degradation.

Self-optimization is the capability that enables the system to continuously tune

itself proactively to improve on existing processes and reactively in response to

environmental conditions.

Self-protection is the capability that the service can detect, identify, and defend

against viruses, unauthorized access, and denial-of-service attacks. Self-protection

also could include the ability for the system to protect itself from physical harm,

such as the motion detection capabilities of today’s laptops that can temporarily

park their disk drive heads if they sense that they are being dropped.

According to the Autonomic Computing paradigm, each self managed system

element must be able to: Monitor, Analyse, Plan and Execute (Gurguis and Zeid,

2005); (Kephart and Chess, 2003)).

Each of the four autonomic computing elements implements the MAPE cycle.

Our focus in this research is on self healing. Figure 2.7 show the MAPE cycle

architecture.

19

Figure 2. 7 MAPE loop [IBM, 2004]

The monitor element collects, and filters information from the managed service.

The analyze element compares these artifacts against a symptom in the knowledge

base. The analyze element outputs an indication of any problematic patterns

found and a set of possible solutions. The plan element, based on policy data,

selects one of the solutions. The execute element carries out the actions for that

solution. A central knowledge base, accessible by the other components, contains

knowledge pertaining to the likely effectiveness of various possible management

decisions in achieving the manager’s overall policy objectives.

2.6 Summary

This chapter has laid the background for this research work. GUISET uses the

Grid middleware to allow the sharing of distributed services especially enterprise

services. The Grid middleware is enhanced by autonomic computing elements to

facilitate self management. This research uses self-healing to auto-recover service

faults during service execution. The result of this work will also contribute to the

Grid middleware as it is also used in the middleware layer of GUISET. Self

healing approaches that relate to this study would be discussed in chapter three

and the proposed model in chapter four.

20

CHAPTER THREE

LITERATURE REVIEW

3.1 Overview

An increase in the usage of Grid services in enterprise environment has increased

the demand for high service availability during service provision. This challenge

raises the need to explore and understand the significance of self-healing systems

in engineering the self-management of large-scale complex IT systems. These

systems can be comprised of communication infrastructures and computing

applications to ensure Grid service recovery during service failure. Self-healing of

Grid services should address the concerns of Grid service clients with respect to

service availability issues in a transparent manner.

This chapter reviews literature that inspired and supports this research. The first

part of this chapter gives a review of self-healing, and it continues with fault

detection and recovery. Then we review some related literatures on service

recovery in Grid middleware. Finally, we give a conclusion drawn from the

reviewed literatures.

3.2 Self-Healing

Self-healing has been used in different areas (robotics, databases, etc) for different

purposes, for example adaptation, fault management, etc. According to Mikic-

Rakic et al, (2002), self-healing system has to exhibit the ability to adapt at

runtime to handle situations such as resource variability, changing user needs and

system faults.

21

A Self-healing service is a service that auto-detects abnormal behavior and tries to

recover from them. This reduces time and cost of maintaining services, and the

skills expected from the person maintaining the service. Self-healing services has

to be able to identify faults (fault detection) and to support decision-making to

recover (fault recovery) from occurred faults. Self-healing goes beyond detecting

and recovering from faults in a sense that it also provides the service with the

intelligent capability to change the system state and to report occurred faults by

itself or with the assistance from other services.

 Self-healing mechanisms can be viewed as a set of autonomic recovery actions

fired at run time according to detected faults (Modafferi et al, 2006). Ghosh et al,

(2007) proposed two states which a self-healing system can be in during the

process of service provision. The two states are: healthy and unhealthy. A healthy

state is a normative state where the system behaves according to clients and

providers expectations. An unhealthy state is an abnormal state where a system

does not behave according to the user’s expectation. A self-healing system needs

to know what constitutes healthy and unhealthy state before it can make any

adjustment to restore itself to a healthy state.

Self-healing according to Ghosh et al, (2006) and Ahmed et al, (2007) can be

subdivided into two components that maintain system health through system

monitoring:

a. Detection of system failure that deals with fault detection, and

b. System recovery that deals with recovering from failure.

Detection and recovery processes must not cause degradation of running services.

This factor needs to be considered during development self-healing components.

22

Shin and Hoon, (2006) proposed component based self-healing where each

software component has a service layer and a healing layer. A service layer

provides the functionality of the component to other components, while the

healing layer provides a healing mechanism to the component. This kind of self-

healing can work well in static or simple environment. In a GUISET

environment this type of self-healing mechanism cannot work because it will

degrade service performance because it is not automated and it has a lot of stages.

Figure 3.1 shows the healing layer process as defined by Shin (2006).

Figure 3. 1 Steps in the self-healing process (Shin, 2006)

Self-healing services have to reduce fault service downtime and be efficient

without degrading the performance of other services. Different requirements of

self-healing systems have been proposed to overcome the above challenge. Net

and Muller (2007) suggested that traditional quality attributes of self-healing

(reliability, availability, etc) are not enough in providing QoS as far as self-healing

is concerned. The additional quality attributes proposed by Net and Muller

(2007) are: dynamic adaptation support, dynamic upgrade support, diagnostic

support, and support for accountability. The above quality attributes can work

well in some of self-healing areas for example, self-healing for adaptation.

23

In the context of service recovery, some of these quality attributes like dynamic

adaptation support will cause overhead. Different mechanism and approaches

have been used for fault detection and recovery, some of which will be considered

in the next sections. Fault detection plays a major role for system management

and other components like fault prediction.

3.3 Fault detection

A considerable amount of research has been carried out in the field of fault

detection. Due to the increasing use of services, the issue of fault management

has taken centre stage. Fault detection that will increase trustworthiness from the

service clients and improve service availability through autonomic and accurate

detection is needed.

A lot of fault detection approaches have been proposed (e.g. (Berharref et al,

2005), (Pereira et al, 2006) and (Modafferi et al, 2006)). But only two are of

particular interest to this study: fault detection architectures proposed by

Berharref et al (2005) and self-healing middleware proposed by Pereira et al

(2006). Fault detection architectures use passive testing for faults in web services.

The fault detection architecture proposed by Berharref et al (2005) uses an

observer web service that can be invoked either by the requestor or by provider of

the service.

This architecture can work in environments where both the service requestor and

the service provider do not have any quality of service agreement. This

architecture cannot be used for autonomic web services since there is no

transparency in the process of handling fault, because the client can see that an

error occurred.

24

This architecture increases human intervention when it is handling fault. In the

self-healing middleware (Pereira et al, 2006), two fault detection mechanisms have

been proposed, pre-emptive and on-use fault detection. Pre-emptive fault

detection is used on a regular basis, while On-use fault detection is only used

during service invocation.

It is important that self-healing systems have strong fault detection abilities to

increase service reliability, because the reliability of other components (e.g. fault

recovery) depend on it. The pre-emptive mechanism is the most widely used fault

detection mechanism, whereby the healing service periodically checks for fault

occurrences. On-use detection can work well in environments that are not fault

prone. On-use detection cannot be used in a dynamic and complex environment

like Grid, because it will cause service recovery overhead and it will increase

service downtime. The self-healing middleware does not take user objectives into

consideration because it does not use users objectives during fault detect.

According to Dabrowski et al (2003), applications using discovery systems rely on

a combination of two techniques to detect failures. The two techniques are:

monitoring periodic transmissions, and the retry ad-hoc transmission. System

components listen for recurring messages, such as heartbeat messages, and failure

to receive such messages will mean the component has failed. These techniques

can work well in environments where service demand is low and environments

that are neither complex and nor dynamic. In environments like Grid, it is

difficult to use these techniques since service availability is dynamic. And it is

difficult to predict service demand. It is also difficult to figure out the root cause

of the failure. Network overhead will increase because of the heartbeat messages

that will be sent by related services.

25

Duan et al (2006) proposed a data mining based fault detection and prediction

service. Fault detection and prediction depend on data that is captured. Fault

prediction based on data mining can also work for Grid environments only if one

uses service’s group data for prediction. Fault detection based on data mining has

some limitation in the sense that in Grid environments there is no guarantee that

service specifications will not change.

In the research conducted by Baresi et al (2005) two types of runtime error

discovery were proposed:

1. Defensive Process Design and

2. Service run time Monitoring.

 Defensive Process Design deals with designing the service oriented business

process in such a way as to permit it to cope with erroneous behavior. Service run

time Monitoring uses an external monitor service capable of checking whether

functional and non functional contracts are not violated. The interest of our

research is using the external monitor to monitor abnormal behavior in services.

In considering developers expectation in the process of fault handling, Tang et al

(2005) proposed an approach for fault handling. In this approach, fault

specifications and the corresponding handling mechanisms of the services are

both defined in service policies. Each service has its own policy on fault

specification and handling. The service policy is managed through out the

execution of the service. This approach uses periodical monitoring on the

running service. Figure 3.2 shows the components and their interaction during

service provision.

26

Figure 3. 2 Policy driven fault detection (Tang et al, 2005)

In summary, fault detection plays an important role in a self-healing service in a

way that the other components of self-healing cannot function without it. Fault

detection triggers other components (such as fault recovery) when a fault is

detected. In that way, fault detection becomes the backbone for fault recovery

since the service cannot do anything if there is no fault detected.

3.4 Fault Recovery

Fault recovery has a long history in distributed relational database and distributed

systems. Fault recovery is the most challenging part of self-healing since it has to

support decision making. The rapid growth of the use of services and the

dynamic nature of the Grid environment require some intelligence in the process

of decision making. In this section we discuss different recovery strategies that

have been proposed in the literature on self healing that relates to this research

work. Various approaches have been proposed to recover from software faults:

fault prevention, fault removal, and fault tolerance (Jiang et al, 2007).

27

Fault prevention aims to achieve fault free software through robust design and

testing. Fault removal aims at transparent recovery from faults. Fault tolerance

aims to ensure continual operation of a system in the presence of faults. Section

3.4.1, Fault removal, and Section 3.4.2 fault tolerance and prevention, cover

related work under the afore-mentioned fault recovery approaches.

3.4.1 Fault Removal

A retry recovery strategy has become the most used recovery technique for

transient non deterministic fault (Fugini and Mussi, 2005). A transient fault does

not need any change either in the environment or in the service in order to

recover. Memory overflow is one example of transient faults. Recovery from such

faults needs re-invocation of the service.

Arshad et al (2004) proposed the planning based approach for fault removal

recovery. This approach automates failure recovery by capturing the state before

the failure. The initial state and goal state need to be supplied to the planner to

plan for the next action. This planning based approach has been tried in

distributed systems. According to Arshad et al (2004) the use of AI planning in

distributed systems is one of the recovery techniques that have the ability to

minimize time, cost and resource usage.

3.4.2 Fault Tolerance and Prevention

Since a Grid service is a software application, other traditional recovery

mechanisms to tolerate faults can be encapsulated during application

development. For example, exception catching mechanism is one of the

traditional software recovery strategies.

28

These mechanisms are used for trapping runtime faults without finding the

source of the faults. They also increase performance degradation since they do

not resolve faults. Designing a fault tolerant Grid service has become a challenge.

Martinello et al (2005) identified two types of error recovery strategies: Non client

transparent and Client transparent. Non client transparency does not provide

transparent request handling during node failure occurrences.

Client transparency enables web requests to be smoothly migrated and recovered

on other working nodes in the presence of node failure in a user transparent way.

A client transparent approach can work well in a Grid environment because of

the high demand of service availability and because of the contract that binds

both the service provider and the client. However, this approach does not

consider service execution continuation from the fact that the working node has

to start from the beginning of the execution process. This research uses a client

transparent approach for fault recovery.

A client transparent approach can be achieved in two ways (Tartanoglu et al,

2003): backward (based on rolling system component to the previous correct

state) and forward fault recovery. Backward error recovery increases response

delay due to the fact that even if a service was about to finish then everything will

be rolled back. Forward fault recovery involves transforming the system

component into a correct state. Forward error recovery is of interest to this

research since it optimizes service execution time.

29

3.4.2.1 Replication based fault recovery

Replicating web services can offer client applications a number of QoS benefits,

including higher availability and reduced response time, by allowing client

requests to invoke a replica that is less loaded. Section 3.4.2.1.1 and 3.4.2.1.2

give details of different types of replication approaches.

3.4.2 .1.1 Replication based on both same or different replicas

Fang et al (2007) proposed a FT-SOAP based fault tolerant mechanism composed

of four functionalities:

a. Replication manager,

b. Fault manager,

c. Logging or recovery mechanism and

d. Client Fault Tolerant transparency.

Replication management includes group constitution and membership

management. When a fault occurs, the recovery mechanism selects a new primary

server that acts as a backup. The new primary will perform the recovery process

and select a new backup server. This approach cannot work for delay sensitive

software applications because each server in the network will have its own

workload. This results in incoming workload from the failed primary server to

queue for execution on servers with degraded and varying performance levels.

Replication or Redundancy recovery techniques have become the most popular

recovery mechanisms for both fault tolerance and fault prevention (Fang et al,

2007), (Ghosh et al, 2006), (Parashar and Hariri, 2005). In this research work we

look at redundancy as divided in three parts:

30

a. Local redundancy,

b. Remote redundancy and

c. Hybrid redundancy.

Local redundancy means the service has replicas only on the local node. In

remote redundancy, the service has replicas only on the remote nodes. Hybrid

redundancy implies the service has replicas in the local node and also in the

remote nodes. Remote redundancy is most used for hardware faults while the

other two are mostly used for software faults. Replication processes can be active

or passive (Treaster, 2005). In the passive replication model, only one of the

replicas, known as the primary replica, receives and responds to client requests.

Gokhale and Dasarathy (2007) further categorize passive replication into two:

Warm and Cold.

In warm passive replication approach, one or more backup or secondary replicas

are always running and the state of the backup replicas is periodically

synchronized with that of the primary. In cold passive replication, the backup

replicas are cold, as the name indicates, in the sense that replicas are not running.

Only when the primary fails, one of the idle replicas is selected and the state of

the failed primary is loaded into that replica, which then becomes the new

primary server.

 When the active service fails, the replica is required to bring its state up to date

from the last synchronized state and continue with the execution. The passive

replica discards the synchronized information, if the active service has not failed.

In active replication each coming request is sent to all replicas. For active

replication to function correctly, totally ordered reliable group communication

31

needs to be used to deliver requests to all the replicas in the same order.

Although duplicate responses would be returned, only one response is forwarded

to the client and the others get discarded

Pereira et al (2006) propose that for each service failed, the service has to be

replaced with the service from the lookup repository where all services are

registered. This approach will not solve service independent faults if the failed

service and the lookup service run on the same node. The work done by

Yoshikawa et al (2003) described a platform that realized rapid recovery by

switching to service alternatives to guarantee high reliability.

 This platform achieved rapid service recovery through failure detection, service

discovery and service switching. This rapid service recovery can work well for

services provided by the same service provider because different providers have

different ways of developing a service. Maintenance cost in using this recovery

technique is not considered in the sense that when the service fails it will wait for

the service provider to find out that the service is faulty. This approach does not

take into consideration service downtime from the fact that the increase in the

number of switches will cause the increase in service downtime.

Lee et al (2005) proposed the UDDI “tmodel” that is used in order to find and

connect to an identical service for backup. It also describes the value set

specification to indicate which agreement, specification and standard the service

complies with. The tmodel selects a service based on quality measurements. This

technique works well for unrecoverable faults, because unrecoverable faults need

to replace faulty services.

32

3.4.2 .1.2 Replication based on the same replicas

The backup approach suggested by Fang et al (2006), Jin et al (2004) and

Ardissono et al (2006) extended the work done by Pereira et al (2006) by allowing

service lookup from the backup vary for each service. The service backup

approach only considers system crush faults. This approach guarantees the

continuous execution in the sense that if one system fails; the other system will be

able to take over. This approach increases service complexity because a replication

manager has to be added for the management of backup services. This approach

will also increase fault detection challenges, because the capabilities from one

Grid node to another may vary, since varying of node’s capabilities causes a

change in fault detection specification.

In the work done by Maximilien and Sing (2003), a proxy for service selection

was proposed that a web service application instantiates each service it plan to

use. The proxy selects services based on service reputation. This idea of proxy

works well in distributed systems where the environment is not dynamic. The

approach will not work in a Grid environment, since service discovery consists of

too many processes (Hasselmeyer, 2005) and services join and leaves the network

dynamically.

Grid environments allow all the nodes to register their services through the Grid

middleware in order for services to be virtualized. This makes the proxy approach

not applicable in a Grid environment. Discovery processes consist of service

registration and look-up processes. A look-up process done during service

development is called a static look-up while the other one at runtime is called

dynamic look-up.

33

Proxy caching will also not help because all requests in a Grid environment are

submitted to the global resource manager to be managed and scheduled. Service

dependability in Grid will cause the proxy recovery technique not to function

since each and every service depends on different resources. Tang et al (2005)

proposed that a fault tolerance service should implement two approaches for

recovery: the Primary Backup approach, and the state-Machine approach.

 The Primary Backup approach has to tolerate crash and omission faults. The

State-Machine approach has to tolerate faults such as arbitrary or byzantine faults.

In this approach, fault specification and the corresponding handling mechanism

are both defined in the service policy. This approach can work well for services

that are not complex (Arshad et al, 2004). But with this approach it is not

practical to enumerate all possible types of faults in a complex service.

3.4.2 .2 Checkpointing based fault recovery

Checkpointing recovery is a recovery mechanism whereby the state of the service

is saved periodically during its healthy state of operation Treaster (2005). After a

fault has occurred, the affected service rebuilds its state from the last healthy state

saved and continues with the execution.

Checkpointing recovery has different types: coordinated and uncoordinated.

Uncoordinated checkpointing connotes that a service decides when to

synchronize its state information, while coordinated checkpointing is controlled.

Coordinated checkpointing is of interest to this research for the fact that state

information in Grid environment is managed in the middleware. Dabrowski et al

(2004) proposed two types of recovery techniques based on coordinated

checkpointing: the soft state and application level persistence.

34

 The soft state is when an application announcing periodically soft information

about its state. Application persistence is achieved by periodically caching the

state of the application.

Each time a new announcement is received, the receiver overwrites the previous

cached state. When an announcement fails to arrive, a receiver discards the

previous cached state, and when announcement resume a receiver rediscover the

latest application state. These recovery techniques increase network overhead and

also rely on an external component to come out with recovery actions. These

recovery techniques can work well for checkpointing.

3.4.2 .3 Multiple recovery strategies based fault recovery

One effort towards the goal of having a recovery strategy in web services is

presented in the work of Guinea and Ghezzi (2005). These recovery strategies

are: retry, substitute and restructure. These strategies can also work well in

environments that are not fault prone, and also for faults that are not complex,

for example faults that rise from resource overload. These strategies can also

affect the availability of the service and trust from the users because it is not

guaranteed that after using one or two strategies, one would come out with a

solution. Another effort towards fault recovery by Tang (2006) adopts a

mechanism of predefined policy driven fault monitoring and handling. This

mechanism was used to monitor and handle faults in the services that are

running on different servers. When a fault occurs in the service, this mechanism

restarts the service. This mechanism will increase the response delay. Monitoring

services in different servers use messages between servers. Increases in the number

of messages passed between the servers, results in increased request delay. This

mechanism can therefore not be used for transparent fault handling.

35

The work done by Fugini and Mussi (2006) tried to solve the problem of

efficiency in fault management.

Web service execution faults and coordination faults were the two types of fault

identified in this work. The research further categorizes recovery action (retry,

substitute and restructure) according to fault type. This recovery strategy can also

not overcome the issue of fault transparent handling due to the fact that it only

concentrate on one fault at a time, for example if the failure solution is to

substitute the service, it will only substitute the service without checking if a

parameter or method naming matches with that of the failed service.

3.5 Summary

From the fact that different kinds of faults can occur during service execution,

this then require a hybrid based fault recovery mechanism that combine retry,

hybrid replication and check pointing through Globus Toolkit four. In our self

healing service the policy based fault detection approach will be used for fault

detection. Service downtime is taken into consideration in our model.

36

CHAPTER FOUR

MODEL DESIGN AND DEVELOPMENT

4.1 Introduction

This chapter describes the design and prototype development of the proposed

dynamic fault-recovery model. The chapter begins by discussing design

requirements of the proposed model. The importance of addressing the problem

of dynamic service recovery is also highlighted. Thereafter, key requirements for

dynamic fault recovery are identified. This is followed by an in-depth discussion

of the proposed dynamic fault recovery model. An explanation of some of the

design concepts is also presented. The chapter concludes with a discussion of how

the model can help overcome service recovery limitations.

4.2 Design Requirements

The Grid environment is an open and dynamic environment characterized by

autonomous entities. The implication of this is that such entities are capable of

manifesting uncertain behavior. During service interactions, an abnormal

behavior from any of the collaborating services can result into failure of the entire

system. Grid service failure is the most challenging abnormal behavior for both

service providers and service clients (Huda et al, 2005; Qian-mu et al, 2006).

Service providers offer Grid services that expose service characteristics to service

clients. The Grid middleware provides an environment where Grid services are

virtualized in all Grid nodes without fault management capability. Service clients

are only eager to use services to fulfill their objectives. Fault management

challenges affect service clients’ expectations.

37

Fault management in Grid environments need to provide a high degree of service

availability, reliability and efficiency. In this case, a service client can be either a

user through any application or another Grid service. Grid services can be

composed to accomplish a particular task. Grid service composition influences

service complexity and that can lead to fault prone services.

In order to elicit the design criteria for this work, we considered the following

scenario instance of the complexity of interaction in a Grid service environment

(Huhns and Singh 2005, page: 76):

Let’s consider a typical surgery division in a large hospital. The hospital system is

composed of an integrated payroll, scheduling, and billing services. Each service is

quite complex, with its own operations and databases, perhaps running on different

operating systems. For obvious reasons, these services must work together. Scheduling

employees and operating rooms for surgery is complicated, for example, because

schedules require frequent updating. A scheduling system must balance staff and

equipment availability with unpredictable levels of surgical urgency and advance

notice. The mechanisms for payroll are similarly complex — the payroll service must

consider various kinds of overtime rules for different categories of labor, such as

nurses, residents, consulting physicians, senior surgeons, radiologists, and so on and

rely to some extent on data from the scheduling system. Likewise, the billing service

must also incorporate scheduling information. It is used not only to bill customers,

but also to deal with medical insurance companies and government agencies (such

as those for children, the elderly, retired government employees, and veterans).

Agencies typically impose complex rules for valid billing and penalties for violations

of these rules.

38

It is clear that the complexity of these services increases the complexity of the

hospital system. System complexity increases challenges for system administrator

to manage system failures. From the above scenario we can outline some basic

requirements for services during interaction:

a) Autonomic behavior: service recovery has to automatically figure out

each service abnormal behavior and act on it. Service recovery needs to

improve service availability during each service malfunctioning.

 b) Service Trustworthiness: Service recovery has to increase trust from

hospital employees and agencies using the service. Service trustworthiness

is important because of the agreement between the hospital and its service

providers. Service trustworthiness comes from service reliability,

availability, and efficiency that each service has to provide.

c) Complete fault detection: Abnormal behavior might occur during the

process of each service execution. For service recovery to be triggered, an

abnormal behavior needs to be detected from the service. Abnormal

behavior characteristics need to be completely outlined. Fault detection

also needs to be complete in the sense that all faults that occurred need to

be detected. Complete fault detection also helps to reduce fault recurring,

for example, fault from scheduler affecting payroll service.

d) Awareness: service recovery processes must support the monitoring of

each service’s state. Various measurements related to service reliability need

to be measured. The measurements must be performed and any recovery

action needs to be implemented if one of the services underperforms.

e) Adaptability: service recovery processes must have the ability to change

the system structure, topology and interaction at run time to keep the

hospital system up and running in the presence of service failure.

39

From the foregoing, each of the above defined hospital services can assume any of

the four states: active, inactive, faulty, or dormant as shown in Figure 4.1. In the

active state, the service is operating as specified in the Service Level Agreement

(SLA). In a faulty state, a service shows some abnormal behavior. In this state

nothing has been done to recover from the fault. After some recovery mechanism

has been applied to the service, then the service might be in the active state if it

manages to recover, otherwise it will be in the dormant state. Dormant mean

there are still requests of the service while inactive state means that there are no

service requests to the service.

After an unrecoverable fault has been discovered, the service will be in dormant

state. Thereafter, it will be in inactive state because no client will be accessing it

and also new services join in this state.

Figure 4. 1 Service transition diagram

There are many possible unpredicted faults that may cause a service to

malfunction especially in complex services (Arshad et al, 2004). In literature,

different fault types have been identified (Chan et al, 2007; Bruning et al, 2007).

in ac tive ac tive

fau ltydo rm an t

F a u lt d e te c te d
re co ve ry

U n re co vera b le
fa u lt

a ffe c te d

F a u lt fixe d

40

Our research has identified three categories or classes of faults that can occur

during service execution from the scenario panted above: parameter mismatch,

service overload and service unavailability.

The Parameter mismatch fault class is for all faults that occur because of parameter

related misbehavior. A wrapper has been proposed in the literature to recover

from this category of faults. The Service overload fault class is for all faults that

occur when the service is in a busy state. The most used recovery action for this

category of faults is to block incoming requests.

This fault class is different from the case where the service is not operating at all.

In this case, the service is up and running, but the maximum number of services

it can serve has been exceeded. Service unavailability is a class of faults resulting

from services not found. This is when a service exists, but fails to get through due

to faults or other request factors. Some of these faults can occur due to the

dynamic nature of Grid service availability. There is no recovery action currently

in Grid environment to overcome this category of faults.

There are many possible faults that might fall into any of these three classes. For

example service interaction may cause a particular service to fail. The following

scenario outlines faults that may occur from service interaction:

Service A depends on the output of service B. The provider of service B decides

to do some operations on service B. Before service B was passing two parameters,

but now it is passing three parameters. Service A invokes service B and passes two

parameters as usual.

 Service A fails because of no output from service B due to the number of

mismatching parameters in service B. This kind of faults falls under the

41

parameter mismatch class. During the process of removing Service B, other

services that would have been using service B would also fail due to service

unavailability. We have then proposed an integrated fault recovery approach to

address these fault categories. Table 4.1 gives the details of the three fault classes

identified and their possible courses of fault.

Table 4. 1 Fault classes

Fault class Explanation

Parameter

mismatch

• The service client might pass incorrect parameters
• The service might not receive any parameters
because the service that was supposed to pass

parameters failed or has a fault.

• The service may receive input that triggers dormant
fault in the

service for example in the case of division by zero.

• The service output does not conform to the input
of the service

that consumes the output.

Service overload Since in a Grid may use services that are managed outside

the Grid environment and also in different infrastructure,

may find that a service is not capable of handling service

requests greater than a particular threshold. This may

cause a delay or even outright feature of some service

requests.

Service

unavailability

This type of faults may occur due to the dynamic nature

of the Grid environment where services leave and join the

Grid network without restrictions. Also this faults may

occur because of service malfunctioning that leads to no

output from the service.

42

Table 4.2 outlines some possible fault recovery mechanisms for faults classes

identified. The proposed recovery actions are also presented for the identified

categories of faults.

Table 4. 2 Possible fault recovery mechanism

Fault class Recovery action

Parameter mismatch • A service wrapper is used to wrap the output

to the

 way that the depending service client will

be able to consume the service.

• If the service output cause mismatch of

parameters specified in the SLA then the

recovery plan has to get the service that is

doing the same thing that can produce

consumable output.

• If the service is not available during its turn

the planner

has to allow replacement of the failed

service by the new service in a group of the

failed service.

Service overload The recovery action here is to find the same

service in a service group of the overloaded service

to assist the service or prioritize services clients.

Service unavailability In this case the recovery action is to replace the

service by getting a new service provider for the

same service in the group of the service that is not

found or failed.

43

4.3 Model Architecture

We propose a Dynamic Service Recovery (DSR) model to address the limitations

identified in the literature. The proposed model, by using autonomic behavior

when a fault occurs, reduces human intervention during the process of recovering

from failures. The autonomic behavior is through self healing where faults are

detected automatically, and the recovery process is through the implementation

of elements of autonomic computing architecture. The model considers the issue

of service availability, reliability and trustworthiness, which is expected when the

service client uses the service.

The proposed model will cater for all recoverable faults (i.e. faults that do not

need human intervention), but the service provider and service client would be

notified of faults that need human attention. This proposed model would also

show how it uses knowledge based information to figure out possible solutions

for all faults that occurred. This model would also take care of the issue of

transparency by reducing delay through allowing the most reliable service to serve

the request.

The model would be distributed in all nodes that would join the GUISET Grid

network and this distribution would also reduce the response delay during fault

recovery. This model would use asynchronous communication. Figure 4.2 shows

the architecture of our proposed model for service recovery, the DSR model.

44

The DSR model uses a fault detector proposed by Tang (2005) to address fault

detection challenges mentioned in the literature for dynamic service recovery.

The fault detector component and fault recovery ordinary components interact

during service provisioning. The two components use text messaging to

communicate. The fault detector component is employed to achieve complete

fault detection and awareness. The fault recovery component is proposed to

address service trustworthiness and service adaptability during service provision.

Each component has interacting sub- components to accomplish the goal of the

main component. In this work, only the fault recovery component is discussed in

detail.

4.3.1 Fault Recovery Component

Service recovery has to be able to support decision making on the recovery action

that needs to be executed to achieve the normal state of the service.

Figure 4. 2 Dynamic Service Recovery Model

45

The proposed model uses some of distributed computing mechanisms to figure

out possible solutions for all recoverable faults during service execution. This

fault recovery component is composed of three sub-components:

i. Service Group manager

ii. Service replication manager

iii. Service Recommender

4.3.1.1 Service Group manager

The Service Group manager is composed of three modules which are:

i. Service interceptor module,

ii. Service dedicator module and,

iii. Request distributor module.

Service interceptor module receives arriving requests from service clients. It also

attaches a request identifier that enhances the request to be synchronized. The

request is then passed to the service dedicator and waits for the arrival of a

response. When the response arrives, the service interceptor module passes it to

the service client. The service dedicator module ranks the services based on their

history of usage. This module also updates service history when a service client

accesses a service and when a service successfully completes serving a request. The

request distributor module multicasts request to recommended services. After

multicasting the fault detector takes over to monitor and detect faults.

The service group manager makes sure that each and every fault reported get

attention. The request distributor module is triggered when it gets the request to

execute. It also depends on the recommender, which has to recommend the

services that have to execute a particular request.

46

The service dedicator module also handles faults that occur during service

provisioning. The planner is used to address the process of recovering the failed

services.

4.3.1.1.1 Planner

Planning has a long history and it has been used to address a number of problems

in Artificial Intelligence (AI). Planning has been used in optimizing search

engines and finding optimal solution for AI related problems (Arshad et al, 2004

; Ghosh et al, 2007). In our model, the planner was used to construct and filter

optimal and efficient services to execute an incoming request so that the

occurrence of fault could be reduced during service provisioning. A plan is an

ordered set of actions that is needed to repair detected abnormal behavior.

At the most basic level, the purpose of the planner is to find a sequence of

actions that changes an initial state into a final state that satisfies a goal

statement. The model uses the basic level purpose of the planner with additional

functionality of filtering the optimal plan from the sequence of actions. The

planner undergoes analyzing, generation and selection processes to come up with

a fault recovery solution. Analyzing is when the planner processes the

information about the domain of the service. Generation is the process when the

planner discovers possible plans for a particular fault that occurred. Selection is

the process where the planner filters out the optimal plan for a given fault that

occurred. Figure 4.3 shows the execution sequence of the plan processes.

47

In the process of service provisioning and service utilization, new faults and other

faults that are similar to fault already identified will be detected. For all new faults

detected, the planner uses the service history to figure out the possible plan for

the new fault that occurred. For all new faults that needs human intervention the

planner reports those faults to the administrator in a way that it will be easier for

the administrator to locate where the fault has occurred. Figure 4.4 shows the

algorithm used by the planner to come up with a fault recovery solution to find a

service with high reliability index, using the service recovery algorithm in Figure

4.5:

Analyzer

Generator

Selection

Fault and service id

Plan and service id

Figure 4. 3 Planning process

48

For parameter mismatch faults, the fault recovery component keeps the wrapper

plan for future use, since these faults are caused by the service clients. We assume

that this kind of faults is caused by service replacement. The DSR model replaces

the service and alerts the service provider if no recovery plan found.

4.3.1.1.2 Fault Isolation

Fault isolation is an important process after the process of successful service

recovery. Service faults need to be eliminated for future functioning of the

service. This reduces service recovery overhead, in a way that if another service

invokes the same service, it will not experience the same fault. Fault isolation

mechanism varies according to the category of faults, for example faults that fall

under the category of parameter mismatch are assumed to be service client based.

While the other two categories (service overload, service not found), which are

service dependent faults that are from service provider.

Figure 4. 4 Planner algorithm

49

In case of service load faults those faults will not be isolated. This is because those

faults are caused by the unavailability of resources (memory, processor, etc) that

the service depends on, not by the unavailability of the service itself. These kinds

of faults are short term faults. Service providers get notified for all faults that

occurred in each service.

4.3.1.1.3 Recovery algorithm

We give the description of our dynamic service recovery algorithm, which is well

elucidated in Figure 4.5. The algorithm was developed to improve the

functionality of the service group manager and service availability during service

execution. The algorithm outlines how the modules of a service group manager

interact during service provisioning. During the process of accessing the remote

service, the remote DSR does not interfere with the service request from the fact

that the service is accessed directly from the service registry. The algorithm utilizes

the information on the existing services and the usage history of each service to

commit a service for an execution, service usage history (number of service

accessed, number of service failure, number of service success).

50

Make service request

Get service replicas, compute service safety factor for

each replica and reliability index for a service group

Is reliability index greater or

equal to a threshold?

Select a primary service and an active replica

from safety factors based ranked list of replicas

Update service history by increasing the

total number of service invocations by one

Execute the primary

service request

Pass primary service state to active

replica, change active replica status

to primary service and get a new

active replica

Update service history by increasing the

number of successful service invocations

by one and keep response time

Stop

Does the primary service

fails?

Is service execution

completed?

Report detected

fault cannot be

recovered

Report service has low

reliability and cannot be

committed for execution

Yes

YesNo

No Yes

Yes

No

No

Output service

request

Does a set of new

replicas exists?

Figure 4. 5 Service recovery algorithm

51

The DSR algorithm commits a service in a service group for an execution only

when the group reliability index is greater than a threshold value. A reasonable

threshold value is 3, which is above average (=2.5). The higher the reliability

index, the more satisfactory is the performance of the services in a group. A

reliability index is a probabilistic measure of safety and it represents the number

of standard deviations that separates the mean safety factor from the critical safety

factor (=1). A safety factor (factor of safety) of a system, usually treated as a

random variable is defined as the ratio of capacity to demand for the system. In

reality, safety factor is often best fit by a lognormal rather than normal

distribution. Thus, the calculation of reliability index (β) is given by:

()2

2

1ln

1
ln

V

V

+












+=

µ

β (4.1)

where:

β = lognormal reliability index

µ = mean safety factor

V = coefficient of variation of safety factor (=
µ
σ
)

σ = standard deviation of safety factor

As a result, Service Safety Factor (SSF) is used by our algorithm to rank replicas in

a service group. A replica having the highest SSF (=primary service) is assumed to

be the most reliable among other replicas in a service group. The primary service

is the one first selected for execution before any other replica is selected. If the

selected service replica fails, the service with the next higher SSF (=active replica)

gets selected for execution and so on. This process of service fault recovery is

transparent to the client of the service.

52

However, when the reliability index of a service group is below a threshold or

when all service replicas in a service group fail, the client of the requested service

is notified.

The computation of safety factor and reliability index is based on the previous

history of service invocations. Let 1x be number of successful service invocations,

2x the actual service response time, N the total number of service invocations,

aNx =3 the expected number of successful service invocations, a (10 ≤< a) the

percentage of the expected number of successful invocations and 4x the expected

service response time. We used multiplicative Cobb-Douglas utility function to

represent the Capacity (C) and Demand (D) for a service. The utility function is

used in a bounded rational decision-making context, because the fault recovery

algorithm recommends a service group with high reliability index and the best

service replica (replica with highest safety factor) is selected for execution.

Previous research effort (Rand, et. al., 2003) demonstrated that the decision

making of agents using Cobb-Douglas utility function can generate distributions

of cluster sizes that compare favorably with the structural form of real-world

entities. A multiplicative Cobb-Douglas function is also preferred because it

eliminates the possibility that a quantity with zero suitability on the factor will

have a non-zero utility (Brown and Robinson, 2006). Thus, the capacity of a

service is a function of the number of successful service invocations over a period

of time. This utility function is defined as:

αα −= 1
2121),(xxxxC (4.2)

Similarly, the demand for a service is a function of the expected number of

successful service invocations over a period of time and is defined as:

ββ −= 1
4343),(xxxxD (4.3)

53

The service safety factor is the utility function U(x) defined as:

ββ

αα

−

−

=
1
43

1
21)(

xx

xx
xU (4.4)

where:

α and β are respectively the output elasticity measures of the capacity and

demand for a service and ()4321 ,,, xxxxx = is the input vector. The selection of α

and β can affect the performance of the utility function. Since we expect the

capacity to be higher than the demand for a reliable service, α and β should be

selected such that βα > .

4.3.1.2 Service replication manager

The replication manager allows the service group manager to access service

replicas either in the local node or remote node. This manager uses WS-

Replication to discover service replicas.

4.3.1.3 Service recommender

The recommender is mostly used for databases and user profile preferences, but

we also decided to use this recommender to reduce delay during fault recovery. A

recommender analyzes the occurrence of all faults in a particular Grid node and

recommends services to execute the request or substitute the failed service. This

component is an external component that our model depends on.

4.3.1.4 DSR model information storage

The DSR uses the repository for the following activities:

1. Service local information repository is used to store service information.

2. Virtualized registry is a virtualized registry in the network with the help of

Grid middleware to discover service replicas.

54

4.3.2 Model component interaction

During service failure and service provisioning all the components of the DSR

model interact. Figure 4.6 shows how the components interact when DSR model

receives the request and when the fault occurs during service execution.

SClient SGM SRM SRecM FD

serve(request, service)

getMembers(service)

SReplicas(list)

ComputeSRI(list)

recomend(list)

recomended(S1,S2)

execute(R,S1,S2)

Monitor(S1,S2)

notify(S1,Fault)

recomend(S1)

recomended(S3)

Monitor(S3)

notify(S2,complete)

return(response)

Sclient: service client SGM: service group manager SRM : service recovery manager

SRecM: service recommender manager FD: fault detector

Figure 4. 6 Fault recovery sequence diagram

Our proposed model selects two services with high reliability index to serve the

request at a time; one of the services is the primary service while the other one is

55

the active replica. The two services are selected based on their reliability index.

Figure 4.7 shows the interaction of the model that is composed of three tiers.

The Service Group Manager (SGM) receives requests in a FIFO from clients.

During the process of serving a request a SGM interacts with the two

components namely, Replication manager (RM) and Fault Detector (FD). RM

gets the service identifier of the requested service and retrieves information of its

replicas. It returns the capacity and demand of each replica to the SGM. Capacity

is the number of times a particular service succeeds in processing a request.

Demand is the total times of invocations of a service.

The SGM computes the safety factor and reliability index of each service from

each service capacity and demand. The SGM selects the replica with the high

reliability index, which is also greater than the average reliability index as the

primary service and the second highest as an active replica.

Client
Tier

Clients
C1
C2
.
.
Cn

Middle tier

Service Group manager

Fault detector

End Tier

S1 R1
. R2
. .
S1 Rn
S2 R1
. R2
. .
S2 Rn
. .
Sn R1
. R2
. .
Sn Rn

Replication manager

Figure 4. 7 SDR interaction diagram

56

During the execution process each running replica gets monitored by the fault

detector to check for faults. Whether the replica succeeds or fails, the SGM gets

notification to update the replica’s history. Figure 4.8 shows the algorithm used

to update service history.

Figure 4. 8 History updating algorithm

We consider response time as the time from when SGM receives the request to

when the SGM passes the response to the service client. The response time in our

approach is given by the following equation

 (4.4)

where, Cnt is the time it takes to compute reliability index for n replicas and

primary and active replica selection, while Dnt is the time it takes to receive

response. The Dnt will vary from the fact that the request can get served by one or

more replicas. Also reliability index time computation Cnt will vary with the

number of replicas.

57

Performance overhead Pas is the time it takes for the service to recover after the

web service expected response time has expired. It is given by the following

equation

 (4.5)

where T(n) is the service response time when the service group has n replicas and

T(1) is the response time when no replication is used.

4.4 Summary

The DSR model aims to improve user satisfaction through keeping the service

that operates as stated in the SLA. The delay or latency from this research work

can be the combination of the following attributes.

i. Mean Time To Recover (MTTR)

ii. The Average Response Time (ART).

The above mentioned attributes would be used to conclude whether DSR model

is efficient as far as the delay is concerned. This would help to conclude whether

DSR model is reliable or scalable as far as the number of fault is concern and as

the number of service replicas increases. This would also show whether DSR

model improves service availability and reliability. We assume that immediately

the fault has occurred the adopted detector model would detect that fault.

Recalling the goal of this research, service recovery is our main focus, but from

the fact that effective service recovery depends on effective fault detection, we

then took fault detection into consideration.

From the requirements scenario, The DSR model would be able to automatically

recover from all recoverable faults and report accurate failure in a human

understandable way for all unrecoverable fault occurrences. It would also log all

58

fault occurrences for the service provider to analyze and have some conclusions.

Through automated fault recovery, service downtime would be reduced.

59

CHAPTER FIVE

MODEL IMPLEMENTATION AND

EXPERIMENTATION

5.1 Introduction

This chapter describes the simulation of the proposed autonomic service recovery

model presented in the previous chapter. As explained in chapter four, the main

goal of the dynamic service recovery model is to develop a dynamic and

automated system for service fault management to improve service availability in a

Grid environment. The objectives to achieve this were revisited in chapter four in

order to ascertain how these were to be achieved in the model design. The model

implements the monitor, analyzer, planner, knowledge, and executer autonomic

computing elements. The monitor is the mechanism whereby fault messages from

the detector component get passed and accepted by the recovery component. A

message can be received through the message bus or by message passing between

the two components. The analyzer then uses fault specification to get fault

identification. The planner component processes the solution for the identified

fault. The knowledge component keeps or stores information about fault and

recovery plans.

In demonstrating the performance and the behavior of our model, we present

some assumptions considered, the description of the simulation, the simulation

environment, and the system interface. Finally, we present performance

evaluation of the proposed model.

60

5.2 Basic assumptions of the simulation model

In developing our simulation, the following are assumptions we have considered

due to the duration of this project and considerations of the environment where

it will function.

a. The grid infrastructure is running, services that are deployed and service

client are requesting for services.

b. Each service has a set of replicas deployed in the local and remote nodes.

c. Network behavior is normal and does not fluctuate.

d. Replicas implementation can be different, but gives the same functionality.

5.3 Description of the simulation

The scenario painted in chapter four is considered in simulating our model.

Services like Scheduler, Payroll and Billing that operate in fulfilling a particular

request were considered. Payroll and Billing services depend on scheduler’s

information. Due to high complexity and high service demand of such services

deployed in a Grid environment, DSR has been proposed to address these

challenges.

The Grid environment behavior was also considered in simulating our model.

Services dynamically join and leave the network. Services were being provided by

different providers with different service characteristics. Services were classified

according to their characteristics. The service clients (applications or services)

initiate the request to a particular service. Service characteristics for the requested

service are then used to query service replicas. Services were being accessed

through Service Group Manager (SGM) to ensure service request completion.

61

SGM uses a recovery manager to query virtualized service replicas of the

requested service. SGM is automatically updated when a service leaves, fails,

completes or joins the network. Service policy is used to detect whether the

service is behaving normally. Our model monitors service reliability throughout

the execution process. This helps in improving service delay when a service

becomes unreliable by invoking another service with high reliability to take over.

Finally, SGM returns the response to a service client.

The autonomic service recovery model is simulated as a Java application. The

object service is simulated with some service properties for example (service name,

service response time and service fault) and also with properties that define fault

types. From the fact that fault messages get received in a sequence, a service with

its properties is randomly generated with faults attached to the service. The faulty

service is generated by the thread service generator. After the faulty service is

received the object analyzer retrieves the fault from the faulty service. The fault is

then passed to the planner object to process and provide the recovery solution.

This recovery component gets detected faults from the fault detection model

(Tang et al, 2005). Figure 3.2 is the overview of the model. Multi-agents are

adopted in this model to monitor and manage the occurrence of faults. A policy

is used to check whether the monitored service has faults or not.

A replica is a service that performs the same task as the failed service as far as this

research is concerned. During the process of replica selection, a reliability index is

used.

62

5.4 Simulation environment

The simulation of our model was carried out in Netbeans 6.1 Integrated

Development Environment. Services’ faults and plans were stored in the MySQL

database. The application was tested on a desktop machine running Windows XP

Professional Edition. The machine was an Intel Pentium IV processor with a

processing speed of 3 GHz and 512 MB of RAM. The application consumed less

than 5.0 MB of hard-disk storage. To show the execution results of our model, we

designed an interface that allow the user to interact with the application.

Figure 5. 1 Service table

Figure 5.1 shows how services are stored with some service attributes that are

more related to this work. In our simulation we generated about 1000 services

each with a number of replicas reflected as s_replicas, service identity reflected as

sid and the response time in miliseconds reflected as s_restime.

63

Figure 5. 2 Replicas table

Figure 5.2 shows a list of service replicas as well as the capacity and demand for

each replica. Figure 5.1 and Figure 5.2 show one to many relationship between

service and their replicas. This way, we were able to efficiently simulate our model

using a simple record structure to represent services and their replicas rather than

hierachical structure.

Figure 5. 3 SDR interface A

64

Figure 5.3 shows a requested service, which is also a member of a replica group.

The replica group gets selected and for each replica, a reliability index gets

computed. Replicas get sorted in an ascending order according to their reliability

indexes. A service with SID_6 is the primary service and service SID_7 is the

active replica in this replica group based on high reliability index. Roundtrip

indicates the number of replicas that were involved in the execution of a request.

Service SID_6 has the demand (number of invocation) of 85 and capacity

(number of success) of 83. After SID_6 invocation its demand increases by one.

Figure 5. 4 SDR interface B

Figure 5.4 shows the service history after a service completes an execution. The

service capacity after successful execution has been increased by one from 85 to

86.

65

5.5 Performance evaluation

In evaluating the performance of our model, we have used response times and

performance overhead to compare the performance of active replication model

(Liang et al, 2003) against our proposed semi active replication model. In these

two models we assume the use of a call back asynchronous interaction pattern

during the process of serving a request. The SOAP based protocol WS-Reliability

is assumed to be used for exchanging reliable messages among services in both

models. The reason for this is to guarantee delivery, to duplicate elimination and

message ordering.

Active replication multicasts requests to all replicas with capability to serve the

request. In improving response reliability the most common response gets sent to

the service client. In eliminating response delays the multicasting component sets

the elapsed time after multicasting requests. When that time expires the most

common response gets selected from responded replicas, while if all replicas

respond before the elapsed time, a common response gets selected. According to

Sommerville et al (2006), this model of active replication is called multi-version

executing with voting. The response time Ra is given by the following equation.

 (5.1)

where Rnt is the time it takes to multicast a request to n replicas, Ent is the time it

takes for n replicas to respond or the time set by the multicasting component, Cnt

is the time it takes to select the most common response from n responded

replicas. Performance overhead is given by equation 4.5 in chapter four.

66

5.6 Experimental results

In conducting our simulation experiments, metrics presented in chapter one

(response time and performance overhead) to evaluate our model were used.

The number of faults request and the number of replicas were controlled in the

process of evaluating DSR. The performance of DSR is then compared with AR.

Parameters of the above mentioned equations and experimental results are also

discussed. The elapsed time is assumed to lie between 5 and 25 seconds, service

response time is varied between 2 to 20 seconds for each service. When a fault

occurs the time it takes for each replica to respond varies from one service to the

other. The time was generated randomly around these figures. The number of

faults requests varied from 10, 20, 30… 100 requests. The number of replicas also

varied from 20, 40, 60… 160 replicas. Capacity and demand were randomly

generated between 0 and 1000. It is obvious that the demand will be always less

or equal to the capacity because demand depends on capacity. The average

response time is given by the sum of n service request response time divided by n

and is presented by the following equation for our model

 (5.2)

While for the active replication is given by the sum of n service request response

time divided by n service responses and is presented by the following equation:

 (5.3)

67

Figure 5. 5 Response time vs number of faults

Figure 5.5 shows the results when 20 replicas were used assuming multicasting

and replicas response time is close to zero. Replicas response time is the average

time it takes for the number of replicas to respond to a particular request. The

fast growth of the DSR graph, in the interval where the number of faults are

between 20 and 60, is caused by the number of roundtrips per request during the

recovery process. DSR growth went down when the fault requests were 70

because replicas reliability was very high and it then caused a few or no

roundtrips. The AR graph grew fastly when the number of fault requests are 60

because of replicas’ failures caused the elapsed time to be considered for the

number of requests before responding to a request. The AR growth was slower

when services are 70 due to the fact that replicas failures were few.

68

Figure 5. 6 Response time vs number of replicas

The DSR average response time in Figure 5.6 increased because the time to select

the primary service and active replica varied along with the number of replicas.

Replicas implementation is assumed to be different for a particular service group,

this makes the failure of service A not possible in service B. The DSR graph is

lower than that of AR because DSR selects two services to serve each request

while AR can vary depending on the available replicas. AR response time

increased along with the number of replicas because multicasting and replicas

response time varies with the number of replicas.

69

Figure 5. 7 Performance overhead vs number of replicas

Figure 5.7 shows the time it takes for AR and DSR to recover for each set of

replicas. The average time to respond given a set of replicas was considered.

Looking at the DSR it performed well when the numbers of replicas was less or

equal to 60 while AR performed well when the number of replicas was less than

21. The reason was because DSR always have two services that are serving request

at a time while the AR can vary. DSR does not have an overhead when services

are less or equal to 60, which means the service still returns the response before

the response time of the failed service expires. The overhead from both models

increased along with the number of replicas. This was owing to the fact that for

the DSR, time to select both primary and active replicas increase when the

number of services increase. The AR overhead increased because the time to

multicast a request increases when the number of services increase and also the

average response time increased along with the number of replicas.

70

5.7 Summary

In summary, from the detailed experiments conducted, DSR performs better

than the AR when some replicas have high reliabilities in a service group, while

AR performs well when the all replicas have high reliabilities and without service

failures during service execution. Our recovery approach efficiently consumes

resources than AR approach due to the fact that when a service has 100 replicas

in our approach, only two reliable services will serve an incoming request, while

in AR all the 100 replicas will serve the request.

71

CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Introduction

The goal of this research was to develop a dynamic service recovery (DSR) model

for Grid services that integrates into GUISET Grid middleware. We have

developed the DSR model that effectively improves service availability during

service failure. The DSR model makes use of a policy based fault detector model

proposed by Tang (2005) to monitor and detect service faults. In order to

improve transparency during service recovery, the autonomic computing self

healing approach was incorporated in our model. The simulation of the DSR

model was used to evaluate our service recovery approach.

This chapter reviews the DSR model developed in this research. In section 6.2 we

highlight the achievements of this research. A reasonable critique of the work is

also given. In section 6.3, we discuss the limitations of this work and give some

suggestions on how the model can be extended in future.

6.2 Summary

There is a very high demand of service availability for Grid enterprise

applications. A dynamic service recovery (DSR) model has been proposed to

improve service availability and to reduce service failure during service execution.

The DSR model offers effective runtime service recovery and is bound to improve

service availability through the use of replication approach. In improving the

performance of our replication approach and service trustworthiness, a reliability

index is used to dynamically select two services with the highest reliability to serve

72

an incoming request. In the two selected services, a service with higher reliability

than the other acts as a primary service whiles the other one act as an active

replica. With the reliability index we managed:

• To improve resource usage during service execution and reduce delay,

• To reduce service failure during service execution, through the use of

service reliability index.

Furthermore, Dai et al (2007) presented that there are a number of faults that

constitute service failure like the blocking failure, time-out failure, matchmaking

failure, network failure, and program and resource failure. In our model, we

managed to reduce failures such as blocking failure, time-out failure, and program

and resource failure. The DSR reduced time out failure due to the fact that two

most reliable services get selected to serve a request which makes it transparent to

the service client when a service fails. To also address time out failures, the

reliability index serves as indicator to determine whether a reliable service exists

to serve that particular request before committing to a service request. The

blocking failure gets reduced from the fact that a service has one or more replicas

that can assist if the service fails to serve the request. The completion of

execution is guaranteed if there are a number of replicas with reliability index

greater than average. The program and resource failure is reduced because replica

implementation can be different from one replica to the other. Another fact that

reduced this kind of failure is that service replicas could be distributed in the

local node and remote nodes.

A comparative analysis of the proposed approach against the active replication

approach has been presented.

73

 The results have revealed that the new proposed approach exhibits superior

performance characteristics especially when there are services with high and low

reliability.

6.3 Limitations and Future Work

The results obtained from the simulation confirmed the suitability of the proposed

model for Grid enterprise services. However, the simulation is only an

approximation of the reality; therefore, another primary goal in the future work is

to observe the behavior of the proposed approach in real life environment. A test-

bed Grid network with replicated services could be constructed, with the proposed

recovery approach.

This research concentrated on service recovery during service execution; however

our approach also pointed to some relevant issues that need to be addressed in the

process of service recovery. First is the issue of service provider satisfaction in the

process of interchanging service when it comes to service cost. This would need

development of a mechanism for distributing quotas among different providers

with different pricing schemes. This mechanism would need to be taken into

consideration during replication selection. Second is the issue of security among

replicas from different providers. We would also like to consider other QoS

metrics to evaluate the performance of our approach and to incorporate other

recovery mechanisms, for example, mechanisms for recovering from Byzantine

faults, matchmaking failures and network failures.

74

BBBBIBLIOGRAPHYIBLIOGRAPHYIBLIOGRAPHYIBLIOGRAPHY

Adigun, M., Emuoyibofarhe, O., and Migiro, S. (2006). Challenges to Access and

Opportunity to use SMME enabling Technologies in Africa, a presentation at the 1st

All Africa Technology Diffusion Conference, Johannesburg South Africa.

Affaan, M., and Ansari, M. (2006). Distributed Fault Management for Computational

Grids, Proceedings of the Fifth International Conference on Grid and

Cooperative Computing (GCC'06), pp: 363 - 368 , Washington, DC, USA.

Ahmed, S., Sharmin, M., and Ahamed, S. (2007). ETS (Efficient, Transparent, and

Secured) Self-healing Service for Pervasive Computing Applications, International

Journal of Network Security, Vol.4, No.3, pp: 271–281.

Ardissono, L., Furnari, R., Goy, A., Petrone, G., and Segnan,M. (2006). Fault

Tolerant Web Service Orchestration by Means of Diagnosis, In Proceedings of the

European Workshop. on Software Architectures EWSA’2006), pp: 2-16.

Arshad, N., Heimbigner, D., and Wolf A. L. (2004). A Planning Based Approach to

Failure Recovery in Distributed Systems, In Proceedings of the ACM SIGSOFT

International Workshop on Self-Managed Systems (WOSS’04), pp: 8 -12, ACM

Press .

Baresi, L.,Ghezzi, C., and Guinea, S.,(2004), Smart monitors for composed services,

In ICSOC ’04, In Proceedings of the 2nd international conference on Service

oriented computing, pp: 193–202, New York,

75

NY, USA, ACM Press

Baresi, L., Guinea, S., Pasquale, L. (2008). Towards a unified framework for the

monitoring and recovery of BPEL processes, In Proceedings of the 2008 workshop on

Testing, analysis, and verification of web services and applications, pp: 15-19,

Seattle, Washington.

Benharref, A., Glitho, R., and Dssouli, R. (2005). A web service based-architecture for

detecting faults in web services, IM 2005 - IFIP/IEEE International Symposium on

Integrated Network Management, Vol: 1, pp: 1273-1276.

Brown, D., and Robinson D. (2006). Effects of heterogeneity in residential

preferences on an agent-based model of urban sprawl. Ecology and Society 11(1):

46. Conference on Distributed Computing Systems (ICDCS’2001), Phoenix,

Arizona, USA, April 2001. IEEE Computer Society

Bruning, S., Weißleder, S., and Malek, M. (2007). A Fault Taxonomy for Service-

Oriented Architecture, 10th IEEE High Assurance Systems Engineering

Symposium, pp: 367-368.

Chan, K., Bishop, J., Steyn, J., Baresi, L., and Guinea, S. (2007).

A Fault Taxonomy for Web Service Composition, in Proceedings of the 3 rd

International Workshop on Engineering Service Oriented Applications

(WESOA’07), Springer LNCS.

Cook, B., Babu, S., Candea, G., and Duan, S. (2007). Toward Self-Healing Multitier

Services, International Workshop on Self-Managing Database Systems (SMDB), in

conjunction with ICDE-2007, Istanbul, Turkey.

76

Dabrowski, C., Mills, K., and Rukhin, A.(2003). Performance of Service-Discovery

Architectures in Response to Node Failures, Software Engineering Research and

Practice , pp: 95-104.

Dai, Y., Wang, X., (2006), Optimal resource allocation on grid systems for maximizing

service reliability using a genetic algorithm, Reliability Engineering and System Safety,

Vol:91 , pp:1071–1082

Dai, Y., Wang , X., and Xie, M.(2005). A virtual modeling and a fast algorithm

for Grid service reliability, The 11th IEEE Pacific Rim Symposium on Dependable

Computing (PRDC2005), pp: 219-227, IEEE Computer Press, China.

DEPARTMENT OF THE ARMY,(1997). Introduction to probability and reliability

methods for use in geotechnical engineering, Retrieved on September, 19,2008

http://www.usace. army.mil/publications/eng-tech-ltrs/etl1110-2-547/entire.pdf.

 Duan, R., Prodan, R.,and Fahringer, T. (2006). Data Mining-based Fault

Prediction and Detection on the Grid, In International Symposium on High

Performance Distributed Computing, IEEE Computer Society Press, pp: 305-308 , Paris,

France.

Fang , C., Liang , D., Lin, F., and Lin, C. (2007) .Fault tolerant Web Services,

Journal of Systems Architecture: the EUROMICRO Journal, v.53 n.1, pp: 21-38.

Foster, I. (2006). Globus toolkit version 4: Software for service-oriented systems, Journal

of Computational Science and Technology, Vol: 21, pp:523–530.

77

Foster, C., Kesselman, J., Nick, M., and Tuecke, S. (2002). Grid Services for

Distributed System Integration, IEEE Computer, vol: 35, pp: 37-46, IEEE Computer

Society Press, Los Alamitos, CA, USA.

Fugini, M., and Mussi, E. (2006). Recovery of Faulty Web Applications through Service

Discovery, SMR-VLDB Workshop, Matchmaking and Approximate Semantic-

based Retrieval: Issues and Perspectives, 32nd International Conference on Very

Large Databases, Seoul, Korea, pp: 67-80.

Gadgil, H., Fox, G., Pallickara, S., and Pierce, M. (2007). Scalable, Fault-tolerant

management in a Service Oriented Architecture, In Proceedings of HPDC’07 , pp:

235-236 ,Austin, TX, USA.

Ghosh , D., Sharman , R., Rao, H., and Upadhyaya , S. (2007). Self-healing systems

— survey and synthesis, Decision Support Systems, Vol: 42, pp:2164–2185, Elsevier

Science Publishers B. V. Amsterdam, The Netherlands, The Netherlands .

Gokhale, S., and Dasarathy, B. (2007). Performance Analysis of CORBA Replication

Models ,In Proceedings of the Third IEEE International Symposium on Dependable,

Autonomic and Secure Computing (DASC 2007) , Vol: 00,pp: 100 – 107, IEEE

Computer Society.

Grishikashvili, E.,Pereira, R., and Taleb-Bendiab, A. (2006). Performance

evaluation for self-healing distributed services and fault detection mechanisms,

Journal of Computer and System Sciences, Vol: 72 pp: 1172-1182.

78

Guinea, S., and Ghezzi, C. (2005). Self-healing Web service compositions,

International Conference on Software Engineering Proceedings of the 27th

international conference on Software engineering (ICSE 2005), pp: 655-655.

Hanemann, A., Sailer, M., and Schmitz, D. (2004). Assured service quality by

improved fault management - service-oriented event correlation. In Proceedings of the

2nd International Conference on Service-Oriented Computing (ICSOC04), New

York City, New York, USA, ACM.

Hariri, S., Khargharia, B., Chen, H., Yang, J., and Zhang, Y. (2006). The

Autonomic Computing Paradigm, Cluster Computing , Vol: 9, pp: 5–17, United

States.

Hasselmeyer, P. (2005).On Service Discovery Process Types 3rd International

Conference On Service Oriented Computing (ICSOC '05) , pp: 144-157.

Huda, M., Schmidt,H., and Peake,I. (2005). An Agent Oriented Proactive Fault-

tolerant Framework for Grid Computing, In Proceedings of the First International

Conference on e-Science and Grid Computing(E-SCIENCE), pp: 304-311,

Washington, DC, USA.

Huhns, M., and Singh, M . (2005). Service-Oriented Computing:Key Concepts

and Principles, IEEE Internet Computing, Vol: 9, pp: 75 – 81.

IBM.(2004). An architectural blueprint for autonomic computing. Retrieved

September, 12, 2007 ,Home-Page: http://www-3.ibm.com/ autonomic

/pdfs/ACwpFinal.pdf .

79

Jiang, M., Zhang, J., Raymer, D., and Strassner, J. (2007). A Modeling Framework

for Self-Healing Software Systems, Retrieved on May ,12,2008,

http://www.comp.lancs.ac.uk/~bencomo/MRT07/papers/MRT07_Jiangl_etall.

pdf.

Kim , B., and Hariri, S. (2007). Anomaly-based Fault Detection System in Distributed

System, In Proceedings of the 5th ACIS International Conference on Software

Engineering Research, Management & Applications (SERA), pp: 782-789,

Washington, DC, USA.

Kephart, J., and Chess, D.(2003). The Vision of Autonomic Computing, IEEE

Computer 36(1), pp: 41-50.

Lee, H., Chin, S., Lee, J., Lee, D., Chung, K., Jung, S., and Yu, H. (2004).” A

Resource Manager for Optimal Resource Selection”,IEEE International Symposium on

Cluster Computing and the Grid.

Lee, Y., Oh, J., and Han. S. (2005). Enriching Quality and Fault-Tolerance of

Web Services System, International Journal of Web Services Practices, Vol.1, No.1-2

pp: 153-157.

Li, M., and Baker, M. (2005). The Grid Core Technologies , place: John Wiley &

Sons Ltd, ISBN-10 0-470-09417-6 (PB).

Liang, D., Fang, C., Chen, C.,and Lin, F. (2003).Fault tolerant web service,In

Proceedings of the Tenth Asia-Pacific Software Engineering Conference Software

Engineering Conference (APSEC’03),pp:310-323, Washington, DC, USA.

80

Liu, H., Bhat, V., Parashar, M., and Klasky,S.(2005). An Autonomic Service

Architecture for Self-Managing Grid Applications, Proceedings of the 6th IEEE/ACM

International Workshop on Grid Computing (Grid 2005), pp: 132 - 139, Seattle,

WA, USA, IEEE Computer Society Press.

Maheshwari, P., and Tam, S. (2006).Events-Based Exception Handling in Supply

Chain Management using Web Services, Digital Object Identifier 10.1109/AICT-

ICIW.2006.93, pp: 151- 151.

Martinello, M., Kaaniche, M., and Kanoun, K. (2005). Web Service Availability—

Impact of Error Recovery and Traffic Model, In Reliability Engineering and System

Safety, Elsevier, 89(1), pp:6-16.

Maximilien, E.,and Singh, M. (2003). Agent-based architecture for autonomic web

service selection, In Workshop on Web Services and Agent-based Engineering at

Autonomous Agents and Multi-Agent Systems (WSABE’2003).

Menasc´e, D., and Casalicchio, E. (2004). Quality os Service Aspect and Metrics in

Grid Computing, Int. CMG Conference 2004, pp: 521-532.

Mikic-Rakic, M., Mehta, N., and Medvidovic, N. (2002). Architectural style

requirements for self-healing systems, In Proceedings of the first workshop on Self-

healing systems(WOSS '02), pp: 49-54,Charleston, South Carolina, USA.

81

Modafferi, S., Mussi, E., and Pernici, B.(2006). SH-BPEL: a self-healing plug-in for

Ws-BPEL engines, In ACM Proceedings of the 1st workshop on Middleware for Service

OrientedComputing (MW4SOC’2006), pp: 48-53, Melbourne, Australia.

Naccache, H. and Gannod, G.(2007). A Self-Healing Framework for Web

Services, In Proceedings of the 2007 IEEE International Conference on Web Services,

pp: 1-8.

Neti, S.; and Muller, H. (2007). Quality Criteria and an Analysis Framework for Self-

Healing Systems, Software Engineering for Adaptive and Self-Managing Systems

ICSE Workshops SEAMS apos;07, IEEE Computer Society Washington, DC,

USA .

Parashar, M., and Hariri, S. (2005). Autonomic computing: An overview, In J.-P. B.

et al., editor, Unconventional Programming Paradigms, vol: 3566, pp: 247–259, Mont

Saint-Michel: Springer Verlag.

Parashar, M., and Hariri,S. (2007). Autonomic Computing Concepts,

Infrastructure,and Applications, place: Taylor & Francis Group, LLC, ISBN‑10:

0‑8493‑9367‑1 (Hardcover).

Pereira, E., Pereira, R., and Taleb-Bendiab, A. (2006). Performance evaluation for

self-healing distributed services and fault detection mechanisms, Journal of

Computer and Systems Science, ELSEVIER, pp:492-502.

82

Qian-mu, L., Man-wu, X., and Hong Z.(2006). A Root-fault Detection System of Grid

Based on Immunology, In Proceedings of the Fifth International Conference on

Grid and Cooperative Computing (GCC), pp: 369 - 373, Washington, DC, USA.

Rand, W., Brown D., Page S., Riolo R., Fernandez L., and Zellner M. (2003).

Statistical validation of spatial patterns in agent-based models. In J. P. Muller,

editor. Proceedings of Agent Based Simulation 4 (Montpellier, 2003). CIRAD,

Montpellier, France.

Rott, A. (2007). Self-Healing in Distributed Network Environments, In Proceedings of

the 21st International Conference on Advanced Information Networking and

Applications Workshops (AINAW), Vol: 01, pp: 73-78, Washington, DC, USA.

Shin, M., and Hoon An, J. (2006). Self-Reconfiguration in Self-Healing Systems, In

Proceedings of the Third IEEE International Workshop on Engineering of

Autonomic & Autonomous Systems (EASE’06),pp: 89 - 98 , Washington, DC,

USA.

Tanenbaum, A., and Van Steen, M.(2007). Distributed Systems principles and

paradigms (2 ed), place: Pearson Prentice Hall, ISBN : 0-13-239227-5.

Tang, J. (2006). Supporting Fault Tolerance in Dynamic Management of Workflow-

Oriented Services, In Proceedings of the Advanced Int'l Conference on

Telecommunications and Int'l Conference on Internet and Web Applications

and Services (AICT-ICIW), pp: 152- 158, IEEE Computer Society Washington,

DC, USA .

83

Tang, J., Zhou, B., He, Z., (2005), Policy driven and multi-agent based fault tolerance

for Web services, J Zhejiang Univ SCI 2005 6A(7), pp:676-682

Tartanoglu, F., Issarny, V., Romanovsky, A.,and Levy,N. (2003). Coordinated

Forward Error Recovery for Composite Web Services, In Proceedings of the 22nd

International Symposium on Reliable Distributed Systems (SRDS’03) , pp: 167-

176.

Tian, W., Zulkernine, F., Zebedee, J., Powley, W.and Martin, P. (2005). An

Architecture for an Autonomic Web Services Environment, In Proceedings of the Joint

Workshop on Web Services and Model-Driven Enterprise Information Systems

WSMDEIS (ICEIS 2005), pp: 54-66, Miami, Fl.

Townend, P., Xu, J.(2003). Fault Tolerance within Grid environment, In Proceedings

of the UK e-Science All Hands Meeting (AHM2003), pp: 272-275.

Treaster, M. (2005). A Survey of Fault-Tolerance and Fault-Recovery Techniques

in Parallel Systems, ACM Computing Research Repository (CoRR), Vol: 501002, pp:

1-11.

Yoshikawa, T., Ohta, K., Nakagawa, T., and Kurakake, S.(2003). Mobile Web

Service Platform for Robust, Responsive Distributed Application, In Proceedings of the

14th International Workshop on Database and Expert Systems Applications

(DEXA’03), pp: 144 - 148, Washington, DC, USA .

Zeid, A., and Gurguis, S. (2005). Towards autonomic web services, Workshop on

the Design and Evolution of Autonomic Application Software (DEAS 2005), pp:

1-5.

84

APPENDIX

A.1 Service Recovery Algorithm Implementation

package faultrecovery;

import java.util.ArrayList;

/**

 *

 * @author Sihle

 */

public class SReplication {

Service service = new Service();

Faults fault = new Faults();

SortObjects so = new SortObjects();

ServiceDB db = new ServiceDB();

Time t = new Time();

int pprimary ;

int preplica ;

long latency = 0;

ArrayList rel = new ArrayList();

boolean completed = false;

public ArrayList SActiveReplication()

{

 ArrayList messages = new ArrayList();

 String gsid = this.generateRequest();

 ArrayList repo = db.retrieveReplicas(gsid);

 totalproduct = repo.size();

 pprimary = repo.size()-1;

 preplica = repo.size()-2;

 rel = this.computeReliability(repo);

 String psid = this.getRID(rel, pprimary);

 String ssid = this.getRID(rel, preplica);

85

 messages.add("requested service : "+ gsid);

 messages.add("request sent to : "+ psid);

 messages.add("the active replica is : "+ ssid);

 double normal = Normal(repo);

 double lnormal = LogNormal(repo);

 messages.add(normal+" normal : lnormal "+lnormal);

 this.updateDemand(repo, psid);

 while(completed== false)

 {

 if(preplica > 0)

 {

 double test = Math.random();

 if(test > 0.7)

 {

 messages.add("request completed by : "+ psid);

 updateSuccess(repo, psid);

 latency = t.getTime() - ((Replicas)repo.get(0)).getStart_Time();

 completed = true;

 }

 else

 {

 double failure = Math.random();

 if(failure < 0.15)

 {

 preplica = preplica -1;

 pprimary = pprimary -1;

messages.add("the new primary service is taking over : "+

ssid);

 psid = ssid;

 ssid = getRID(rel, preplica);

 messages.add("new active replica is : "+ ssid);

 }

 }

 }

 else

 {

 messages.add("error : failure needs human intervention");

 latency = t.getTime() - ((Replicas)repo.get(0)).getStart_Time();

 completed = true;

86

 }

 }

 return messages;

}

public ArrayList computeReliability(ArrayList reposit)

{

 for(int j=0 ; j < reposit.size();j++)

 {

 Replicas r = (Replicas)reposit.get(j);

 double reliable = (double)(((double)r.getCapacity()/(double)r.getDemand()));

 System.out.println(r.getRid()+" "+ reliable);

 r.setReliability(reliable);

 Object ob = reposit.set(j, r);

 }

 so.sort(reposit);

 return reposit;

}

public String getRID(ArrayList repos, int position)

{

 Replicas r = (Replicas)repos.get(position);

 return r.getRid();

}

public void updateDemand(ArrayList repo, String rid)

{

 for(int u = 0; u < repo.size(); u++)

 {

 Replicas r = (Replicas)repo.get(u);

 if(r.getSid().equals(rid))

 {

87

 int value = r.getCapacity() + 1;

 r.setCapacity(value);

 repo.set(u, r);

 u = repo.size();

 }

 }

}

public void updateSuccess(ArrayList repo, String rid)

{

 for(int u = 0; u < repo.size(); u++)

 {

 Replicas r = (Replicas)repo.get(u);

 if(r.getSid().equals(rid))

 {

 int value = r.getCapacity() + 1;

 r.setCapacity(value);

 repo.set(u, r);

 u = repo.size();

 }

 }

}

 public int getTotalproduct() {

 return totalproduct;

 }

 public void setTotalproduct(int totalproduct) {

 this.totalproduct = totalproduct;

 }

 public int getPprimary()

 {

 return pprimary;

 }

 public int getPreplica()

 {

 return preplica;

 }

 public void populateData(int noOfServices)

 {

 db.initialize();

88

 ArrayList services = service.generateServices(noOfServices);

 for(int i =0; i< services.size();i++)

 {

 Service s =(Service)services.get(i);

 if(i < s.getNumberOfReplicas())

 {

 int demand1 = 1+(int)(Math.random()*100);

 int capacity1 = ((int)(Math.random()*100))%demand1;

 db.insertReplica(s.getService_ID(), s.getService_ID(), capacity1, demand1,0);

 }

 db.insertService(s.getService_ID(), s.getNumberOfReplicas(),

(int)s.getRes_time());

 ArrayList replica = service.generateReplicas(s.getNumberOfReplicas());

 for(int j=0;j < replica.size();j++)

 {

 Service s1 =(Service)replica.get(j);

 int demand = 1+(int)(Math.random()*100);

 int capacity = ((int)(Math.random()*100))%demand;

 db.insertReplica(s.getService_ID(), s1.getService_ID(), capacity, demand,

0);

 }

 }

 }

 public String generateRequest()

 {

 int no = 1 + (int)(Math.random()*1000);

 return "SID_"+no;

 }

 public ArrayList getCD(ArrayList list)

{

 ArrayList cd = new ArrayList();

 for(int i = 0; i< list.size(); i++)

{

 Replicas r = (Replicas)list.get(i);

 int b = r.getDemand()/ r.getCapacity();

 cd.add(b);

}

return cd;

89

}

public double getmean(ArrayList list)

{

 int mean = 0;

 for(int i =0; i < list.size(); i++)

{

 mean = mean +Integer.parseInt(list.get(i).toString());

}

 double rmean = (double)mean/(double)list.size();

 return rmean;

}

public double getmeanC(ArrayList list)

{

 int mean = 0;

 for(int i =0; i < list.size(); i++)

{

 Replicas r = (Replicas)list.get(i);

 mean = mean + r.getCapacity();

}

 double rmean = (double)mean/(double)list.size();

 return rmean;

}

public double getmeanD(ArrayList list)

{

 int mean = 0;

 for(int i =0; i < list.size(); i++)

{

 Replicas r = (Replicas)(list.get(i));

 mean = mean + r.getDemand();

}

double rmean = (double)mean/(double)list.size();

 return rmean;

}

90

public double getQc(double mean, ArrayList list)

{

 double c = 0;

 for(int i =0; i < list.size(); i++)

{

Replicas r = (Replicas)(list.get(i));

 c = c + Math.pow((double)(r.getCapacity() - mean),2);

}

double x = (double) c/(double)(list.size()-1);

return Math.sqrt(x);

}

public double getQd(double mean, ArrayList list)

{

double c = 0;

 for(int i =0; i < list.size(); i++)

{

 Replicas r = (Replicas)(list.get(i));

 c = c + Math.pow(((double)r.getDemand() - mean),2);

}

double x = (double)c/(double)(list.size()-1);

return Math.sqrt(x);

}

public double Normal(ArrayList list)

{

 double b =

getmean(getCD(list))/Math.sqrt((Math.pow(getQc(getmeanC(list),list),2) +

(Math.pow(getQd(getmeanD(list),list),2))));

 return b;

}

public double LogNormal(ArrayList list)

{

 double a = getmeanC(list)*

Math.sqrt(1+Math.pow((getQd(getmeanD(list),list)/getmeanD(list)),2));

 double b = getmeanD(list)*

Math.sqrt(1+Math.pow((getQc(getmeanC(list),list)/getmeanC(list)),2));

 double c = Math.log(b/a);

return c;

}

}

91

A.2 Service Implementation

package faultrecovery;

import java.util.ArrayList;

/**

 *

 * @author Sihle

 */

public class Service {

 /** Creates a new instance of Service */

 private String service_ID;

 private int clients;

 private long res_time;

 private Faults fault;

 private int numberOfReplicas;

 private int numberOfLReplicas;

 ArrayList faults = new ArrayList();

 Faults faulty = new Faults();

 private double reliability;

 private long start_time;

 Time time = new Time();

 public Service() {

 }

 public String getService_ID() {

 return service_ID;

 }

 public void setService_ID(String service_ID) {

 this.service_ID = service_ID;

 }

 public long getRes_time() {

 return res_time;

 }

92

 public void setRes_time(long res_time) {

 this.res_time = res_time;

 }

 public Faults getFault() {

 return fault;

 }

 public void setFault(Faults fault) {

 this.fault = fault;

 }

 public ArrayList generateServices(int numberOfService)

 {

 ArrayList gfaults = new ArrayList();

 for(int i = 1; i <= numberOfService; i++)

 {

 Service s = new Service();

 s.setStart_time(time.getTime());

 int nor = 1 + (((int)(Math.random()*1000)));

 long rtime = 120 + (((int)(Math.random()*100)));

 int nolr = 1 + (((int)(Math.random()*10))% 3);

 int nclients = 1 + (((int)(Math.random()*50)));

 String sid = "SID_"+i;

 s.setService_ID(sid);

 fault = s.generateFault();

 s.setFault(fault);

 s.setNumberOfReplicas(nor);

 s.setNumberOfLReplicas(nolr);

 s.setRes_time(rtime);

 s.setClients(nclients);

 gfaults.add(s);

 }

 return gfaults;

 }

public ArrayList generateReplicas(int numberOfService)

 {

 ArrayList gfaults = new ArrayList();

93

 for(int i = 1; i <= numberOfService; i++)

 {

 Service s = new Service();

 s.setStart_time(time.getTime());

 int nor = 1 + (((int)(Math.random()*10))% 3);

 int nolr = 1 + (((int)(Math.random()*10))% 3);

 int nclients = 1 + (((int)(Math.random()*50)));

 String sid = "SID_"+i;

 s.setService_ID(sid);

 fault = s.generateFault();

 s.setFault(fault);

 s.setNumberOfReplicas(nor);

 s.setNumberOfLReplicas(nolr);

 s.setClients(nclients);

 gfaults.add(s);

 }

 return gfaults;

 }

 public Faults generateFault()

 {

 int check = 1 + (int)(Math.random()*100);

 Faults f = new Faults();

 f.setFault_Id("STF");

 f.setCheckpointDataSize(check);

 faults.add(f);

 Faults f1 = new Faults();

 f1.setFault_Id("SOF");

 f1.setCheckpointDataSize(check);

 faults.add(f1);

 Faults f2 = new Faults();

 f2.setFault_Id("SUF");

 f2.setCheckpointDataSize(check);

 faults.add(f2);

 Faults f3 = new Faults();

 f3.setFault_Id("SIF");

 f3.setCheckpointDataSize(check);

 faults.add(f3);

 Faults ff = null;

 int pos = ((int)(Math.random()* 10))% 4;

94

 ff = (Faults)faults.get(pos);

 return ff;

 }

 public int getNumberOfReplicas() {

 return numberOfReplicas;

 }

 public void setNumberOfReplicas(int numberOfReplicas) {

 this.numberOfReplicas = numberOfReplicas;

 }

 public int getClients() {

 return clients;

 }

 public void setClients(int clients) {

 this.clients = clients;

 }

 public int getNumberOfLReplicas() {

 return numberOfLReplicas;

 }

 public void setNumberOfLReplicas(int numberOfLReplicas) {

 this.numberOfLReplicas = numberOfLReplicas;

 }

 public double getReliability()

 {

 int k = (5 +((int)(Math.random()*100)))%20;

 double p = Math.random();

 double reliability1 = Math.pow((1- p),(double)k);

 return reliability1;

 }

 public void setReliability(double reliability) {

 this.reliability = reliability;

 }

 public long getStart_time() {

 return start_time;

 }

 public void setStart_time(long start_time) {

 this.start_time = start_time;

 }

}

95

A.3 Database accessing Implementation

package faultrecovery;

import java.sql.*;

import java.util.ArrayList;

/**

 *

 * @author Sihle

 */

public class ServiceDB {

Statement stat = null;

 ResultSet result = null;

 Connection con =null;

 Time t = new Time();

 public ServiceDB() {

 initialize();

 }

 public void initialize(){

try{

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 con = DriverManager.getConnection ("jdbc:mysql://localhost/services",

"root", "sotobe");

 stat = con.createStatement();

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

}

 public ArrayList retrieveReplicas(String sid)

{

 ArrayList record = new ArrayList();

try{

 String query = "Select * from replica where sid = '"+sid+"';";

 result = stat.executeQuery(query);

96

 while(result.next())

 {

 Replicas r = new Replicas();

 r.setSid(result.getString("sid"));

 r.setRid(result.getString("rid"));

 r.setCapacity(result.getInt("capacity"));

 r.setDemand(result.getInt("demand"));

 r.setStart_Time(t.getTime());

 r.setReliability(result.getDouble("s_safty"));

 record.add(r);

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 return record;

}

 public void insertService(String sid,int replicas, int restime)

 {

 String query = "insert into service values('"+sid+"',"+replicas+","+restime+");";

 try{

 stat.executeUpdate(query);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 public void insertReplica(String sid,String rid,int capacity, int demand,double

s_safty)

 {

 String query = "insert into replica

values('"+sid+"','"+rid+"',"+capacity+","+demand+","+s_safty+");";

 try{

97

 stat.executeUpdate(query);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

}

